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Abstract

A verifiable random function (VRF) allows one to compute a random-looking image, while
at the same time providing a unique proof that the function was evaluated correctly. VRFs
are a cornerstone of modern cryptography and, among other applications, are at the heart of
recently proposed proof-of-stake consensus protocols. In this work we initiate the formal study
of aggregate VRFs, i.e., VRFs that allow for the aggregation of proofs/images into a small di-
gest, whose size is independent of the number of input proofs/images, yet it still enables sound
verification. We formalize this notion along with its security properties and we propose two
constructions: The first scheme is conceptually simple, concretely efficient, and uses (asymmet-
ric) bilinear groups of prime order. Pseudorandomness holds in the random oracle model and
aggregate pseudorandomness is proven in the algebraic group model. The second scheme is in
the standard model and it is proven secure against the learning with errors (LWE) problem.

As a cryptographic building block of independent interest, we introduce the notion of key
homomorphic VRFs, where the verification keys and the proofs are endowed with a group
structure. We conclude by discussing several applications of key-homomorphic and aggregate
VRFs, such as distributed VRFs and aggregate proof-of-stake protocols.
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1 Introduction

A verifiable random function (VRF) is a keyed function that satisfies the following cryptographic
properties:

• Pseudorandomness: The evaluation of the function at any point is computationally indistin-
guishable from uniform, provided that the distinguisher is not given the secret key.

• Verifiability: For any given image, there exists a unique proof of correct evaluation of the
function that can be publicly verified, without revealing any additional information about the
secret key.

VRFs were first introduced in the work of Micali, Rabin and Vadhan [MRV99], and have been sub-
ject of an intense research effort. Over the years, a large amount of VRF constructions have emerged
[DY05, HJ16, Lys02, Jag15, HW10, GHKW17, Bit17, GLOW21], improving on the original proposal
in terms of computational assumptions, and concrete efficiency. This progress was accompanied
by a surge in applications built on top of VRFs, such as randomness generation [DY05, HJ16],
e-cash [BCKL09, ASM07], key-escrow [JS04], zero-knowledge [Lis05], network security [GNP+15],
and more recently proof-of-stake [GHM+17, DGKR18] and distributed consensus [HMW18] proto-
cols. Given the large applicability of this primitive, it is safe to say that VRFs have a central role
in modern cryptography. However, somewhat surprisingly, aggregation properties of VRFs have
remained considerably understudied, and we lack of even a good set of definitions for their precise
security properties. This is in stark contrast with the situation for aggregate signatures [BGLS03],
where aggregation algorithms and the practical benefits of this primitive have received a lot of
attention in the recent years. The goal of this work is to fill this gap in our current understanding,
and systematically study the aggregation properties of VRFs.

1.1 Our Contributions

In this work, we initiate the formal study of aggregate VRFs. Our contributions can be summarized
as follows.

(a) Definitions. We formally define the notion of aggregate VRFs and propose new security
definitions for uniqueness, binding, and pseudorandomness (Sec. 3.3), in the presence of maliciously
generated keys. The precise notions turn out to be surprisingly subtle to identify.

(b) Pairing-Based Aggregate VRF. We present a new VRF construction based on asymmetric
bilinear pairings (Sec. 4), which satisfies the strong notion of unique proofs (unconditionally), and
pseudorandomness assuming the hardness of a variant of the bilinear Diffie-Hellman problem, in the
random oracle model. Our scheme is conceptually simple and concretely efficient: All algorithms
perform only a handful of group operations and the verification is dominated by the computation
of three pairings. We propose an algorithm to aggregate VRF images and proofs (Sec. 4.2) and
we show that it preserves pseudorandomness and (aggregate) uniqueness, in the algebraic group
model [FKL18].

(c) Lattice-Based Aggregate VRF. We present an aggregate VRF construction using general-
purpose cryptographic tools (Sec. 5), that we can prove secure assuming the hardness of the stan-
dard learning with erorrs (LWE) problem. Our proof is in the standard model and we view this
construction as our main technical contribution.
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(d) Key-Homomorphic VRF. Along the way, we introduce the notion of key-homomorphic VRF
(Sec. 3.2), which may be of independent interest. A key-homomorphic VRF is a standard VRF,
where the key space K is endowed with a group structure, with ⊕ denoting the group operation.
Given a point x, two images y0 = Eval(k0, x) and y1 = Eval(k1, x), and two proofs π0 and π1, there
exists an efficient procedure that computes

y = Eval(k0 ⊕ k1, x) and π = Prove(k0 ⊕ k1, x).

