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Abstract—This paper defines a post-quantum en-
cryption scheme based on discussion cryptography by
introducing a new post-quantum hard problem called
Q-Problem. The idea behind this scheme is to hide
the keys of each entity, and the encryption process is
based on secret message holders using only random
private keys.

I. INTRODUCTION

Cybersecurity has been an ever-evolving field
With recent advances in digital communication and
computation, referring dynamically to new threats
and leveraging technological advances to protect
data integrity, confidentiality, and availability. Cur-
rently used encryption techniques, such as RSA, El
Gamal, and ECC (Elliptic Curve Cryptography), are
the backbone of secure communication, providing
robust defense mechanisms against classical com-
puting attacks. These cryptographic algorithms rely
on the computational difficulty of problems like
integer factorization or discrete logarithms, ensur-
ing high security for current standards. However,
quantum computing presents significant challenges
to these established encryption methods.

Quantum computing introduces a new paradigm
in computation, harnessing the principles of quan-
tum mechanics to process information in ways fun-
damentally different from classical computers. This
emerging technology offers unprecedented com-
putational power, particularly through algorithms
like Shor’s algorithm for integer factorization and
Grover’s algorithm for database search optimiza-
tion. Shor’s algorithm, in particular, can factorize
large integers in polynomial time, a prohibitively

time-consuming task for classical computers based
on the security of RSA and similar encryption
schemes. The potential of quantum computers to ex-
ecute Shor’s algorithm effectively renders most tra-
ditional encryption techniques vulnerable. Public-
key cryptographic systems, which secure everything
from internet communications to financial transac-
tions, could be decrypted without the private key,
exposing sensitive information to quantum-enabled
adversaries. This scenario underscores a pressing
need to develop quantum-resistant cryptography,
sometimes called post-quantum cryptography, to
safeguard against the looming quantum threat.

In response to these challenges, several academic
researchers and industrial companies actively pro-
vide encryption methods that can withstand quan-
tum computational attacks. Quantum-resistant algo-
rithms typically rely on mathematical problems that
are believed to be difficult for both classical and
quantum computers to solve. Lattice-based cryptog-
raphy [1], hash-based cryptography [2], and mul-
tivariate polynomial cryptography [3] are among
the leading approaches being explored for their
quantum-resistant properties. While quantum com-
puting poses significant risks to current encryption
techniques, almost proposed post-quantum cryp-
tographic systems introduce a notable complexity
regarding their implementation and performance.

This paper defines an independent key crypto-
graphic scheme that considers complexity factors
and provides a groundbreaking approach to securing
digital communication against quantum computer
threats. The idea behind this scheme is to hide the
keys of each entity and the encryption is based
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on discussion using only distinct private keys. The
scheme can flexibly increase or decrease its cryp-
tographic hardness by parameterizing complexity,
ensuring an optimal balance between computational
efficiency and robust security in classical or post-
quantum fields.

II. NEW POST-QUANTUM HARD PROBLEM
CALLED Q-PROBLEM

With the emergence of quantum computers, the
traditional hard problems, certainly factorization
and discrete logarithms, become no longer safe
in cryptography. Another set of hard problems,
such as lattice, code-based, hash-based, multivariate
algorithm, isogeny, etc., was relied upon. However,
all these problems remain dependent on complexity,
and all encryption techniques based on them give
one and only solution to Equation (1).

c = F−1(m) (1)

In other words, if the quantum computers are con-
trolled, it will become easy to solve this equation,
regardless of their complexity level, because simply
each ciphertext gives only one plaintext. This paper
defines a new post-quantum hard problem called
(Q-Problem). The problem is when Equation (1)
has multiple solutions, meaning that the ciphertext
gives a large set of correct plaintexts. Therefore,
even with quantum computers, the attacker will
obtain many valid plaintexts for the same ciphertext,
with no pattern to determine which plaintext is the
correct target (Figure 1). For instance, z = x × y
mod p, z = x+ y mod p, z = xy mod p, where
x and y are random and unknown, in each of these
equations, there are a large number of solutions
(pairs) that give the same value for z without the
possibility of distinguishing between them which
one is the desired target. Based on this Q-Problem,
this paper provides a new encryption technique with
another additional advantage, i.e., the encryption
scheme is not linked to any fixed encryption key.
Rather, the key is generated randomly during en-
cryption and is used only once.

