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Abstract. The unique design of the FLIP cipher necessitated a generalization of standard cryptographic criteria
for Boolean functions used in stream ciphers, prompting a focus on properties specific to subsets of Fn

2 rather
than the entire set. This led to heightened interest in properties related to fixed Hamming weight sets and the
corresponding partition of Fn

2 into n + 1 such sets. Consequently, the concept of Weightwise Almost Perfectly
Balanced (WAPB) functions emerged, which are balanced on each of these sets. Various studies have since proposed
WAPB constructions and examined their cryptographic parameters for use in stream cipher filters.
In this article, we introduce a general approach to constructing WAPB functions using the concept of order, which
simplifies implementation and enhances cryptographic strength. We present two new constructions: a recursive
method employing multiple orders on binary strings, and another utilizing just two orders. We establish lower
bounds for nonlinearity and weightwise nonlinearities within these classes. By instantiating specific orders, we
demonstrate that some achieve minimal algebraic immunity, while others provide functions with guaranteed
optimal algebraic immunity. Experimental results in 8 and 16 variables indicate that using orders based on field
representation significantly outperforms other methods in terms of both global and weightwise algebraic immunity
and nonlinearity. Additionally, we extend the recursive construction to create WAPB functions for any value
of n, with experiments in 10, 12, and 14 variables confirming that these order-based functions exhibit robust
cryptographic parameters. In particular, those based on field orders display optimal degrees and algebraic immunity,
and strong weightwise nonlinearities and algebraic immunities.
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1 Introduction

With the design of FLIP [MJSC16], established cryptographic criteria for Boolean functions—traditionally
used to assess the security of filtered Linear Feedback Shift Register (LFSR), combined LFSR, or more
complex stream cipher designs—no longer apply. In the context of this cipher, the relevant properties of the
Boolean function used as a filter to determine security are not based on the entire Fn

2 but only on a specific
identified subset. This change has necessitated the generalization of standard attacks and the establishment
of new criteria for subsets and specific partitions of Fn

2 , beginning with the study of restricted criteria for
Boolean functions [CMR17].

In the case of FLIP, the input to the filtering function always has a fixed, known Hamming weight,
thus tailoring attacks to this specificity enhances their effectiveness. This adaptation exemplifies a broader
phenomenon where additional information about a cipher’s internal values can significantly simplify attacks,
as seen in multiple contexts like (algebraic) side-channel attacks [RS09] or lattice reduction with side
information [DDGR20]. From the FLIP study, the focus has been on the partition of the Boolean hypercube
into n+1 slices, defined as sets with elements of the same Hamming weight Ek,n = {x ∈ Fn

2 |wH(x) = k}
for k ∈ [0, n]. Notably, the Hamming weight of an intermediate value is also commonly leveraged as leakage
in side channel attacks, e.g. [JO05, Sta10, DMMS20], although a leakage with an approximate Hamming
weight is considered more realistic e.g. [ORSW12, BFG14, HMM+23].

A fundamental security criterion for a Boolean function is balancedness, the function is balanced if
it outputs 1 for half of the inputs and 0 for the other half, to prevent statistical biases exploitable by
various attacks. Functions that are balanced over each slice were introduced in [CMR17] as Weightwise



(Almost) Perfectly Balanced (WAPB) functions. The term ”almost” differentiates cases where n is a power
of two—here, the function is perfectly balanced on all slices except for those with k equal to 0 or 1. For other
values of n, where many slices have an odd cardinality, the functions output 1 one more (or one less) time
than 0. Since 2017, multiple studies have focused on developing new constructions of W(A)PB functions
with improved parameters for use as filter functions. These efforts include enhancing globally recognized
cryptographic parameters such as algebraic degree, Algebraic Immunity (AI), and nonlinearity, as well as
important criteria on the slices, like weightwise nonlinearities and weightwise algebraic immunity.

We provide a concise overview of the main families of WAPB functions showcased in previous studies,
noting that most focus primarily on WPB functions. Initially, a recursive approach for both WPB and WAPB
was introduced in [CMR17], followed by a secondary construction. In 2019, the work in [LM19] (and
later [MSLZ22]) utilized field representations to develop WPB functions that are 2-rotation symmetric
and achieve high weightwise nonlinearities. The construction in [TL19] (and an adaptation with better
weightwise nonlinearities in [MSL21]) compare the weight of inputs split into two halves, resulting in
constructions affine equivalent to the majority function, thus reaching optimal algebraic immunity. The
construction in [MS21] start from a linear or quadratic function near WPB status, and modify their algebraic
normal form to achieve balancedness over all slices. This methodology was later expanded to generate
WAPB functions from functions of low degrees, as detailed in [LS20, GS22, ZS23, ZJZQ23, ZLC+23].
Additional methods for constructing WAPB functions have been introduced, utilizing direct sums [ZS22] or
Sieghentaler’s construction and addition of symmetric function [GM22b]. Furthermore, various families
have been developed by slightly altering the support of non-WPB functions, as reported in studies
focusing on the distribution of cryptographic parameters of WPB functions, particularly on weightwise
nonlinearity [GM22a], nonlinearity [GM23c], and algebraic immunity [GM23a]. Recent efforts have
also employed evolutionary algorithms to enhance the parameters of WPB functions, concentrating on
weightwise nonlinearities [MPJ+22, YCL+23], and on nonlinearity [MKCL22]. Additional constructions
and properties of restricted criteria have been explored in a range of works (a non-exhaustive list
includes [MZD19, DM23, GM23b, DM24]).

In this article, we explore a novel general approach for WAPB, where the input is split in two halves,
and the function value is determined by an ordering on binary vectors of length n/2. This method simplifies
the implementation of WPB functions and offers superior parameters compared to previously exhibited
functions.

Firstly, we introduce two novel constructions of WPB functions: a recursive construction employing
multiple orders for binary vectors (one for each power of 2 between 2 and n/2 for an n-variable WPB
function) and a second, simpler construction involving just two orders. We quantify the number of functions
within these categories and examine their nonlinearities. We establish a lower bound for the nonlinearity of
any function from these families—at least half that of a bent function—and we derive lower bounds for the
weightwise nonlinearities across the full classes.

Then, we instantiate the constructions with specific orders. We implement prevalent orders—Lexicographic
and Cool—alongside orders that respect the Hamming weight (termed weightwise order) and others based
on the field representation of F2t . We examine the algebraic immunity of these constructions, proving that
those based on the lexicographic order achieve the minimal AI for WPB functions, whereas weightwise
orders result in optimal AI. We provide experimental results detailing the relevant parameters of WPB
functions in 8 and 16 variables for these different orders, where we observe that the new constructions using
the field representation outperform the other ones in both algebraic immunity and nonlinearity, both globally
and weightwise.
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Finally, we extend the recursive construction to furnish WAPB functions for all n. We report outcomes
for global parameters—such as resilience order, nonlinearity, degree, and algebraic immunity—as well as
weightwise parameters, specifically weightwise nonlinearities and algebraic immunities. Experimentally,
we determine these parameters for functions in 10, 12, and 14 variables. Similar to WPB functions, this
study underscores that order-based WAPB functions can exhibit robust cryptographic parameters. Notably,
those based on field orders showcase optimal degrees, optimal algebraic immunity, and strong weightwise
algebraic immunities and nonlinearities.

2 Preliminaries

For readability, we use the notation + instead of ⊕ to denote the addition in F2, and
∑

instead of
⊕

. In
addition to classic notations, we denote by [a, b] the subset of all integers between a and b: {a, a+1, . . . , b}.
For a vector v ∈ Fn

2 we use wH(v) to denote its Hamming weight wH(v) = |{i ∈ [1, n] | vi = 1}|.
For two vectors v and w in Fn

2 we denote by dH(v, w) the Hamming distance between v and w, that is,
dH(v, w) = wH(v + w). For two functions f and g we denote by dH(f, g) the Hamming distance between
their vectors of values.