We show that our pairing-based VRF is key-homomorphic for linear function and we consider several
extensions of this base construction, such as a threshold variant (Sec. 4.4) and an anonymous version
(Sec. 4.3).

(e) Applications. To substantiate the usefulness of our newly defined primitives, we describe how
key-homomorphic and aggregate VRFs yield new protocols for several applications (Sec. 6). For
instance, we show how key-homomorphic VRFs imply a simple distributed VRFs and key homo-
morphic pseudorandom functions [BLMR13] with an additional verification property. Additionally,
we show how key-homomorphic VRFs can be used in the context of proof-of-stake consensus, to
reduce the communication and the storage costs of existing protocols.

1.2 Technical Outline

We give a brief technical outline of the main ideas behind our work. We start by describing a
construction of key-homomorphic VRF and how it naturally leads to aggregation properties. We
then zoom in the security of aggregate VRFs, and subsequently propose an alternative construction
with security against the LWE assumption. We conclude by sketching one possible application of
aggregate and key-homomorphic VRFs.

Key-Homomorphic VRF. Our starting point is a simple VRF based on asymmetric bilinear
pairings of prime order p, with generators (g1, g2) and a uniformly sampled group element S = gs1,
that we assume to be available to all participants. We stress that, while technically our scheme
requires a common reference string to store S, the setup is completely transparent, and can be
sampled with public coins by hashing into the group. A secret-verification key pair for our VRF is
defined to be

k ←$ Zp and vk = Sk.

On the other hand, the evaluation at point x is computed by pairing:

y = e (g1,H(x))k

where H is a hash function (modeled as a random oracle) that maps bitstrings into G2 elements.
To prove that the evaluation was done correctly, one can simply compute π = H(x)k, which can be
efficiently verified to be a valid proof, by checking

y
?
= e (g1, π) and e (vk,H(x)) ?

= e (S, π) .

It can be easily verified that both the proof and the image are uniquely determined by the veri-
fication key, which implies that the construction satisfies uniqueness. We can also show that the
VRF is pseudorandom, with an argument similar to [BLS04], with the crucial difference that we
require a different variant of the bilinear Diffie-Hellman assumption. One interesting property of
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this scheme is that it is key homomorphic for linear functions. To see why, it suffices to observe
that

Eval(k0, x) · Eval(k1, x) = e (g1,H(x))k0 · e (g1,H(x))k1

= e (g1,H(x))k0+k1

= Eval (k0 + k1, x)

and similarly

Prove(k0, x) · Prove(k1, x) = H(x)k0 · H(x)k1

= H(x)k0+k1

= Prove (k0 + k1, x)

and the claim follows by linearity.

Aggregation. The scheme described above suggests a natural aggregation algorithm for VRF
images and proofs: Simply apply the group operation to the images and proofs. By the key-
homomorphism of the construction, the aggregate is still perfectly verifiable. Unfortunately this
proposal suffers from adaptive attacks, that is, an attacker could sample maliciously one of the keys
included in the aggregate, in such a way that it cancels out the contribution of some honest key. To
make things worse, this simple solution is not even collision resistant, since any attacker can find
two different set of preimages that result in the same aggregate image. We view these two attacks
as strong indication that a different solution is needed.

Before describing our actual solution, let us give a somewhat more detailed account of the
properties that we consider in this work for aggregate VRFs. The first notion that we consider is
that of (i) aggregate pseudorandomness, which guarantees that any image of the aggregate VRF
is still pseudorandom, so long as at least one of the parties involved is honest. This property is
useful for protocols where the aggregate VRF is used as a random beacon, and we want it to be
unbiasable by dishonest parties. The second property that we consider is that of (ii) aggregate
binding, which states that it must be computationally hard to find an aggregate proof for an invalid
set of images. This property mimics the collision resistance of a regular hash function, and it is
important for scenarios where proofs are aggregated, but we want to prevent the adversary from
changing the corresponding VRF images after the fact. Finally, we enforce the notion of (iii)
aggregate uniqueness, which states that for an aggregate image, there should still exist a unique
aggregate proof. I.e., the result of the aggregate algorithm is still a VRF.