F(m)
only one c

multiple c

F-1(c) only one m

F-1(c) multiple  m

Encryption schemes 
based on classical post-
quantum hard problems

(deterministic schemes)

(probabilistic schemes)

Encryption schemes 
based on the introduced 
Q Problem

(uniform distribution)

Fig. 1: Q-Problem illustration.

We can define Q-problem as follows:

Q-problem⇔



f(m) = x+ y or = x× y or = xy |
x, y : variable or

arithmetic expression of variables,
x, y : unkown,
x, y : random in each operation, i.e.,

f(mi) ̸= f(mj), xi ̸= xj ∧ yi ̸= yj
even if mi = mj .

III. INDEPENDENT KEY ENCRYPTION SCHEME

The huge advances in quantum computation have
sparked a broad spectrum of concerns, reflecting the
potential for this technology to transform various
sectors, from cryptography to chemical to complex
system simulations. This section briefly discusses
the weaknesses and complexity of the most known
cryptosystems compared with the recent advances
in computer technologies.

This study introduces an encryption method tai-
lored to quantum technology’s computational ca-
pabilities. Quantum computing’s vast processing
power makes most existing cryptographic systems,
especially those relying on the large prime number
factorization problem or the logarithmic discrete
problem, ineffective. The Independent Key Encryp-
tion (IKE) scheme provides more flexibility to Alice
and Bob, who need only sharing a random n and
start exchanging confidential information. Further-
more, IKE introduces new concepts to cope with
quantum computation.

A. Classical IKE scheme

Finding large prime numbers is still challenging
in several security networking fields, like the Inter-
net of Things (IoT). In the IKE, Alice and Bob must
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Alice Public: (n, ϕ(n)) Bob

Secret: m
Generate Private Keys: ea and da

Generate Private
Keys: eb and db

Compute c = mea
Send c

Compute c′ = ceb
Send c′

Compute c′′ = (c′)
da

Send c′′

Compute m = (c′′)
db

Fig. 2: Classical Independent Key Encryption (IKE).

agree on a random modulus n, which inherently
defines the finite set Zn, where the message m
must be an element of Zn. In IKE encryption
mode, as illustrated in Figure 2, Alice encrypts
m with her secret ea and sends the result c to
Bob, which encrypts the received c again using his
secret key eb and resends the obtained result c′ to
Alice. In this stage, Alice removes her encryption
using her secret key da and sends the result c′′

to Bob, who reveals m using his secret key db.
The encryption/decryption of IKE is similar to the
RSA, see Figure 3, except ϕ(n) in IKE is public,
and the private is the couple (e, d). This scenario
provides a secret message exchange without any
pre-requirements like finding large prime numbers
or key exchanges. IKE is particularly efficient in
low-resource environments where the encryption
process can be started by sharing a large random
n. The flexibility of choosing random keys and
the possibility of encrypting each mi with distinct
random keys (ei, di) renders IKE more robust than
asymmetric schemes.

B. Post Quantum IKE Scheme

Quantum computation threats are also present
in discrete logarithmic problems. Classical IKE re-
solved the factorization problem by revealing ϕ(n)
and hiding (e, d). Hence, the security of classi-
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Fig. 3: RSA and IKE Security Triangle.

