
Chocobo: Creating Homomorphic Circuit
Operating with Functional Bootstrapping in

basis B

Pierre-Emmanuel Clet(�)1, Aymen Boudguiga1, and Renaud Sirdey1

Université Paris-Saclay, CEA LIST, 91120, Palaiseau, France
name.surname@cea.fr

Abstract. The TFHE cryptosystem only supports small plaintext space,
up to 5 bits with usual parameters. However, one solution to circumvent
this limitation is to decompose input messages into a basis B over multi-
ple ciphertexts. In this work, we introduce B-gates, an extension of logic
gates to non binary bases, to compute base B logic circuit. The flexibility
introduced by our approach improves the speed performance over previ-
ous approaches such as the so called tree-based method which requires
an exponential amount of operations in the number of inputs. We pro-
vide experimental results using sorting as a benchmark application and,
additionally, we obtain a speed-up of ×3 in latency compared to state
of the art BGV techniques for this application. As an additional result,
we introduce a keyswitching key specific to packing TLWE ciphertexts
into TRLWE ciphertexts with redundancy, which is of interest in many
functional bootstrapping scenarios.

keywords: FHE; TFHE; functional bootstrapping

1 Introduction

Homomorphic encryption schemes having an efficient bootstrapping, such as
TFHE [9], can be tweaked to evaluate look-up tables within their bootstrap-
ping procedure. Hence, rather than being just used for refreshing ciphertexts
(i.e., reducing their noise level), the bootstrapping becomes functional [5] or
programmable [11] by allowing the evaluation of arbitrary functions as a bonus.
These capabilities result in promising new approaches for improving the over-
all performances of homomorphic calculations, making the FHE “API” better
suited to the evaluation of mathematical operators which are difficult to express
as low complexity arithmetic circuits.

TFHE made a first breakthrough by proposing an efficient bootstrapping for
homomorphic gate computation. Then, Bourse et al., [4] used the same boot-
strapping algorithm for extracting the (encrypted) sign of an encrypted input.
It was later used by Izabachene et al., [20] to evaluate a Hopfield network in
the encrypted domain. Boura et al., [3] showed in 2019 that TFHE bootstrap-
ping naturally allows to encode function evaluation via their representation as

2 P-E. Clet et al.

look-up tables (LUTs). Recently, different approaches have been investigated for
functional bootstrapping improvement. Guimarães et al., [18] extended the ideas
in Bourse et al., [5] to support the evaluation of functions over multiple inputs
via LUTs. In this work, we build on the work of Guimarães et al., and extend it
to provide a new evaluation technique for arbitrary circuits.

Related works – After Bourse et al., [4] described how the functional boot-
strapping of TFHE computes a sign function, researchers investigated the imple-
mentation of LUT(f) for any function f with domain either half of the torus [11]
or the entire torus [21, 23, 12, 15]. Encoding plaintext values only on [0, 1

2 [(i.e.,
half of the torus) avoids the restriction of managing negacyclic functions dur-
ing the bootstrapping. However, it reduces the size of the plaintext space as it
is encoded on a smaller portion of the torus T. Meanwhile, other methods [21,
23, 12, 15] support T as a plaintext space at the cost of adding more boot-
strappings. Subsequently, Guimarães et al., have proposed the tree-based and
chaining-based methods to evaluate functions of multiple ciphertexts by means
of several functional bootstrapping. However, the efficiency of their tree-based
method is limited by its exponential complexity relatively to the number of in-
puts. Meanwhile, the chaining-method is only well suited for computing specific
functions, notably functions with a carry-like logic such as additions, and func-
tions with a test-like logic such as the sign function [18].

Contributions – In this work, we first revisit the noise variances and success
probabilities of the tree-based and chain-based method of Guimarães et al [18].
We also describe and compare in detail multiple methods to compute B-gates
which are logic gates extended to bases B greater than 2, and serve as building
blocks for the computation of base logic circuits. We show that the evaluation
of circuits with our novel building block favorably compares to the tree-based
method in terms of time performance. As an application, we show that our
technique can be implemented efficiently in practice by taking as example a
sorting algorithm1.

Paper organization – The remainder of this paper is organized as follows.
Section 2 reviews TFHE building blocks. Section 3 summarizes our framework
to estimate the time complexity, the noise variance, and the success probability of
algorithms build as a succession of functional bootstrapping operations. Section 4
describes techniques from the literature to evaluate look up tables with multiple
inputs. Section 5 describes our method to compute multi-inputs functions using
functional bootstrapping. Finally, Section 7 highlights the benefits of our method
through the evaluation of a sorting algorithm.

1 Papers [22] and [2] are applications of the Chocobo method to more intricate use
cases.

Chocobo 3

2 Background

2.1 Notations

We refer to the real torus by T = R/Z. T is the additive group of real num-
bers modulo 1 (R mod [1]) and it is a Z-module. TN [X] denotes the Z-module
R[X]/(XN +1) mod [1] of torus polynomials, where N is a power of 2. R is the
ring Z[X]/(XN + 1) and its subring of polynomials with binary coefficients is
BN [X] = B[X]/(XN +1) (B = {0, 1}). We denote by Zn the ring Z/nZ. Finally,
we denote respectively by [x]T, [x]TN [X] and [x]R the encryption of x over T,
TN [X] or R.

We refer to vectors by bold letters. ⟨x,y⟩ is the inner product of two vectors
x and y. We denote matrices by capital letters, and the set of matrices with

m rows and n columns with entries sampled in K byMm,n(K). x
$←− K denotes

sampling x uniformly from K, while x
N (µ,σ2)←−−−−− K refers to sampling x from K

following a Gaussian distribution of mean µ and variance σ2.

Given x
N (µ,σ2)←−−−−− R, the probability P (a ≤ x ≤ b) is equal to 1

2 (erf(
b−µ√
2σ

) −
erf(a−µ√

2σ
)), where erf is the Gauss error function: erf(x) = 2√

π

∫ x

0
e−t2 . The same

result apply to x
N (0,σ2)←−−−−− T as long as the distribution is concentrated as de-

scribed in [9].

2.2 TFHE Structures

The TFHE encryption scheme was proposed in 2016 [8] and updated in [9].
It introduces the TLWE problem as an adaptation of the LWE problem to T.
TFHE relies on three structures to encrypt plaintexts defined over T, TN [X] or
R:

– TLWE Sample: (a, b) is a valid TLWE sample if a
$←− Tn and b ∈ T verifies

b = ⟨a, s⟩+ e, where s
$←− Bn is the secret key, and e

N (0,σ2)←−−−−− T.

– TRLWE Sample: a pair (a, b) ∈ TN [X]k×TN [X] is a valid TRLWE sample

if a
$←− TN [X]k, and b = ⟨a, s⟩ + e, where s

$←− BN [X]k is a TRLWE secret

key and e
N (0,σ2)←−−−−− TN [X] is a noise polynomial.

LetM ⊂ TN [X] (orM ⊂ T) be the discrete message space2. To encrypt a
messagem ∈M, we add (0,m) to a fresh T(R)LWE sample. In the following,
we refer to an encryption ofm with the secret key s as a T(R)LWE ciphertext
noted c ∈ T(R)LWEs(m).

