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Abstract. Time-lock puzzles are unique cryptographic primitives that
use computational complexity to keep information secret for some pe-
riod of time, after which security expires. Unfortunately, current anal-
ysis techniques of time-lock primitives provide no sound mechanism to
build multi-party cryptographic protocols which use expiring security as
a building block. We explain in this paper that all other attempts at this
subtle problem lack either composability, a fully consistent analysis, or
functionality. The subtle flaws in the existing frameworks reduce to an
impossibility by Mahmoody et al., who showed that time-lock puzzles
with super-polynomial gaps (between committer and solver) cannot be
constructed from random oracles alone; yet still the analyses of algebraic
puzzles today treat the solving process as if each step is a generic or
random oracle.
This paper presents a new complexity theoretic based framework and
new structural theorems to analyze timed primitives with full generality
and in composition (which is the central modular protocol design tool).
The framework includes a model of security based on fine-grained cir-
cuit complexity which we call residual complexity, which accounts for
possible leakage on timed primitives as they expire. Our definitions for
multi-party computation protocols generalize the literature standards by
accounting for fine-grained polynomial circuit depth to model computa-
tional hardness which expires in feasible time. Our composition theo-
rems incur degradation of (fine-grained) security as items are composed.
In our framework, simulators are given a polynomial “budget” for how
much time they spend, and in composition these polynomials interact.
Finally, we demonstrate via a prototypical auction application how to
apply our framework and theorems. For the first time, we show that it
is possible to prove – in a way that is fully consistent, with falsifiable
assumptions – properties of multi-party applications based on leaky, tem-
porarily secure components.

1 Introduction

Time-lock cryptography has been studied since the seminal work of Rivest,
Shamir, and Wagner (RSW) [35] more than twenty-five years ago with the pur-
pose of modelling security which expires over time. More recently, inherently
sequential functions motivated by large-scale consensus, distributed ledgers, and
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blockchain applications have also precipitated considerable research in verifi-
able delay functions [10, 34, 39]. The interest in time-lock primitives has yielded
various notions like non-malleable time-lock puzzles [22], non-malleable timed
commitments [26], and UC-security [5, 6] of time-lock puzzles in the random
oracle model.

Time-lock primitives facilitate distributed applications in which one or more
parties promise that a value will be revealed at a later time, without requiring
such parties to be honestly participating, or even be online, at the time of reveal.
This paradigm enables new techniques and applications for distributed compu-
tations. For example, over twenty years ago, Boneh and Naor [11] introduced
timed commitments as a way to achieve fairness in secure multi-party computa-
tion (MPC). Recently, Wan et al. [38] used time-lock puzzles to construct more
efficient broadcast with adaptive security.

1.1 New Foundations for Timed-Release Cryptography

Our motivating concrete, yet prototypical, application for this work is develop-
ing a provably secure simultaneous multi-round auction (SMRA) [32] without
idealized assumptions in its security proof, i.e., avoiding solely relying on ran-
dom oracle based analysis. An SMRA proceeds in rounds, in which each round
multiple parties may bid on multiple items; at the end of each round, all bids are
revealed. We wish to implement such an SMRA via time-lock primitives, e.g.,
when imposing no requirements on committers after submitting their commit-
ment. We further wish to treat the solution in a unified consistent manner, in
the sense that all desired protocol properties should rely on a consistent (rather
than self-contradicting) set of cryptographic assumptions.

However, we found that the existing literature on time-lock primitives con-
tains two major deficiencies which impede soundly designing and analyzing a
secure protocol without inadvertently admitting subtle inconsistencies in the
developed security analysis and proofs.

1st Deficiency: Composition for Leaky Protocols. When composing cryptographic
protocols that use time-lock primitives, it is important to model how to use timed
primitives as part of a protocol (i.e., as timed sub-protocols), and more gener-
ally protocols with timed security. This includes modeling exactly what happens
when the time-lock expires. For example, all definitions of timed primitives allow
for some advantage of a parallel adversary to learn the puzzle solution before
an honest parties, and this is made explicit in the literature on delay functions
[9, 10]. During composition, the adversary can use this extra time advantage to
attack other components of the composed protocol, i.e., its timed sub-protocols.
Although the recent result of Cohen et al.[16] provides a preliminary analysis
of the security degradation of composed resource-restricted primitives and is a
good step forward, we seek a more general and precise analysis and framework.

2nd Deficiency: Current Inconsistent Analysis. Existing models idealize the se-
curity analysis of time-lock puzzles in a way that presents contradictions with
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established results [29]. As we explain in Section 2.1, the generation of a puzzle
is analyzed in an algebraic model (enabling efficient generation of puzzles based
on standard hardness assumptions such as in [35]), while the security of the
puzzle solving process is analyzed as if a random oracle/generic models. Such
an analyzed solving process (relying on random oracles only, whether explicitly
or implicitly) cannot achieve the super-polynomial gap between generation time
and solving time due to an impossibility by Mahmoody et al.[29]. The “gap”
is the difference between the time to generate a time-lock puzzle and the time
required to solve it. Current works all incur an exclusive or (XOR) of two basic
properties: the “super-poly gap property” and “consistent analysis property.”
This situation is tolerated in a preliminary stage of presenting a primitive, but
it cannot persist forever. We frame our approach with respect to existing ideal-
ized models in Table 1. Moreover, we note that the existing idealized analyses
of composable time-lock primitives are all in non-falsifiable models [33].

We argue that this state of (idealized and) inconsistent modeling and analysis
should be considered an initial and temporary state of investigations, leading to
a more refined understanding of realizable constructions and consistent security
analysis. Given the contradictions we discuss above, such idealized inconsistent
modeling and security analyses should not be regarded as the final word on
actual realizable timed cryptographic protocols and constructions. This has been
the tradition in designing primitives in cryptography throughout the lifetime of
modern cryptography; the profound difficulties posed by timed primitives should
not make us shy away from the solid and tested tradition which is at the core of
the field, and this is an important starting point of our investigation.

New Foundations. The above two deficiencies which have been overlooked
(following the tradition of tackling a hard problem initially with an idealization)
lead us to develop an initial new foundation of time-lock primitives in a falsifiable
model which is radically different from prior work. Our approach leads to a fine-
grained polynomial model of security, in which the adversary learns the solution
based on the (assumed and falsifiable) hardness of the underlying computational
problem, and can learn the solution before the honest parties following the honest
solution algorithm. In our framework, the analysis of the solve algorithm does
not implicitly treat the iterative process as a sequence of random oracles, each
state revealing nothing about its future. Rather, since the secrecy will expire,
we model a process which is leaky. Specifically, each state may computationally
reveal something about its nearby future states (which, towards the end of the
iterative solution reveals something about the committed secret).

New Techniques for MPC. As a product of the framework, we provide new,
generalized definitions of multi-party computation, and introduce techniques to
enable temporarily-private applications not possible with previous definitions.
Our composition theorems, in turn, capture degradation of security when com-
posing timed primitives. This degradation has non-black-box consequences to
the design of our auction application.
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Analytical Model

Protocol Generate Solve
Super-
poly Gap

Consistent

Arapinis et al. [1] Idealized (RO) Idealized (RO) NO YES

Baum et al. ‘20b [5] Algebraic Idealized (RO) YES NO

Baum et al. ‘20a [6] Algebraic Idealized (RO) YES NO

Katz et al. [26] Algebraic Idealized (SAGM) YES NO

Chvojka, Jager [14] Algebraic Idealized (†) YES NO

This Work Algebraic
Complexity Theo-
retic

YES YES

Table 1: Properties of Analytical Models for Composable Timed Primitives. “Gen-
erate” and “Solve” describe the analytical framework used for the respective TLP
algorithms, whether they are in algebraic or idealized models. RO stands for “Random
Oracle” and SAGM stands for “Strong Algebraic Group Model.” “Superpoly Gap”
describes whether the analytical framework admits a superpolynomial gap between
generation and solving. The “Consistent” column describes whether the analyses of
generation and solving are consistent. (†) Depends on the Strong Sequential Squaring
Assumption, but is effectively treated as a Random Oracle (RO) in the security proof.

Our new proof techniques assign a “budget” to the simulator that allows
strictly less work than it takes to solve a puzzle. Otherwise, the security reduction
for a protocol argues that an adversary can do no worse than a simulator that
can explicitly solve a puzzle, losing privacy. When composing protocols π and ρ,
the composition is secure only against the depth of π’s adversary less the depth
of ρ’s simulator; this is due to the fact π’s adversary can run ρ’s simulator in
any attack against π. We expound on these techniques and more in Section 3.

A Full Protocol. Only after fully developing the above model and proving the
foundational composition theorems are we able to finally present a protocol for
an auction. The auction protocol is built by the concurrent composition of many
leaky cryptographic primitives. A full analysis therefore requires considering se-
curity degradation that occurs in two places: in the primitives themselves and
from their composition. In the complexity theoretic security model, timed prim-
itives incur leakage (computationally derived from a state to its future neighbors
as explained above) which must be factored in the security analysis. The com-
position theorems reveal additional security degradation and constraints on the
simulator. In order to design a full protocol in a consistent framework, both of
these forms of degradation and the corresponding simulation techniques were
necessary components of the analysis.

We hope this work and its principles will motivate further research in the
direction advocated herein, further adopting timed primitives into the accepted
formal tradition of modern cryptography (rather then continuing tackling diffi-
culties of the primitive’s instances by essentially accepting the anomaly of claim-
ing security in one model and analyzing performance of the same instance in a
model contrary to the former).

4



1.2 Related Work

We briefly highlight related works in time-delayed and fine-grained cryptography.
A more comprehensive discussion of related work is deferred to Appendix D.

Time-lock Puzzles and Composition. The seminal work on time-lock puzzles was
produced by Rivest, Shamir, and Wagner (RSW) [35]. Boneh and Naor [11] in-
troduced timed-commitments, which progressed the study of timed primitives
for fairness in MPC. Bitansky et al.[8] formally defined time-lock puzzles and
constructed them using randomized encodings, and construct weak time-lock
puzzles from one-way functions. Baum et al.[5, 6] formalized time-lock puzzles in
the UC model [12]. Freitag et al.[22] built publicly verifiable, non-malleable time-
lock puzzles, but do not compose with general MPC. Katz et al.[26] constructed
non-interactive non-malleable timed-commitments with a proof of forced open-
ing but also do not compose with MPC. They also showed that in a quantitative
group model, speeding up squaring is as hard as factoring. For negative results,
Mahmoody et al.[29] proved there are no time-lock puzzles depending only on
random oracles with more than polynomial time gap. Arapinis et al. [1] con-
structed UC secure time-lock puzzles in the random oracle model, but they
depend only on random oracles and achieve only polynomial gap.

Two notable additional works have addressed the assumptions underlying the
repeated squaring problem in idealized models. Rotem and Segev [36] showed
that speeding up repeated squaring in a generic ring is equivalent to factoring.
van Baarsen and Stevens [2] address multiple hardness assumptions used for
timed primitives in generic Abelian hidden-order groups.

Sequential and Delay Functions. There is a growing literature on sequential func-
tions [15] and verifiable delay functions (VDF) [9, 10, 19, 30, 34, 39] that motivate
the time difference between the best parallel adversary’s solution algorithm and
the honest sequential algorithm. Both of [19, 30] showed impossibility results
of constructions based on random oracles for tight VDFs, which require that a
sequential function be evaluatable by a parallel adversary in time no less than
T −T ρ for some constant 0 < ρ < 1. By this definition, T includes both the time
to solve and to construct a proof; still the point remains that the impossibilities
separate the time between honest strategy and parallel adversary.

Resource-Restricted Simulation. Independently and concurrently to our work,
Cohen, Garay, and Zikas [16] introduce a composition theorem for the resource-
restricted setting which is similar to ours, but less general. Their theorem states
that if π is secure against a T -depth bounded adversary in the F -hybrid model
and ρ is a secure protocol for F against an αT -depth adversary then the se-
quential composition of π and ρ is secure against a (1 − α)T -depth bounded
adversary. They also claim that the simulator for the composed protocol works
in the sum of the simulators for the respective protocols. Like [22], they also
consider an environment that is (arbitrary) polynomial.