2.1 Boolean functions, cryptographic criteria, and weightwise properties

In this section, we recall fundamental concepts concerning Boolean functions and their weightwise
properties, which are utilized throughout this article. For a more comprehensive introduction to Boolean
functions and their cryptographic parameters, we recommend consulting the book by Carlet [Car21], and
for insights into weightwise properties—also known as properties on the slices—the article by [CMR17].
We denote by Ek,n the set {x ∈ Fn

2 |wH(x) = k} for k ∈ [0, n], referring to it as a slice of the Boolean
hypercube (of dimension n). Consequently, the Boolean hypercube is divided into n + 1 slices, where the
elements share the same Hamming weight.

Definition 1 (Boolean Function). A Boolean function f in n variables is a function from Fn
2 to F2. The set

of all Boolean functions in n variables is denoted by Bn.

When a property or a definition is restricted to a slice, we denote it by using the subscript k. For example,
for an n-variable Boolean function f we denote its support supp(f) = {x ∈ Fn

2 | f(x) = 1}. Furthermore,
we denote by suppk(f) the support of f restricted to a slice, which is defined as supp(f) ∩ Ek,n.

Definition 2 (Balancedness). A Boolean function f ∈ Bn is called balanced if |supp(f)| = 2n−1 =
|supp(f + 1)|.

For k ∈ [0, n] the function is said balanced on the slice k if ||suppk(f)| − |suppk(f + 1)|| ≤ 1. In
particular when |Ek,n| is even |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Using the notion of restricted balancedness we can define the weightwise (almost) perfectly balanced
functions, the focus of our work.

Definition 3 (Weightwise (Almost) Perfectly Balanced Function (WPB and WAPB)). Let m ∈ N∗ and
f be a Boolean function in n = 2m variables. It will be called weightwise perfectly balanced (WPB) if, for
every k ∈ [1, n− 1], f is balanced on the slice k, that is ∀k ∈ [1, n− 1], |suppk(f)| =

(
n
k

)
/2, and:

f(0, · · · , 0) = 0, and f(1, · · · , 1) = 1.
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The set of WPB functions in 2m variables is denotedWPBm.
When n is not a power of 2, other weights than k = 0 and n can lead to slices of odd cardinality, we

call f ∈ Bn weightwise almost perfectly balanced (WAPB) if:

|suppk(f)| =

{
|Ek,n|/2 if |Ek,n| is even,
(|Ek,n| ± 1)/2 if |Ek,n| is odd.

The set of WAPB functions in n variables is denotedWAPBn.

We define additional crucial concepts for studying Boolean functions, namely the algebraic normal form
and the Walsh transform. Subsequently, we introduce key cryptographic criteria for these functions, includ-
ing algebraic immunity (both general and weightwise) and nonlinearity (both general and weightwise).

Definition 4 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form of a Boolean
function f its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1 +

x1, . . . , x
2
n + xn)):

f(x1, . . . , xn) =
∑

I⊆[1,n]

aI

(∏
i∈I

xi

)

where aI ∈ F2. The (algebraic) degree of f , denoted deg(f) is:

deg(f) = max
I⊆[1,n]

{|I| | aI = 1} if f is not null, 0 otherwise.

Definition 5 (Algebraic immunity and restricted algebraic immunity). The algebraic immunity of a
Boolean function f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1).
The restricted algebraic immunity of a Boolean function f ∈ Bn on the set S ⊂ Fn

2 , denoted as AIS(f),
is defined as:

AIS(f) = min
g 6=0 over S

{deg(g) | fg = 0 or (f + 1)g = 0}.

For S = Ek,n we denote AIEk,n
(f) by AIk(f) and call it weightwise algebraic immunity.

Definition 6 (Walsh transform and restricted Walsh transform). Let f ∈ Bn be a Boolean function, its
Walsh transform Wf at a ∈ Fn

2 is defined as:

Wf (a) :=
∑
x∈Fn

2

(−1)f(x)+a·x.

Let f ∈ Bn, S ⊂ Fn
2 , its Walsh transform restricted to S at a ∈ Fn

2 is defined as:

Wf,S(a) :=
∑
x∈S

(−1)f(x)+ax.

For S = Ek,n we denote Wf,Ek,n
(a) byWf,k(a).
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Property 1 (WAPB functions and restricted Walsh transform). Let n ∈ N∗, f ∈ Bn is WAPB if and only if:

∀k ∈ [0, n], Wf,k(0n) =

{
0 if |Ek,n| is even,
±1 if |Ek,n| is odd.

If n = 2m with m ∈ N∗, f ∈ Bn is WPB if and only if:

Wf,0(0n) = 1, Wf,n(0n) = −1, and ∀k ∈ [1, n− 1]Wf,k(0n) = 0.

Definition 7 (Nonlinearity and weightwise nonlinearity). The nonlinearity NL(f) of a Boolean function
f ∈ Bn, where n is a positive integer, is the minimum Hamming distance between f and all the affine
functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where g(x) = a · x+ ε, a ∈ Fn
2 , ε ∈ F2.

The nonlinearity can also be defined from the Walsh transform:

NL(f) = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)|.

For k ∈ [0, n] we denote NLk the nonlinearity on the slice k, the minimum Hamming distance between
f restricted to Ek,n and the restrictions to Ek,n of affine functions over Fn

2 . Accordingly:

NLk(f) = min
g, deg(g)≤1

|suppk(f + g)|.

Property 2 (Nonlinearity on the slice, adapted from [CMR17], Proposition 6). Let n ∈ N∗, k ∈ [0, n], for
every n-variable Boolean function f over Ek,n:

NLk(f) =
|Ek,n|
2
−

maxa∈Fn
2
|Wf,k(a)|
2

.

2.2 Orders

In this part we recall the notion of order. This notion is the key concept for the new constructions of WPB
and WAPB functions we present in the article.

Definition 8 (Order).
A binary relation � on a set X is called partial order if � is reflexive, transitive and antisymmetric.

Moreover, � is a total order if for all a, b ∈ X it holds a � b or b � a.

We give two examples of orders on n-length binary string, more examples can be found in e.g. [SW12]
that also considers order on sets of fixed Hamming weight:

– Lexicographic, given a, b ∈ Fn
2 as a = a1, . . . , an and b = b1, . . . , bn, a � b if and only if ai < bi on

the first index i ∈ [1, n] such that ai 6= bi, or a = b.
– Cool [RW09], a first element of Fn

2 is chosen and a successor rule is used to determine the following
element, allowing to generate the 2n elements with no repetition. The successor rule for a1, a2, . . . , an
is: Let i be the minimum value such that (ai, ai+1) = (1, 0) and i > 1. If i exists, then rotate i+ 1 bits,
otherwise flip a1 and then rotate n bits.
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2.3 Krawtchouk polynomials

We use Krawtchouk polynomials and some of their properties to prove one of our results, we give the
necessary preliminaries here and refer to e.g. [MS78] for more details.

Definition 9 (Krawtchouk Polynomials). The Krawtchouk polynomial of degree k, with 0 ≤ k ≤ n is

given by: Kk(`, n) =

k∑
j=0

(−1)j
(
`

j

)(
n− `
k − j

)
.

Property 3 (Krawtchouk polynomials relation). Let n ∈ N∗ and k ∈ [0, n], the following hold: Kk(`, n) is
the value of the restricted Walsh transform on Ek,n of any n variable linear function a·` such that wH(a) = `.

Property 4 (Vandermonde Convolution). Let a, b, c ∈ N, then:

(
a+ c

b

)
=

b∑
j=0

(
c

b− j

)(
a

j

)
.

2.4 Tang-Liu WPB functions

We recall the construction of WPB functions from Tang and Liu [TL19] and one on its properties. We use
these results to prove the algebraic immunity of special cases of our main constructions.

Definition 10 (TL WPB construction (adapted from [TL19], Construction 1 )). Let m ∈ N∗ and n =
2m ≥ 4 be an integer. A TL WPB Boolean function h on n-variable is such that

– h(0n) = 0 and h(1n) = 1

– h(x, y) = 0 if wH(x) < wH(y).
– h(x, y) = 1 if wH(x) > wH(y).