2 In practice, we discretize the Torus with respect to our plaintext modulus. For ex-
ample, if we want to encrypt m ∈ Z4 = {0, 1, 2, 3}, we encode it in T as one of the
following value {0, 0.25, 0.5, 0.75}.

4 P-E. Clet et al.

To decrypt a sample c ∈ T(R)LWEs(m), we compute its phase ϕ(c) = b −
⟨a, s⟩ = m+e. Then, we round to it to the nearest element ofM. Therefore,
if the error e was chosen to be small enough while ensuring security, the
decryption will be accurate.

– TRGSW Sample: a TRGSW sample is a vector of TRLWE samples. To
encrypt a message m ∈ R, we add m · H to a TRGSW sample, where H
is a gadget matrix3 using an integer Bg as a basis for its decomposition.
Chilotti et al., [9] defines an external product between a TRGSW sample A
encrypting ma ∈ R and a TRLWE sample b encrypting mb ∈ TN [X]. This
external product consists in multiplying A by the approximate decomposi-
tion of b with respect to H (Definition 3.12 in [9]). It yields an encryption
of ma · mb i.e., a TRLWE sample c ∈ TRLWEs(ma · mb). Otherwise, the
external product allows also to compute a controlled MUX gate (CMUX)
where the selector is Cb ∈ TRGSWs(b), b ∈ {0, 1}, and the inputs are c0 ∈
TRLWEs(m0) and c1 ∈ TRLWEs(m1).

2.3 TFHE Bootstrapping

TFHE bootstrapping relies mainly on three building blocks:

– Blind Rotate: rotates a plaintext polynomial encrypted as c ∈ TRLWEk(m)
by a position encrypted as cp ∈TLWEs(p). It takes as inputs: the TRLWE
ciphertext c ∈ TRLWEk(m), a rescaled and rounded vector of cp represented
by (a1, . . . , an, an+1 = b) where ∀i, ai ∈ Z2N , and n TRGSW ciphertexts
encrypting (s1, . . . , sn) where ∀i, si ∈ B. It returns a TRLWE ciphertext
c′ ∈ TRLWEk(X

⟨a,s⟩−b ·m). In this paper, we will refer to this algorithm by
BlindRotate. With respect to the independence heuristic4 stated in [9], the
variance VBR of the resulting noise after a BlindRotate satisfies the formula5:

VBR < Vc + EBR

where:

EBR = n

(
(k + 1)ℓN

(
Bg

2

)2
ϑBK + (1+kN)

12·B2l
g

) (1)

Vc is the variance of the noise of the input ciphertext c, and ϑBK is the the
variance of the error of the bootstrapping key. l and Bg are the parameters
defining the gadget matrix as in [9]. Note that the noise of the BlindRotate
is independent from the noise of the encrypted position cp.

3 Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [9] for more information
about the gadget matrix H.

4 The independence heuristic ensures that all the coefficients of the errors of TLWE,
TRLWE or TRGSW samples are independent and concentrated. More precisely, they
are σ-subgaussian where σ is the square-root of their variance.

5 In [8], the formula holds a 4 instead of a 12. We believe that they did not take into

account the standard deviation of a sample x
$←− [− 1

2
, 1
2
] when adapting the worst

case noise formula to the average case.

Chocobo 5

– TLWE Sample Extract: takes as inputs both a ciphertext c ∈ TRLWEk(m)
and a position p ∈ J0, NJ, and returns a TLWE ciphertext c′ ∈ TLWEk(mp)
where mp is the pth coefficient of the polynomial m. In this paper, we will
refer to this algorithm by SampleExtract. This algorithm does not add any
noise to the ciphertext.

– Public Functional Keyswitching: transforms a set of p ciphertexts ci ∈
TLWEk(mi) into the resulting ciphertext c′ ∈ T(R)LWEs(f(m1, . . . ,mp)),
where f() is a public linear morphism from Tp to TN [X]. Note that N = 1
when keyswitching to a TLWE ciphertext. This algorithm requires 2 param-
eters: the decomposition basis BKS and the precision of the decomposition
t. In this paper, we will refer to this algorithm by KeySwitch. As stated in
[9], the variance VKS of the resulting noise after a KeySwitch with BKS = 2
follows the formula6:

VKS < R2 · Vc + n
(
tNϑKS + 2−2(t+1)

)
where Vc is the variance of the noise of the input ciphertext c, R is the
Lipschitz constant of f and ϑKS the variance of the error of the keyswitching
key. In this paper and in most cases, R = 1. When using a decomposition
base BKS and the tighter analysis from [18], the formula becomes:

VKS < R2 · Vc + En,NKS where En,NKS = n

(
tNϑKS ·

(
BKS

2

)2

+
B−2t

KS

12

)
(2)

We give more details on this bound in Appendix A.

TFHE specifies a gate bootstrapping to reduce the noise level of a TLWE sample
that encrypts the result of a boolean gate evaluation on two ciphertexts, each of
them encrypting a binary input. TFHE gate bootstrapping steps are summarized
in Algorithm 1. The step 1 consists in selecting a value m̂ ∈ T which will serve
later for setting the coefficients of the test polynomial testv (in step 3). The
step 2 rescales the components of the input ciphertext c as elements of Z2N .
The step 3 defines the test polynomial testv. Note that for all p ∈ J0, 2NJ, the
constant term of testv · Xp is m̂ if p ∈KN

2 ,
3N
2 K and −m̂ otherwise. The step 4

returns an accumulator ACC ∈ TRLWEs′(testv ·X⟨ā,s⟩−b̄). Indeed, the constant
term of ACC is −m̂ if c encrypts 0, or m̂ if c encrypts 1 as long as the noise
of the ciphertext is small enough7. Then, step 5 creates a new ciphertext c by
extracting the constant term of ACC and adding to it (0, m̂). That is, c either
encrypts 0 if c encrypts 0, or m if c encrypts 1 (By choosing m = 1

2 , we get a
fresh encryption of 1).

Since a bootstrapping operation is a BlindRotate over a noiseless TRLWE fol-
lowed by a Keyswitch, the bootstrapping noise (VBS) satisfies:

VBS < EBR + EN,1
KS

6 Note that as of now, the formula from [9] has a discrepancy between Theorem4.1
and its proof. The formula from the proof should be followed.

7 Further details on the proper bound of the noise are given in Section 3.

6 P-E. Clet et al.

Algorithm 1 TFHE gate bootstrapping [9]

Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 1
2
) with x ∈ B,

a bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the
TRLWE interpretation of a secret key s′

Output: a TLWE sample c ∈ TLWEs(x.m)
1: Let m̂ = 1

2
m ∈ T (pick one of the two possible values)

2: Let b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉ ∈ Z,∀i ∈ J1, nK
3: Let testv := (1 +X + · · ·+XN−1) ·X

N
2 · m̂ ∈ TN [X]

4: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
5: c = (0, m̂) + SampleExtract(ACC)
6: return KeySwitchs′→s(c)

2.4 TFHE Functional Bootstrapping

Functional bootstrapping [11, 21, 23, 12, 15] refers to TFHE’s ability of eval-
uating a Look-Up Table (LUT) of any single input function during the boot-
strapping. In particular, TFHE is well-suited for negacyclic function8, as the
plaintext space for TFHE is T, where [0, 1

2 [corresponds to positive values and
[12 , 1[to negative ones, and the bootstrapping step 2 of the Algorithm 1 en-
codes elements from T into powers of X modulo (XN + 1), and Xα+N ≡ −Xα

mod [XN + 1].

