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Abstract: Machine learning (ML) as a service has emerged as a rapidly expanding field across various industries like
healthcare, finance, marketing, retail and e-commerce, Industry 4.0, etc where a huge amount of data is gen-
erated. To handle this amount of data, huge computational power is required for which cloud computing used
to be the first choice. However, there are several challenges in cloud computing like limitations of bandwidth,
network connectivity, higher latency, etc. To address these issues, edge computing is prominent nowadays,
where the data from sensor nodes is collected and processed on low-cost edge devices. As simple sensor
nodes are not capable of handling complex computations of ML models, data from sensor nodes need to be
transferred to some nearest edge devices for further processing. If this sensor data is related to some security-
critical application, the privacy of such sensitive data needs to be preserved both during communication from
sensor node to edge device and computation in edge nodes. This increased need to perform edge-based ML
on privacy-preserved data has led to a surge in interest in homomorphic encryption (HE) due to its ability to
perform computations on encrypted form of data. The highest form of HE, Fully Homomorphic Encryption
(FHE), is capable of theoretically handling arbitrary encrypted algorithms but comes with huge computational
overhead. Hence, the implementation of such a complex encrypted ML model on a single edge node is not
very practical in terms of latency requirements. Our paper introduces a low-cost encrypted ML framework on
a distributed edge cluster, where multiple low-cost edge devices (Raspberry Pi boards) are clustered to perform
encrypted distributed K-Nearest Neighbours (KNN) algorithm computations. Our experimental result shows,
KNN prediction on standard Wisconsin breast cancer dataset takes approximately 1.2 hours, implemented on
a cluster of six pi boards, maintaining end-to-end data confidentiality of critical medical data without any re-
quirement of costly cloud-based computation resource support.

1 Introduction

The integration of edge computing and machine
learning (ML) has significantly impacted smart net-
working and the Internet of Things (IoT) in recent
years. However, this convergence brings forth press-
ing concerns regarding data privacy and security, par-
ticularly due to data collection by low-cost sensor
nodes lacking the computational power for complex
ML algorithms [Singh et al., 2021], [Xiao et al.,
2019], [Rizvi et al., 2020].

Encrypted machine learning (ML) at the edge is
vital for safeguarding sensitive information during
processing [Chien et al., 2023]. However, leveraging
homomorphic encryption (HE) for privacy-preserving

a https://orcid.org/0000-0002-6377-4535
b https://orcid.org/0000-0000-0000-0000
c https://orcid.org/0000-0000-0000-0000

ML at the edge presents challenges. The significant
computational overhead associated with HE, particu-
larly for complex ML models and large datasets, can
slow down inference, which is critical in resource-
constrained edge computing environments. Addition-
ally, ensuring compatibility between HE schemes and
ML algorithms is challenging, as many popular algo-
rithms rely on encrypted operations not directly sup-
ported by existing HE libraries [Gouert et al., 2023].
Balancing security and efficiency is delicate, with
stronger encryption often leading to increased com-
putational complexity. Lastly, managing key distribu-
tion becomes complex in distributed edge computing
scenarios, where multiple devices may need to col-
laborate for encrypted ML tasks. Overcoming these
challenges is crucial for realizing the full potential of
HE in enabling secure and privacy-preserving ML at
the edge [Shrestha and Kim, 2019].

The ultimate form of HE, FHE promises imple-



mentation of arbitrary algorithms in encrypted do-
main theoretically. In practice, that adds several chal-
lenges, particularly in terms of memory and latency
[Sinha et al., 2022]. Memory overhead is a significant
concern as FHE schemes often require large param-
eter sets, large bootstrapping keys, and huge cipher-
text size to achieve sufficient security levels, leading
to increased memory consumption. This can be es-
pecially problematic in resource-constrained environ-
ments such as mobile devices or IoT devices, where
memory resources are limited.

Additionally, FHE introduces considerable la-
tency due to the computational complexity of homo-
morphic operations, which involve numerous mod-
ular arithmetic operations on encrypted data. As a
result, performing even simple computations can be
time-consuming. Hence, secure ML processing in
edge should be inherently distributed and decentral-
ized to mitigate huge latency and memory require-
ments by exploring techniques for parallelization and
optimization [Natarajan and Dai, 2021]. However, in
recent reported ML works, most of the works are done
for cloud-based infrastructure.