cal IKE relies now on the practical difficulty of
logarithmic discrete. We observe in Figure 2 that
c′ = ceb such that c′ and c are known. With the
presence of quantum attacks, the value of eb is
considered prone to be cracked and hereafter obtain
the private m from c′′. Figure 4 illustrates post-
quantum encryption that hides both the base and
the exponent to be considered a more hard discrete
logarithmic problem. The encryption here is based
on the Secret Message Holder (SMH), where Bob
sends the SMH (c1 = xe3 , c2 = xe4) to Alice,
such that x is the Bob secret random in Zn with
x > 1, and (e3, e4) are also Bob secret randoms
in Zϕ(n). As shown in Figure 4, Alice encrypts the
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message m by first raising c1 and c2 to the power
of Alice secret random r, obtaining cr1 and c−r

2 . She
then multiplies cr1 by m1

e1 to obtain c3 and c−r
2 by

m2
e2 to obtain c4, respectively. When Bob receives

c3 and c4 from Alice, he computes c5 and c6 and
sends them to Alice as shown in the Figure. At the
end of this discussion, Bob extracts m1 and m2.

IV. CRYPTANALYSIS

In the future, several asymmetric cryptosystems
will be considered unsafe because they rely on
the hardness of the factorization problem or dis-
crete logarithmic problem, which can be easily
solved with the huge computation power of quan-
tum computers. Shor’s algorithm is one of these
quantum solutions. For example, the factoriza-
tion problem complexity on classical computers is
O(exp(L1/3(logL)2/3)), whereas on the quantum
computer is O(L3) for factorizing non-prime inte-
gers N of L bits.

Shor’s method relies on a period-finding rou-
tine on a quantum computer. A function f :
(x1, . . . , xn) 7−→ f(x1, . . . , xn) is periodic, of
period (ω1, . . . , ωn), if f(x1 +ω1, . . . , xn +ωn) =
f(x1, . . . , xn) for all tuples (x1, . . . , xn) in the
domain of f .

Factorization problem: Given an RSA modulus
N = p× q, find primes p and q.

Choose a random integer α ∈ ZN , without
loss of generality, we assume that gcd(α,N) = 1
otherwise, this yields the factorization of N and the
factorization problem is solved.

Consider the univariate function f : x 7−→
f(x) = ax mod N .

The period finding routine finds an ω such that
f(x+ ω) = f(x). Consequently, ω is a multiple of
the order of α modulo N . Indeed, one has f(x +
ω) = f(x) ⇐⇒ αω ≡ 1( mod N).

If ω is a multiple of λ(N) where λ(N) de-
notes Carmichael’s function, then Miller’s algorithm
yields the factorization of N . Otherwise, repeat the
process with another α, get the period ωα, and
update ω as ω ←− lcm(ω, ωα), until ω is a multiple
of λ(N).

Discrete logarithm problem: Given a Diffie-
Hellman modulus gx = y mod p, find x.

Shor’s algorithm addresses the DLP by finding an
integer x satisfying the equation gx = y mod n,
where:

• g is a generator of the multiplicative group of
integers modulo n,

• y is an element of this group,
• and p is the modulus.

The process of solving DLP using Shor’s algo-
rithm involves several steps, outlined as follows:

1) Quantum Fourier Transform: The algorithm
employs the quantum Fourier transform to as-
certain the period r of the function f(a) = ga

mod p, where a is an arbitrary integer. The
period r is the smallest positive integer for
which gr ≡ 1 mod p.

2) Period Finding: At the heart of Shor’s algo-
rithm is the quantum computation for efficient
period finding. By preparing states in a super-
position and evaluating f in this superposed
state, the algorithm leverages the quantum
Fourier transform to extract information re-
garding r.

3) Computing the Discrete Logarithm: Given the
period r, the algorithm proceeds to compute
the discrete logarithm x as follows:

a) If r is even and gr/2 ̸≡ −1 mod n, it is
possible that gr/2 − 1 and gr/2 + 1 yield
clues towards finding x.

b) Given y = gx, we search for x such that
yr ≡ (gx)r ≡ 1 mod n. If r is even, we
have yr/2 ≡ ±1 mod n, which provides
insights into the structure of x.

4) Modular Exponentiation: Efficient quantum
modular exponentiation is pivotal for applying
Shor’s algorithm effectively to solve both the
factoring and the discrete logarithm problems.