In section 4, we will discuss methods for increasing the plaintext precision during
a functional bootstrapping. We will focus on Guimarães et al., [18] ideas for
combining several bootstrappings with many digits as input. These digits come
from the decomposition of a plaintext in a basis B.

3 Time complexity, noise variance and success
probability

In this section, we first give a reminder of operations relevant to evaluating
the complexity of algorithm executions over TFHE when resorting to functional
bootstrapping. We also provide a unified summary of the noise variance of the
output of TFHE most useful operations. We then introduce a methodology to
approximate the error of an algorithm. This new approximation holds two main
benefits:

– We end up with linear approximations which are easier to compute and
compare from a human’s perspective.

– The exact result requires the computation of the product of success rates
of each operations which may be rounded to 1 due to numerical precision

8 Negacyclic functions are antiperiodic functions over T with period 1
2
, i.e., f(x) =

−f(x+ 1
2
).

Chocobo 7

when extremely close to 1 (2−52-close to 1 when using floats on 64 bits). Our
linear estimation works directly with error rates which are not rounded to 0
unless truly negligible, resulting in more precise results.

3.1 Time complexity

The algorithms we present in this paper use primarily BlindRotate and Keyswitch
operations. Those 2 operations are the most time consuming FHE operations.
Note that a BlindRotate is 2·104 times slower than additions and 103 times slower
than polynomial multiplications with default parameters in TFHElib9.

The following formula gives a good approximation of the time needed for each
algorithm : n · tBR +m · tKS + p · tKSR, where n is the number of BlindRotate,
m is the number of KeySwitch between TLWE ciphertexts, p is the number of
KeySwitch from TLWE to TRLWE ciphertexts and the indexed t coefficients
correspond to the time computation of each operation.

3.2 Noise variance

The noise variances resulting from homomorphic computations with bootstrap-
pings are calculated from the noise variances of the input ciphertexts, and the
noise bounds of BlindRotate and KeySwitch (Equations 1 and 2). We summarize
in Table 1 the noise variances for basic operations such as the addition of two
ciphertexts or the multiplication of a ciphertext by a plaintext. These formu-
las can be used as building-blocks to compute the resulting noise variance of
operations in the remainder of this paper.

Operation Variance

ci + cj Vi + Vj

Ci +Cj Vi + Vj

P ·Ci ||P ||22 · Vi

Keyswitch(ci) Vi + En,N
KS

BlindRotate(Ci) Vi + EBR

Bootstrap(ci) EBR + EN,1
KS

Table 1. Obtained noise variances when applying basic operations to independent
inputs: ci is a TLWE ciphertext of variance Vi, Ci is a TRLWE ciphertext of variance
Vi and P is a plaintext polynomial.

3.3 Success probability

The success probability of a BlindRotate is expressed with the Gauss error func-
tion. It depends on the noise of the input ciphertext, the size of the plaintext
space and its encoding over the torus [15, 18]. Indeed, Clet et al., [14] showed
that for a small plaintext space, functional bootstrapping is more efficient when
the plaintexts are encoded over half of the torus.

9 https://tfhe.github.io/tfhe/

8 P-E. Clet et al.

As in the upcoming section, we consider the decomposition of plaintexts within
a small basis B, we only remind the formula for the probability of success of a
BlindRotate when the plaintext space is encoded over half of the torus:

erf

(
1

4B
√
2(Vc + Vr)

)
where erf is the Gauss error function, Vc is the noise variance of the input
ciphertext, and Vr = n+1

48N2 is the rounding variance (introduced by the step 2 of
Algorithm 1). From now on, we use the notation:

PB(Vc) = erf(
1

4B
√
2(Vc + Vr)

) (3)

Let’s consider an algorithm requiring to compute n BlindRotate on independent
ciphertexts (ci)i∈J0,m−1K. Each ci is used, at least once, as input to a BlindRotate.
Then the probability of success of the algorithm is the probability that each
BlindRotate succeeds. It is equal to:

m−1∏
i=0

PB(Vci)

We note FB = 1− PB so that F represents the error rate of a BlindRotate. We
get thanks to Boole’s inequality the following bound:

1−
m−1∏
i=0

PB(Vci
) ≤

m−1∑
i=0

FB(Vci
) (4)

Then, if each FB(Vci
) is small enough, this bound is also tight. We give a proof

of tightness in Appendix B. From now on, we use Boole’s inequality given in
Equation 4 as a tight approximation of the error rate of our computations under
this assumption.

4 LUTs with Multiple Encrypted Inputs

The aforementioned functional bootstrapping methods ([11, 21, 23, 12, 15]) are
univariate and have a limited plaintext precision. They evaluate look-up tables
with a size bounded by the degree N of the used cyclotomic polynomial. The size
of the plaintext space gets even smaller when taking noise into account [15]. In
addition, these methods are not suited for computing a LUT for a multivariate
function f with two or more encrypted inputs. In order to overcome these issues,
Guimarães et al., [18] proposed two methods for homomorphic computation with
digits: a tree-based approach and a chaining approach. In this section, we discuss
these two methods, give bounds for their noise variances and error rates and
consistently compare the two approaches.

Chocobo 9

4.1 Tree-based Method

We consider d TLWE ciphertexts (c0, . . . , cd−1) encrypting (m0, . . . ,md−1) ∈ Zd
B

over half of the torus for some B ∈ N. That is, each ciphertext ci corresponds
to an encryption of mi ∈ J0, B − 1K. (m0, . . . ,md−1) can represent a message
decomposed in a basis B, via the bijection:

gd :
J0, B − 1Kd → J0, Bd − 1K

(m0, . . . ,md−1) 7→
∑d−1

i=0 mi ·Bi (5)

or simply d uncorrelated messages.

In the following, we describe a tree-like structure to build a LUT for the function
f : J0, B − 1Kd → J0, B − 1K. An example is described in Figure 1 of a tree of
depth d = 2

First, we encode the LUT for f in Bd−1 TRLWE ciphertexts. Each ciphertext
encrypts a polynomial Pi where:

Pi(X) =

B−1∑
j=0

N
B −1∑
k=0

f ◦ g−1
d (j ·Bd−1 + i) ·Xj·NB +k, i ∈ J0, Bd−1 − 1K

Then, we apply the BlindRotate algorithm to cd−1 and TRLWE(Pi),∀i ∈ J0, Bd−1−
1K. That is, we rotate each TRLWE(Pi) by the encrypted position in cd−1. Finally,
we run the SampleExtract algorithm on each of the rotated TRLWE(Pi). We end
up with Bd−1 TLWE ciphertexts, each encrypting f ◦ g−1

d (md−1 ·Bd−1 + i) for
i ∈ J0, Bd−1 − 1K. Then, we apply Bd−2 KeySwitch to pack these Bd−1 TLWE
ciphertexts into Bd−2 TRLWE ciphertexts, that correspond to the LUT of h
where:

h :
J0, B − 1Kd−1 → J0, B − 1K
(a0, . . . , ad−2) 7→ f(a0, . . . , ad−2,md−1)

We iterate this operation until getting only one TLWE ciphertext encrypt-

ing f(m0, . . . ,md−1), at the cost of running
∑d−1

i=0 Bi = Bd−1
B−1 BlindRotate,∑d−2

i=0 Bi = Bd−1−1
B−1 KeySwitch from TLWE ciphertexts to TRLWE ciphertext

and one KeySwitch between TLWE to go back to the initial parameters. In-
termediary KeySwitch between TLWE can be performed before keyswitching to
TRLWE ciphertexts which reduce the overall noise as long as EN,1

KS +En,BKS ≤ E
N,B
KS

at the cost of Bd−B
B−1 additional KeySwitch.