The above theorem is less granular than ours, as we pay close attention to
the way that the polynomial sizes of the adversaries interact with the simulators
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for composed protocols. We also expand the composition result to concurrent
settings, and we consider a fine-grained polynomial bounded environment.

1.3 Paper Outline

Since this paper introduces a new model, it contains a longer than usual moti-
vation, discussion of subtleties, definitions, and involved relevant formal issues.
Section 2 motivates and introduces our new falsifiable computational model for
timed cryptography. Section 3 contains our core contributions, including defini-
tions for timed MPC, composition theorems, and an outline for proving security
of our application. In Section 4 we formally present our model of depth-secure
computation and introduce residual complexity. In Section 5 we model depth-
secure MPC. In Section 6 we formally present our composition theorems. Sec-
tion 7 explains how to transform a leaky algebraic puzzle into a time-lock puzzle
using a single random oracle call, which achieves analysis consistent with the
model. Section 8 builds an example application and shows how to apply our
composition theorems. Our model is expanded in Appendix A. Our sequential
composition theorem’s proof is in Appendix B. In Appendix C we relate time-
lock puzzles to residual complexity by proving that the residual hardness of
time-lock puzzles remains high until the time-lock expires. Appendix D expands
the related work in time-lock primitives and granular computational models.
Finally, Appendix E contains the full proof of our single-shot auction protocol,
which additionally includes definitions of non-malleability.

2 A New Model for Timed Primitives

We first discuss subtleties and inconsistencies in (explicit and implicit/hidden)
random oracle/ generic domain based security analysis of timed-primitives. We
then propose a complexity theoretic based model for timed primitives with a
focus on their composition. Central to the new model is a notion of fine-grained
polynomial hardness in which some problems are solvable while related under-
lying problems remain hard.

2.1 Subtleties and Inconsistencies in Random Oracle Based
Analysis for Time-Lock Puzzles

Similar to the classical result of [13] in the random oracle (RO) model and [17,
24] about the Fiat-Shamir transform [21], we argue that the desired properties
of realizable time-lock puzzles do not follow from the current analyses.

All current computational puzzles follow the following blueprint:

1. Puzzle generation uses a trapdoor to efficiently sample a puzzle.
2. Puzzle solving uses a sequential algorithm. The puzzle is parameterized

such that the (polynomial) sequential algorithm is faster than any known
(super-polynomial) method to recover the trapdoor.
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For a puzzle to be useful, it must be efficient to generate and hard to solve. The
trapdoor is therefore required for utility, while the hardness of the computational
problem is required for time-lock security.

However, analysis of these algorithms occurs in inconsistent models. For all
existing constructions:

• The generation algorithm is analyzed in an algebraic model.
• The solution algorithm is analyzed as if each step is a random oracle.

To elucidate the inconsistency, we quote directly from the approach of [5]. In
the excerpt, they describe the leakage provided by their time-delay functionality:

The intermediate states leaked to the adversary by the functionality are
not concrete representations of actual intermediate states but generic
random labels assigned to states (similarly to the generic group model
treatment given to the RSW assumption in [6]). Learning these interme-
diate generic states does not allow the environment (or the adversary)
any advantage in computing the next states before they are revealed by
the functionality, as these states are sampled uniformly at random.

In both of these works [5, 6] – as well as any analyses using either the RO or
the strong algebraic group model – the proofs explicitly assume that no infor-
mation is revealed to the adversary at each step of the solving process, and that
each intermediate state is sampled uniformly at random. The analysis therefore
turns the algebraic structure into a random oracle with properties identical to
the impossibility by Mahmoody et al [29]. It is inconsistent to analyze puzzle
generation in an algebraic model – where super-polynomial gaps are believed to
be achieved – and solution in a random oracle model – which can only achieve
polynomial gaps.

The Strong Algebraic Group Model. In the strong algebraic group model of [2,
26] and the generic ring model of [36], each element is expressed as a function
of factors or as an inverse of another element, which gives algebraic structure to
the elements that have been seen, but leaks no more about the solution than a
random oracle. It therefore incurs the same problems as the previous analysis.
As discussed, this is also how [5, 6] analyze their algebraic functionalities.

Other Approaches with Similar Subtleties. Other works do not explicitly model
the solving process via a random oracle, but either the modeling implies a random
oracle or it overlooks leakage as the puzzle is partially solved. For example, the
base time-lock puzzle in the construction of Freitag et al.[22] defer to analysis
by Pietrzak [34] that assumes the hardness of repeated squaring. Chvojka and
Jager [14] similarly reduce to the Strong Sequential Squaring assumption. These
formalizations simply assume it is infeasible to guess the solution of a repeated
squaring until the final squaring; either it implicitly treats the process as if the
probability of guessing the solution before the end is negligible, or it uses a game-
based definition that implies the solution process is essentially a random oracle
until the very end. Therefore, these techniques as well are not differentiated in
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any meaningful way from the analysis of Mahmoody et al. [29]. While idealization
is reasonable when analysis involves a hard modeling problem, this cannot be the
final step. To establish a sound foundation for the solving of time-lock puzzles,
we require explicit techniques.

2.2 A Complexity Theoretic Based Framework for Computational
Puzzles

There are two approaches to a consistent analysis of time-lock primitives: either
entirely in the random oracle model, which can only yield polynomial gaps,
or in an algebraic model where intermediate states may leak some information
about the final solution. This work is the first to choose the latter. Sequential
algebraic problems are treated as if each intermediate state leaks information
about nearby intermediate states, until there are no more intermediate states
and the algebraic solution begins to be revealed. Claims about the hardness of
guessing the final state from a given state are certainly falsifiable by an efficient
sampling and guessing algorithm.

As examples of such leakage, consider the following ways that repeated squar-
ing admits leakage. (This is a list for illustration, and should not be considered
exhaustive. The examples can also be combined by a savvy adversary.)

• For all intermediate states k <
√
N because no modular reduction is neces-

sary to compute k2 mod N , the next state is leaked in low depth.
• In the non-uniform model where the adversary may run many parallel com-

putations, it is possible to compute forward mapping tables that allow the
solver to infer an approximation on the puzzle solution, or look-ahead chains.
(Even though the probability of computing a look-ahead chain is small be-
cause the adversary can compute only a polynomial number within an ex-
ponential space, this technique does provide leakage.)

• For small δ, knowledge of an intermediate state k and its solution k2 mod N
leaks partial information about (k + δ)2 mod N .

Fine-Grained Complexity. Recall that in time-lock puzzle specifications ([8,
22] Definition 5) the puzzle solver must be able to recover the secret within time
that is polynomial in the puzzle’s security parameter. Therefore, the (leaky) it-
erative solution process occupies a regime of fine-grained polynomial complexity,
where (too much) information must not be leaked to an adversary with some
polynomial depth d, but all information must be leaked when surpassing a dif-
ferent polynomial depth d′ > d.

The above guides our work into a model of (timed) cryptography with fine-
grained polynomial depth which, as we explain below, brings new challenges in
modeling and intricate formal definitions.

Residual Complexity. To formalize the above notion of fine-grained polynomial
hardness – in which some problems are solvable while related underlying problems
remain hard – we introduce our definition of residual complexity. Intuitively,
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residual complexity quantifies the “remaining hardness” of a puzzle that has
already been (partially) solved by a parallel adversary of depth d.1

Definition 1 (Residual Complexity (Informal)). A puzzle scheme has resid-
ual complexity (d, r) if no depth-d adversary can guess the solution of a randomly
sampled puzzle with probability more than r.

The “remaining hardness” of the puzzle after attempting to solve it in d depth
is computed by 1-r. Our formalization (Definition 7) is a generalization of a
technique in defining the depth-hardness of certain computational problems in
[26] and others.

Residual complexity models the entire leakage profile of a puzzle by defining
the “leakage” of a puzzle as the decrease in residual complexity of the puzzle
between every two levels of depth of the best solving algorithm. We illustrate
the difference between “leaky” and idealized residual complexity curves of puzzle
schemes in Figure 1. In the figure, the x axis represents time, and the y axis
represents the best adversary’s probability of guessing the solution. A point (x, y)
on the curve represents that the best x-depth adversary guesses the solution with
probability y. At the moment of the time-parameter, the puzzle is guaranteed
to be solvable with probability 1 by the honest strategy.

The Critical Time. For a sequential function, we quantify the difference in time
between when the best (parallel) adversary can guess a puzzle solution (with
unacceptable, or non-negligible probability2) and the time that the honest parties
learn the solution via the scheme’s solve algorithm. We name the moment when
the adversary learns unacceptable information on the solution the critical time.

Looking ahead, our simulators will be required to equivocate the solution of
the puzzle at the critical time. This is an artifact of the analysis which reflects
that puzzles can only be considered secure until the critical time.

2.3 A Random Oracle Compiler For Leaky Puzzles

In Section 7, we present a compiler that applies a random oracle once to any
algebraic time-lock puzzle. The random oracle is applied only as a last step
– as opposed to every intermediate step. This single application of a random
oracle serves to “boost” the security of the compiled puzzle until O(λ) bits of
the algebraic solution have leaked. The “inner” algebraic puzzle is explicitly
modeled as a leaky primitive. The analysis is consistent because the security
during solving depends explicitly on the leakage of the inner algebraic primitive.

1 Note that the remaining hardness measures pseudo-entropy rather than entropy, as
the solution of a timed primitive is always committed at the moment it is generated.
(Otherwise the solving algorithm could not be deterministic.)

2 A negligible function is an asymptotic notion. For each security parameter, the proto-
col designer can choose a probability that is “unacceptable” for guessing the solution,
and designate the depth for which the residual complexity meets this threshold as
the critical time. This specifies the moment at which the time-lock is considered to
expire.
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(a) Example leakage profile for a leaky
time-lock puzzle. The residual complexity
remains low until almost the hardness ex-
pires, which we call the “critical time.”

0

1

time parameter

(b) Example leakage profile for an ideal-
ized puzzle scheme that perfectly hides its
solution until the final step. The residual
complexity is a step function.

Fig. 1: Illustration of leakage profiles for a leaky puzzle and an idealized puzzle.
The x axis represents time, and the y axis represents the best adversary’s prob-
ability of guessing the solution. A point (x, y) on the curve represents that the
best x-depth adversary guesses the solution with probability y. At the moment
of the time-parameter, the puzzle is guaranteed to be solvable with probability
1 by the honest strategy.

3 Technical Overview: Composition and Application

3.1 Simulation Budgets and Depth-Secure MPC

Our treatment of time-based primitives and protocols requires a granular, depth-
based definition of secure computation which departs from the standard cryp-
tographic regime of “security up to arbitrary composition within complexity
class P,” and must account for the exact depths of all involved machines – the
adversary, the simulator, and the distinguisher/environment.3

Specifically, security should hold with respect to an adversary with depth
that is bounded by a fixed polynomial (in comparison to any polynomial in the
security parameter). We bound the depth of a distinguisher (or environment) in
tandem with the adversary. After surpassing these parameterized depths, it is
alright for the information to be revealed.

The simulator must also be restricted to less depth than the puzzle requires to
solve. Otherwise, the claim of privacy via reduction is meaningless: an adversary
can do no worse than a simulator that could solve a puzzle outright and learn the
solution. Therefore, the simulator has a granular “depth budget” and it must
run in less time than privacy is required to hold. We give the formal definition
in Section 5.3 and describe it informally as follows:

3 To generalize both the works of [22] and [26], our definition states the depth of the
environment, but the variable could be either polynomially bounded or unbounded.
See [22] for discussion.
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Definition 2 (Depth-Secure Multi-Party Computation (Informal)). A
protocol π (da, ds, de)-securely implements a functionality F if π’s simulator runs
in no more than ds depth, and the distribution of views produced by the simulator
is indistinguishable from the distribution of real executions for any da-bounded
adversary and any de-depth bounded distinguisher (the environment).