– the cardinality of Ui = supp(h) ∩
{
(x, y) ∈ F2m−1

2 × F2m−1

2 : wH(x) = wH(y) = j
}

is exactly(
2m−1

j

)2
/2 for all 0 < j < 2m−1.

Remark 1. Despite Definition 10 may appear quite different respect the original paper, it is equivalent when
considering the restriction on n to be a power of two, and the values in 0n and 1n imposed by Definition 3.

Property 5 (TL WPB functions properties [TL19]). Let m ∈ N∗ and n = 2m, a n-variable TL function hn
has optimal algebraic immunity AI(hn) =

n
2 .

3 Constructions based on total orders

We present our two main constructions of weightwise perfectly balanced functions based on the notion of
order. First, we introduce Construction 1, which utilizes an order for each bit length ranging from 2 to 2m−1

and is constructed recursively. Then, we present Construction 2, which is defined using only two orders.
Finally, we analyze the nonlinearities of the WPB functions generated by these constructions. We provide a
lower bound on the nonlinearity and weightwise nonlinearities of all functions within these families.
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3.1 Recursive construction

Definition 11 (Construction 1). Let m ∈ N∗, and for i ∈ [0,m − 1] �i be a total order on the set of
2i-length binary string.

Let fm be the 2m-variable function defined as:

– fm(02m) = 0, fm(12m) = 1,
–

fm(x, y) =


fm−1(x) if x = y,

0 if x ≺m−1 y,

1 if y ≺m−1 x,

where x, y ∈ Fm−1
2 .

Theorem 1. Let fm defined as in Definition 11, fm is weightwise perfectly balanced.

Proof. We prove it by recursion. First, f1(x, y) takes the value 0 in (0, 0) and 1 in (1, 1) since by definition
fm(02m) = 0 and fm(12m) = 1. For the two elements (x, y) ∈ Fm

2 such that x 6= y, that is E1,n, it holds
0 ≺0 1 or 1 ≺0 0, hence f1 takes the value 1 on exactly one of them. Consequently f1 is WPB, which proves
the basis of the recursion.

Then, if for j ∈ [1,m− 1] fj is WPB we show that fj+1 is also WPB. We denote n = 2j+1, fj+1(x, y)
takes the value 0 in (0n) and 1 in (1n) by definition. Then, for any weight k ∈ [1, n − 1] the set Ek,n

can be split in the two sets A = {(x, y) ∈ Ek,n |x = y} and B = {(x, y) ∈ Ek,n |x 6= y}. On the set
A, fj+1(x, y) takes the value of fj(x), and since {x ∈ Fn/2

2 | (x, y) ∈ A} = Ek/2,n/2, the weightwise
perfect balancedness of fj implies the balancedness of fj+1 on A. Finally, the set B can be split in pairs
(x, y) and (y, x) (since all elements of B are such that x 6= y). For each pair, either x ≺j y or y ≺j x
hence fj+1(x, y) = 1 + fj+1(y, x). Accordingly, fj+1 is balanced on each of these pairs, hence on B, and
therefore on the full slice Ek,n. It allows to conclude the proof by recursion, fm is WPB.

Proposition 1. Let m ∈ N∗ and, the number Cm of 2m-variable WPB functions from the family of
Definition 11 is:

Cm =
m−1∏
i=0

22
i
!.

Proof. First, we note that if two functions f and g from the family are defined with a different order for i in
[0,m − 1] there exist two elements x and y in F2i

2 such that x ≺f,i y and y ≺g,i x (where the subscript f
or g indicate the order used in the definition of f or g respectively). Then, by Definition 11 f(x, y) = 0 and
g(x, y) = 1, hence f and g are different functions. Therefore, the number of different WPB functions from
this family if the product over m of the number of total orders over binary strings of length 2i−1. Since there
are n! possible total orders on a set of size n, it gives the final result:

∏m−1
i=0 22

i
!.

3.2 Construction based on two orders

Definition 12 (Construction 2). Let m ∈ N∗, and � be a total order on the set of 2m−1-length binary
string. Let �′ be a total order on the set of 2m−1-length binary string such that for all k ∈ [1, 2m−1 − 1]
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exactly half of the elements of Hamming weight k are in the smallest half. We denote u the 2m−2-th element
in the order �′.

Let gm be the 2m-variable function defined as:

– gm(02m) = 0, gm(12m) = 1,
–

gm(x, y) =


0 if x ≺ y,
1 if y ≺ x,
0 if x �′ u, 1 otherwise if x = y,

where x, y ∈ Fm−1
2 .

Theorem 2. Let fm as defined in Definition 12, fm is weightwise perfectly balanced.

Proof. We denote n = 2m. By definition gm(02m) = 0 and gm(12m) = 1, so we focus on the balancedness
of gm on the slices Ek,n for k ∈ [1, n − 1]. Each slice Ek,n can be written as A ∪ B where A is the set of
elements such that x = y, that is A = {(x, x) |x ∈ Fn/2

2 } ∩ Ek,n, and B is the set of elements such that
x 6= y, that is B = {(x, y) |x, y ∈ Fn/2

2 , x 6= y} ∩ Ek,n. By construction A ∩B = ∅.
First, we show that gm is balanced over A. We remark that |A| = |Ek/2,n/2| and more precisely

{x | (x, x) ∈ A} = Ek/2,n/2. By definition of �′ we have |{x ∈ Ek/2,n/2 |x �′ u}| = |Ek/2,n/2|/2,
hence gm is balanced on A.

Then, we prove the balancedness on B. B can be partitioned into set of pairs (x, y) and(y, x) and since
x ≺ y or y ≺ x since x 6= y, gm is balanced on all the pairs and therefore on all B. Finally, gm is balanced
on A ∪B = Ek,n for all k ∈ [1, n− 1] which allows to conclude gm is WPB.

Proposition 2. Let m ∈ N∗, the numberDm of 2m-variable WPB functions from the family of Definition 12
is:

Dm = 22
m−1

!×
2m−1−1∏

k=1

( (2m−1

k

)
1
2

(
2m−1

k

)).
Proof. First, using the same argument as for Proposition 1, a different order for� gives a different function.
Then, two functions f and g with only �′ different can still be the same function if and only if for each
k ∈ [1, n/2 − 1] (where n = 2m) the same half of Ek,n/2 is in the smallest half. Indeed, if for all k ∈
[1, n/2− 1], the sets {x ∈ Ek,n/2 |x �′f uf} and {x ∈ Ek,n/2 |x �′g ug} are equal then f(x, x) = g(x, x)

for all x ∈ Fn/2
2 . And since we assumed �f=�g, for all (x, y) ∈ Fn

2 |x 6= y we have f(x, y) = g(x, y)
therefore f = g. Conversely, if there exists k ∈ [1, n/2 − 1] such that x ∈ Ek,n satisfies x �′f uf and
x 6�′g ug (without loss of generality) then f(x, x) = 0 and g(x, x) = 1, proving that f 6= g.

Finally, we derive the number of different functions, combining the number of different total order on
binary strings of length 2m−1 and the number of partitions of Ek,2m−1 in two parts of same size:

Dm = 22
m−1

!×
2m−1−1∏

k=1

( (2m−1

k

)
1
2

(
2m−1

k

)).
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We study the nonlinearity and algebraic immunity of these families. First, we show a lower bound on
the nonlinearity of any function from the two constructions. Then we give a lower bound on the weightwise
nonlinearity of the WPB constructions in terms of Krawtchouk polynomials. Finally we address the algebraic
immunity of the first construction in Section 4, exhibiting WPB functions with minimal and maximal AI.

3.3 A nonlinearity lower bound

Theorem 3. Let m ∈ N∗, n = 2m and f be a function from the constructions of Definition 11 or
Definition 12, then:

NL(f) ≥ 2n−2 − 2n/2−1.