With this motivation, the main goal of this work
is to implement K-Nearest Neighbour (KNN) algo-
rithm prediction steps on encrypted data using a dis-
tributed edge (Raspberry Pi) cluster. It is to be noted
that we are exploring only a single ML algorithm in
this work. However, to realize encrypted ML as a ser-
vice, all other ML algorithms will be incorporated
into this distributed framework with suitable modi-
fications. The specific contributions here are as fol-
lows:

1. Evaluation and minimization of computational
overhead introduced by encrypted data opera-
tions with distributed and concurrent computing
on the edge devices network. However, our anal-
ysis shows direct adaption of encrypted ML algo-
rithms implemented on single node implementa-
tion is not suitable for distributed clusters and we
need to revisit the algorithm design considering
distributed processing underneath.

2. Further, we explore the realization of the KNN al-
gorithm on encrypted data, where the algorithm
needs to be realized in the circuit-based represen-
tation and computations should be performed us-
ing FHE gates.

3. Finally, we analyze how the proper choice of FHE
library differs according to the choice of plat-
forms, and that affects heavily the overall perfor-
mance. Implementation of the ML model is eval-
uated using two different HE libraries: NuFHE
library [b21, ] and OpenFHE library [b31, ],

where NuFHE can exploit GPU advantages and
OpenFHE claims to support faster bootstrapping.

The paper structure is as follows: Section 2
presents a brief introduction to related works and
Section 3 presents the essential preliminary con-
cepts. Section 4 explores challenges and limitations
of adapting single-edge implementation of encrypted
KNN on a distributed platform. Section 5 details the
implementation of encrypted KNN for the distributed
platform. Finally, Section 6 demonstrates the timing
requirement of the proposed framework and Section 7
mentions the conclusion and some future directions of
this work.

2 Related Works and Motivation

ML on edge devices as well as encrypted ML algo-
rithm implementation is an active area of research.
In paper [Murshed et al., 2021], authors describe
major research efforts where ML and deep learning
(DL) systems have been deployed at the edge and
also discuss common edge computing architectures
used in DL. The authors in [Yazici et al., 2018] have
implemented three different ML algorithms Random
Forests, Support Vector Machine(SVM) and Multi-
Layer Perceptron on the Raspberry Pi to profile their
performance and prove that running the state-of-the-
art ML algorithms is feasible to run on edge IoT de-
vices for all purposes. Similarly in [Venkata Kranthi
and Surekha, 2019], [Yang et al., 2019], and [Trinh
et al., 2018] authors have explored different applica-
tions of ML on edge devices representing efficient re-
sults for real-time applications. However, these works
do not include any discussion on the security of edge-
based ML frameworks.

The work [Bost et al., 2014] combines three main
classification protocols: hyperplane decision, Naive
Bayes, and Decision Trees using AdaBoost. How-
ever, the building blocks of these classifiers are de-
veloped using multiple encryption techniques, and in-
termediate switching adds additional security over-
head. In [Park et al., 2018], authors implemented a
Naive Bayes (NB) classifier for encrypted datasets,
which has inherent limitations due to the classification
scheme. Among different encrypted analytic algo-
rithms, few explored Logistic Regression [Hall et al.,
2011], [Chen et al., 2018], [Hu et al., 2016] and few
other works analyze encrypted support vector ma-
chines ee [Liu et al., 2015]. However, all of this work
has been reported for cloud-based infrastructure.

The authors of [Ma et al., 2020] introduced
LPME, a privacy-preserving medical diagnosis mech-
anism that uses encrypted model parameters and a



two-trapdoor public-key cryptosystem on edge de-
vices. An efficient searchable scheme for updating
and searching encrypted data is proposed in [Chen
et al., 2020].