Our observation on the simulator’s depth budget leads to new questions about
whether existing works apply to a fully consistent model such as ours. The sim-
ulator in the work by Baum et al. [6] explicitly solves a time-lock puzzle during
simulation, and is able to shortcut the solving process only because the simula-
tor is not bound by the global clock functionality. 4 Freitag et al. [22] allow the
simulator to explicitly solve puzzles, and artificially constrain the distinguisher
by allowing it only to see a function of the solution of modified puzzles, which
does not conform with meaningful definitions of a distinguisher which could run
the simulator on its own. These are very delicate arguments, and while the cor-
responding constructions are contributions, they fall short of the nuances our
fine-grained model brings to light: since the simulators are of a much different
type than usual, nuances regarding the qualitative properties of the proofs using
them follow.

Remark 1 (Comparison to Definitions for Secure Multi-party Computation). Our
definition for depth-secure multi-party computation is a strict generalization of
the standard simulation-based definitions of MPC [23, 28]. To prove that a pro-
tocol is depth-secure, perform the same steps as for a “traditional” MPC proof.
In addition, account granularly for the depths of all machines involved.

3.2 Composition of Depth-Secure Protocols

Composing secure timed primitives and protocols introduces additional nuances.
For example, consider sequentially composing protocols π and ρ, where π is
proven secure in the F -hybrid model against a da-depth adversary, and ρ securely
implements F against a d′a adversary. The composition πρ is not trivially secure
against a da + d′a-depth adversary! An adversary against π could use the time
during ρ in order to continue attacking π; similarly, an adversary against ρ could
use the time after ρ concludes and π resumes in order to continue attacking ρ.
Similar issues occur in concurrent composition, although they are of the same
ilk – in our model, the depth used by an environment to run a “side session”
during an attack against π counts towards its depth in the attack.

When composing protocols with timed primitives, the composed simulation
must also be shorter than the time that privacy must hold. We also show that the
black-box composition is secure only against the smaller of the two protocols’
distinguishers, and against an adversary that is smaller than the first protocol’s
adversary by the size of the second’s simulator.

4 This observation is more an indictment of bounding time with a global clock func-
tionality than of the simulation technique, since the simulator is not constrained by
the functionality and therefore not granularly constrained by depth/time.
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Theorem 1 (General Composition (Informal)). Let π (da, ds, de)-securely
implement F and let ρ (d′a, d

′
s, d
′
e)-securely implement G. The composition of π

and ρ is (da − d′s, ds + d′s,min(de, d
′
e))-secure.

The term da − d′s comes from our simulation technique. Intuitively, if the
composition is not secure against this depth of adversary, then there exists a
da-depth adversary that simulates an execution of ρ in parallel to its attack on
π and uses the simulation to break π.

The above theorem considers concurrent as well as sequential composition.
We additionally prove another relaxed composition theorem for protocols that
cannot be proven concurrently composable but may be proven sequentially com-
posable (e.g., if the simulator must be rewound).

Theorem 2 (Sequential Composition (Informal)). Let π (da, ds, de)-securely
implement F in the G-Hybrid model and let ρ (d′a, d

′
s, d
′
e)-securely implement G.

The composition πρ (da − d′s, ds · d′s,min(de, d
′
e))-securely implements F .

The multiplication in the middle term results from considering rewinding.
We present formal versions of these composition theorems for depth-bounded

secure computation (Theorems 3 and 4) in Section 6. These analyses are limited
to composing depth-secure protocols in a black-box manner, and we do not prove
tightness of degradation. There may be better techniques, including those with
knowledge of the underlying protocols, that show tighter security preservation
under composition.

3.3 Example Application: Simultaneous Multi-Round Auction

The composition theorems allow us to present the first (to our knowledge) timed
cryptographic protocol analyzed by composing timed subprotocols. For the appli-
cation we choose a simultaneous multi-round auction (SMRA) [32]. In a SMRA,
many distinct auctions are held simultaneously, and parties may adjust their
bids on each item based on the current winners of other items; this allows the
auction mechanism to reflect the fact that some bidder may believe that mul-
tiple items X and Y are worth more only if they can be bought together, and
therefore increase its bid for X if it is currently leading the bidding for Y .

Single-Round, Single-Item Auction. We first model a single item, single-round
auction in which all parties submit bids via time-lock puzzles. The auction is
split into two phases: first a bidding phase concluding with tbid during which
parties submit the puzzles containing their bids, and second a solving phase
concluding with tend during which they solve the puzzles to extract bids. No
puzzles received after tbid are considered in the auction. Importantly, tbid must
be set so that the critical time of all submitted puzzles occurs after tbid, which
implies that the adversary cannot use information about honest parties’ bids in
order to submit its own.

Additionally, at the end of the round, all parties know all bids, which are also
the inputs. Therefore, we must model via temporary privacy (Section 5.4) that
privacy of all bids must be maintained until the revelation time. In the proof,
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we withhold the bids from the simulator until tbid, and require the simulator to
equivocate after it learns them.

SMRA via Composition. Given a single-round single-item auction protocol, we
compose the protocol concurrently with itself in order to achieve a simultaneous
single-round auction for multiple items. The security of this simultaneous auc-
tion is provided via our composition theorem, but the composition is not black
box! Concurrently composed protocols are secure against a smaller adversary,
effectively assuming that the adversary can learn information about honest par-
ties’ puzzles earlier due to the composition. We therefore must “move back” the
assumed critical time for each puzzle, which implies an earlier tbid.

Finally, we trivially compose simultaneous single-round auctions in serial
(meaning one begins after the previous concludes, without degrading security)
in order to achieve a protocol for a SMRA.

4 Definitions

We denote by [m] the set {1, 2, . . . ,m} and [n1, n2] the set of all integers between
n1 and n2. When we write f = f(λ), we indicate f is a function of λ. By
poly(λ), polylog(λ), and superpoly(λ) we denote any polynomial function, any
poly-logarithmic function, and any super-polynomial function of λ, respectively.
A function negl is negligible if there exists a constant n for which for every
polynomial function poly and every m > n, negl(m) < 1

poly(m) .

4.1 Interactive Circuits

We adapt a model of computation based on interactive circuits [7]. We refer to
[7] for the full definition and summarize it here.

An L-round interactive circuit iC = {iC`}`∈[L] with oracle O is a sequence of
L next-step circuits that interacts with O as follows. In round r ∈ [L], the next-
step circuit iCr takes as input str−1 and ar−1, where str−1 is the state output by
the previous circuit and ar−1 is the list of oracle responses. The round-r output
is described as iCr(str−1, ar−1) = (str, qr, or), where str is the state output by
the rth circuit, qr is the set of queries output by the rth circuit, ar is the list of
answers to qr, and or is the output of the rth circuit. The initial inputs st0 and
q0 are defined to be the 0 bit string, and a0 is defined to be the circuit’s advice
string. Or specifically,

(str, qr, or) =

{
iCr(str−1, ar−1) if ∀k, ar−1k = O(qr−1k ) 6= ⊥
(⊥,⊥,⊥) otherwise

The transcript is the list of all queries, answers, and outputs {qr, ar, or}r∈[L].
The oracle-assisted interface allows interactive circuits to interact concurrently
with each other. One can consider two interactive circuits A and B to interact
via a configuration in which the queries qrA produced by circuit A in round r are
the answers arB provided to circuit B in round r, and vice versa.
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4.2 Depth-Bounded Computation

Our computational model constrains the length of time that a party may run by
constraining the depth of its corresponding circuit. In support of this paradigm,
we introduce definitions for circuits that are bounded in both size and depth.

For any circuit C, we denote by size(C) the size of C, and by depth(C) the
depth of C (indicating parallel time). For an interactive circuit iC, depth(iC)
denotes the sum of the depths of its next-step circuits. We now define depth-
bounded circuit ensembles.

Definition 3 (Depth-Bounded Circuits). For any function d(·), an ensem-
ble of circuits C = {Cλ}λ∈N is d-depth-bounded if for all λ, depth(Cλ) ≤ d(λ) and
size(Cλ) ≤ poly(λ). An interactive circuit iC = {iC`}`∈[L] is D-depth-bounded if
D >

∑
`∈[L] depth(iC`) and poly(λ) ≥

∑
`∈[L] size(iC`).

We next define a notion of depth-bounded computational indistinguishability.

Definition 4 (Depth-Bounded Indistinguishability). Two ensembles X =
{X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N are d-depth-indistinguishable,

denoted
d
≈ if for every d-depth-bounded distinguisher D = {Dn}n∈N there exists

a negligible function negl(·) such that for every a ∈ {0, 1}∗ and every n ∈ N

Pr[Dn(X(a, n)) = 1]− Pr[Dn(Y (a, n)) = 1] ≤ negl(n)

4.3 Time-lock Puzzles

We adapt a definition of puzzles from Bitansky et al. ([8] Definition 3.1).

Definition 5 (Puzzle). A puzzle for solution domain M = {Mλ}λ is a pair
of algorithms Puz = (Puz.Gen,Puz.Solve) for which

• Z ← Puz.Gen(τ, χ) is a probabilistic algorithm over difficulty parameter τ ∈
N and solution χ ∈Mλ, where λ is a security parameter, and outputs puzzle
Z.

• χ ← Puz.Solve(Z) is a deterministic algorithm that takes as input puzzle Z
and outputs solution χ ∈Mλ.

subject to the following constraints:

• Completeness: For every security parameter λ, difficulty parameter τ , so-
lution χ ∈ Mλ, and puzzle Z in the support of Puz.Gen(τ, χ), Puz.Solve(Z)
outputs χ.

• Efficiency:

• Z ← Puz.Gen(τ, χ) can be computed in size poly(log τ, λ).
• Puz.Solve(Z) can be computed in size τ · poly(λ).

We continue by adapting the more constrained definition of a time-lock puzzle
by Bitansky et al. ([8] Definition 3.2).
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Definition 6 (Time-lock Puzzle). A puzzle Puz = (Puz.Gen,Puz.Solve) is a
time-lock puzzle for solution domain M = {Mλ}λ with gap ε < 1 if there exists
a polynomial r(·) such that for every polynomial t(·) ≥ r(·) and every polynomial
size, tε-depth-bounded adversary A = {Aλ}λ∈N, there exists a negligible function
negl such that for every λ ∈ N, and every pair of solutions χ0, χ1 ∈Mλ:

Pr[b← Aλ(Z) : b← {0, 1}, Z ← Puz.Gen(t(λ), χb)] ≤
1

2
+ negl(λ)

4.4 Residual Complexity and the Critical Time

Residual Complexity. We introduce a new basic definition of the residual
complexity of a puzzle, which describes the remaining hardness of solving a ran-
domly sampled puzzle after a given amount of solving time. Residual complexity
measures the pseudo-entropy [25, 37] of a puzzle solution from the perspective
of a computationally bounded solver.

Definition 7 (Residual Complexity). For a function r : N→ [0, 1], we say
that a puzzle Puz with solution domain M = {Mλ}λ∈N has (d, r) residual com-
plexity if for every depth d-bounded adversary Ad, and every λ ∈ N:

Pr[χ← Ad(Y ) : χ←Mλ, Y ← Puz.Gen(τ, χ)] ≤ r(λ)

When d is implied by context, we refer the residual complexity of a puzzle by the
function r. When we consider the residual complexity of a puzzle at a particular
depth d, we explicitly write rd. The “remaining hardness” of the puzzle is 1−r(λ).