In essence, Shor’s algorithm utilizes the quantum
mechanical properties to solve DLP by relating the
order of y with respect to g to the period r identified
by the quantum algorithm.

Q-IKE technique is considered robust against
quantum computers because it does not depend
on the difficulty of the factorization problem by
considering p and q already known. Furthermore,
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Alice Public: (n, ϕ(n)) Bob

Secret: m = (m1, m2)
Private Keys: (r, e1, e2)

Private Keys: (e3, e4, x)

Start Encryption

Compute: c1 = xe3

c2 = xe4Send (c1, c2)

c3 = c1
r ×me1

1

c4 = c2
−r ×me2

2

Send (c3, c4)
c5 = x× c3

e4×d3 × c4
= x×me2

2 × (m1
e4×d3)e1

c6 = x× c3 × c4
e3×d4

= x×me1
1 × (m2

e3×d4)e2

Send (c5, c6)

c7 = [m1
2 × c1

−d1 , (m2
−e2 × c5)

d1 ]
c8 = [m2

2 × c2
−d2 , (m1

−e1 × c6)
d2 ] Send (c7, c8)

m1 =
(
c7[0]

d3 × c7[1]
)a

a = (d3 × (e4 + 2))−

m2 =
(
c8[0]

d4 × c8[1]
)b

b = (d4 × (e3 + 2))−

Fig. 4: Post Quantum Independent Key Encryption (Q-IKE).

making ϕ(n) public shifts the challenge to another
problem, namely the discrete logarithm problem.

DLP involves finding x in the equation gx = y
when g and y are known. Several studies prove
it is possible to solve this problem using future
generations of quantum computers. This directly
affects the most famous and widely used encryption
techniques, such as RSA; since e is public, an
attacker can choose a message m and compute
c = me, he knows now that cd = m, where d
is the secret key.

Quantum IKE claims that x and y are unknown,
so the adversary knows only z in xy = z. We will
analyze this problem in the presence of quantum
computers. The famous quantum algorithm for DLP
is Shor’s algorithm.

Consider the bivariate function f : (x1, x2) 7−→
gx1 × yx2 .

gx1 × yx2 = gx1+ω1 × yx2+ω2 (2)

The period finding routine finds a pair (ω1, ω2)
such that f(x1 + ω1, x2 + ω2) = f(x1, x2).

This implies: gω1×yω2 = 1G ⇐⇒ gω1+k×ω2 =
1G and thus ω1 + k × ω2 ≡ 0, or k × ω2 ≡ −ω1(
mod (p− 1)).

There are p pairs (ω1, ω2) which produce this
result. If each result is equally likely, then there
is only a 1/p probability that (ω1, ω2) ≡ (0, 0)(
mod p). On the (q − 1)/q probability that it is not
zero, the solution to the discrete logarithm problem
is given by k = −ω1/ω2 mod (p− 1).

Regarding Equation (2), we observe that knowing
g is necessary to continue looking for x because if g
is unknown, the adversary needs to choose a random
value. In this case, the adversary will obtain for each
chosen g a new x different from the original value.
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(b) Second test with p = 101 and
x = 5, 10, 15, 20, . . . , p− 1.

20 40 60 80 100
X

0

20

40

60

80

Z

test 3

(c) Third test with p = 101 and
x = 5, 10, 15, 20, . . . , p− 1.
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(d) Forth test with p = 101 and
x = 5, 10, 15, 20, . . . , p− 1.

Fig. 5: Illustrating the random distribution of z = xy even if x are regular values;
p = 101, x = 5, 10, 15, 20, . . . , p− 1.

Put p = 11, x = 6, y = 4, and z = 9 in xy ≡ z
mod p, Table I shows an example of z = 9 for
different pairs of (x, y).

By knowing only z, the adversary will get many
possibilities for x and y that verify z = xy;
therefore, applying quantum algorithms to get a
solution (x, y) is useless even if the adversary
can get all solutions (xi, yi) because the adversary
cannot check which of these pairs is the correct one.