Proof. We compute the Walsh transform of f . For all c ∈ Fn
2 :

Wf (c) =
∑
z∈Fn

2

(−1)f(z)+cz

=
∑

x∈Fn/2
2

(−1)f(x,x)+(a+b)x +
∑

x∈Fn/2
2 , y∈Fn/2

2 \{x}

(−1)f(x,y)+ax+by,

where (a, b) = c, that is a denotes the first n/2 bits of c and b denotes the second half.
First, we can bound the absolute value of the first term: |

∑
x∈Fn/2

2

(−1)f(x,x)+(a+b)x| ≤ 2n/2. Then, we
rewrite the second term:

A =
∑

x∈Fn/2
2 , y∈Fn/2

2 \{x}

(−1)f(x,y)+ax+by =
1

2


∑

x∈Fn/2
2

y∈Fn/2
2 \{x}

(−1)f(x,y)+ax+by +
∑

x∈Fn/2
2

y∈Fn/2
2 \{x}

(−1)f(x,y)+ax+by


=

1

2

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(
(−1)f(x,y)+ax+by + (−1)f(y,x)+ay+bx

)
=

1

2

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
.

Then, to bound |A|, we determine the cardinal of the set S = {x ∈ Fn/2
2 , y ∈ Fn/2

2 \ {x}| (−1)ax+by −
(−1)ay+bx = 0}. The condition (−1)ax+by − (−1)ay+bx = 0 is equivalent to ax+ by = ay+ bx (mod 2),
that is (a + b)(x + y) = 0 (mod 2). First, note that if a = b then |S| = |{x ∈ Fn/2

2 , y ∈ Fn/2
2 \ {x}}| =

2n/2 · (2n/2 − 1). Hence we focus on the case d = a+ b 6= 0n/2.
The addition by a constant y ∈ F`

2, ψy, defined by ψy(x) = x + y (for x ∈ F`
2) is a bijection over

F`
2. Then, the image of ψy(x) for x ∈ F`

2 \ {y} is F`
2 \ {0`}. Accordingly, the sum (x + y) such that

x ∈ F`
2, y ∈ F`

2 \ {x} takes each element of F`
2 \ {0`} exactly 2` times. Since for d 6= 0` we have

|{x ∈ F`
2 | d · x = 0}| = 2`−1 and d · 0` = 0 we obtain |S| = 2n/2(2n/2−1 − 1) = 2n−1 − 2n/2. It allows to
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bound |A|:

|A| = |1
2

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
|

=
1

2
|

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(x,y)6∈S

2(−1)f(x,y)+ax+by +
∑

x∈Fn/2
2 , y∈Fn/2

2 \{x}
(x,y)∈S

0|

≤ 1

2
|2
(
2n/2(2n/2 − 1)− 2n−1 + 2n/2

)
| = |2n − 2n/2 − 2n−1 + 2n/2| = 2n−1

Finally, using the relation between nonlinearity and Walsh transform (Definition 7) we obtain:

NL(f) = 2n−1 − 1

2
max
c∈Fn

2

|Wf (c)| ≥ 2n−1 − 1

2

(
2n−1 + 2n/2

)
= 2n−2 − 2n/2−1.

Theorem 4. Let m ∈ N∗, n = 2m and f be a function from the constructions of Definition 11 or
Definition 12, then, for all k ∈ [0, n]:

NLk(f) ≥
1

4

(
n

k

)
−
(n

2
k
2

)
− 1

2
max
`∈[1,n]

|
k∑

t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|.

Proof. We compute the restricted Walsh transform of f on Ek,n. For all c ∈ Fn
2 :

Wf,k(c) =
∑

z∈Ek,n

(−1)f(z)+cz

=
∑

x∈Ek/2,n/2

(−1)f(x,x)+(a+b)x +
∑

(x,y)∈Ek,n, x 6=y

(−1)f(x,y)+ax+by

=
∑

x∈Ek/2,n/2

(−1)f(x,x)+(a+b)x +

k∑
t=0

∑
x∈Et,n/2, y∈Ek−t,n/2

x 6=y

(−1)f(x,y)+ax+by

=
∑

x∈Ek/2,n/2

(−1)f(x,x)+(a+b)x +
1

2

k∑
t=0

∑
x∈Et,n/2, y∈Ek−t,n/2

x6=y

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)

where (a, b) = c, that is a denotes the first n/2 bits of c and b denotes the second half. Similarly, (x, y) = z,
where x denotes the first n/2 variables of z and y the second half.

Similarly to the proof of Theorem 3, we are looking for the number of elements (x, y) such that
(−1)ax+by−(−1)ay+bx = 0. This is equivalent to the number of elements (x, y) such that (a+b)(x+y) = 0
mod 2 where this time x ∈ Et,n/2 and y ∈ Ek−t,n/2. Denoting a + b as d we have that all elements lead to
0 if d = 0n/2, for the other values of d we determine it in function of ` = wH(d):

|Sd| = |{x ∈ Et,n/2, y ∈ Ek−t,n/2 | (x+ y)d = 0}|
= |{x ∈ Et,n/2, y ∈ Ek−t,n/2 |xd = yd = 0}|+ |{x ∈ Et,n/2, y ∈ Ek−t,n/2 |xd = yd = 1}|
= |{x ∈ Et,n/2 |xd = 0}||{y ∈ Ek−t,n/2 | yd = 0}|+ |{x ∈ Et,n/2 |xd = 1}||{y ∈ Ek−t,n/2 | yd = 1}|

9



Then, we determine |{x ∈ Et,n/2 |xd = 0}| using the definition of Krawtchouk polynomials (Definition 9):

|{x ∈ Et,n/2 |xd = 0}| =
t∑

j=0
j even

(
`

j

)(
n/2− `
t− j

)

=
1

2

 t∑
j=0
j even

(
`

j

)(
n/2− `
t− j

)
+

t∑
j=0

(
`

j

)(
n/2− `
t− j

)
−

t∑
j=0
j odd

(
`

j

)(
n/2− `
t− j

)
=

1

2

Kt(`, n/2) +
t∑

j=0

(
`

j

)(
n/2− `
t− j

)
=

1

2

(
Kt(`, n/2) +

(
n/2

t

))
,

where the last equation comes from the Vandermonde convolution (Property 4). Using similar formulas for
the other sets we obtain:

|Sd| =
1

4

((n
2

t

)
+ Kt(`,

n

2
)

)(( n
2

k − t

)
+ Kk−t(`,

n

2
)

)
+

1

4

((n
2

t

)
− Kt(`,

n

2
)

)(( n
2

k − t

)
− Kk−t(`,

n

2
)

)
=

1

4

(
2

(n
2

t

)( n
2

k − t

)
+ 2Kt(`,

n

2
)Kk−t(`,

n

2
)

)
.

Using the value of |Sd| we can derive an lower bound on |Wf,k(c)|:

|Wf,k(c)| = |
∑

x∈Ek/2,n/2

(−1)f(x,x)+(a+b)x +
1

2

k∑
t=0

∑
x∈Et,n/2, y∈Ek−t,n/2

x 6=y

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
|

≤
(
n/2

k/2

)
+ |1

2

k∑
t=0

∑
x∈Et,n/2, y∈Ek−t,n/2

x 6=y

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
|

≤
(
n/2

k/2

)
+ |1

2

k∑
t=0

 ∑
x∈Et, n2

, y∈Ek−t, n2
x 6=y, (x,y)∈Sd

(−1)f(x,y)(0) +
∑

x∈Et, n2
, y∈Ek−t, n2

x 6=y, (x,y)6∈Sd

2(−1)f(x,y)+ax+by

 |

≤
(n

2
k
2

)
+ |1

2

(
k∑

t=0

2

((n
2

t

)( n
2

k − t

)
− 1

2

(n
2

t

)( n
2

k − t

)
− Kt(`,

n

2
)Kk−t(`,

n

2
)

))
|+ |1

2
2

(n
2
k
2

)
|

≤ 2

(n
2
k
2

)
+ |

k∑
t=0

(
1

2

(n
2

t

)( n
2

k − t

)
− Kt(`,

n

2
)Kk−t(`,

n

2
)

)
|

≤ 2

(n
2
k
2

)
+

1

2

(
n

k

)
+ |

k∑
t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|,

where the last equation comes from the Vandermonde convolution (Property 4).