10 P-E. Clet et al.

Fig. 1. Tree of depth 2 in basis 4 with inputs c0 and c1 encrypting 1 and 2 respectively.

We can accelerate the tree evaluation by encoding the first LUTs in plaintext
polynomials rather than TRLWE ciphertexts. Then, we use the multi-value boot-
strapping from [7] to compute only one BlindRotate instead of Bd−1 at the first
level of the tree. We call selector the result of the BlindRotate of the first layer.

Thus, we now compute: 1 +
∑d−2

i=0 Bi = 1 + Bd−1−1
B−1 BlindRotate.

Note that we can build any function from J0, B − 1Kd to J0, B − 1Kk given any
k, d ∈ N∗ with the tree-based method. Indeed, any function from J0, B − 1Kd to
J0, B−1Kk can be decomposed as k functions from J0, B−1Kd to J0, B−1K.

Noise variance The noise variances of the Blindrotate and Keyswitch are addi-
tive. Thus, the noise variance of the tree-based method when applied to d inputs
is less than d · EBR + (d− 1)EN,B

KS + EN,1
KS or d · (EBR + EN,1

KS) + (d− 1)En,BKS with
the intermediary Keyswitch operations. In order to simplify the noise analysis,
we only consider the tree-based method without the intermediary Keyswitch op-
erations from now on. Note that our bound rely on our specific packing with
redundancy technique introduced in Section A.

If we implement the multi-value bootstrapping [7] for the evaluation of the first
level of the tree with the polynomials (Pi)i∈J0,d−1K, the noise bound increases to

(d− 1 +max(||Pi||22)) · EBR + (d− 1) · EN,B
KS + EN,1

KS . Note that in the worst case
maxi(||Pi||22) ≤ (B + 3) · (B − 1)2 which leads to a worst case noise variance of

(d− 1 + (B + 3) · (B − 1)2) · EBR + (d− 1) · EN,B
KS + EN,1

KS .

Chocobo 11

Error rate We consider that the input ciphertexts (ci)i∈J0,d−1K encrypting the
messages (mi)i∈J0,d−1K are mutually independent. We refer by (Vci

)i∈J0,d−1K to
the noise variances of the input ciphertexts (ci)i∈J0,d−1K.

Each BlindRotate takes as input one of the ciphertext ci. As such, we can apply

the Equation 4 from Section 3 to find the bound FTM ≤
d−1∑
i=0

FB(Vci
), where FTM

is the error rate of the tree based method. This bound holds true whether we
use the multi-value bootstrapping or not.

4.2 Chaining Method

The chaining method has a much lower complexity and a lower error growth than
the tree-based method. However, as stated in [18], it works only for a restricted
set of functions, i.e., functions with carry-like logic.

We consider d TLWE ciphertexts (c0, . . . , cd−1) respectively encrypting the mes-
sages (m0, . . . ,md−1). We denote by LC(a, b) any linear combination of a and
b. Given a set of functions (fi)i∈J0,d−1K such that fi : J0, B− 1K→ J0, B− 1K, we
build with Algorithm 2 a function f : J0, B − 1Kd → J0, B − 1K.

Algorithm 2 Chaining method

Input: A vector (c0, . . . , cd−1) of TLWE ciphertexts encrypting the vector of messages
(m0, . . . ,md−1).

Output: A ciphertext encrypting f(m0, . . . ,md−1). f is defined by the different linear
combinations and the univariate functions fi.

1: c0 ← f0(c0)
2: for i ∈ J0, d− 2K do
3: ci+1 ← fi+1(LC(ci, ci+1))

return cd−1

The functions (fi)i∈J0,d−1K can be implemented using any method from the state
of the art for univariate functional bootstrapping. We remind that in this paper,
we choose the usual encoding method where the plaintext space is restricted to
half of the torus [11].

Noise variance Since Algorithm 2 ends with a functional bootstrapping, the
resulting noise variance of its output ciphertext is bounded by EBR+EN,1

KS .

Error rate The inputs of each BlindRotate are linear combinations of the inde-
pendent ciphertexts (ci)i∈J0,d−1K. Thus, we bound the error rate by:

FCM ≤ FB(Vc0) +

d−1∑
i=1

FB(VLCi(cboot,ci))

12 P-E. Clet et al.

where LCi is the linear combination used at the ith step of Algorithm 2, cboot
is a freshly bootstrapped ciphertext and FCM is the error rate of the chaining
method.

4.3 Performances Comparison

Table 2 summarizes the noise variances and probabilities of success for the
tree-based and chaining methods. We refer by TBM to the tree-based method
without using the multi-value bootstrapping trick, by TMV to the tree-based
method when using the multi-value bootstrapping, and by CM to the chaining
method.

Method Noise variance Bound on error rate

TBM d · EBR + (d− 1)EN,B
KS + EN,1

KS

d−1∑
i=0

FB(Vci)

TMV
(d− 1 + max(||Pi||22)) · EBR

+(d− 1) · EN,B
KS + EN,1

KS

d−1∑
i=0

FB(Vci)

CM EBR + EN,1
KS

FB(Vc0)

+

d−1∑
i=1

FB(VLCi(cboot,ci))

Table 2. Noise variance and success rate in basis B for d inputs

Table 3 summarizes the time complexity of both methods. As mentioned in Sec-
tion 3, the time complexity is given as the number of BlindRotate and KeySwitch.

Method Blindrotate
KeySwitch

to TLWE to TRLWE

TBM
Bd − 1

B − 1
1

Bd−1 − 1

B − 1

TMV 1 +
Bd−1 − 1

B − 1
1

Bd−1 − 1

B − 1
CM d d 0

Table 3. Time complexity in basis B for d inputs

It is straightforward to see from Table 2 and 3 that CM leads to a lower noise
variance with more efficient computation. These benefits come with limitations
since CM is not a method that generalize well to every function. Besides, the
error rate can be much higher with CM depending on the linear combination
involved in Algorithm 2. Note that FB(x) = erfc(1

4B
√

2·(x+Vr)
). We use the

bound erfc(X) ≲
e−X2

X
√
π

which has the same order of magnitude as erfc as long

Chocobo 13

as X > 1 to get that:

FB(x) ≲ 4B · e−
1

32B2(x+Vr)

√
2(x+ Vr)

π
(6)

From this formula we get that the growth of the error rate induced by the growth
of x heavily depends on the relative size of x and Vr. Indeed, when x ≫ Vr,

FB(x) ≃ 4B · e−
1

32B2·x

√
2x

π
. Thus a growth of x has an exponential impact on

the error rate. Whereas x≪ Vr implies that FB(x) ≃ 4B · e−
1

32B2·Vr

√
2Vr

π
. Thus

the growth of x is absorbed by the term Vr. Since Vr = n+1
48N2 , this means that

depending on the encryption parameters, the drawback on the error rate of CM
can be mitigated.