“The Critical Time” of a Time-lock. In the life of every time-lock puzzle,
there is a point at which the adversary has learned “too much” information
about the solution (according to the protocol designer), expressed by a threshold
residual complexity r∗(λ). We call this point the critical time (or critical depth)
and denote it by t∗. Specifically, t∗ = t∗(τ, λ, r∗) depends on the solution time τ
of the puzzle, the security parameter λ that tunes the puzzle’s difficulty, and a
threshold residual complexity r∗ = r∗(λ) for guessing the solution. t∗(τ, λ, r∗) is
the moment at which the leakage of the puzzle exceeds the threshold r∗(λ).

Note that because the leakage curve is a representation of hypothesized hard-
ness of a computational problem at varying depths, the critical time represents
only a belief by the protocol designer. It is possible to conservatively estimate the
critical time (by assuming it occurs earlier for a particular guessing probability)
without negatively affecting security.

5 Modeling Secure Multi-Party Computation

This section discusses in detail the modeling issues that arise in our work from
composition of timed primitives with other cryptographic computations, includ-
ing simulating leaky functionalities.

To provide a full treatment of depth-secure multi-party computation, we
present two models:
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1. A “general” model which adapts the Universal Composability (UC) frame-
work [12] such that all parties (including the environment, trusted third
party, and adversary) are modeled as interactive circuits.

2. A “sequential” model, which is useful for proving security of sequential com-
position of protocols which cannot be proven secure in our more general
model, but is otherwise similar, and adapts standard sequential models to
our fine-grained treatment.

We then present our definitions for depth-secure computation and theorems
– both general and sequential – for how depth-secure protocols compose.

5.1 General Execution Model

In our generalized, UC-like model, we consider an execution in the presence of
an environment that provides inputs to parties and reads their outputs. The en-
vironment is an interactive circuit which directs the execution. It delivers inputs
to parties as well as messages that have been sent to them by the adversary. The
environment is also responsible for directing query responses between interac-
tive circuits. Each party that receives an input or message from the environment
proceeds by evaluating its next-step circuit, after which control is returned to
the environment.

The adversary informs the environment which parties it would like to (adap-
tively) corrupt, and the environment passes the adversary all of the corrupt
parties’ inputs, the queries they make, and the responses they receive (the lat-
ter two are analogous to the messages they send and receive, adapted for our
model). The adversary may also inform the environment before the execution
which parties it will corrupt from the start; in this case, the environment passes
the adversary those parties’ inputs and the adversary may choose to replace their
inputs by responding to the environment. Only after this exchange, the environ-
ment provides inputs to all honest parties. This models that an adversary may
select inputs in order to affect a computation.

Synchronization. When all parties that are online in execution evaluate one level
of depth of computation at the same rate, we say they proceed in lockstep. We
use this assumption to prove a stronger version of our composition theorems.

For a full treatment of the execution model, refer to Appendix A.1.

The Ideal/Real Paradigm in the General Model. We next describe our
general ideal/real paradigm for granular-depth secure multi-party computation
(MPC).

Execution in the Real Model. In the real model, participants execute a protocol
π to compute the desired functionality F without a trusted party. At the end of
the execution, honest parties output their protocol outputs. The corrupt parties
output nothing. The adversary outputs an arbitrary function of its inputs and
the messages that corrupt parties have received. The environment learns every
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output. The random variable REALπ,A(z),Z(x) denotes the output of the envi-
ronment in a real execution of π with honest inputs x, auxiliary input z to A,
with environment Z.

Execution in the Ideal Model. In an ideal execution, the parties interact with
a trusted party by submitting all of their inputs to the trusted party in the
beginning of the execution. The trusted party for a leaky functionality responds
to the parties by dividing an execution into phases such that at the end of each
phase, the parties receive some output.

At the end of an execution, honest parties output whatever they have received
from the trusted party. Corrupt parties output nothing, and the adversary out-
puts an arbitrary function of its input and the messages that corrupt parties
have received from the trusted party. The environment learns every output. The
random variable IDEALF,A(z),Z(x) denotes the output of the environment in an
ideal execution of functionality F on honest inputs x, auxiliary input z to A,
with environment Z.

5.2 Sequential Model

Our sequential model is like the general model, except that each protocol execu-
tion is considered in isolation, and instead of being directed by the environment,
it is directed by the adversary itself. The adversary controls message deliveries
and may adaptively corrupt parties throughout an execution. When the adver-
sary delivers a message to a party, it evaluates the party’s next step circuit. It
is then responsible for forwarding any messages returned in the circuit’s queries,
as per the oracle-assisted interface explained in Section 4.1. The adversary can
additionally adaptively corrupt parties and inject messages, analogously to the
exposition in Appendix A.1.

The Real/Ideal Paradigm in the Sequential Model.

Execution in the Real Model. In the real model, the parties execute a proto-
col π in the presence of an adversary A. The random variable REALπ,A(z)(x)
denotes the execution transcript on a real execution of π with honest inputs
x and auxiliary input z to adversary A. The execution transcript includes all
of the honest parties’ inputs, the messages received by honest parties, and the
adversary’s output.

Execution in the Ideal Model. As in the general model, in the ideal experiment
the honest parties send their inputs to a trusted third party, and the third party
delivers the results. In our sequential model, the simulator generates an execution
transcript by interacting with the third party on behalf of the honest parties.
The random variable IDEALF,S(z)(x) denotes an execution transcript generated
by an adversary S in an idealized execution of functionality F on honest inputs
x and auxiliary input z to S.
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5.3 Depth-Bounded Secure Multi-Party Computation

Depth Constraints. For a meaningful definition of secure multi-party computa-
tion (MPC) with timed primitives, the computational power of the simulator
must be constrained in a manner similar to the adversary’s. Otherwise, if the
depth of the simulator is substantially more than the adversary, then the sim-
ulator could (for example) solve a time-lock puzzle, and use the solution in
the simulation. It would be meaningless to argue privacy by claiming that any
information the adversary can learn about the honest parties’ inputs in a real
execution could also be learned by a simulator which explicitly solves a time-lock
puzzle in order to learn secret information (such as honest parties’ inputs).

Our definitions below therefore constrain the depths of both the simulator
and the adversary. We also depth-constrain the distinguisher, intuitively because
for timed primitives we need only to show security for some amount of time.

Definition 8 (Depth-Bounded Secure Computation: General). Let da =
da(λ), ds = ds(λ), and de = de(λ). Protocol π (da, ds, de)-depth securely com-
putes F if there exists a ds-depth-bounded S such that for every real-world da-
depth-bounded adversary A and every de-depth-bounded environment Z, the fol-
lowing two ensembles are de-depth indistinguishable:

{REALπ,A(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF,S(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

Remark 2. Ours definitions for composition say that a protocol (da, ds, de)-securely
computes some functionality if there is a ds-depth bounded universal simulator
S such that for every da-depth-bounded adversary, S produces a distribution
of views that is de-depth indistinguishable from a real execution. Although we
reverse the order of quantifiers for the simulator and adversary in the definition
from the standard ordering, most proofs are written by providing a universal
simulator that works for any adversary.

The depth of the distinguisher. The constraint on a distinguisher’s depth (in
this case, the environment; below, the distinguisher) is a significant weakening
of the definition compared to those by Goldreich or Lindell’s [23, 28], as neither
constrains the depth of the distinguisher by a granular polynomial. However,
this weakening is sufficient for our setting, since in practice, if a time-locked
output will eventually be revealed anyway, we require indistinguishability of the
simulation only for the duration of the experiment.

Depth-Secure Computation: Sequential. In the sequential model, as ex-
plained above, the execution is directed by the adversary, and the real and ideal
experiments should be indistinguishable to a depth-bounded distinguisher who
receives a transcript of the execution. (We still use the notation de to represent
the depth of the distinguisher despite removing the role of the environment;
above, de is the depth of the distinguishing environment.)
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Definition 9 (Depth-Bounded Secure Computation: Sequential). Let
da = da(λ), ds = ds(λ), and de = de(λ). Protocol π (da, ds, de)-depth securely
computes F if there exists a ds-depth-bounded S such that for every da-depth-
bounded real-world adversary A, the following two ensembles are de-depth indis-
tinguishable:

{REALπ,A(z)(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF,S(z)(x)}x∈({0,1}∗)n,z∈{0,1}∗

5.4 Simulation for Temporary Privacy

In some applications, sensitive information is revealed during the computa-
tion, but must not be revealed before some specific point in time. We call this
paradigm temporary privacy. For example, consider an accountable computing
application, where parties time-lock their inputs and are held accountable to
them at a later time. In standard definitions of MPC[23, 28], there is no way to
quantify security of such a protocol. These inputs would be output by all par-
ties, making any security reduction trivial: because the simulator would receive
all parties’ inputs (as one party’s output), the standard reduction for proving
security would declare that no adversary could learn more information than a
simulator which already knows all of the parties’ inputs.

Therefore, the formalization of temporary privacy requires that the simulator
knows no more information during the computation than the adversary. In such
a situation, the honest parties’ outputs (which contain their inputs) are withheld
from the simulator until they are revealed to the adversary. By this restriction,
the proven statement is that the adversary can do no worse than a simulator
which knows the same amount of information at each step of the computation.
In Section 7.2, we prove security of such a scheme by allowing the simulator to
equivocate the output of a timed puzzle.

6 Composition of Depth-Secure Protocols

We now treat the composition of depth-secure protocols. In the following, we
use the notation πρ to denote that protocol π calls ρ as a subroutine, as per the
convention by Canetti [12]. We use the notation that Γπ,ρ denotes the concurrent
composition of π and ρ.

6.1 General/Concurrent Composition

We now state our general composition theorem, which includes concurrent com-
position.

Theorem 3 (Composition of Two Depth-Secure Protocols). Let π
(da, ds, de)-depth-securely compute functionality F and let ρ (d′a, d

′
s, d
′
e)-depth-

securely compute functionality G. Then Γπ,ρ is (da − d′s, ds + d′s,min(de, d
′
e))-

secure.
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Proof (Sketch). We define a simulator S for πρ that simply composes the simu-
lators Sπ and Sρ which exist by assumption. We then perform a reduction that
shows if there is an attack against πρ, we can isolate an attack against π in
the G-hybrid model. The reduction is straightforward, although it must care-
fully consider the depths of all simulators and adversaries. Given an adversary
A which attacks πρ, we define an adversary B such that B runs A as a black
box, and B forwards messages sent by A to their recipients. The only exception
is that B must simulate an execution of ρ for A when A expects ρ to be called.

Proof. First we create a simulator S for the composition. S works by invoking
the simulators Sπ and Sρ (for π and ρ, respectively) in parallel. Note that its
depth is at most ds + d′s.

For the sake of the following lemma, we use the notation x to denote the
honest parties’ inputs and z to denote an auxiliary input. Because we consider
two separate protocols in concurrent composition, we let x = (x1, x2) where x1
are for π and x2 are for ρ, and similarly we let z = (z1, z2) with analogous
association.

We now state our main lemma, from which the proof follows.

Lemma 1. Let f ′ = min(de, d
′
e). For every da − d′s-depth adversary A, ev-

ery min(de, d
′
e)-depth environment Z, and every x ∈ ({0, 1}poly(λ))n and z ∈

{0, 1}poly(λ):

REALΓπ,ρ,A(z),Z(x)
f ′

≈ IDEALζF,G,S(z),Z(x)

Proof. Assume towards contradiction that the above is not true. Then there exist
a (da − d′s)-depth adversary A, a min(de, d

′
e)-depth environment Z, and inputs

x, z for which (A,Z) distinguishes the two distributions (for any simulator S).
We build an adversary B and environment E that distinguish the execution

of π from its simulation on honest inputs x and advice string z. E will run Z
as a black box, forwarding messages to Z, sending whatever messages Z sends,
and outputting whatever Z outputs. B will use A and Z to attack its real-world
execution of π, but B will simulate the concurrent execution of ρ for A (and Z)
in parallel to the execution of π. By the assumption that ρ is secure, this will
imply that B and E use A and Z to distinguish π from its simulation, reaching
contradiction.