10



Finally, we can give the bound on the NLk using the relation with the restricted Walsh transform:

NLk(f) =
1

2

(
n

k

)
− 1

2
max
c∈Fn

2

|Wf,k(c)|

≥ 1

2

(
n

k

)
− 1

2
max
`∈[1,n]

(
2

(n
2
k
2

)
+

1

2

(
n

k

)
+ |

k∑
t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|

)

≥ 1

4

(
n

k

)
−
(n

2
k
2

)
− 1

2
max
`∈[1,n]

|
k∑

t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|.

4 Concrete constructions and parameters

4.1 WPB from popular orders
We can take different orders to compare the properties reached in practice by the construction of
Definition 11. For example we will consider the orders lexicographic and cool [SW12]. For these two cases
we use the lexicographic order (respectively cool order taking 0 as the first element) to define the orders on
the 2i-length binary strings for i ∈ [0,m − 1]. We give the properties of the produced WPB functions in 8
and 16 variables in Table 1 and Table 2, (in our code the binary strings are encoded a integer, considering
the least significant bit in position n).

We observe that most of the parameters of the function given by the cool order are better than than the
one given by the the lexicographic order. The algebraic immunity of the construction from the lexicographic
order is the minimal possible for a WPB function in more than 2 variables (see [GM23a], Theorem 1). In
the following proposition we show that any WPB function f built from Definition 11 or Definition 12 with
the lexicographic order as ≺m−1 has AI only 2.

Function res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6

Lex 0 6 60 2 4 13 12 13 4 1 2 2 2 1

Cool 0 7 84 3 4 12 20 14 6 1 2 2 2 2
Table 1. Cryptographic parameters of Construction 1 in 8 variables instantiated with the lexicographic order (Lex) and the cool
order (Cool)

Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

Lex 0 16316 24 150 484 1183 1987 2717 2980 2717 1987 1183 484 150 24

Cool 0 26420 24 56 526 1204 3057 3220 4804 3222 3001 1162 652 126 26

Function deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14

Lex 14 2 1 2 2 2 2 2 2 2 2 2 2 2 1

Cool 15 7 1 2 3 3 4 4 4 4 4 3 3 2 2
Table 2. Cryptographic parameters of Construction 1 in 8 variables instantiated with the lexicographic order (Lex) and the cool
order (Cool)
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Proposition 3. Letm ∈ N,m ≥ 2, and f be a Boolean function from Construction 1 with the lexicographic
order as �m−1 or Construction 2 with the lexicographic order as �, then f satisfies:

AI(f) = 2, and ∀k ∈ [1, 2m − 1]AIk(f) ≤ 2.

Proof. First we show the result on the algebraic immunity. We denote each input of F2m
2 as (x, y) =

(x1, . . . , xr, y1, . . . , yr), where r = 2m−1. When x 6= y both constructions use the lexicographic order
on x and y to determine the output. By definition of the lexicographic order (Definition 8), if x1 = 1 and
y1 = 0 then y � x and f(x, y) = 1, if x1 = 0 and y1 = 1 then x � y and f(x, y) = 0. Then, the function
g(x, y) = (x1 + y1)(1 + x1) = x1y1 + y1 is non null and an annihilator of f . Finally, since deg(g) = 2 and
the algebraic immunity of a WPB function in more than 2 variables is at least 2 ( [GM23a], Theorem 1), it
gives the algebraic immunity of f .

Regarding the weightwise algebraic immunity, we show that the function g is not constant on Ek,2m

for k ∈ [1, 2m − 1], therefore it is also a non null annihilator of f on the slice, implying AIk(f) ≤ 2.
We focus on the values taken by x1 and y1, g takes the value 1 when x1 = 1 + y1 = 0 and the value 0
when x1 = 1 + y1 = 1. Therefore, using an element (x′, y′) of Hamming weight k − 1 (for each k) to
instantiate the 2m − 2 other variables, we obtain (0, x′, 1, y′) ∈ Ek,2m and (1, x′, 0, y′) ∈ Ek,2m such that
g(0, x′, 1, y′) 6= g(1, x′, 0, y′) hence g is not constant on Ek,2m . It allows us to conclude AIk(f) ≤ 2.

The Proposition 3 can be extended to other orders than the lexicographic one, such as reverse
lexicographic. Indeed, if for �m−1 or � there is one position i such that f(x, y) = 1 + f(x + ei, y + ei)
(where ei denotes the vector having a one only in position i) when xi 6= yi then the same reasoning applies,
and the function admit a degree two annihilator.

The properties of the functions given in Table 2 are low, compared for example with h16 in [GM22b]
which has degree 14, AI 8, and better nonlinearities. In the next part we study different orders leading to
better degree and algebraic immunity.

4.2 WPB from weightwise orders

In this part we consider the notion of weightwise order, that is, an order � that satisfies for all x ∈ Fn
2 and

y ∈ Fn
2 if w(x) < w(y) then x ≺ y. Note that the graded lexicographic order is an example of weightwise

order.
First we show that any function built using Construction 1 with a weightwise order for �m−1 or

Construction 2 with a weightwise order as � has optimal algebraic immunity. Then, we show that these
WPB functions are a (strict) subset of TL functions. Finally, we give the parameters of 2 such functions in 8
and 16 variables.

Proposition 4. Let m ∈ N, m ≥ 2, and f be a Boolean function from Construction 1 with a weightwise
order as �m−1 or Construction 2 with a weightwise order as �, then f satisfies:

AI(f) = 2m−1.

Proof. The proof consists in showing that f belongs to the TL family of WPB functions, hence Property 5
allows to conclude its algebraic immunity is 2m−1.

We use the characterization of TL functions given in Definition 10, we use the notation n = 2m for
simplicity. The first property f(0n) = 0 and f(1n) = 1 is true since f is WPB by Theorem 1 (respectively
Theorem 2 for Construction 2). The properties f(x, y) = 0 if wH(x) < wH(y). and h(x, y) = 1 if wH(x) >
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wH(y) are respected since f is build with a weightwise order. The last property to check is: ∀j ∈ [1, 2m−1−
1], supp(f) ∩Aj = |Aj |/2, where Aj =

{
(x, y) ∈ F2m−1

2 × F2m−1

2 : wH(x) = wH(y) = j
}

.
If f is from Construction 1, we have that for all x and y such that x 6= y only one of the two elements

between (x, y) and (y, x) is in the support of f . For the elements (x, x) such that x ∈ Fm−1
2 \{02m−1 , 12m−1}

the value of f is defined by fm−1 which is WPB by Theorem 1 hence over all x of Hamming weight j, half
are in the support of fm−1 and therefore half of the elements (x, x) are in the support of f . It allows to
conclude supp(f) ∩Aj = |Aj |/2, hence f is a TL function.

If f is from Construction 2, as before we have that for all x and y such that x 6= y only one of the two
elements between (x, y) and (y, x) is in the support of f . For the elements (x, x) such that x has Hamming
weight j, by definition of the order �′ (in Definition 12), f takes the value 0 for half of the values and 1 on
the other half. It allows to conclude supp(f) ∩Aj = |Aj |/2, therefore f is a TL function.

Remark 2. In the proof of Proposition 4, the AI is derived from the membership to the TL family. The
functions considered in that proposition are a strict subset of the TL family. For two different elements of
Fm−1
2 with the same Hamming weight, say x and y, only one of the two elements between (x, y) and (y, x)

can be in the support of an order-based WPB function. Conversely, there are TL functions such that (x, y)
and (y, x) are both in the support or in the co-support since m ≥ 2 (see Definition 10).