5 Circuit Method

Both of the previous methods come with restrictions. On the one hand, the tree-
based method requires an exponential number of BlindRotate relatively to the
number of inputs. On the other hand, the chaining method can only be applied
to some specific functions. Besides, both method may prove hard to efficiently
integrate into FHE compilers such as Cingulata [6], Transpiler [17] or Concrete-
compiler [10].

In the following sections, we propose an alternative method relying on logic
circuits with encrypted inputs. The plaintext space for these inputs is J0, B− 1K
for a given integer B = 2k.

5.1 B-gates for logic circuits

For a given integer B, we define a B-gate as a function that takes as inputs at
most two digits in J0, B − 1K and outputs one digit in J0, B − 1K. This can be
considered as an extension of logic gates in bases larger than two. Notably, when
B is a power of two, these B-gates can be seen as a factorisation of multiple logic
gates. As such, being able to compute B-gates is enough to compute any function
thanks to their circuit representation. In addition, their circuit representation
can make computation more efficient than with the tree-based method assuming
an efficient way to compute B-gates.

In this section, we describe in detail how to build B-gates, which are the main
building blocks of our circuits. Each B-gate can be computed either using the
chaining method CM, the tree-based method TBM, or the tree-based method
with multi-value bootstrapping TMV.

14 P-E. Clet et al.

Using CM as a building block: We can combine two digits x and y with the
bijection:

g2 :
J0, B − 1K2 → J0, B2 − 1K

(x, y) 7→ x+B · y (7)

That is, we compute any B-gate with encrypted digits c1 and c2 by applying one
functional bootstrapping to g2(c1, c2). To that end, we need to use a plaintext
size of B2 instead of B to encrypt each digit. We summarize in Table 4 and
Table 5 the noise variance, the error rate and the time complexity of a generic
gate using CM found following the formulas from Table 2. From now on, we call
CM-gate gates computed with the CM method.

Noise variance Error rate

EBR + EN,1
KS FB(Vc0 +B2 · Vc1)

Table 4. CM-gate error rate and noise variance. Vc0 and Vc1 respectively represent the
noise variance of the first and second inputs of the B-gate.

Blindrotate
Keyswitch

to TLWE to TRLWE

1 1 0
Table 5. CM-gate time complexity

Using TBM as a building block: B-gates can be computed as trees of depth
2. We summarize in Table 6 and Table 7 the noise variance, the error rate and
the time complexity of a generic gate using TBM found following the formulas
from Table 2 and Table 3. From now on, we call TBM-gate gates computed with
the TBM method.

Noise variance Error rate

2 · EBR + EN,B
KS + EN,1

KS FB(Vc0) + FB(Vc1)
Table 6. TBM-gate error rate and noise variance. Vc0 and Vc1 respectively represent
the noise variance of the first and second inputs of the B-gate.

Using TMV as a building block: Similarly to TBM, logic gates can be com-
puted as trees of depth 2. Note that if multiple logic gates share an input, they
can also share the ”selector”. This allows us to reduce the amount of BlindRotate
in a circuit. We summarize in Table 8 and Table 9 the noise variance, the error

Chocobo 15

Blindrotate
Keyswitch

to TLWE to TRLWE

B + 1 1 1
Table 7. TBM-gate time complexity

rate and the time complexity of a generic gate using TMV found following the
formulas from Table 2 and Table 3. We consider the polynomials maximizing
the error rate to bound the resulting error rate. From now on, we call TMV-gate
gates computed with the TMV method.

Noise variance Error rate

(1 + (B + 3) · (B − 1)2) · EBR + EN,B
KS + EN,1

KS FB(Vc0) + FB(Vc1)
Table 8. TMV-gate generic error rate and noise variance. Vc0 and Vc1 respectively
represent the noise variance of the first and second inputs of the logic gate.

Blindrotate
Keyswitch

to TLWE to TRLWE

2 1 1
Table 9. TMV-gate generic time complexity

Example of TMV-gate Any B-gate can be computed with ease using CM and
TBM. However, TMV-gates require to understand the multi-value bootstrapping
technique and leads to a noticeable impact on the resulting noise variance. As an
example, we describe the B-gate AddGate(x, y) = x+y[B]. Note that we work on
half of the torus, which prevents the modulus operation to be performed using
a homomorphic addition.

Since additions are commutative, the same tree is used whether we want to use
the first or the second input as the selector. We show in Figure 2 an example
of this tree when B = 4. The polynomials we end up with are the Qi for i ∈

J0, B − 1K where Qi =

N
B −1∑
k=0

B−1∑
j=0

((i + k) mod B)Xk·NB +j . To apply the multi-

value bootstrapping technique, we consider Pi = (1−X) ·Qi. Then P0 = (B −

1) +

B−1∑
k=1

Xk·NB and for all i > 0, Pi = (2i − 1) − B · X(B−i)·NB +

B−1∑
k=1

Xk·NB as

polynomial for the noise formulas. We get that maxi(||Pi||22) = (B−1) ·(5B−8).
We summarize in Table 10 and Table 11 the noise variance, the error rate and

16 P-E. Clet et al.

the time complexity of a TMV-AddGate. The results are calculated following the
formulas from Table 2 and Table 3.

Noise variance Error rate

(1 + (B − 1) · (5B − 8)) · EBR + EN,B
KS + EN,1

KS FB(Vc0) + FB(Vc1)
Table 10. TMV-AddGate error rate and noise variance. Vc0 and Vc1 respectively rep-
resent the noise variance of the first and second inputs of the B-gate.

Blindrotate
Keyswitch

to TLWE to TRLWE

2 1 1
Table 11. TMV-AddGate time complexity. Note that the selector may be shared be-
tween multiple gates. Then, one less BlindRotate is necessary for each gate after the
first.

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

0 1 2 3

: Extract

: KeySwitch

Fig. 2. Tree of AddGate

6 Empirical Performances

In this section we give empirical time results for computing generic B-gates. All
computation were made on an Intel Core i5-8250U CPU @ 1.60GHz by extending
the TFHE open source library10. We use the sets of parameters from Table 12,

10 https://github.com/tfhe/tfhe

Chocobo 17

Table 13 and Table 14 to achieve 128 bits of security and an error rate of at
most 2−32.

The parameters are chosen following this methodology for each B-gate and each
method:

• The parameters n and N are chosen as low as possible without jeopardizing
security to ensure better speed performance.

• The parameters n, N , σT and σTN [X] are chosen to reach at least λ = 128
bits of security.