Figure 6 shows the number of samples. For
example, if x = 10, we have an average of 7.80%
where zi = 10yi(yi = 2, p), meaning that we got

about 7.80% samples of 102 and 103 and so on. For
p = 37, the overall average of samples (oas) for any
encrypted message is 4.23% (4.23% from (p−2)2).
We notice that when p varies, this ratio changes, for
example, (p, oas) : (37, 2.56), (43, 2.32), (53, 1.88),
(63, 1.36), (79, 1.25), etc.

The quantum IKE presents two types of ex-
changed data, either of the form z = xx2

1 or
of the form z′ = x1 × yx2

1 , where xi denotes
unknown value and yi denotes known value. In both
cases, whatever the value of z is, there is z1 = z
where z1 = xx4

3 with x3 ̸= x1 and/or x4 ̸= x2;
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TABLE I: Exp: p = 11, x = 6, y = 4, and z = 9
such xy ≡ z mod p

x
y 2 3 4 5 6 7 8 9

2 4 8 5 10 9 7 3 6
3 9 5 4 1 3 9 5 4
4 5 9 3 1 4 5 9 3
5 3 4 9 1 5 3 4 9
6 3 7 9 10 5 8 4 2
7 5 2 3 10 4 6 9 8
8 9 6 4 10 3 2 5 7
9 4 3 5 1 9 4 3 5

5 10 15 20 25 30 35
Z

1

2

3

4

5

6

7

8

S

Fig. 6: Number of samples; S: # of z, z = xy;
x = 2, p, y = 2, p for p = 37.

respectively, z′1 = z′.

Lemma IV.1. ∀ z ∈ Zp, z = xx2
1 ,∃ z1 = z where

z1 = xx4
3 with x3 ̸= x1 and/or x4 ̸= x2.

Proof. We know that Zp contains exactly ϕ(p− 1)
generators (primitive roots).

Let g1 and g2 two different generators modulo p.
we pick a random value z, ∃ α1 verifies gα1

1 = z
and ∃ α2 verifies gα2

2 = z.

Lemma IV.2. ∀ z ∈ Zp, z
′ = x1 × yx2

1 ,∃ z′1 = z′

where z′ = x3 × yx4
2 with x3 ̸= x1 and/or x4 ̸= x2

and/or y2 ̸= y1.

Proof. We know that if k is a prime number where
k < p, k generates Z∗

p i.e., Zp = k × i ∀ i ∈ Zp

because i = k × i× k−.
Let k1 and k2 two different prime numbers where

k1, k2 < p.
we pick a random value z, ∃ α1 verifies k1×α1 =

z and ∃ α2 verifies k2 × α2 = z.

The described problem is indeed an intriguing
variant of the DLP, introducing additional layers
of complexity by making both the base and the
exponent unknown and by not restricting x to be
a generator of the group.

A. Quantum hard logarithm problem

Given a finite cyclic group G of order n, and
an element z ∈ G, the Inverted Discrete Logarithm
Problem (IDLP) is defined as the problem of finding
all pairs of integers (x, y) for which x is not
necessarily a generator of G, and the following
condition is satisfied:

xy ≡ z mod n (3)

where x, y ∈ Z, 1 < x < n, and 1 ≤ y < ϕ(n).
The IDLP is characterized by:

1) Non-Generator Base: The base x is not re-
stricted to generators of the group, permitting
x to potentially generate a proper subgroup of
G or no subgroup at all. This attribute expands
the search space for solutions.

2) Multiple Solutions: Diverging from the tradi-
tional DLP where x is known and a unique y
is sought, the IDLP entertains multiple valid
(x, y) pairs satisfying the equation for a given
z, attributable to the relaxed condition on x
and the unknowns in both x and y.

3) Computational Complexity: The dual un-
knowns and the relaxation of x being a gener-
ator amplify the problem’s complexity.