Function res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6

HWlex 0 7 74 4 4 8 14 8 4 1 2 2 2 1

HWcool 0 7 78 4 4 8 18 8 6 1 2 2 2 1
Table 3. Cryptographic parameters of Construction 1 in 8 variables instantiated with the weightwise lexicographic order HWlex
and weightwise cool order (HWcool)

Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

HWlex 0 23276 24 112 564 1120 2525 3152 3964 3152 2525 1120 564 112 24

HWcool 0 23544 24 112 578 1120 2595 3152 4042 3152 2567 1120 590 112 26

Function deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14

HWlex 14 8 1 2 2 3 3 4 4 4 3 3 2 2 1

HWcool 14 8 1 2 2 3 3 4 4 4 3 3 2 2 1
Table 4. Cryptographic parameters of Construction 1 in 16 variables instantiated with the weightwise lexicographic order (HWlex)
and weightwise cool order (HWcool).

Both functions with parameters displayed in Table 3 and Table 4 have better degree and algebraic
immunity than the one from Section 4.1. Regarding nonlinearity and weightwise nonlinearities, the values
are similar or worse.

We also remark that for k odd any WPB function produced with a weightwise order with Construction
1 or Construction 2 will have NLk and NLn−k equal. This comes from the fact that for these values of k
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the two parts x and y cannot have the same Hamming weight, then f takes the opposite value on (x, y) and
(x, y) + 12m for all (x, y) ∈ Ek,n. Therefore, the distance between an affine function a(x, y) + ε and f over
Ek,n is the same as the one between a((x, y)+12m)+ε+1 and f over En−k,n. Regarding the case k even, x
and y can have the same Hamming weight, and it this case the relation between f(x, y) and f((x, y)+12m)
is not constant.

For a similar reason, the WPB function built recursively with the lexicographic order (Lex in Table 1 and
Table 2) has the same weightwise nonlinearity on Ek,n and En−k,n. The lexicographic order corresponds to
the natural order in Z identifying u ∈ Ft

2 to the integer u′ =
∑t

i=1 2
i−1ui, therefore u ≺ v corresponds to

u′ < v′ and since ũ = u+ 12t corresponds to 2t − u′, we have u′ < v′ implies 2t − u′ > 2t − v′ therefore
ṽ ≺ ũ. Accordingly, f(x, y) + f((x, y) + 12m) is constant for all weight of (x, y) for this function, leading
to NLk(f) = NLn−k(f).

4.3 Orders from a field representation

We consider orders that come from a different representation of Fn
2 , as it has been fruitful to build Boolean

function with optimal algebraic immunity. Various constructions using the univariate representation [CF08,
Riz10, ZCSH11, LCZ+14] (as functions from F2n to F2) or modifications of these constructions [LKK13,
LK18], give families with optimal algebraic immunity and other good cryptographic properties such as high
algebraic degree and good nonlinearity. The Carlet-Feng construction for example identifies Fn

2 to F2n and
for α a primitive element of F2n , the function f is defined by its support: 0 and αi for i ∈ [0, 2n−1 − 2].
Similarly, we identify Fr

2 to F2r and define the order using the consecutive powers of α, as in the following
definition:

Definition 13 (field order). Let r ∈ N∗, for s ∈ N such that s ≤ 2r − 2 and α a primitive element of Fr
2,

we call field order defined by α and s the total order over Fr
2 given by:

αs ≺ αs−1 ≺ . . . ≺ α2r−2 ≺ 0 ≺ 1 ≺ . . . ≺ αs−2 ≺ αs−1.

For WPB functions we use field orders for r powers of two only. In Table 5 we give the parameters of
some 8-variable WPB functions obtained from the field representation. For these experiments (using Sage
math) we took α the root of X4 +X + 1 to build F16 and β the root of X2 +X + 1 to build F4. The value
t corresponds to the choice for the order used on the binary strings of length 2, and s for the one of length
4. We give the parameters of all 8-variable WPB functions of this family in Appendix 7, in Table 10 and
Table 11.

Value t Value s res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6

0 0 0 7 78 4 6 13 20 18 8 1 2 3 2 2

0 4 0 7 92 4 4 8 20 12 8 1 2 2 2 2

0 6 0 7 88 4 6 15 20 18 6 2 2 2 2 2

1 1 0 7 90 4 6 12 24 18 8 1 2 2 2 2
Table 5. Cryptographic parameters of Construction 1 in 8 variables instantiated with the field representation
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u t s res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

0 0 0 0 30196 26 161 634 1770 3518 5062 5822 5185 3540 1848 725 196 34

0 0 128 0 30306 40 204 765 1814 3484 5138 5875 5158 3514 1819 743 182 35

1 11 111 0 30332 38 219 758 1887 3511 5041 5699 5105 3601 1879 702 189 36

u t s deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14

0 0 0 15 8 1 2 3 4 5 6 6 6 5 4 3 2 2

0 0 128 15 8 2 3 4 4 5 6 6 6 5 4 3 2 2

1 11 111 15 8 2 3 3 4 5 6 6 6 5 4 3 2 2
Table 6. Cryptographic parameters of Construction 1 in 16 variables instantiated with the field representation.

From Table 5 and Table 6 we observe that the obtained functions have optimal degree (n − 1 for a
balanced function) and optimal algebraic immunity (dn/2e). Their weightwise algebraic immunities are at
least as good as the ones of the functions built in Section 4.1 and Section 4.2, with a neat improvement
for the medium weights in 16 variables. We display in green the values that reach the upper bound on the
weightwise algebraic immunity min{e ∈ N | 2

(
n
e

)
>
(
n
k

)
} ( [CMR17], Corollary 9), we observe that the

weightwise AI of the function we test are optimal on the medium weights (from 6 to 10) in 16 variables.
Regarding the nonlinearity and weightwise nonlinearities, in 8 variables there is always a function from
Table 5 with a better value than the functions with parameters exhibited in Section 4.1 and Section 4.2. In
16 variables, the 3 WPB functions with parameters displayed in Table 6 always have better nonlinearity and
weightwise nonlinearities than the other functions. The experimental findings suggest that utilizing order-
based construction with field representations stands out as a very promising approach for generating WPB
functions with good cryptographic parameters.

5 Generalization to WAPB constructions

In this section we generalize the recursive order-based construction to build WAPB functions, and we exhibit
the parameters of some of them. There are a few secondary constructions available for building WAPB
functions as illustrated in [ZS22, GM22b]. However, most constructions are primarily focused on WPB
functions and do not extend to WAPB functions.

5.1 An order-based WAPB construction

We propose the following construction of WAPB functions for any value of n (greater than 1).

Definition 14 (Construction 3). Let n ∈ N, n ≥ 2 and for i ∈ [1, blog2(n)c] �bn/(2i)c be a total order on
the set of bn/(2i)c-length binary string.

Let fn be the n-variable function defined recursively as:

– if n = 1, f1(0) = 0 and f1(1) = 1,
– if n is odd, fn(x1, . . . , xn) = fn−1(x1, . . . , xn−1)
–

fn(x, y) =


fbn/2c(x) if x = y,

0 if x ≺n/2 y,

1 if y ≺n/2 x,
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where x, y ∈ Fn/2
2 .

Theorem 5. Let fn defined as in Definition 14, fn is weightwise almost perfectly balanced.

Proof. We prove the result by recursion. First, if n = 1, f1(0) = 0 and f1(1) = 1 hence f1 = x1 is WAPB
by definition. Then, we assume that fi is WAPB for all i ∈ [1, n − 1] such that fi is defined. We consider
two cases, n odd and n even.

If n is odd, by construction fn(x1, . . . , xn) = fn−1(x1, . . . , xn−1). In this case fn can be written using
Siegenthaler’s construction as:

fn = xn · fn−1(x1, . . . , xn−1) + (1 + xn) · fn−1(x1, . . . , xn−1).

Using [GM22b] Proposition 2 we have the following relation on the restricted Walsh transform of fn for all
k ∈ [0, n]:

Wfn,k(0n) =Wfn−1,k(0n) +Wfn−1,k−1(0n).