• The parameters l, t, Bg, and BKS lead to an error rate lower than 2−32 for
the chosen B-gate and method for inputs with noise equal to the output of
a B-gate. We keep l and t as low as possible for speed performance. We note
respectively Bgbit and BKSbit the log2 of Bg and BKS.

Basis n N σT σTN[X] l Bgbit t BKSbit

4 900 2048 5.1 · 10−7 9.6 · 10−11 3 8 6 3

8 1100 8192 1.4 · 10−8 7 · 10−65 1 31 7 3

16 1300 65536 3.77 · 10−10 1 · 10−300 1 31 4 6

Table 12. Parameters sets with CM (λ=128)

Basis n N σT σTN[X] l Bgbit t BKSbit

4 800 1024 3.1 · 10−6 5.6 · 10−8 3 6 3 4

8 800 1024 3.1 · 10−6 5.6 · 10−8 5 4 7 2

16 900 2048 5.1 · 10−7 9.6 · 10−11 2 11 5 3

Table 13. Parameters sets with TBM (λ=128)

Basis n N σT σTN[X] l Bgbit t BKSbit

4 800 2048 3.1 · 10−6 9.6 · 10−11 2 11 3 4

8 900 2048 5.1 · 10−7 9.6 · 10−11 3 8 3 5

16 1024 2048 5.6 · 10−8 9.6 · 10−11 6 5 3 6

Table 14. Parameters sets with TMV (λ=128)

Given these sets of parameters, we show in Table 15 the time requirements of
each method in basis 4, 8 and 16.

It is interesting to note that when using a small basis B, CM-gates are the
most efficient. However, the quadratic growth of the plaintext space relatively

18 P-E. Clet et al.

Basis CM TBM TMV

4 177 351 528

8 617 1073 643

16 7016 3622 973
Table 15. Gate Evaluation Time in ms

to B greatly degrades its performances with larger bases. On the other side of
the spectrum, TMV-gates become more and more interesting with larger bases.
Besides, TBM-gates seem of limited interest since it is outclassed by CM-gates for
small basis, and by TMV-gates for larger basis. This is due to the linear growth
of the number of operations required to perform a TBM-gate with the size of
the basis. Note that the TFHElib does not natively have a TLWE to TRLWE
KeySwitch implemented and our personal implementation of this KeySwitch does
not make use of parallelism. Since this KeySwitch operation takes a large part of
the computation time, the performances of TBM-gates and TMV-gates can be
greatly optimised. Besides, the parameter sets used for TMV-gates are meant to
work for any gate. In practice, the error bound must be tailored to specific gates,
which will improve the overall performance of TMV-gates. Finally, performances
must be optimized depending on the amount of memory available. For instance,
multiple KeySwitch techniques exist as shown in Section A which lead to different
trade-offs between noise growth, memory usage and speed.

7 Experimental Results on Sorting

In this section, we compare a circuit dedicated to sorting a list of encrypted
inputs in base B to the direct application of the tree-based method and the
BGV implementation of sorting from [13]. Note that merging lists efficiently in
the homomorphic domain is a non trivial task, even though a recent work [16]
describes an elegant way to achieve it. In order to keep our example simple, we
describe in Algorithm 3 the bubble sort algorithm which is possible to implement
homomorphically without merging lists.

Algorithm 3 Bubble Sort

Input: A list (c0, c1, ..., cd−1) of d ciphertexts encrypting the messages
(m0,m1, ...,md−1).

Output: A list of ciphertexts (r0, r1, ..., rd−1) encrypting the messages in sorted order.
1: r0 = c0
2: for i ∈ J1, d− 1K do
3: (r0, ri) = (min(r0, ci),max(r0, ci))
4: for j ∈ J1, i− 1K do
5: (rj , ri) = (min(rj , ri),max(rj , ri))

return (r0, r1, ..., rd−1)

Chocobo 19

The speed and noise performance of B-gates computed with CM and TBM are
unrelated to the specific B-gates. Thus, we reuse the same parameter sets as
in Table 12 and Table 13. Besides, the only required B-gates are min(x, y) and
max(x, y) gates. Since the resulting noise using TMV depends on the function
computed, we give the bound on the noise relatively to these two B-gates:

– min gate noise variance: (1 +B · (B − 1)) · EBR + EN,B
KS + EN,1

KS

– max gate noise variance: (1 + 4 · (B − 1)2) · EBR + EN,B
KS + EN,1

KS

As such, both noise variances are bounded by (1+4·(B−1)2)·EBR+EN,B
KS +EN,1

KS .
We use this formula to find the parameters from Table 16, leading to an error
rate lower than 2−32 per gate with TMV.

Basis n N σT σTN[X] l Bgbit t BKSbit

4 800 1024 3.1 · 10−6 5.6 · 10−8 6 3 3 4

8 900 2048 5.1 · 10−7 9.6 · 10−11 3 8 3 5

16 1024 2048 5.6 · 10−8 9.6 · 10−11 5 6 3 6

Table 16. Parameters sets with TMV for sorting circuit (λ=128)

Using the tree-based method naively to sort a list of d encrypted inputs would
require the computation of d trees of depth d, leading to a total of approximately
d ·Bd−1 operations instead of d2. We use the same parameter sets for the naive
tree-based method as for TBM-gates to reach an error rate lower than 2−32 per
BlindRotate.

We show in Table 17 the empirical time result we get for each method. We call
CM-circuit, TBM-circuit and TMV-circuit, circuits build with CM-gates, TBM-
gates and TMV-gates, respectively.

Basis CM-circuit TBM-circuit TMV-circuit Tree-Based Method

4 3.00 6.19 3.88 14.94

8 10.41 19.14 10.53 134.77

16 85.14 56.40 12.59 2083.63

Table 17. Sorting Time (in s) of 4 Inputs.

As seen in Table 17, the naive tree-based method becomes prohibitively long
even for small bases and low number of inputs. Our circuit method allows more
flexibility in the way homomorphic computation are performed and thus reach
much better performances for functions with small circuit representation such
as sorting functions. Table 17 also confirms the insight from Table 15 that the
CM-gates are more efficient for small bases (2 or 3 bits) while TMV-gates become
the most attractive for larger plaintext spaces.

We now compare our sorting algorithm to the BGV implementation from [13] of
the approach of Iliashenko & Zucca [19] which is presently the fastest available
for BGV/BFV. This method has also been run on the same machine as above.

20 P-E. Clet et al.

We found two sets of parameters with at least 128 bits of security fitting for
the BGV sorting algorithm using messages over 4 bits. They are respectively
tailored for sorting 5 and 15 inputs, and are given in Table 18.

#Inputs Degree Plaintext Mod Ciphertext Mod (bits) Noise λ

5 16381 181 250 179 152

15 16381 181 290 167 137
Table 18. Parameters of the BGV scheme for our experiment.

We give in Table 19 the resulting performances of both our method and the
BGV implementation for messages on 4 bits.

Inputs TMV-circuit [13] Speed-up

5 20.83 64.169 ×3.08
15 216.26 778.74 ×3.60

Table 19. Sorting Performances (in s) and Speed-Up of our Method for 5 and 15
Inputs.