Give this premise, let us now describe our aggregation algorithm. Instead of taking a simple
product, we aggregate proofs and images by computing

ỹ =

n∏
i=1

yrii and π̃ =
n∏

i=1

πri
i

where r1, . . . , rn are random coefficients computed as a deterministic function of the input. We are
then able to show that this aggregation algorithm satisfies both of the desired properties, in the
algebraic group model. We specifically mention here that, while this approach is inspired by the
work of [BDN18], our analysis is completely different, due to the fact that we are proving a decision
property, rather than a search property.
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Aggregate VRF from LWE. The construction as described above suffers from two drawbacks:
It is proven secure in the random oracle model, and furthermore it is broken by quantum attacks.
As a contribution of independent interest, we show a construction of an aggregate VRF (satisfying
all of the properties outlined above) from general-purpose tools, that we can prove secure assuming
the standard LWE assumption. Our scheme compiles any (non-aggregate) VRF and uses three
main ingredients:

• Function-Binding Hash: A tree-based hash function Hash, where the root of the tree is
statistically bound to any node (including intermediate ones) of the tree. The node is fixed
at setup time, and the hash satisfies mode indistinguishability, in the sense that setups for
different nodes are computationally indistinguishable. This notion is new to our work, and
generalizes recent hash functions [HW15, FWW23, BBK+23] beyond one-bit predicates. As a
contribution of independent interest, we show how to build such a hash function using rate-1
FHE [GH19, BDGM19].

• Somewhere Extractable Batch Arguments: Somewhere extractable batch arguments (SE-
BARG) for NP for batches of n-many NP statements. The somewhere extractability property
says that there exists an index i ∈ {1, . . . , n} (fixed at setup time), such that, given a trap-
door, one can extract the witness for the i-th statement for the BARG. Furthermore, the
index i is computationally hidden. Such SE-BARGs can be built from a variety of assump-
tions [CJJ21a, CJJ21b, WW22, KLVW23, CGJ+23], including LWE.

• Compute-and-Compare Obfuscation: A compute and compare program, consists of a func-
tion f and a target y, and accepts an input x if f(x) = y. It is known how to obfuscate
such functionalities, provided that y has enough min-entropy conditioned on f , assuming
LWE [WZ17, GKW17].

Armed with these tools, we can proceed to outline our aggregation algorithms. To compress images
y1, . . . , yn of a given (non-aggregate) VRF, we apply the function

C̃ ◦ Hash(y1, . . . , yn)

where C̃ is the obfuscation of a dummy (always rejecting) circuit. On the other hand, to aggregate
proofs, we compute two separate BARGs (σ0, σ1) that certify that for each committed yi, there
exists a valid VRF proof πi. Verification simply checks the validity of the two BARGs. Aggregate
binding follows naturally from the collision resistance of Hash, and we discuss the proof of aggregate
pseudorandomness and aggregate uniqueness in the following.

Aggregate Pseudorandomness via Randomness Extraction. We show that the construction
is pseudorandom, as long as at least one of the input yi is also pseudorandom. First, we switch the
function Hash in binding mode for the i-th index. In the next hybrid, we switch yi to be uniform and
independently sampled. At this point, it is tempting to conclude that, since Hash is statistically
bound to yi, then its output is uniformly distributed. Unfortunately, this is intuition is flawed,
since the other inputs yj ̸=i are chosen adversarially, and may bias the output of Hash(y1, . . . , yn).
In other words, we need to argue that Hash acts as a randomness extractor for seed-dependent
sources. This is in general not possible, as shown by strong impossibility results on randomness
extractors for sources that may depend on the random seed [DVW20].

This is where the obfuscation C̃ enters into the picture. To solve this conundrum, we pro-
ceed in two steps: First (i) we switch C̃ to be the obfuscation of the circuit that extracts yi from
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Hash(y1, . . . , yn). By the extractability of the hash function Hash, this can be implemented effi-
ciently, given a trapdoor. The effect of this step is to “clean up” the output of Hash(y1, . . . , yn)
by adversarial yj ̸=i. Next, (ii) we open up the construction of compute-and-compare obfuscation
[WZ17, GKW17] to show that, if f(x) has high entropy, then C̃(x) is statistically close to uniform.
In other words, C̃ is a good randomness extractor. This allows us to conclude that the output of
the aggregate is pseudorandom.