Using Property 1 since fn−1 is WAPB we have that both Wfn−1,k(0n) and Wfn−1,k−1(0n) have absolute
value no greater than 1. Since n − 1 is even, at least one of the binomial coefficients between

(
n−1
k

)
and(

n−1
k−1
)

is even (
(
m
r

)
with m even and r odd is even using Lucas’ theorem), henceWfn,k(0n) ∈ {−1, 0, 1},

and fn is WAPB by Property 1.
If n is even, we rewriteWfn,k(0n):

Wfn,k(0n) =Wfn,A(0n) +Wfn,B(0n),

where A = {Ek,n ∩ {(x, y), x ∈ Fn/2
2 , y ∈ Fn/2

2 , x = y}} and B = {Ek,n ∩ {(x, y), x ∈ Fn/2
2 , y ∈

Fn/2
2 , x 6= y}}. Since fbn/2c(x) = 0 if x ≺n/2 y and 1 if y ≺n/2 x, we get WfnB(0n) = 0. Then, note that
WfnA(0n) = Wfn/2

n
2 (0n/2), and since fn/2 is WAPB by assumption, Wfn/2

n
2 (0n/2) ∈ {−1, 0, 1} hence

Wfnk(0n) ∈ {−1, 0, 1} which allows to conclude that fn is WAPB in this case and it finishes the proof.

Remark 3. Note that when Ek,n has an odd parity the value of−1 or +1 ofWf,k circles back to the values of
f1, which leads to having one extra 0 for slices such that k < n/2 and an extra 1 for k > n/2. Accordingly,
the functions generated by Construction 3 are Special WAPB functions (as introduced in [GM22b]).

We also remark that for m a power of 2, the functions created are the same WPB functions as the ones
built from Construction 1 (only the index of the orders differ, between 0 and m − 1 for Construction 1
corresponding to 20 to 2m−1 for Construction 3).

Note also that Construction 3 can be generalized to give other WAPB functions. Defining fn(x1, . . . , xn)
as fn−1(x1, . . . , xn−1) when n is odd corresponds to ignoring the last variable to keep even-length bit-
strings, it allows to consider an order comparing the two (same-length) halves. Similarly, any of the n
variables can be ignored at each step where n is odd, giving different WAPB constructions. Additionally the
values of f in 0n and 1n can also be defined differently at each step to generalize the construction.

5.2 Order-based WAPB construction and experimental results

In this section, we present the parameters of WAPB functions derived from Construction 3, based on orders
previously outlined in Section 4. Notably, for an odd number n, the function fn is equivalent to fn−1 but
includes an additional mute variable. Consequently, the characteristics of fn can be deduced from those
of fn−1 (for instance, by applying the properties related to the direct sum of fn−1 and the 1-variable null
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function, see for example [MJSC16] Lemma 3). Therefore, our analysis primarily concentrates on functions
with an even number of variables. Detailed parameters for WAPB functions with 10 variables are provided
in Table 7. Subsequently, we delve into the functions with 12 variables in Table 8 and those with 14 variables
in Table 9.

In the referenced tables, ”Lex” denotes the lexicographic order applied in Construction 3 across various
lengths: 1, 2, 5 for n = 10; 1, 3, 6 for n = 12; and 1, 3, 7 for n = 14. ”Cool” signifies the Cool order,
detailed in Definition 8. The terms ”HWLex” and ”HWCool” are used for weightwise orders as described
in Section 4.2. ”Fields0” and ”FieldsHalf” represent the field orders outlined in Definition 13, where for the
biggest length, the order is determined with s = 0 or s = 2n/2−1 respectively, with 0 used for the remaining
lengths.

Function res deg NL AI NL2 NL3 NL4 NL5 NL6 NL7 NL8 AI2 AI3 AI4 AI5 AI6 AI7 AI8

Lex 0 7 248 2 9 32 45 56 45 32 9 1 2 2 2 2 2 1

Cool 0 9 396 4 9 20 61 62 71 28 10 1 2 3 3 3 2 2

HWlex 0 9 322 5 9 20 53 50 53 20 9 1 2 2 3 2 2 1

HWcool 0 9 354 5 9 20 69 50 65 20 9 1 2 2 3 2 2 1

Fields0 0 9 406 5 9 32 71 90 79 44 13 1 2 3 3 3 3 2

FieldsHalf 0 9 420 5 14 34 81 82 81 34 10 2 2 3 3 3 2 1
Table 7. Cryptographic parameters of Construction 3 in 10 variables instantiated with different orders.

Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10

Lex 0 1008 12 56 123 186 204 186 123 56 12

Cool 0 1650 12 30 147 202 320 200 173 50 14

HWlex 0 1362 12 40 143 180 258 180 143 40 12

HWcool 0 1430 12 40 163 180 278 180 156 40 14

Fields0 0 1728 14 65 168 216 372 316 180 81 19

FieldsHalf 0 1730 20 64 179 322 384 330 195 71 14

Function deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10

Lex 10 2 1 2 2 2 2 2 2 2 1

Cool 11 5 1 2 3 3 4 3 3 2 2

HWlex 11 6 1 2 2 3 3 3 2 2 1

HWcool 11 6 1 2 2 3 3 3 2 2 1

Fields0 11 6 1 2 3 4 4 4 3 2 2

FieldsHalf 11 6 2 2 3 4 4 4 3 2 1
Table 8. Cryptographic parameters of Construction 3 in 12 variables instantiated with different orders.
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Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12

Lex 0 4064 19 94 275 506 699 792 699 506 275 94 19

Cool 0 6600 19 42 289 532 1103 924 1089 520 354 82 20

HWlex 0 5656 19 70 315 490 893 884 893 490 315 70 19

HWcool 0 5810 19 70 319 490 941 884 931 490 332 70 21

Fieds0 0 6894 21 106 339 704 1233 1452 1314 823 384 122 22

FieldsHalf 0 6976 25 90 384 834 1259 1414 1221 837 407 138 28

Function deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12

Lex 11 2 1 2 2 2 2 2 2 2 2 2 1

Cool 12 6 1 2 3 3 4 4 4 3 3 2 2

HWlex 12 7 1 2 2 3 3 4 3 3 2 2 1

HWcool 13 7 1 2 2 3 3 4 3 3 2 2 1

Fieds0 13 7 1 2 3 4 5 5 5 4 3 2 2

FieldsHalf 13 7 2 2 3 4 5 5 5 4 3 2 2
Table 9. Cryptographic parameters of Construction 3 in 14 variables instantiated with different orders.

The outcomes for WAPB functions mirror those observed in the previous section for 8-variable
and 16-variable WPB functions. We note that across various cryptographic parameters, WAPB functions
utilizing field-based ordering achieve superior outcomes, particularly in terms of nonlinearities and algebraic
immunities. Specifically, the two field-based constructions significantly outperform others in nonlinearity
and weightwise nonlinearities, followed by those based on the Cool order, which in turn exhibit better
parameters than the remaining constructions. To the best of our knowledge, no other studies have presented
parameters for WAPB constructions in more than 8 variables, making it difficult to compare the values
reached by these functions beyond between themselves. In terms of algebraic properties, the degree and
algebraic immunity for the ”Fields0” and ”FieldsHalf” constructions are consistently optimal. Highlighted
in green are the values that achieve the upper bound of the weightwise algebraic immunity, indicating that,
particularly for mid-range weights, the field-based functions reach the optimum. It is important to note that
this upper bound may not always be attainable, suggesting that other values presented in the tables could
also be optimal.

6 Conclusion

In this article, we presented two WPB constructions and one WAPB construction based on the concept
of order. Unlike previous approaches for constructing these functions, we anticipate that these W(A)PB
functions will be easier to implement and will lead to more efficient computations when used in the context
of stream ciphers. Indeed, the ease of implementation and efficiency largely depend on how effectively the
order between two inputs, x and y, can be determined. This, in turn, hinges on the orders chosen to define
the function

In this article, we first demonstrated the general properties of order-based WPB functions. We introduced
two constructions: a recursive one that utilizes multiple orders (one for each power of 2 up to n/2), and
a second one that employs only two orders. We then counted the WPB functions in these two families
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and examined their nonlinearities. Specifically, we provided a lower bound for the nonlinearity and the
weightwise nonlinearities for all functions within these two families.