We first introduce notation for an experiment which B uses to attack π. In
this experiment, B and E will attack a real execution of π by running A and Z as
black boxes; when they expect messages from the run of ρ, B simulates a concur-
rent execution of ρ using Sρ. We denote the experiment by REALBΓπ,G,A(z),Z(x).
We argue that by the security of ρ, A’s view of this distribution must be indis-
tinguishable from its view of REALΓπ,ρ,A(z),Z(x).

Claim 1 Let f ′ = min(de, d
′
e). For any f ′-depth Z, for all x ∈ ({0, 1}poly(λ))n

and z ∈ {0, 1}poly(λ)

VIEWA(REALΓπ,ρ,A(z),Z(x))
f ′

≈ VIEWA(REALBΓπ,G,A(z),Z(x))
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Proof. The difference between the two distributions is that on the right, B sim-
ulates an execution of ρ using the simulator Sρ and provides those messages to
A (and Z), and then continues to call A after the call to Sρ using messages from
its real execution. By assumption, A is (da − d′s)-depth-bounded and da < d′e.
Therefore, A must not be able to distinguish the messages in the real execution
of ρ on the left from the simulation on the right. By a similar argument, neither
can (any) Z. The claim follows from the additional fact that all other messages
in A’s view are distributed indistinguishably in both experiments, since they are
both from a real execution of π.

We make another claim that is analogous to the previous, but for the ideal
experiment. We claim that A cannot distinguish between an idealized execution
of ζF,G in which S generatesA’s view of the execution, and an idealized execution
of F in which B forwards messages generated for it by Sπ, and in place of the
ideal functionality call to G, B generates a view of the call to ρ (realizing G) by
simulating Sρ, and forwards these messages to A. (The right-hand distribution
denoted IDEALBζF,G,Sπ(z),Z(x) represents the ideal world execution of B’s attack
on π, in which B must still simulate the functionality G for A.)

Claim 2 For all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(IDEALζF,G,S(z),Z(x)) ≡ VIEWA(IDEALBζF,G,Sπ(z),Z(x))

Proof. The proof is analogous to the previous. However, in this case, B perfectly
simulates the execution of ρ in comparison to A’s view in the ideal execution of
πρ, since B does exactly the same thing that S does: both run Sρ. In light of this
observation, the claim is mostly notational, since on the left A receives messages
from S, and on the right it receives the same messages, simply forwarded by B
(and generated by B for the call to G).

Note that B runs A and Sρ as black boxes, so its depth is da− d′s + d′s = da.
E ’s depth is at most min(de, d

′
e) because it is identical to Z.

If there exist x, z for which A,Z distinguish REALΓπ,ρ,A(z),Z(x)
and IDEALζF,G,S(z),Z(x), then by Claims 1 and 2, B and E distinguish

REALBΓπ,G,A(z),Z(x) and IDEALBζF,G,Sπ(z),Z(x). The latter two are exactly B, E ’s
game against π, except that we specified a strategy by which B simulates a con-
current execution of ρ which it feeds to A when it runs A. Therefore, we have
a contradiction to the security of π, because (B, E) are a (da, de) adversary and
distinguisher for π.

Remark 3 (The Depths da and d′e). For all composition theorems, we require
that da < d′e. This is a natural choice; in particular if da ≥ d′e then the theo-
rem is not meaningful. Specifically, if da ≥ d′e, then the adversary for the first
protocol is deep enough to distinguish an execution of the protocol ρ which is
called by it from the callee’s simulation; the composition therefore does not have
meaningful real-world consequences, since a realistic adversary against the com-
position implies an adversary for the callee protocol. For all following theorems,
we elide the statement of this requirement.
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We see from the composition theorem that when composing two depth-secure
protocols in order to achieve security against any d∗a-depth adversary, the com-
posed protocols must be parameterized so that they are secure against stronger
adversaries, due to the loss in security that results from composition. Moreover,
the composition remains secure only against the smaller of the two distinguishing
environments.

6.2 Sequential Composition

In some cases, a protocol cannot be proven concurrently composable, if the
simulator needs to be rewound. We therefore provide a “weaker” theorem for the
sequential composition of protocols that cannot be proven secure with respect
to the general theorem.

Theorem 4 (Sequential Composition of Two Depth-Secure Protocols).
Let π (da, ds, de)-depth-securely compute F in the G-hybrid model, and let

ρ (d′a, d
′
s, d
′
e)-depth-securely compute G. πρ (da − d′s, ds · d′s,min(de, d

′
e))-depth-

securely computes F .

The proof is in Appendix B.
Observe that the decrease in simulation budget for the concurrent compo-

sition theorem appears to be “better” than the “weaker” sequential theorem
because the simulation budget does not deteriorate as much; however, this is
attributable to the fact that the simulator for a concurrently composable proto-
col must already be more efficient than the simulator for the sequential theorem
above, as rewinding is not permitted (as in the UC[12]).

We note that the (ds · d′s) term in the (·, ds · d′s, ·)-depth security of the com-
posed protocols is too pessimistic in some cases. In the case that the simulator
for the calling protocol never needs to rewind over the invocation of the subrou-
tine protocol, we can prove stronger security for the composition. This is in fact
a direct fallback to Theorem 3.

Corollary 1 (Optimistic Sequential Composition of Depth-Secure Pro-
tocols). Let π (da, ds, de)-depth-securely compute F in the G-hybrid model,
and let ρ (d′a, d

′
s, d
′
e)-depth-securely compute G. If the simulator for π in the

G-hybrid model never rewinds over the point at which G is invoked, then πρ

(da − d′s, ds + d′s,min(de, d
′
e))-depth-securely computes F .

Proof (Sketch). This follows immediately from Theorem 3, and in fact when
the simulator does not need to be rewound, the protocol is also concurrently
composable.

Discussion. Theorem 4 and Corollary 1 give the bounds on the spectrum of
“simulation budget depletion” that may occur when composing depth-secure
protocols. Specifically, in order to make a meaningful statement about security,
the middle term ds must remain smaller than both of the outer terms da and
de. For a particular composition, the protocol designer may compute the actual
security statement by computing the runtime of the composed simulator.
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Multi-Composition When composing multiple protocols concurrently, it is
sometimes possible to achieve less degradation than by applying Theorem 3
repeatedly. This is the case if the protocols are run simultaneously with each
other and parties compute in lockstep.

Corollary 2 (Lockstep Multi-Composition). Let π (da, ds, de)-securely im-
plement F . Let ρ1, ρ2, . . . , ρn be protocols such that ρi (dai , dsi , dei)-securely
implements Gi. Then the lockstep concurrent composition of π with ρ1,. . . ,ρn
is (da − arg mini dsi , ds + arg maxi dsi ,min(de, arg mini dei) secure.

Proof (Sketch). The proof is a generalization as the proof for Theorem 3, except
that the adversary B runs the simulators for multiple concurrent protocols si-
multaneously, and importantly B can run the other simulators in lockstep. This
allows B to run the simulators of all other concurrent protocols with depth at
most the largest of the other protocols’ simulators.

6.3 Serial Composition

Our application in Section 8 uses an addition form of composition that we call
serial composition. Protocols π and ρ are serially composed if after π ends at
time t1, some universal output is preserved and used as common input to ρ,
which begins at time t2 > t1.

Claim 3 (Serial Composition) Let π and ρ be protocols composed serially.
The composition is secure without degraded security of either protocol.

Presented without formal proof. The two protocols run independently and the
simulators are not dependent on each other.

7 (Correctly) Applying the Random Oracle: Time-Lock
Puzzles from (Leaky) Algebraic Puzzles

In Section 7.1 we provide a construction that “boosts” the security of an arbitrary
leaky algebraic puzzle to a time-lock puzzle, given that the leaky puzzle does
not leak too much. In Section 7.2 we discuss proof techniques using the random
oracle that allow simulation of time-lock puzzles, along with the corresponding
security degradation.

Both of these results depend on a random oracle. This does not make the
puzzle’s solution algorithm depend on a random oracle (or equivalent analysis)
for each intermediate state. Instead, it allows the algebraic trapdoor structure
of the puzzle to leak information on each intermediate solution. Therefore, the
puzzles fall into a leaky analytical framework that does not fall into an incon-
sistent analysis. The random oracle is applied only once to an algebraic solution
that may have leaked.
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7.1 Algebraic Time-Lock Puzzles with a Single Random Oracle

In Figure 2, we recommend a time-lock puzzle compiler that takes an algebraic
time-lock puzzle (such as repeated squaring), and applies one step of a ran-
dom oracle. This compiler preserves the hardness of learning the puzzle solution
despite leakage of the algebraic solution, intuitively by making the puzzle so-
lution depend on every bit of the algebraic computation rather than partially
predictable given a portion of the solution.

It achieves two important objectives:

1. It provides an algebraic time-lock construction with consistent analysis.
2. In Lemma 2, we prove that the resulting puzzle is secure (the solution is

hidden) for any leaky algebraic puzzle as long as O(λ) bits of the algebraic
solution are not leaked.

The construction works as follows: Let the puzzle solution be χ. The algebraic
puzzle Z is generated with a randomly sampled solution r. Then, Puz.Gen masks
χ with H(r), returning the the pair (Z, γ), where γ = H(r) ⊕ χ. When solving
the puzzle, first retrieve r′ via by solving Z and then compute the true solution
χ by calling the random oracle H(r′)⊕ γ.

In this way, the simulator can sample time-lock puzzles with random solutions
(via the original scheme) from the same distribution as the honest parties, and
then equivocate the final solution by programming the random oracle. Note that
this technique can also be combined with adjustments to a base TLP scheme for
non-malleability [22].

Theorem 5 (Secure Algebraic Puzzle from a Leaky Puzzle in the ROM).
For any algebraic puzzle Puz, apply the time-lock puzzle transformation described

in Figure 2; namely, as a last step of an algebraic time-lock puzzle, apply one

step of a random oracle. Then P̃uz is a time-lock puzzle, and its critical time is
no sooner than the last moment when Puz.Solve has not not leaked O(λ) bits of
the algebraic solution.

Proof (Sketch). The proof’s core lemma follows:

Lemma 2. For every intermediate step of Puz.Solve for which O(λ) bits of the
algebraic solution are not leaked, the residual complexity of the corresponding

step of ˜Puz.Solve is O(2ζ(λ)), where ζ is linear in the security parameter λ.

Proof. Consider any depth-d adversary Ad, and let AdvPuzAd be the probability
that Ad guesses the solution of the puzzle.

If γ = O(λ) bits of the solution are not leaked to Ad, then AdvPuzAd ≤ O( 1
2γ ).

Even if Ad is permitted polynomially many guesses, then AdvPuzAd ≤ m ·
1
2γ , where

m ∈ poly(λ). It follows that AdvPuzAd ≤ O(2ζ(λ)), where ζ is linear in λ. Note that
this is negligible in λ.

Given Lemma 2, it is easy to extend the analysis to show that the resulting
scheme is a time-lock puzzle. While Puz does not leak O(λ) bits of the algebraic
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solution, the probability of guessing the corresponding solution of the random
oracle-assisted construction puzzle remains negligible.

The full proof follows by applying a game-based framework in which the
adversary chooses two solutions and provides them to the challenger. Because the
challenger samples random solutions for its algebraic puzzles, the distributions of
two puzzles provided to the adversary are identical. In order for the adversary to
distinguish between the two, it must therefore solve one of the algebraic puzzles.

It follows that P̃uz is a time-lock puzzle and the critical time occurs no earlier
than when Puz’s solution no longer hides at least O(λ) bits of the algebraic
solution.

TLP from Leaky Algebraic Puzzle

Let Puz be an algebraic puzzle scheme and Hλ : Mλ → {0, 1}κ a random oracle,
such that {0, 1}κ is a superset of M . (We leave implicit the re-interpretion from

{0, 1}κ to Mλ as the final step of recovering the solution.a) Construct P̃uz for
domain M as follows:

a When M is all bit-strings of a certain length, this is trivial.