Aggregate Uniqueness via Proof Switching. We show that it is hard to compute valid proofs
for an aggregate y∗ ̸= ỹ, where ỹ is honestly computed. For the case of our construction, this means
that the two aggregate must correspond to two different roots of the hash tree. Naively, one could
hope to reduce this property directly to the underlying VRF, by extracting two valid proofs πi and
π∗
i for two different images yi and y∗i . However, the fact that we have two different roots, does not

mean that we have a mismatch for exactly the i-th leaf! We have to worry about the fact that the
BARG extraction may “miss” the leaf where the mismatch starts. Our strategy to rule this out
is to track down the mismatch by iteratively moving towards it, but alternating between the two
BARGs, to make sure that we can still extract from one, while arguing indistinguishability for the
other. A pictorial description of the process is given in Fig. 1.

In more details, say that we set both BARGs to be binding for the left-most leaf. This allows us
to extract two root-to-leaf paths (path0 and path1) which, for the sake of this overview, we always
assume to be identical (it can be shown by a reduction to collision-resistance that this condition
cannot be violated). As we discussed earlier, these root-to-leaf path must lead to a different root
than the honestly computed on. Our first observation is that the extracted root-to-leaf paths may
be identical to the one in the honest tree in the leafs, but they must diverge at some point (as
otherwise they would result in the same root). Let N be the first differing node; in the first hybrid,
we make the hash function Hash binding to N . This allows us to freely change the index of the
two BARGs without worrying about this node having a different value, since it is now statistically
bound to the root. We then change the first BARG to be binding on the left-most leaf in the
sub-tree spanned by N , and we can use the other BARG to extract the path while we argue
indistinguishability. We then switch the roles of the BARGs and apply this operation again. At
this point the node N must still differ from the honestly computed one, however it must also be
the case that one of the children of N must differ from the honest root-to-leaf path! That is, this
argument has allowed us to move one level lower in the tree. Applying this argument iteratively,
we will eventually reach the case where the differing node is a leaf, in which case we can appeal to
the uniqueness of the base (non-aggregate) VRF, and conclude our proof.

Application: Aggregate Proof of Stake. To exemplify the applicability of our aggregate VRF,
we briefly discuss how VRF can be used in proof-of-stake (PoS) protocols to reduce the storage
cost by aggregating VRF proofs. In existing PoS protocols, such as [GHM+17, DGKR18], users
upload their VRF verification key to the blockchain. In each epoch, each user can evaluate the
VRF on the slot number (which will play the role as a unique identifier for the epoch) to compute
the corresponding image. If the image is less than (a function of) their wealth, then that user is
identified as the designated party to generate the new block. Such party can then compute a proof
to convince the all other parties that the VRF was evaluated correctly. This way, it can be publicly
verified that that the user was indeed the winner of the round.

Using a VRF that has aggregation properties, one can compress all VRF proofs into a single
one, without affecting the ability of the participants to verify that the blockchain was correctly
computed: By the aggregate uniqueness property, it is hard for any adversary to compute an

7



≈"#$%

(a) Step I: Making the hash tree statistically bound to the differing node.

≈"#$%0

(b) Step II: Change the root-to-leaf path extracted by the first BARG.

≈"#$%1

(c) Step III: Change the root-to-leaf path extracted by the second BARG.

Figure 1: Example of a step of the extraction procedure for a small tree. Black nodes indicate
nodes where the two extracted paths (represented in the picture) differ from the honest path. A
dotted line around a node indicates that the hash function is statistically bound to that node.
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aggregate proof for a false set of values. This means that there is no need to store a VRF proof
for each epoch, instead this information can be compressed into a single group element. A more
detailed description, along with other applications, can be found in Sec. 6.

1.3 Related Work

As mentioned before, VRF is a well-studied topic in cryptography, both from a theoretical and
practical angles. Thus, many constructions [DY05, HJ16, Lys02, Jag15, HW10, GHKW17, Bit17,
GLOW21, Koh19, EKS+21, BDE+22, ESLR23] have emerged over the years. However, to the best
of our knowledge, no scheme that satisfies key-homomorphism (as defined in this work) was known
prior to our work, neither we are aware of any attempt to formalize the security properties of
aggregate VRFs in the presence of rogue key attacks. An exception is the work of [LBM20], where
the notion of aggregation is considered in the context of VRF, except that it is in the secret key
settings, i.e., the aggregation algorithm requires the knowledge of the secret key of the VRF. This
is in contrast with our work, where aggregation is a public procedure.