Subsequently, we concentrated on specific orders that are commonly used: lexicographic and cool.
We also examined weightwise orders, as well as those based on field representation. We demonstrated
that within these constructions, some functions, such as those using the lexicographic order, exhibit the
lowest possible algebraic immunity. Conversely, all functions employing weightwise orders achieve optimal
algebraic immunity.

We provided experimental results detailing the parameters of WPB functions in 8 and 16 variables,
along with WAPB functions for n ∈ {10, 12, 14}. We presented the outcomes for global parameters—such
as resilience order, nonlinearity, degree, and algebraic immunity—as well as weightwise parameters,
specifically NLk and AIk. This more comprehensive experimental study illustrates that order-based W(A)PB
functions can possess robust cryptographic parameters. Notably, those based on field orders exhibit optimal
degree, strong algebraic immunity, and favorable weightwise algebraic immunities and nonlinearities.

We outline two open questions arising from this work:

– The bound on nonlinearity from Theorem 3 assures that these functions achieve a nonlinearity that
is at least half that of bent functions. It would be interesting to determine if a better bound could be
established for the entire family or for a specific subfamily of order-based WPB functions.

– In the tables presented in Sections 4.3 and 5, we highlight instances where functions based on field orders
achieve the upper bound of the AIk parameter. This parameter may be optimal for additional values of k,
given that the upper bound is not proven to be tight. Further investigation into this criterion is warranted,
as currently, very little is known about this variant of algebraic immunity. To date, the values achieved
by W(A)PB functions have only been exhibited in a limited number of studies, such as [TL19,GM23b].
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GM23c. Agnese Gini and Pierrick Méaux. Weightwise perfectly balanced functions and nonlinearity. In Said El Hajji, Sihem
Mesnager, and El Mamoun Souidi, editors, Codes, Cryptology and Information Security - 4th International Conference,
C2SI 2023, Rabat, Morocco, May 29-31, 2023, Proceedings, volume 13874 of Lecture Notes in Computer Science,
pages 338–359. Springer, 2023.

GS22. Xiaoqi Guo and Sihong Su. Construction of weightwise almost perfectly balanced boolean functions on an arbitrary
number of variables. Discrete Applied Mathematics, 307:102–114, 2022.
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Appendix: WPB functions from the field representation

Value t Value s res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6

0 0 0 7 78 4 6 13 20 18 8 1 2 3 2 2

0 1 0 7 90 4 6 12 22 18 8 1 2 2 2 2

0 0 0 7 78 4 6 13 20 18 8 1 2 3 2 2

0 1 0 7 90 4 6 12 22 18 8 1 2 2 2 2

0 2 0 7 90 4 4 14 21 16 8 1 2 2 2 2

0 3 0 7 90 4 6 13 18 14 8 1 2 2 2 2

0 4 0 7 92 4 4 8 20 12 8 1 2 2 2 2

0 5 0 7 90 4 4 16 16 15 6 2 2 2 2 2

0 6 0 7 88 4 6 15 20 18 6 2 2 2 2 2

0 7 0 7 88 4 6 18 18 14 8 2 2 2 2 2

0 8 0 7 88 4 6 18 22 14 8 2 2 2 2 2

0 9 0 7 86 4 8 16 16 17 6 2 2 2 2 2

0 10 0 7 82 4 6 10 22 15 4 2 2 3 2 1

0 11 0 7 82 4 6 12 22 14 6 2 2 3 2 1

0 12 0 7 82 4 6 14 23 16 4 2 2 3 2 1

0 13 0 7 80 4 6 14 22 15 4 2 2 2 2 1

0 14 0 7 78 4 6 16 20 12 6 2 2 2 2 1

0 15 0 7 80 4 4 8 18 18 8 1 2 2 2 2

1 0 0 7 82 4 6 13 22 18 8 1 2 3 2 2

1 1 0 7 90 4 6 12 24 18 8 1 2 2 2 2

1 2 0 7 90 4 4 14 21 16 8 1 2 2 2 2

1 3 0 7 90 4 6 13 18 14 8 1 2 2 2 2

1 4 0 7 88 4 4 8 18 12 8 1 2 2 2 2

1 5 0 7 90 4 4 16 16 15 6 2 2 2 2 2

1 6 0 7 88 4 6 15 18 18 6 2 2 2 2 2

1 7 0 7 88 4 6 18 20 14 8 2 2 2 2 2

1 8 0 7 88 4 6 18 22 14 8 2 2 2 2 2

1 9 0 7 86 4 8 16 16 17 6 2 2 2 2 2

1 10 0 7 82 4 6 10 22 15 4 2 2 3 2 1

1 11 0 7 82 4 6 12 24 14 6 2 2 3 2 1

1 12 0 7 82 4 6 14 22 16 4 2 2 3 2 1

1 13 0 7 76 4 6 14 20 15 4 2 2 2 2 1

1 14 0 7 82 4 6 16 22 12 6 2 2 2 2 1

1 15 0 7 80 4 4 8 18 18 8 1 2 2 2 2
Table 10. Cryptographic parameters of Construction 1 in 8 variables instantiated with the field representation
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Value t Value s res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6

2 0 0 7 78 4 4 13 22 18 6 1 2 3 2 2

2 1 0 7 90 4 4 12 24 18 6 1 2 2 2 2

2 2 0 7 90 4 6 14 21 16 6 1 2 2 2 2

2 3 0 7 90 4 4 13 18 14 6 1 2 3 2 2

2 5 0 7 90 4 6 16 14 15 6 2 2 2 2 2

2 6 0 7 88 4 6 15 20 18 8 2 2 2 2 2

2 7 0 7 88 4 8 18 20 14 8 2 2 2 2 2

2 8 0 7 88 4 8 18 20 14 8 2 2 2 2 2

2 9 0 7 86 4 6 16 14 17 6 2 2 2 2 2

2 10 0 7 82 4 8 10 20 15 6 2 2 3 2 1

2 11 0 7 82 4 8 12 24 14 4 2 2 3 2 1

2 12 0 7 82 4 8 14 23 16 6 2 2 3 2 1

2 13 0 7 80 4 8 14 22 15 6 2 2 2 2 1

2 14 0 7 78 4 8 16 20 12 4 2 2 2 2 1

2 15 0 7 80 4 6 8 18 18 6 1 2 2 2 2

3 0 0 7 82 4 4 13 22 18 6 1 2 3 2 2

3 1 0 7 90 4 4 12 24 18 6 1 2 2 2 2

3 2 0 7 90 4 6 14 21 16 6 1 2 2 2 2

3 3 0 7 90 4 4 13 16 14 6 1 2 3 2 2

3 4 0 7 92 4 6 8 18 12 6 1 2 2 2 2

3 5 0 7 90 4 6 16 16 15 6 2 2 2 2 2

3 6 0 7 88 4 6 15 18 18 8 2 2 2 2 2

3 7 0 7 88 4 8 18 20 14 8 2 2 2 2 2

3 8 0 7 88 4 8 18 22 14 8 2 2 2 2 2

3 9 0 7 86 4 6 16 16 17 6 2 2 2 2 2

3 10 0 7 82 4 8 10 22 15 6 2 2 3 2 1

3 11 0 7 82 4 8 12 24 14 4 2 2 3 2 1

3 12 0 7 82 4 8 14 23 16 6 2 2 3 2 1

3 13 0 7 80 4 8 14 22 15 6 2 2 2 2 1

3 14 0 7 82 4 8 16 22 12 4 2 2 2 2 1

3 15 0 7 76 4 6 8 16 18 6 1 2 2 2 2
Table 11. Cryptographic parameters of Construction 1 in 8 variables instantiated with the field representation
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