In [Fang and Qian, 2021], a multi-party privacy-
protected ML framework called PFMLP is proposed,
which incorporates partially HE to perform privacy-
preserving training for multilayer perceptron. In
[Rahman et al., 2020], authors presented a privacy-
preserving AI service composition framework that
enables composition on encrypted QoS data utiliz-
ing BGV FHE algorithm on edge network. The au-
thors in [Yan et al., 2020], have proposed an edge
computing model using a distributed blockchain ap-
proach, and for data security, HE techniques based
on the paillier and RSA cryptosystems are used. In
article [Jerang et al., 2023], the authors develop an
edge intelligence model that uses an advanced paillier
cryptosystem to secure cloud-based data computa-
tions.An authentication-supported homomorphic en-
cryption (AHEC) scheme is proposed for MEC-based
IoT systems in article [Rezaeibagha et al., 2023],
which is focused on partial HE. This work is also lim-
ited to cloud platforms.

Overall, most of the existing works related to ML
algorithms on encrypted data are either limited to
cloud computation or applicable to specific schemes,
where partial HE is sufficient. In this paper, we
will highlight the implementation of encrypted KNN,
which can not be translated to encrypted domain only
with the support of partial homomorphic schemes.
This is because KNN requires handling of complex
encrypted sorting. Hence, we explore this standard
ML model on encrypted data with FHE representa-
tion on distributed edge network (Raspberry Pi). To
the best of our knowledge, this is the first effort in
literature to realize end-to-end encrypted KNN pro-
cessing on distributed edge nodes.

3 Preliminaries

We consider NuFHE [b21, ] as the underlying library,
which is the GPU variant of TFHE [b20, ]. NuFHE
using CUDA and OpenCL GPU backends. We have
used PyOpenCL, which provides pythonic access to
OpenCL [b22, ], the Open Computing Language,
that is the open standard for parallel programming of
heterogeneous systems, for example, CPUs, GPUs,
DSPs, and FPGAs.The TFHE scheme is a variant of
the LWE-based (Learning with Errors) FHE, which
supports the fastest bitwise homomoprhy. Moreover,
this bitwise homomorphy makes the scheme flexible
to be implemented with any input bit-size as per ap-

plication requirements. This is the main motivation
for choosing NuFHE for our framework. Following,
we explain the mathematical formulations of some
of the key algorithms in TFHE. Considering λ=128
is the the security parameter, B ε [0,1], T(Torus) =
R(realnumbers)/Z(integers)(Real modulo 1 set),
Z[x](ring of polynomials)= ZN [x]/xN + 1, TN [x] =
R[x]/xN +1 mod 1, BN [x]= polynomials in ZN [x] with
binary coefficients, message(M) ε [0,1], TRLWE=
Ring LWE over torus ,TRGSW= Ring GSW over
Torus, TLWE= LWE over Tours, TFHE basic algo-
rithms are detailed as follows [Chillotti et al., 2018]:

• KeyGen(λ) generates TRLWE secret key(s)
ε BN [X ], TRGSW bootstrapping key and TRLWE
cloud key(p).

• Enc(u,v) picks a uniform random
vector a ε TN [x], outputs ciphertext
⟨u,v⟩=⟨a,⟨a,s⟩+e+M⟩, where e (small Gaussian
error) ε TN [x], ⟨u,v⟩εT RLWE, M= message ε

[0,1].

• Dec(s,⟨u,v⟩): By decryption function ⟨v-s.u⟩ is
rounded to nearest number M.

• Eval( f ,c1, . . .ct): Eval function evaluates ad-
dition and multiplication (using homomorphic
gates) over the ring taking input as TRLWE ci-
phertext. Bootstrapping key is generated from
TRGSW cloudkey and resultant TRLWE cipher-
text is returned. In the process of evaluation, boot-
strap function is the main denoising module which
extracts sample TRLWE ciphertext, takes inputs
TRLWE switching-key, TRGSW bootstrap-key,
and returns new TLWE ciphertext with lower
noise level.

In TFHE or its variant, bootstrapping is the most
costly operation and reduction of bootstrapping in
overall computation remains an important area of
research. There have been many improvements to
the efficiency of bootstrapping in TFHE, but it re-
mains a challenging problem. OpenFHE imple-
ments improved bootstrapping proposed in [Miccian-
cio and Polyakov, 2021], which is fastest (75ms) com-
pared to earlier bootstrapping (126ms). This im-
proved bootstrapping makes OpenFHE faster com-
pared to NuFHE library. Hence, in this work we con-
sider NuFHE as well as OpenFHE implementation re-
sults where NuFHE may exploit GPU advantages and
OpenFHE can support faster bootstrapping.