As shown in Table 19, our method achieves a noticeable speed-up of at least ×3
compared to the latency of the sorting algorithm from [19, 13]. Although the
BGV implementation can be batched to achieve better amortized timings, our
results show that TFHE approaches can be competitive with BGV ones in terms
of latency on this particular application.

8 Conclusion

We introduced and compared multiple techniques to compute B-gates as efficient
building blocks for the computation of base B logic circuits. Our approach al-
lows for efficient evaluation of functions with small circuit representation, largely
improving on the speed performance of the tree-based method from the litera-
ture. Furthermore, we showed that our approach achieves state of the art latency
on the sorting task, with a speed up of ×3 compared to the approach of [13].
As a side result, we introduced a keyswitching key specific to packing TLWE
ciphertexts into TRLWE ciphertexts with redundancy, which is of separate in-
terest.

To go further, it would be interesting to compare our method to [1] which relies
on the circuit bootstrapping not implemented natively in TFHElib. It would
also be interesting to optimize the implementation of B-gates by introducing
parallelism to harness the full potential of this technique.

Our method can also be of interest to research on homomorphic compilers such
as Cingulata [6], Transpiler [17] and the Concrete compiler [10] as an alternative
to binary computation.

Chocobo 21

References

[1] Loris Bergerat et al. Parameter Optimization & Larger Precision for (T)FHE.
Cryptology ePrint Archive, Paper 2022/704. 2022.

[2] Adda-Akram Bendoukha, Pierre-Emmanuel Clet, Aymen Boudguiga, and
Renaud Sirdey. “Optimized Stream-Cipher-Based Transciphering by Means
of Functional-Bootstrapping”. In: Data and Applications Security and Pri-
vacy XXXVII. Springer Nature Switzerland, 2023, pp. 91–109. isbn: 978-
3-031-37586-6.

[3] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
“Simulating Homomorphic Evaluation of Deep Learning Predictions”. In:
Cyber Security Cryptography and Machine Learning. Ed. by Shlomi Dolev,
Danny Hendler, Sachin Lodha, and Moti Yung. Cham: Springer Interna-
tional Publishing, 2019, pp. 212–230.

[4] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. “Fast Homomor-
phic Evaluation of Deep Discretized Neural Networks”. In: Proceedings
of CRYPTO 2018. Springer, 2018.

[5] Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved Secure Inte-
ger Comparison via Homomorphic Encryption. Cryptology ePrint Archive,
Report 2019/427. 2019.

[6] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo: A Compi-
lation Chain for Privacy Preserving Applications”. In: Proceedings of the
3rd International Workshop on Security in Cloud Computing. SCC ’15.
Singapore, Republic of Singapore: Association for Computing Machinery,
2015, pp. 13–19. isbn: 9781450334471. doi: 10.1145/2732516.2732520.
url: https://doi.org/10.1145/2732516.2732520.

[7] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. “New Tech-
niques for Multi-value Input Homomorphic Evaluation and Applications”.
In: Topics in Cryptology – CT-RSA 2019. Ed. by Mitsuru Matsui. Cham:
Springer International Publishing, 2019, pp. 106–126. isbn: 978-3-030-
12612-4.

[8] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds”. In: Advances in Cryptology – ASIACRYPT 2016. Ed. by Jung
Hee Cheon and Tsuyoshi Takagi. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2016, pp. 3–33. isbn: 978-3-662-53887-6.

[9] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“TFHE: Fast Fully Homomorphic Encryption Over the Torus”. In: Journal
of Cryptology 33 (Jan. 2020). doi: 10.1007/s00145-019-09319-x.

[10] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel
Tap. CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extend-
ing TfhE. WAHC 2020 - 8th Workshop on Encrypted Computing & Ap-
plied Homomorphic Cryptography. HAL id:〈hal-03926650〉. 2020.

[11] Ilaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable Bootstrap-
ping Enables Efficient Homomorphic Inference of Deep Neural Networks”.
In: Cyber Security Cryptography and Machine Learning. Ed. by Shlomi

22 P-E. Clet et al.

Dolev, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann. Cham:
Springer International Publishing, 2021, pp. 1–19. isbn: 978-3-030-78086-
9.

[12] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved Programmable Bootstrapping with Larger Precision and Efficient
Arithmetic Circuits for TFHE. Cryptology ePrint Archive, Report 2021/729.
2021.

[13] Antoine Choffrut, Rachid Guerraoui, Rafael Pinot, Renaud Sirdey, John
Stephan, and Martin Zuber. Practical Homomorphic Aggregation for Byzan-
tine ML. 2023. arXiv: 2309.05395 [cs.LG].

[14] Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey, and Martin
Zuber. “ComBo: A Novel Functional Bootstrapping Method for Efficient
Evaluation of Nonlinear Functions in the Encrypted Domain”. In: Progress
in Cryptology - AFRICACRYPT 2023. Springer, 2023. doi: 10.1007/978-
3-031-37679-5_14.

[15] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey,
and Cédric Gouy-Pailler. Putting up the swiss army knife of homomor-
phic calculations by means of TFHE functional bootstrapping. Cryptology
ePrint Archive, Paper 2022/149. https://eprint.iacr.org/2022/149.
2022. url: https://eprint.iacr.org/2022/149.

[16] Kelong Cong, Robin Geelen, Jiayi Kang, and Jeongeun Park. Efficient and
Secure k-NN Classification from Improved Data-Oblivious Programs and
Homomorphic Encryption. Cryptology ePrint Archive, Paper 2023/852.
https://eprint.iacr.org/2023/852. 2023. url: https://eprint.
iacr.org/2023/852.

[17] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam, Royce
Wilson, Asra Ali, Eric P. Astor, Itai Zukerman, Sam Ruth, Christoph
Dibak, Phillipp Schoppmann, Sasha Kulankhina, Alain Forget, David Marn,
Cameron Tew, Rafael Misoczki, Bernat Guillen, Xinyu Ye, Dennis Kraft,
Damien Desfontaines, Aishe Krishnamurthy, Miguel Guevara, Irippuge
Milinda Perera, Yurii Sushko, and Bryant Gipson. A General Purpose
Transpiler for Fully Homomorphic Encryption. Cryptology ePrint Archive,
Paper 2021/811. 2021. url: https://eprint.iacr.org/2021/811.

[18] Antonio Guimarães, Edson Borin, and Diego F. Aranha. “Revisiting the
functional bootstrap in TFHE”. In: 2021 (Feb. 2021), pp. 229–253. doi:
10.46586/tches.v2021.i2.229-253.

[19] Ilia Iliashenko and Vincent Zucca. “Faster homomorphic comparison op-
erations for BGV and BFV”. In: Proceedings on Privacy Enhancing Tech-
nologies 2021 (2021), pp. 246–264. url: https://api.semanticscholar.
org/CorpusID:232350948.

[20] M. Izabachène, R. Sirdey, and M. Zuber. “Practical Fully Homomorphic
Encryption for Fully Masked Neural Networks”. In: Cryptology and Net-
work Security - 18th International Conference, CANS 2019, Proceedings.
Vol. 11829. Lecture Notes in Computer Science. Springer, 2019, pp. 24–36.