On the other hand, Shannon’s theorem on perfect
secrecy states that a given cryptographic system
is perfectly secure if and only if every plaintext
is equally likely to produce any given ciphertext.
Shannon’s theorem sets forth three critical condi-
tions for perfect secrecy:

1) The key must be truly random, ensuring that
there is no predictable pattern that an attacker
can exploit.

2) The key must be at least as long as the message
is encrypted so that the key does not repeat.
Repeating keys introduce patterns that can be
analyzed to break the cipher.
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OTP : {ki , i = 1, n}

c = Fki (m)

c

m = F-1
ki (c)

small n

secure channel

randomø (α, β)

Classical OTP encryption Perfect OTP encryption

insecure channel

insecure channel

c = Fα, β, δ (m)

post-quantum encapsulation

m = F-1
f(α), f(β) (c)

randomø (δ),

Fig. 7: Classical OTP encryption vs. proposed perfect OTP encryption

3) The key must never be reused in whole or
part, as any reuse also introduces patterns that
compromise secrecy.

Hence, using a one-time pad (OTP) ensures unpar-
alleled security in message transmission. With OTP,
each message is encrypted with a unique key gen-
erated specifically for that message and used only
once. Consequently, even if an adversary manages
to intercept and decipher one message, they gain
no advantage in decrypting subsequent messages.
Unlike other encryption methods where compromis-
ing a single key could potentially compromise the
security of multiple messages, OTP necessitates the
acquisition of each key for deciphering each specific
message. This characteristic significantly amplifies
the decryption complexity for any malicious actor,
as they would need to obtain every unique key for
every message to access the corresponding plain-
text. As a result, IKE cryptosystem ensures confi-
dentiality and provides an added layer of protection
against potential cryptographic attacks.

Figure 7 proves that a perfect OTP encryption
is achieved without any need for a pre-sharing
keys process, unlike the classical OTP. In IKE,
for each message, the sender and receiver generate
new random numbers that are used once to hold
the plaintext based on performing post-quantum
encryption using two types of encapsulations: xy

and x × y, where x and y are unknown giving a
large number of possibilities of the used keys and

encrypted message.

B. Optimal configuration
Q-IKE offers robust encryption, certainly, when

the following preferable configurations are consid-
ered.

To provide a large key pool, it is preferred to
use n a prime number of the form n = p× 2i + 1
to obtain ϕ(n) = p × 2i which means that all odd
numbers not multiple of p are coprime with ϕ(n).
Setting p = 1 offers the best configuration in Q-IKE
to encrypt any 1 < m < n with a key pool equals to
the half of ϕ(n). However, the are only five known
prime numbers of the form 2i + 1. Another form
of n offers a suitable configuration and avoids the
challenge of finding large primes, n could be in the
form pj . Since there are only 3, 5, 17, 257 and
65537 known prime numbers of the form 2i + 1,
it is preferable to consider n = (65537)j . In this
case, ϕ(n) = (65537)j−1 × 216 and ϕ(ϕ(n)) =
(65537)j−2×231, which means that any m coprime
with 65537 could be encrypted and all the odd
numbers coprime with 65537 are valid keys. On
the other hand, we observe that Figure 4 uses the
modular inverse of x and m to compute (c3, c4) and
(c7, c8) respectively. Hence, using multiple primes
in Q-IKE mitigates the pool’s size of x and m.
Setting n = (65537)j means that only m and x
are not multiples of 65537 could not be encrypted
and used as an SMH, respectively.
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Furthermore, to provide more complexity in the
xei base and exponent findings, it is preferred to
use random non-generators because the generators
provide distinct values for each exponent i which
mitigates the number of possibilities.

V. CONCLUSION

With quantum attack threats, IKE focuses on
the Q-Problem that shows a complex and fasci-
nating variant of the traditional DLP by delving
into the computational intricacies of solving for
both the base and the exponent within the realm
of modular exponentiation. This broader and more
flexible problem scope, especially the allowance for
multiple solutions and the non-requirement of x
being a generator, opens new avenues for research
in cryptographic security and computational number
theory.
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