4 Limitations of Adapting Single
Edge Encrypted KNN
Implementation for Distributed
Platform

The KNN is a supervised learning classifier that op-
erates in a non-parametric manner. It leverages the
proximity of data points to classify or predict the
grouping of a given individual data point. The query
data point is assigned a class label based on plurality
voting among K (an integer) nearest neighbors, with
each representing a specific label. The following are
the major steps in implementing the KNN algorithm:

1. Distance computation between test data points
(Ti) and training data points (Tri).

2. Sorting of the computed distances to find out the
K nearest neighbors.

3. K nearest neighbors voting based on the class la-
bel of neighbors.

4. Class label assignment to the test data point (Ti)
based on plurality votes.

Implementing the KNN algorithm in an encrypted
domain presents a significant challenge, as it requires
the execution of all these steps on encrypted data
throughout. This entails encrypting the dataset, per-
forming distance calculations, and making predic-
tions, all in an encrypted manner. Encrypted KNN
implementation was explored in [Reddy and Chatter-
jee, 2019]. However, direct adaptation of that existing
implementation is not feasible in distributed scenario.
To highlight this point, we revisit the encrypted sort-
ing step explained in [Reddy and Chatterjee, 2019].
The proposed encrypted sorting in [Reddy and Chat-
terjee, 2019] is feasible for single nodes only, where
all computed distances are present in a single dis-
tance matrix. However, it cannot be adapted for dis-
tributed platform as individual distance submatrices
are present in each node, and it will not be useful
to sort the encrypted distance matrices of individual
nodes as that will not improve the complexity of sort-
ing over a single node technique. Here, we select K
nearest neighbours from each of the distance subma-
trices, so that K ∗ n values need to be sorted finally
in the single node. Since the number of nodes in the
cluster n is much smaller than the total number of data
points, the complexity of sorting K ∗ n data is very
small. With this observation, in distributed frame-
work, we implement parallel sorting in edge cluster
to minimize the computational overhead of encrypted
sorting. Partition-based sorting algorithms like merge
sort are indeed popular for their efficiency in parallel
sorting. However, when applied to FHE data, these

kinds of partition-based sorts are not applicable. The
reason is that FHE allows computations on encrypted
data without decryption, but it introduces complexi-
ties like the inability to detect exact partition indices
and handling encrypted condition-based loops, as ex-
plained in [Chatterjee and Sengupta, 2015].

In this context, we propose distributed encrypted
sorting and the modified framework for encrypted
KNN computation on distributed Raspberry Pi clus-
ter.

5 Proposed Encrypted KNN
Algorithm for Distributed
Platform

This section introduces our framework tailored to ex-
pedite secure ML utilizing distributed HE, illustrated
in Figure 1, which performs encrypted prediction
within distributed Raspberry Pi nodes. The frame-
work comprises two primary phases: initialization
and prediction, as depicted in Figure 1. In the initial-
ization phase, the client generates a public-secret key
pair, encrypts the data using these keys and transfers
the encrypted data to edge Node1, which then parti-
tions it and distributes the data among the respective
worker nodes. In the subsequent prediction phase,
each worker conducts partial prediction steps utiliz-
ing the encrypted data. Upon completion of the dis-
tributed processing, Node1 accumulates and transmits
these encrypted results to the client. By forwarding
encrypted results, this process ensures that the sen-
sitive information remains protected during transmis-
sion and can be further processed or integrated into
the overarching model without compromising data
confidentiality. It is noteworthy that our approach
does not rely on any particular HE framework, ma-
chine learning model, or distributed learning frame-
work. Optimizing the bootstrap procedure (distribut-
ing data between nodes), which usually acts as the
application bottleneck, might greatly speed up pre-
diction times. To provide a demonstration, we con-
centrate on showcasing an asynchronous linear model
learning using the NuFHE framework.