Chocobo 23

[21] Kamil Kluczniak and Leonard Schild. FDFB: Full Domain Functional
Bootstrapping Towards Practical Fully Homomorphic Encryption. Cryp-
tology ePrint Archive, Report 2021/1135. https://ia.cr/2021/1135.
2021.

[22] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud
Sirdey. “A Homomorphic AES Evaluation in Less than 30 Seconds by
Means of TFHE”. In: Proceedings of the 11th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. WAHC ’23. Associa-
tion for Computing Machinery, 2023, pp. 79–90. doi: 10.1145/3605759.
3625260.

[23] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou.
TOTA: Fully Homomorphic Encryption with Smaller Parameters and Stronger
Security. Cryptology ePrint Archive, Report 2021/1347. https://ia.cr/
2021/1347. 2021.

24 P-E. Clet et al.

A KeySwitch with decomposition basis greater than
2

In this section, we detail the KeySwitch operation using any decomposition basis
BKS , usually a power of 2. We notably discuss multiple useful variants of the
KeySwitch operation and detail the resulting noise growth of these variants.
Besides, we improve the base-aware KeySwitch from [18] by proposing a technique
requiring smaller keys.

We give in Algorithm 4 an adaptation of the KeySwitch from [9] for a decom-
position basis greater than 2. This algorithm leads to the following noise for-
mula:

VKS < R2 · Vc + En,NKS where En,NKS = n

(
tNϑKS ·

(
BKS

2

)2

+
B−2t

KS

12

)
(8)

We call this KeySwitch packing when f(m(1), ...,m(p)) =

p∑
i=1

m(i)Xi−1 and pack-

ing with redundancy when f(m(1), ...,m(p)) =

p∑
i=1

m(i)
r−1∑
j=0

Xr·(i−1)+j

 where

r is the redundancy term satisfying r · p ≤ N .

Algorithm 4 general TFHE KeySwitch

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(m
(i)) for i ∈ J1, pK, a public R-

Lipschitz morphism f : Tp → TN [X], and KSi,j ∈ T(R)LWEK(si

B
j
KS

) for i ∈ J1, nK,

j ∈ J1, tK.
Output: A T(R)LWE sample c ∈ T(R)LWEK(f(m(1), ...,m(p))).
1: for i ∈ J1, nK do

2: Let ai = f(a
(1)
i , ..., a

(p)
i)

3: Let ãi =
⌈Bt

KS ·ai⌋
Bt

KS

4: Let ãi,j ∈ ZN [X] with coefficients in J−BKS
2

, BKS
2
− 1K so that

t∑
j=1

ãi,j ·B−j
KS =

ãi

return (0, f(b(1), ..., b(p)))−
n∑

i=1

t∑
j=1

ãi,j ·KSi,j

When applying a TLWE to TLWE KeySwitch the analysis from [18] regarding
the variance of the rounding part of the algorithm applies. Since N = 1 in this
case, the noise formula then drops to:

VKS < R2 · Vc + En,1KS

Chocobo 25

Algorithm 5 further improves the noise bound for KeySwitch between TLWE
ciphertexts by introducing a larger key. More specifically, the size of the key
grows linearly with the chosen decomposition basis. The noise formula for this
algorithm is:

VKS < R2 · Vc + n

(
tϑKS +

B−2t
KS

12

)

Algorithm 5 TFHE KeySwitch between TLWE ciphertexts

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(m
(i)) for i ∈ J1, pK, a public

R-Lipschitz morphism f : Tp → T, and KSi,j,k ∈ TLWEK(k · si

B
j
KS

) for i ∈ J1, nK,

j ∈ J1, tK, k ∈ J0, BKS − 1K.
Output: A TLWE sample c ∈ TLWEK(f(m(1), ...,m(p))).
1: for i ∈ J1, nK do

2: Let ai = f(a
(1)
i , ..., a

(p)
i)

3: Let ãi =
⌈Bt

KS ·ai⌋
Bt

KS

4: Let ãi,j ∈ J0, BKS − 1K so that

t∑
j=1

ãi,j ·B−j
KS = ãi

return (0, f(b(1), ..., b(p)))−
n∑

i=1

t∑
j=1

KSi,j,ãi,j

Finally, we show in Algorithm 6 how to compute a packing with redundancy
with less noise compared to Algorithm 4 thanks to a specific keyswitch key.
Algorithm 6 improves on the base aware Keyswitch of [18] by avoiding the multi-
plicative increase in size of the key and correcting the algorithm. This algorithm
leads to the following noise formula:

VKS < Vc + En,pKS (9)

B Tightness of Boole’s inequality

Let’s analyse how precise this approximation can be.
We already know thanks to Boole’s inequality that

1−
m−1∏
i=0

PB(Vci
) ≤

m−1∑
i=0

FB(Vci
) (10)

26 P-E. Clet et al.

Algorithm 6 TFHE packing with redundancy

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(m
(i)) for i ∈ J1, pK, and

KSi,j ∈ TRLWEK(si

B
j
KS

r−1∑
k=0

Xk) for i ∈ J1, nK, j ∈ J1, tK.

Output: A TRLWE sample c ∈ TRLWEK

(
p∑

i=1

(
m(i)

r−1∑
j=0

Xr·(i−1)+j

))
.

1: for i ∈ J1, nK do

2: Let ai =

p∑
j=1

a
(j)
i Xr·(j−1)

3: Let ãi =
⌈Bt

KS ·ai⌋
Bt

KS

4: Let ãi,j ∈ ZN [X] with coefficients in J−BKS
2

, BKS
2
− 1K so that

t∑
j=1

ãi,j ·B−j
KS =

ãi

return

(
0,

p∑
i=1

b(i)
r−1∑
j=0

Xr·(i−1)+j

)
−

n∑
i=1

t∑
j=1

ãi,j ·KSi,j

Besides, if we note α =

m−1∑
i=0

FB(Vci)(≪ 1 since each FB(Vci) is small), we get

m−1∏
i=0

PB(Vci) =

m−1∏
i=0

(1−FB(Vci))

≤
(
1− α

m

)m
= 1− α+ m−1

2m α2 +

m∑
k=3

(
m

k

)
(− α

m
)k

Note that |
m∑

k=3

(
m

k

)
(− α

m
)k| ≤

m∑
k=3

αk

k!
≤ α3 · (e− 2, 5) ≤ 0.22 · α3.

Thus for any ϵ > 0 we can ensure that

1−
m−1∏
i=0

PB(Vci
) ≥

m−1∑
i=0

FB(Vci
)(1− α(

m− 1

2m
+ 0.22α))

≥
m−1∑
i=0

FB(Vci)(1− ϵ)

(11)

as long as α(m−1
2m + 0.22α) ≤ ϵ. To satisfy this inequality, it is enough that

0.72α ≤ min(ϵ, 1).

We combine Equations 10 and 11 to get

m−1∑
i=0

FB(Vci
)(1− ϵ) ≤ 1−

m−1∏
i=0

PB(Vci
) ≤

m−1∑
i=0

FB(Vci
)

which shows that the approximation is tight when the error rate is low.