˜Puz.Gen(τ, χ)
r ←Mλ

Z ← Puz.Gen(τ, r)
γ ← H(r)⊕ χ
Z′ ← (Z, γ)
return Z′

˜Puz.Solve(Z′)

parse Z′ = (Z, γ)
r′ ← Puz.Solve(Z)
return H(r′)⊕ γ

Fig. 2: Construction of a TLP from a Leaky Algebraic Puzzle

7.2 Simulation Techniques for Temporary Privacy

When a protocol π requires solving a time-lock puzzle and then using the solution
of the puzzle, the protocol requires that the solution remain private until the
puzzle is solved, but then is no longer private. Because our model (Section 5.4)
requires that the simulator does not know information until the adversary learns
it, our simulator must equivocate these time-lock puzzles late in the simulation.

We refer to a puzzle scheme that allows the simulator to equivocate at the end
of the simulation as simulation-equivocable. The construction in Figure 2 makes
the compiled scheme simulation-equivocable by programming the random oracle
at the moment of equivocation, which is a standard techniques in the random
oracle model.

Timed-Advantaged Equivocation In order to program the random oracle to equiv-
ocate the result at the right time, the simulator needs a small time advantage
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over the adversary. This means that the simulator must learn the puzzle solu-
tion from the ideal functionality (just) before t∗, which is when the adversary is
assumed to learn the solution. The protocol using time-lock puzzles must take
this time difference into account.

In practice, this degrades the security of the protocol. Because the simulator
(and adversary) learns the solution effectively at t∗, the proof only guarantees
(temporary) privacy until that point.

8 Simultaneous Multiple Round Auction

As an illustration of our new techniques, we present a protocol for a simultaneous
multiple round auction (SMRA) [32]. Before presenting the SMRA protocol, we
begin with analysis of a single-round auction that will be used to analyze the
simultaneous multi-round version.

8.1 Single Auction Using Time-lock Puzzles

The functionality for a single-round, single-item auction is provided in Figure 3
and the protocol is in Figure 4. For the sake of clarity, we assume that a broadcast
can be completed in one time step. Specifically, this means that as long as a party
broadcasts its bid strictly before time tbid, then it is received by all parties by
time tbid. 5

Fauction

Public Parameters:

• P = {P1, P2, . . . , Pn} denotes the parties participating in the auction,
where n is the number of parties participating.

The functionality proceeds as follows, with a predetermined time tbid:

• Bid: Each party Pi sends a bid (Pi, bi) to Fauction. If a party does not send
a bid before tbid, then the functionality ignores the bid.

• Reveal: After all parties submit their round-r bids, Fauction reveals all
bids (including the bidders) to all parties. If a party Pj did not register a
bid before tbid, then Fauction sends (Pj , ∅) in place of Pj ’s bid.

Fig. 3: Single Round Auction Functionality

5 This assumption can be relaxed by adjusting the protocol for time delays and by
enforcing a time at which all parties agree that bids are received, or instead of a
time, a certain location on a distributed ledger.
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πauction

Public Parameters:

• P = {P1, P2, . . . , Pn} denotes the parties participating in the auction,
where n is the number of such parties.

Assignment of Phases: The protocol is divided into phases marked by the fol-
lowing moments in time:

• tstart is the starting time
• tbid is the time before which bids must be received
• tend is the time before which puzzles containing bids must be solved

Inputs: Each party Pi has an input bi
Protocol:

• Bid: Pi computes puzi ← Puz.Gen(tend − t̂, bi) and broadcasts (Pi, puzi) to
all parties, where t̂ is the time at which Pi will broadcast the puzzle. (t̂
must be before tbid.)

• Solve Bids: Upon receiving message (Pj , puzj) – only if it is received

before tbid – Pi computes bj ← Puz.Solve(puzj). (These computations must

be done in parallel.) If a message (Pj , puzj) is received after tbid, then ignore

the message. If Puz.Solve(puzj) has not completed before tend, then ignore
the puzzle.

• Output: Output (j, bj)j∈P . Let the j that maximizes bj be the “winner.”

If j’s puzzle was not received before tbid or solved before tend, then output
(j, 0) above.

Fig. 4: Single Auction Protocol

Choosing tbid and tend: In πauction, tbid and tend must be tuned by the leakage
curve of the chosen puzzle scheme(s). Specifically, it must be the case that the
adversary cannot learn information about any honest party’s puzzle before tbid

in order to construct a new bid based on its information of honest parties’ bids in
the same round. This follows by all parties constructing their puzzles such that
tbid is before t∗, where the leakage at t∗ is set as a function of λ to be negligible.

When composing this protocol concurrently with itself for the multi-item
auction in Section 8.2, we will show that parties must additionally tune tbid to
account for the degradation incurred by concurrent composition.

By the security implied by the critical time, privacy of the bids and therefore
security of the protocol holds against a tbid-size adversary.

Theorem 6 (Security of πauction). Let Puz be an equivocable, non-malleable
time-lock puzzle scheme. Then πauction (tbid, ds, de)-securely implements Fauction,
where ds(λ) = depth(Puz.Gen(λ)) + tend(λ)− tbid(λ) and de is an arbitrary poly-
nomial in the security parameter λ.
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Proof Sketch. In the proof, we assume a rushing adversary which is permitted
to see all of the bids by honest parties before it constructs its own bids, but it
still must submit those before tbid.

The simulator S for the protocol switches the time-lock puzzles generated by
the honest parties for random puzzles which it can equivocate, as described in
Section 7.2. S can then leak the result of each puzzle according to the puzzle’s
leakage function. The simulator as above requires only the depth of Puz.Gen to
replace the honest parties’ puzzles (in parallel).

The crux of the proof is to show that the adversary cannot distinguish be-
tween the puzzles generated by the simulator and those of the honest parties,
and additionally that the adversary cannot generate puzzles with bids that de-
pend on the honest parties’ puzzles that it receives (even without solving for the
honest parties’ bids). For this we rely on a definition of non-malleability, which
we defer to Appendix E.1.

We remark that for a non-malleable puzzle, it is possible to use the construc-
tion of Chvojka and Jager [14], and the technique of Section 7.1 for equivocation.

The full proof is deferred to Appendix E. We present the proof with respect
to definitions for non-malleability adapted from [22], which are included in Ap-
pendix E.1. After the proof we remark on how to adapt it for definitions of
CCA-secure timed commitments, as provided by [26, 14].

8.2 Simultaneous Multiple Round Auction

In this section we apply our analysis to build a simultaneous multiple round auc-
tion. Figure 6 contains our protocol for a simultaneous multiple round auction,
for which the functionality is in Figure 5. We illustrate use of our composition
theorems by replacing the Bid and Reveal steps in each round with a call to
Fauction implemented by πauction.

Adjusting tbid Due to Degradation. The composition and analysis are not
black box due to degradation incurred by the composition theorem (Theorem 3).
Recall that each round of the auction in πauction is secure only against an adver-
sary of depth da = tbid. By the composition theorem, each execution becomes
secure against an adversary of depth da−ds. Therefore, when parameterizing tbid

for a single round of πSMRA, tbid should be decreased (making the time earlier) for
the same solving time and security parameters in order to guarantee security of
the protocol. For example, considering the execution of a single round of πSMRA,
let tbid1 be the corresponding tbid for a single auction as per πauction. For the com-
position, tbid used in πauction should be tbid1 − ds in order for the statements on
which Theorem 6 depends to hold.

Theorem 7 (Security of πSMRA). Let πauction (da, ds, de)-securely implement
Fauction. In lockstep execution, πSMRA (da − ds, 2ds, de)-securely computes the
corresponding round of FSMRA.

Proof. One round of πSMRA includes α (lockstep) simultaneous executions of
πauction. It follows from Theorem 3 that each round is (da − ds, αds, de)-secure.
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FSMRA

Public Parameters:

• P = {P1, P2, . . . , Pn} denotes the parties participating in the auction,
where n is the number of such parties.

• X = {x1, x2, . . . , xα} are the items for auction, where α is the number of
items being auctioned.

Inputs: Each party has as input a preference function σ : [α]× Nα × [n]α → N

The functionality maintains a table B to track wining bids for which initially
B[1] = B[2] = . . . = B[α] = 0, a table T to track winning parties for which
initially T [1] = T [2] = . . . = T [α] = ∅, and a variable done ∈ {false, true}. The
functionality proceeds in a series of rounds as follows.

• In each round r = 1, 2, . . . until the termination condition is met:
• set done = true
• Bid: For each auction a ∈ α, each party Pi sends a bid (Pi, bi,a,r) to
FSMRA.

• Reveal: After all parties submit their round-r bids, FSMRA reveals all
round-r bids (including the bidders) to all parties.

• Update Max Bids and Current Winners: For each item a ∈ [α]:
∗ Let j∗a be the j that maximizes bj,a,r, and let b̂a = B[a].
∗ Assign B[a] = max(B[a], bj∗,a,r).
∗ If B[a] 6= b̂a, then assign T [a] = j∗a and set done = false.

• Termination Condition: If done = true then terminate the loop and
end the auction.

• The functionality sends B, T to all parties.

Fig. 5: Simultaneous Multiple Round Auction Functionality

By instead applying Corollary 2 for a lockstep execution, the degradation of the
simulator can be reduced such that the composition is (da − ds, 2ds, de)-secure.

Because each round of πSMRA is composed in serial (one round concludes be-
fore the next round begins), the security analyses of all rounds are independent,
as per Claim 3 (in Section 6.3).

The computation of de is trivial, as all of the protocols are secure against the
same de-depth environment, and the minimum is taken as the depth security of
the final composition.
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A Model for Depth-Secure MPC

This appendix is an extension of Section 5. Here, we discuss in more detail the
execution of the ideal model.

A.1 Execution Model

Our execution model is based on a simpler version of the Universal Composabil-
ity (UC) framework, modified for our application scenario and depth-bounded
computation. In our execution model, all parties (including the environment,
trusted third party, and adversary) are modeled as interactive circuits.
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The Environment: As in the UC framework, we consider an execution in the
presence of an environment that provides inputs to parties and reads their out-
puts. The environment directs the execution by proceeding in rounds. It delivers
inputs to parties, activates each party in every round, and delivers messages.
The environment controls the time elapse of an execution via the number of
protocol rounds it has directed. Importantly, the environment is responsible for
directing query responses between interactive circuits. When the environment
activates a party, it evaluates one next-step circuit at a time, after which control
is returned to the environment. The environment also ensures that the queries
made by a party in one round are delivered to the intended oracles (or parties,
if oracle queries are used to communicate).

When the adversary is activated, it learns the corrupt parties’ inputs, the
queries they send, and the responses they receive. In the beginning of the exe-
cution, the adversary informs the environment of the identities of the parties it
wishes to corrupt. The environment responds with the corrupt parties’ inputs,
and the adversary may choose new inputs for the corrupt parties based on the
provided inputs and its auxiliary information. (This models the fact that inputs
for corrupted parties may be adversarially selected, which is in the application
scenario of accountable computation.)

As the execution proceeds, the environment activates the adversary after ac-
tivating other parties, informing the adversary of the queries the corrupt parties
make and the responses they receive. The adversary can respond to the envi-
ronment by making additional queries. (This structure allows the adversary and
environment to pass additional messages.) The adversary can also adaptively
choose to corrupt additional parties by passing an appropriate query to the
environment.

Defining a View: The view of any party is defined to be the ordered list of
inputs and events it receives from the environment, along with the ordered
list of messages it receives from other parties. Formally, we denote the view
of party i in an execution of protocol π on inputs ~x and security parameter 1λ

as Viewπi (~x, 1λ) = (xi; r; ~m), where xi is party i’s input, r is the party’s random-
ness, and ~m is the set of messages that party i receives from other parties and
the environment.

A.2 The Ideal/Real Paradigm

Execution in the Ideal Model. We define an ideal model in which parties
interact with a trusted third party in an execution that is secure by definition.