5.1 Topology

In this work, we have cluster topology where the
Raspberry Pi board (Node1) is communicating with
all other Pi boards (Node2, Node3,. . . Node n) and
these other nodes are not communicating with each
other. Since there are many available network topolo-
gies, such as mesh, star, bus, ring, hybrid topol-



Figure 1: Proposed Distributed Edge Network

ogy etc. Our proposed distributed framework, de-
picted in figure 1, distributes encrypted datasets from
Node1, the initial recipient of encrypted client data,
to other nodes (Node2, Node3, . . . Node n) to per-
form encrypted partial prediction steps concurrently
on distributed data independently. Individual results
are then sent to Node1. Here, we can notice that
Node1 is communicating with all other nodes and
there is no need for communication between other
nodes (Node2, Node3,. . . Node n). According to this
fact, we do not need mesh, ring or hybrid types of
complex topologies. For our work, star topology is
the perfect fit where Node1 works as the central mas-
ter node and due to its scalability we can add or re-
move nodes which does not affect the rest of the net-
work. We have ensured that communication and com-
putation time overlap to prevent wasting significant
time only for communication between master and sec-
ondary nodes.

In the next few subsections, we discuss encrypted
KNN implementation following the steps mentioned
in Section 4. For that, we revisit the design of a
few FHE operations (distance computation, encrypted
sorting, etc.) to make them suitable for distributed
platforms.

5.2 Distance Computation

To find the nearest data points to the test instance,
the first step is to compute the distance from each
train data point. Let us consider the train point vector
as Tr = {C1,C2,C3, . . . ,Cm} and the test point vector
as T = {Ct1,Ct2,Ct3, . . . ,Ctn}, where m and n are the
number of features for train and test instances respec-
tively, and Ci, Ct j indicate the feature instance of train

data and test data respectively, where i ∈ [1,m] and
j ∈ [1,n].

There are various types of distance available, such
as Minkowski distance, Euclidean distance, Manhat-
tan distance, Hamming distance, and Cosine distance.
The Euclidean distance function is the most popular
one among all of them, but since the multiplication
operation is costly in the encrypted domain compared
to other addition and subtraction operations, we con-
sider the Manhattan distance here for the computa-
tion of the distance matrix. Manhattan distance is
computed as follows: Manhattandistance(Tr,T ) =
∑

m
i=1 |Ci−Cti|

In this work, we have distributed encrypted dis-
tance (Enc distance) matrix computation operations
across n number of Raspberry Pi edge devices. The
encrypted train data points are split into n groups
and sent over n edge nodes (Node1, Node2,...Noden)
along with the encrypted test data. For each group
of test data, the Enc distance submatrices dist1[i][ j],
dist2[i][ j],...dist1[i][ j] are calculated. Here, distk[i][ j]
is the distance submatrix for node k, where i is the in-
dex of the Enc train data and j = 0 shows the value of
Enc distance, and j = 1 shows the label of the Enc -
train data.

For the computation of the Manhattan distance,
two sub-operations are performed in the encrypted
domain [Reddy and Chatterjee, 2019]: FHE subtrac-
tion (FHE Subtraction) and encrypted absolute value
computation of the FHE Subtraction result. In case
the FHE Subtraction result is negative, to get the ab-
solute value, we need to take the two’s complement
of the result.

To compute the two’s complement in the en-
crypted domain, first, all bits are inverted for the en-
crypted data, and then Enc(1) is added to get the abso-
lute value of the encrypted data [Chatterjee and Sen-
gupta, 2018].

Since it is important to check if the FHE -
Subtraction result is positive or negative, this en-
crypted decision-making is done using FHE mul-
tiplexer (FHE Mux) [Reddy and Chatterjee, 2019],
where the most significant bit (MSB or sign bit (sbit))
of the subtraction result is given as the selection line.
If the FHE Subtraction result is positive, then the sbit
is Enc(0), selecting the FHE Mux result as (Ci−Cti).
Otherwise, if the FHE Subtraction result is negative,
then the sbit is Enc(1), selecting the FHE Mux re-
sult as −(Ci −Cti) . After computation of absolute
values of encrypted distance for individual features,
these distances are added together with FHE Adder
[Reddy and Chatterjee, 2019] circuit to compute the
final Enc distance between two encrypted data points.
Final computed Enc distance values are stored in dis-



tance submatrices (distk[i][ j]) of each node. Further,
encrypted sorting is performed on these distance sub-
matrices to find out K nearest neighbours from each
distributed dataset.

5.3 Proposed Distributed Sorting
Algorithm

Algorithm 1 Encrypted Sorting on Distributed Plat-
form

# Compute Enc distances submatrices in
Node1,Node2,...Node n

# Enc sort on Node1,Node2,...,Node n:
1: for k← 0 to n do
2: for i← 0 to len(distk) do
3: for j← 0 to len(distk)− i−1 do

# create temporary variable v1,v2
4: v1[0]← distk [ j][0]
5: v1[1]← distk [ j][1]
6: v2[0]← distk [ j+1][0]
7: v2[1]← distk [ j+1][1]
8: temp← FHE Subtraction(v1[0],v2[0],size)
9: sbit← temp[size−1]
10: snbit← vm.gate not(sbit)
11: distk [ j][0]← FHE Mux(sbit,v1[0],v2[0])
12: distk [ j+1][0]← FHE Mux(snbit,v1[0],v2[0])
13: distk [ j][1]← FHE Mux(sbit,v1[1],v2[1])
14: distk [ j+1][1]← FHE Mux(snbit,v1[1],v2[1])
15: end for
16: end for
17: end for

#get smallest k (number of neighbours) elements from all n nodes and
store in Dist[i][ j] matrix

18: for i← 0 to n do
19: for i′← 0 to K−1 do
20: Dist[i×K + i′][0]← disti[i′][0]
21: Dist[i×K + i′][1]← disti[i′][1]
22: end for
23: end for

#Enc sort k×n neighbours in Dist matrix with the same algorithm
24: for i← 0 to len(Dist) do
25: for j← 0 to len(Dist)− i−1 do

# create temporary variable v1,v2
26: v1[0]← Dist[ j][0]
27: v1[1]← Dist[ j][1]
28: v2[0]← Dist[ j+1][0]
29: v2[1]← Dist[ j+1][1]
30: temp← FHE Subtraction(v1[0],v2[0],size)
31: sbit← temp[size−1]
32: snbit← vm.gate not(sbit)
33: Dist[ j][0]← FHE Mux(sbit,v1[0],v2[0])
34: Dist[ j+1][0]← FHE Mux(snbit,v1[0],v2[0])
35: Dist[ j][1]← FHE Mux(sbit,v1[1],v2[1])
36: Dist[ j+1][1]← FHE Mux(snbit,v1[1],v2[1])
37: end for
38: end for

In this work, we have proposed a distributed en-
crypted sorting (Enc sort) algorithm on n number of
edge nodes. After Enc distance computation, the
Enc distance submatrices distk[i][ j] are obtained for
each edge node. Bubble sort is applied to each en-
crypted distance submatrix, where two consecutive
elements are compared and swapped if the first ele-
ment is greater. To compare encrypted data, we use
FHE Subtraction and the sign bit (sbit) (Enc(0) or
Enc(1)) of the result is used to check which data is
greater, then FHE Mux circuit is used to store data in
a sorted manner, using the sbit as a selection line, as
shown in sorting Algorithm 1 in lines[2− 16]. This
process runs concurrently in n edge devices, reducing
significant timing overhead.

To decide K nearest neighbors in the entire en-
crypted train dataset, K nearest data from all n nodes
Enc distance submatrices are collected in Dist[i][ j]
matrix at Node1 and sorted again with bubble sort to
obtain the final K nearest neighbors as shown from
line 24, in sorting Algorithm 1. These final K neigh-
bours will be used for voting.