Interaction with the Trusted Party In an ideal execution, the parties interact
with a trusted party as follows:

1. Initialization: The adversary A receives an auxiliary input z, and may
choose to corrupt some parties. It informs Z of the corruptions.
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2. Inputs: The environment sends the corrupt parties’ inputs to A, which
choose new inputs for the corrupted parties based on its auxiliary information
and the inputs provided by the environment. It then forwards the new inputs
to the environment. All parties then receive inputs from the environment.

3. Send Inputs to Trusted Party: Each party sends its input xi to the
trusted party.

4. Computing Functionalities: After receiving all inputs, the trusted third
party computes the functionality outputs over the provided inputs and saves
the outputs.

5. Phased Output Release: An execution is divided into phases such that at
the end of each phase, the parties learn some information from the trusted
party. The moment that the trusted party provides the protocol participants
with their ith message denotes the end of the ith phase and the beginning
of the i+ 1st phase.

6. Protocol Outputs: At the end of an execution, honest parties output what-
ever they have received from the trusted party. Corrupt parties output noth-
ing, and the adversary outputs an arbitrary function of its input, the mes-
sages it has received from the environment, and the messages that corrupt
parties have received from the trusted party. The environment learns every
output.

The random variable IDEALF,A(z),Z(x) denotes the output of the environ-
ment in an ideal execution of functionality F on honest inputs x, auxiliary input
z to A, with environment Z.

Execution in the Real Model. In the real model, participants execute a
protocol π to compute the desired functionality F without a trusted party. At
the end of the execution, honest parties output their protocol outputs. The
corrupt parties output nothing. The adversary outputs an arbitrary function of
its inputs and the messages that corrupt parties have received.

The random variable REALπ,A(z),Z(x) denotes the output of the environment
in a real execution of π with honest inputs x, auxiliary input z to A, with
environment Z. The environment learns every output.

B Sequential Composition of Depth-Secure Protocols:
Proof of Theorem 4

In this section, we provide the full proof of Theorem 4, which we restate below
for convenience.

Theorem 4 (Sequential Composition of Two Depth-Secure Protocols).
Let π (da, ds, de)-depth-securely compute F in the G-hybrid model, and let ρ
(d′a, d

′
s, d
′
e)-depth-securely compute G. πρ (da − d′s, ds · d′s,min(de, d

′
e))-depth-

securely computes F .
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Notation. For the proof of Theorem 4, we require notation to describe the distri-
bution of executions in the ideal world for a fixed simulator, fixed distinguisher,
and fixed inputs, making explicit the adversary. Let IDEALF,S(z)(x) denote the
distribution of executions of the naive protocol in the ideal world that calls func-
tionality F , with simulator S and advice string z, on honest inputs x. (In this
experiment, the parties forward their inputs the ideal functionality, and the sim-
ulator generates a view for A that is indistinguishable from the real experiment.)

Proof. The proof will use the simulators Sπ for π and Sρ for ρ to construct a new
simulator S for πρ such that S is (ds ·d′s)-depth bounded, and for every (da−d′s)-
depth A, and every min(de, d

′
e)-depth Z, the distributions REALπρ,A(z)(x) and

IDEALF,S(z)(x) are min(de, d
′
e)-depth indistinguishable.

The simulator S works by composing the simulators Sπ and Sρ. Specifically,
to simulate an execution of πρ up to the point that ρ is called, S runs Sπ. When
ρ is called, S invokes Sρ. After ρ terminates, S resumes Sπ.

Claim 4 S’s depth is bounded by ds · d′s.

Proof. The claim follows from the observation that every time Sπ is rewound,
Sρ must also be rewound the maximum number of times. If Sπ’s running time
is at most ds, then for each rewinding of Sπ, Sρ must be rewound at most d′s
times. The total run-time of S is thus ds · d′s.

We proceed with our main lemma, which completes the proof:

Lemma 3. For every (da−d′s)-depth adversary A, and every x ∈ ({0, 1}poly(λ))n
and z ∈ {0, 1}poly(λ) the distributions REALπρ,A(z)(x) and IDEALF,S(z)(x) are
min(de, d

′
e)-depth indistinguishable.

Proof Sketch: If there is an adversary A and a distinguisher D that distin-
guishes the above two distributions, then we create another adversary B and
distinguisher E that isolates an attack against the caller protocol π in the G-
hybrid model. B runs A as a black box, and when π must call ρ, B simply
simulates an execution of ρ (using Sρ), feeding messages to A so that A believes
it is running a full execution of πρ. Similarly, E is provided with the execution
transcript generated by B, with the call to ρ in the transcript replaced by the
simulated output generated by B. Because the transcript of the simulation of ρ
is indistinguishable from a real execution by assumption, this attack must dis-
tinguish an execution of π in the real model from its simulation, contradicting
the security of π.

Proof. Assume to the contrary that the lemma statement is false. Then there
exists a (da − d′s)-depth adversary A, a min(de, d

′
e)-depth distinguisher D, and

inputs x, z such that the distributions REALπρ,A(z)(x) and IDEALF,S(z)(x) are
min(de, d

′
e)-depth distinguishable (for any (ds · d′s)-depth S).

We will show how to use A for πρ in order to build an adversary B to
contradict the (da, ds, de)-security of π in the G-hybrid model.

In an execution of π in the G-hybrid model, B works as follows:
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1. Until the point at which G is invoked, B runs A as a black box, forwarding
any messages output by A

2. When G is invoked, B submits its input y to G and receives some output
w. B runs the simulator Sρ(y, w) for ρ, forwarding messages provided by
the simulator to A, and forwarding the replies by A to Sρ to continue the
simulation.

3. After Sρ terminates, B resumes calling A as a black box given messages from
its execution of π. B outputs whatever A outputs.

Claim 5 B runs in depth at most da.

Proof. B runs the adversary A as a black box, which requires depth at most
da − d′s. B also runs the simulator Sρ, which requires depth at most d′s. (Recall
that we have already counted the depth of rewinding A during this step towards
the depth d′s.) The sum of the two run-times is da−d′s+d′s = da which concludes
the claim.

We proceed to compare the views of the adversary A when it is running in
its own execution, or being called by B. Let VIEWA(REALπρ,A(z)(x)) denote the
view of A in a real execution of πρ, and let VIEWA(REALπG,A(z)(x)) denote the
view of A in a real execution of π in the G-hybrid model, in which B calls A.
Similarly, we denote by VIEWA(IDEALBF,S(z)(x)) the view of A in support of the
ideal experiment in which B calls A, and S runs both the simulators for π and
for ρ; and we denote by VIEWA(IDEALBF,Sπ(z)(x)) the view of A in support of
the ideal experiment in which B must call the simulator for ρ.

Claim 6 Let f ′ = min(de, d
′
e). For all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(REALπρ,A(z)(x))
f ′

≈ VIEWA(REALπG,A(z)(x)})

Proof. The difference between the two distributions is that on the right, B sim-
ulates an execution of ρ using the simulator Sρ and provides those messages
to A, and then continues to call A after the call to Sρ using messages from
its real execution. By assumption, A is (da − d′s)-depth-bounded and da < d′e.
Therefore, A must not be able to distinguish the messages in the real execution
of ρ on the left from the simulation on the right. The claim follows from the
additional fact that all other messages in A’s view are distributed identically in
both experiments, since they are from the real execution of π.

We make another claim that A cannot distinguish between an idealized ex-
ecution of F in which S generates its view of the execution and an idealized
execution of F in which B interacts with Sπ in the G-hybrid model, forwarding
its messages to A and when B’s execution of in the G-hybrid model invokes G,
B runs Sρ to generate a view for A.

Claim 7 For all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(IDEALBF,S(z)(x)) ≡ VIEWA(IDEALBF,Sπ(z)(x))
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Proof. The proof is analogous to the previous. However, in this case, B perfectly
simulates the execution of ρ in comparison to A’s view in the ideal execution of
πρ, since B does exactly the same thing that S does: both run Sρ.

To complete the proof, we describe how the distinguisher E is built from D.
E simply runs D as a black box and outputs whatever D outputs.

Next we claim that D’s view in support of REALπρ,A(z)(x) is min(de, d
′
e)-

depth indistinguishable from its view in support of REALπ,B(z)(x) (as forwarded
by E). This follows from Claim 6, due to the fact that A’s views in support
of the two distributions are min(de, d

′
e)-depth indistinguishable, and D sees the

transcript of A’s interaction with the real protocol, and A’s outputs must not
be distinguishable by the claim.

Similarly, D’s view in support of IDEALAF,S(z),D(x) is min(de, d
′
e)-depth in-

distinguishable from its view in support of IDEALBF,Sπ(z),E(x) (as forwarded by
E). This follows from Claim 7, via the same argument as above.

It follows that if D distinguishes REALπρ,A(z),D(x) and IDEALAF,S(z),D(x),

then E distinguishes REALπ,B(z),E(x) and IDEALBF,Sπ(z),E(x). Notice that be-
cause B’s depth is bounded by da (by Claim 5), and because E’s depth is bounded
by min(de, d

′
e) (by assumption toward contradiction, since E’s depth is exactly

D’s depth), this contradicts the (da, ds, de)-depth security of π in the G-hybrid
model.

ut

C Residual Complexity of a Time-Lock Puzzle

The qualification of a time-lock puzzle tells us that for any circuit Ad attempting
to solve a puzzle for which d is much less than the depth required by Puz.Solve,
the probability of guessing the solution should be no better than random guess-
ing plus negligible advantage. However, a circuit Ad whose depth d exceeds tε

(as enforced in the definition) may have non-negligible advantage in guessing
the solution. Therefore, a time-lock puzzle constrains the residual complexity
function r of the puzzle to remain small for as long as the time-lock endures. We
now formally prove this intuition.

Theorem 8 (Time-Lock Puzzle Implies Small Residual Complexity).
Let Puz = (Puz.Gen,Puz.Solve) be a time-lock puzzle for solution domain M =
{χλ}λ with gap ε < 1 for which |Mλ| is super-polynomial in λ. Then there exists
a polynomial r(·) for which for every polynomial t(·) > r(·) and tε-depth-bounded
At, there exists a negligible function negl(λ) such that for every tε-depth-bounded
B, and every λ ∈ N

Pr[χ← B(Y ) : χ←Mλ, Y ← Puz.Gen(λ, χ)] ≤ negl(λ)

Proof. We prove the lemma by showing that if there exists an adversary Bt for
which Pr[χ ← B(Y, z)] > negl(λ), then there exists an adversary At, infinitely
many λ and corresponding solutions χ0, χ1 ∈ Mλ such that Aλ can win the
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time-lock challenge with probability more than 1
2 + negl(λ). For the sake of the

proof, let r > negl(λ) be the probability with which B outputs χ in the above
challenge game.

Actually, we will show a result corresponding to a stronger statement. We
show that if there exists an adversary B that wins the above challenge game with
non-negligible advantage, then there exists an adversary A such that for every
χ0 there are many solutions χ1 such that Aλ can win the time-lock challenge
with probability more than 1

2 + negl(λ). Our time-lock game is slightly weaker
than the definition of a time-lock puzzle (and therefore if our time-lock game
is broken, the puzzle is not a time-lock puzzle). Rather than quantifying over
all χ0 and χ1, we allow the adversary A to choose any χ0, χ1 ∈ χλ and provide
them to a challenger, who samples b and provides A with a puzzle. A must guess
b′ and wins if b′ = b.

We now explain how A uses B. Recall that B is given a randomly sampled
puzzle and outputs a guess χ′ of the solution. In the time-lock game, A samples
χ0 and χ1 at random and must determine which one has been encoded in a
challenge puzzle Z. A forwards Z to B. At the end, A inspects the guess χ′ that
B makes. If χ′ is equal to either χ0 or χ1, then A guesses the b for which χb = χ′.
If neither χ0 nor χ1 is guessed by B, then A samples b′ uniformly at random
and outputs b′. Note that the depth of A is the same as B.