5.4 K Nearest Neighbours Voting and
Class Label Assignment

After getting K nearest neighbours, the next step is
plurality voting based on class labels of the neigh-
bours and the majority voted label is assigned to test
data input. Here train data labels (Li) are taken as +1
(positive class) and -1 (negative class) in plaintext. To
assign plurality-voted label to test data input, we need
to check which label count is greater than the thresh-
old value (half of the number of neighbours(K/2)). To
perform this, we add MSBs (most significant bits) of
the labels for K neighbours using FHE Adder circuit
[Reddy and Chatterjee, 2019], which will be Enc(0)
for +1 label and Enc(1) for −1 label. If positive class
labels (+1) are more than negative class labels (-1),
then the FHE Adder result will be less than K/2 and
vice versa. This FHE Adder result is compared with
the threshold value (K/2) with the help of the FHE -
Subtraction circuit and the MSB of FHE Subtraction
is used as the selection line of FHE Mux to predict
the label of test data.

This predicted encrypted label result is sent to the
client side, where it is decrypted using the secret key
to find out the final class label of the test instance.

6 Results

In this section, we showcase the experimental out-
comes validating the effectiveness of our framework.



Node1 Node2 Node3 NuFHE
(Time)

OpenFHE
(Time)

6 0 0 65.7sec 44.68sec
4 2 0 42.84sec 29.82sec
3 3 0 34.59sec 22.38sec
2 2 2 22.14sec 14.91sec

Table 1: Six NAND Gate Operations Distribution on Edge
Nodes

To demonstrate its efficacy, we conduct comparisons
with a centralized HE learning framework, where
overall processing is done on a single Raspberry Pi
node. Additionally, we perform ablation studies to an-
alyze the pivotal factors influencing the performance
of our framework. These comparative analyses allow
us to assess the impact and advantages of our pro-
posed framework clearly and concisely.

Operation NuFHE (Time) OpenFHE (Time)
Addition 56.79sec 32.31sec

Subtraction 43.40sec 39.31sec
Multiplication 32.46min 23.89min

Table 2: Arithmetic Operations on Edge Device

We have employed an encrypted ML algorithm on
a distributed edge cluster. The client side, responsible
for encrypting data and decrypting results, utilizes an
Intel CoreTM i7-8700 CPU @ 3.20GHz × 12 running
Ubuntu 22.04.3 LTS. For performing encrypted oper-
ations on the encrypted data, the edge device Rasp-
berry Pi 4 model B (Broadcom BCM2711, quad-core
Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 8GB
RAM) is employed. Encrypted data file sharing and
parallel task execution are facilitated using the Fabric
API. All processes operate in the multicore environ-
ment of Raspberry Pi boards and to alleviate computa-
tion overhead, operations are distributed across mul-
tiple Raspberry Pi devices, forming a distributed edge
device network.

Before implementing encrypted KNN, first, we
distributed basic gate logic operations among edge
nodes to observe the timing gain using FHE primi-
tive gates provided by NuFHE and OpenFHE library.
We have distributed 6 NAND gate operations, and
the timing overhead is reduced significantly after dis-
tributing among edge nodes as shown in Table 1. Cer-
tain mathematical operations, including addition, sub-
traction, and multiplication, were also analyzed after
being translated in their encrypted form on a single pi
board(Table2).

Following the successful evaluation of the basic
gate-level performance, the subsequent step involved
implementing the encrypted KNN algorithm on a dis-
tributed edge network. The experimentation was con-
ducted using varying numbers of edge nodes and dif-

ferent standard neighbor values (K), specifically 3, 5,
and 7. Along with NuFHE, in this work we have also
explored the OpenFHE [b31, ] library for fully ho-
momorphic operations which is way faster. The com-
parison results for NuFHE and OpenFHE framework
for distributed encrypted KNN computation are pre-
sented in Table3. It is observed that NuFHE with
its supported parallel processing power works better
when more than 20 cores are present in the selected
platform. However, in our Raspberry Pi board only
4 cores are present and OpenFHE with the improved
bootstrapping works better in this scenario.

7 Conclusion and Future Work

In this work, we have distributed the encrypted com-
putations for KNN among up to six edge devices.
The prediction process takes around 1.2 hours. Al-
though some may argue that the encrypted ML pro-
cessing time is slower than plaintext prediction time
and therefore not practical for real-world applications,
it is important to note that our end-to-end encrypted
framework is suitable for applications where real-time
ML prediction may not be a requirement and out-
comes are acceptable within a few hours. In our future
work, we plan to incorporate other standard ML algo-
rithms in this encrypted ML processing framework on
the edge cluster.
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