Recall that B wins its game with probability r, and that by assumption r is
non-negligble. We now analyze the probability with which A wins its game.

Claim. Pr[χ′ ∈ {χ0, χ1}] ≥ Pr[B wins] > negl(λ)

Proof. Follows immediately from the definition that B wins when it guesses the
solution, and by assumption that B wins with non-negligible probability.

Claim. Pr[χ′ = χ1−b] = negl(λ)

Proof. Consider that χ1−b is selected at random by A, and B has no information
about χ1−b. Recall that conditioned on the fact that B guesses some possible so-
lution with non-negligible probability (the true solution), and let X be the part
of the solution space for which B outputs solutions in X with non-negligible prob-
ability. Let Y be the part of the solution space for which B guesses solutions with
negligible probability. We claim that X composes a negligible proportion of the
solution space, and that therefore χ1−b is in Y except for negligible probability.
The proof proceeds by counting. For all of the points in X, B must guess each
point with probability at least the inverse of some polynomial. It follows that
there may only be a polynomial number of points in X. However, there are a
super-polynomial number of points in the solution space. Therefore, the proba-
bility that χ1−b is in Y is overwhelming. And by definition of Y , the probability
that B guesses χ1−b is negligible.

It follows from the previous claim that conditioned on B outputting χ0 or
χ1, A wins with probability 1− negl(λ).

Claim. Pr[A wins | χ′ ∈ {χ0, χ1}] = 1− negl(λ)

38



Proof. The probability that A wins given that one of the solutions output by B
is divided into cases:

1. χ′ = χ1−b. A loses

2. χ′ = χb. A wins

By the previous claim, the probability of the first event is negl(λ). In the re-
maining case, A wins. Note that because the second case with non-negligible
probability, this case dominates, as the other composes a negligible proportion
of the event space. It follows that A wins with probability 1 − negl(λ) given B
outputs either χ0 or χ1.

We can now conclude the proof:

Pr[A wins] = Pr[A wins | χ′ ∈ {χ0, χ1}] Pr[χ′ ∈ {χ0, χ1}]
+ Pr[A wins | χ′ 6∈ {χ0, χ1}] Pr[χ′ 6∈ {χ0, χ1}]

= (1− negl(λ)) Pr[χ′ ∈ {χ0, χ1}] +
1

2
Pr[χ′ 6∈ {χ0, χ1}]

Recall that the two events χ′ ∈ {χ0, χ1} and χ′ 6∈ {χ0, χ1} are complements.
Therefore, if Pr[χ′ ∈ {χ0, χ1}] > negl(λ), then Pr[A wins] > 1

2 + negl(λ).
The proof concludes by the first claim, which states that Pr[χ′ ∈ {χ0, χ1}] ≥
Pr[B wins] > negl(λ).

D Extended Related Work

We present additional related work in the areas of fine-grained cryptography and
composable timed primitives.

Fine-grained Cryptography: A number of recent works have studied fine-grained
cryptographic primitives. Degwekar et al.[18] initiated the study of fine-grained
cryptographic primitives that can be built in one complexity class and are se-
cure against adversaries in larger complexity classes. Egashira et al.[20] recently
extended their results. Ball et al.[3] and [4] built fine-grained proofs-of-work by
using fine-grained worst-case to average-case reductions of hard problems. Lav-
igne et al.[27] studied the properties necessary to imply fine-grained public key
cryptography and presented a fine-grained key exchange protocol.

Homomorphic Time-lock Puzzles: Malavolta and Thyagarajan [31] provided
practical homomorphic time-lock puzzles that are either additively homomor-
phic, multiplicatively homomorphic, or branching programs, but they require
indistinguishability obfuscation in order to achieve full homomorphism. They
also do not consider composition of their puzzles with other cryptographic prim-
itives.
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Time-lock Cryptography and Composition: We now provide a more thorough
contrast with the approach of Baum et al.[6, 5].

The model by Baum et al.[6] models a new abstraction of time by allowing
the adversary to control ticks of some time-keeping functionality. They define
a time-lock functionality that implements the assumption by RSW [35], and
provide a protocol that builds a puzzle with respect to this functionality. The
functionality implements an idealized version of their assumption which does not
leak information until the time-lock expires. In contrast, we model the leakage of
puzzles that occurs in the transition from not knowing to knowing the solution.
Moreover, in our model time is modeled by depth of computation, and is therefore
not controlled by the adversary. Wall-clock time is controlled by the environment
which upper bounds the compute depth that may be expended over any period
of time. To enforce time-based privacy, we model idealized leaky functionalities
that respond to environment-directed time. With respect to our functionality,
we show how to simulate an adversary’s view as it slowly extracts information
from a time-lock puzzle.

The central issue for Baum’s approach is a “side-door” attack in which an
environment may use cycles from the concurrent execution of a different session
in order to solve a TP in given session. Our approach considers this particular
attack to be infeasible. All parties in our model are depth-bounded, including the
environment. In our model, an environment should be constrained by the same
depth requirements among all of its concurrent executions. An environment that
expends computational resources in a concurrent session in order to solve a TP
must also expend the same depth in the session of a given time-lock protocol;
therefore, although the environment may increase its parallel computation to
solve a puzzle by invoking concurrent sessions, the depth constraint remains.
Therefore, our depth-bounded model specifically excludes this form of attack.

E Security of πauction

In this section we present the full proof of Theorem 6. To set up the proof, we
first define notions of non-malleability:

E.1 Non-malleability

We adapt definitions from [22] to our model; for full discussion of the definitions,
refer to [22]. We prove our theorem with respect to these definitions; however,
we provide a note after the proof of how the same proof can be easily adapted
for the use of non-malleable timed commitments, as studied by [26] and [14].

Definition 10 (MIM Adversary).
Let nL, nR, Bnm, da : N→ N. An (nL, nR, Bnm, da)-Man-in-the-Middle (MIM)

adversary is a non-uniform algorithm A = {Aλ}λ∈N satisfying depth(Aλ) ≤
da(λ) and size(Aλ) ∈ Bnm · poly(λ) for all λ ∈ N that receives nL(λ) puzzles on
the left and outputs nR(λ) on the right.
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Definition 11 (MIM Distribution). Let nL, nR, Bnm, da : N → N. Let A =
{Aλ}λ∈N be an (nL, nR, Bnm, da)-MIM adversary. For any λ, τ ∈ N and ~s =
(s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ), we define the distribution

(s̃1, . . . , ˜snR(λ))← mimA(τ, ~s)

as follows. Aλ receives puzzles zi ← Gen(τ, si) for all i ∈ [nL(λ)] and outputs
puzzles (z̃1, . . . , ˜znR(λ)). Then for each i ∈ [nR(λ)] we define

s̃i =

{
⊥ if there exists a j ∈ [nL(λ)]such that z̃i = zj

Solve(z̃i) otherwise

Definition 12 (Concurrent Non-malleable). Let nL, nR, Bnm : N → N. A
time-lock puzzle is (nL, nR, da, de) concurrent non-malleable against adversaries
of size Bnm if for all λ ∈ N, and every (nL, nR, Bnm, da)-MIM adversary A =
{Aλ}λ∈N, the following holds.

For any non-uniform distinguisher D = {Dλ}λ with depth at most de(λ),
there exists a negligible function negl(λ) such that for all λ ∈ N, ~s = (s1, . . . , snL(λ)) ∈
({0, 1}λ)nL(λ), and τ < de(λ):

|Pr[D(mimA(τ, ~s) = 1]− Pr[D(mimA(τ, (0λ)nL(λ)) = 1]| ≤ negl(λ)

E.2 Proof

In the following theorem, we require that da(λ) ≤ tbid. Let nL denote the number
of honest parties in the execution, and let nR denote the number of parties
corrupted by the adversary. We require that the puzzles are (nL, nR, da, de)-
non-malleable.

Theorem 6 (Security of πauction). Let Puz be an equivocable, non-malleable
time-lock puzzle scheme. Then πauction (tbid, ds, de)-securely implements Fauction,
where ds(λ) = depth(Puz.Gen(λ)) + tend(λ)− tbid(λ) and de is an arbitrary poly-
nomial in the security parameter λ.

Proof. First note that assuming that tbid is set to be no later than t∗ for Puz
(for appropriate security parameters), the adversary’s probability of learning
any honest party’s puzzle solution is small (in the security parameter), and
sufficiently small (in the security parameter) to disregard in the proof. This
follows from a union bound over the analyses of the adversary’s ability to attack
any individual puzzle. We proceed with the proof under the assumption that the
adversary does not learn the solutions of any puzzle provided to it by the honest
parties (or by the simulator in place of the honest parties).

For the sake of simplicity, we also assume that all honest parties send their
puzzles at the beginning of the protocol, and do not wait until almost tbid to
submit their puzzles. This simplifies both the behavior of the simulator and the
reduction (and is the proper behavior for an honest party, even though puzzles
are accepted until tbid). Otherwise, the simulator must be changed so that it
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provides puzzles to the adversary at different times. The reduction at the end of
the proof must also be changed so that the adversary attacking non-malleability
of the puzzles is not permitted its full depth to work on some of the puzzles.

In the execution simulated by S, S replaces the time-lock puzzles by non-
corrupt parties with equivocable time-lock puzzles with solutions 0λ. S requires
depth(Puz.Gen) depth in order to generate up to n puzzles in parallel. When S
learns the honest parties’ puzzle solutions after tbid, it equivocates the solution
as discussed in Section 7.2.

Note that the time-lock puzzles used to submit bids are the only messages
sent in an execution; therefore, these puzzles constitute the entire view of an
execution.

What remains to show is that no distinguisher can distinguish the distribu-
tions of puzzles output by the adversary between the cases that the adversary
is fed puzzles from the real execution or puzzles generated by the simulator.
This serves to show as well that the adversary cannot generate puzzles that de-
pend on the honest parties’ puzzles, and that moreover the adversary is not a
distinguisher for the distribution of puzzles generated by S.

For this we reduce to the non-malleability (Definition 12) of the puzzles. Let
there be a distinguisher D that distinguishes the puzzles output by A in the real
execution from the puzzles output by A in the simulation. Further let D have
depth de and A have depth da.

Then there exist adversaries B,E with depths da, de, respectively, that breaks
(nL, nR, da, de) concurrent non-malleability of the puzzles, where nL is the num-
ber of honest parties and nR is the number of corrupt parties. The reduction is
straightforward. B simply runs the protocol for A and provides to A the puzzles
that it receives in B’s own challenge. E simply runs D and outputs whatever D
outputs. Note that because the adversary’s entire view in an execution of πauction

is only the honest party’s puzzles, B does not need to do anything else to sim-
ulate an execution for A. Here, the real-world puzzles correspond to when B is
challenged with real puzzles, and the simulation puzzles correspond to when B
is challenged with puzzles of 0λ.

Now, A’s inputs and outputs are identical to the MIM adversary in the non-
malleability game, and D is the distinguisher. B and E simply output what A
and D output. Therefore, it must be the case that E distinguishes with the same
probability as D. This contradicts (nL, nR, da, de) non-malleability.

Remark 4 (Reducing to CCA Security). The proof could analogously be written
with a reduction to CCA security of timed commitments [26, 14], with a similarly
structured reduction as the final step. Intuitively, if there is an adversary A that
can distinguish between the simulator’s time-lock puzzles and the honest parties’
real puzzles, then some adversary B can use A to break the CCA security of
the puzzles. B for the CCA game, which is either fed a real puzzle (from the
honest parties) or a fake puzzle (from the simulator) simply feeds a puzzle to A
and outputs whatever A outputs. The proof is slightly more involved because
both [26, 14] present non-interactive timed commitments, which have additional
algorithms and therefore different oracles, but these can straightforwardly be
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simulated by B (because it knows the secrets which are not part of the challenge),
and B forwards the challenges to A. Note that in the CCA games, the adversary
is presented a single puzzle rather than a set of puzzles (which are provided in
the protocol execution). This difference can be handled by a standard hybrid
argument.
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