A related notion is that of verifiable unpredictable functions (VUF), which offers the weaker
property of unpredictability, as opposed to pseudorandomness. Although a VUF can be generically
transformed into a VRF, e.g., by hashing the image with a random oracle, this transformation
does not preserve key homomorphism. Therefore, a key-homomorphic VUF does not immediately
imply a key-homomorphic VRF. We also mention that aggregate VUF have been studied in the
literature [BGLS03, KM13], but their definitions are not applicable to the notion of VRF, due to the
weaker security requirement. Besides the definitional mismatch, building aggregate VRFs is much
more complex than the case of VUF, since aggregation must preserve (i) the pseudorandomness and
the (ii) uniqueness of the aggregate, whereas none of these properties is relevant in the context of
VUFs/signatures. Finally, we mention that key-homomorphic PRFs have been studied [BLMR13],
and we view our work as a continuation of this line of research, answering a natural question on
adding verifiability to key-homomorphic primitives.

1.4 Open Problems

We hope that our work will motivate researchers to further study this cryptographic object, both
from a foundational and practical perspective. For instance, it would be interesting to find a con-
struction of key-homomorphic VRFs secure in the standard model, or from post-quantum assump-
tions. Furthermore, on the theoretical side, an interesting question is whether one can construct a
key-homomorphic/aggregate VRF (perhaps satisfying weaker security notions) in the plain model,
i.e., without any trusted setup. On the other end of the spectrum, an interesting open question
is finding more applications of this primitive, and rigorously analyze its security in the context of
more complex protocols.

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. We say a function f is negligible
in the security parameter λ if f = λ−ω(1). We say an algorithm is efficient if it runs in probabilistic
polynomial time (PPT) in the length of its input. For a distribution D, we write x ←$ S to denote
that x is sampled uniformly at random from D. We say that two distributions D0 and D1 are
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computationally indistinguishable if there exists a negligible function µ such that for all λ ∈ N and
for all PPT algorithms A it holds that

|Pr [1← A(x) : x ←$ D0]− Pr [1← A(x) : x ←$ D1]| = µ(λ).

2.1 Bilinear Groups

Let G = (p,G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) be a generator of an asymmetric bilinear group
generated by g1 and g2 of prime order p, with an efficiently computable pairing e : G1 ×G2 → GT .
We also assume that it is efficient to test whether a given element g is a member of the group G1,
which is sometimes referred to as the certified group settings, see e.g. [Sco21] for details. We recall
the following variant of the Bilinear Diffie-Hellman (BDH) assumption.

Definition 2.1 (BDH Assumption). We say that a bilinear group generator GroupGen is BDH-hard,
if the following distributions are computationally indistinguishable(

g1, g2, g
a
1 , g

b
1, g

a
2 , g

b
2, g

c
2, e(g1, g2)

bc
a

)
≈
(
g1, g2, g

a
1 , g

b
1, g

a
2 , g

b
2, g

c
2, e(g1, g2)

r
)

where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, r) ←$ Z4
p.

We also define two less standard variants of this assumption, where the adversary is given
additional extra group elements in its view. In App. A, we show that both assumptions hold
unconditionally in the generic group model (GGM).

Definition 2.2 (Augmented BDH Assumption). We say that a bilinear group generator GroupGen
is ABDH-hard, if the following distributions are computationally indistinguishable(

g1, g2, g
a
1 , g

b
1, g

a
2 , g

b
2, g

c
2, e(g1, g2)

c
a , e(g1, g2)

c2

a , e(g1, g2)
bc
a

)
≈
(
g1, g2, g

a
1 , g

b
1, g

a
2 , g

b
2, g

c
2, e(g1, g2)

c
a , e(g1, g2)

c2

a , e(g1, g2)
r

)
where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, r) ←$ Z4

p.

Definition 2.3 (External-Inverted BDH Assumption). We say that a bilinear group generator
GroupGen is XIBDH-hard, if the following distributions are computationally indistinguishable(

g1, g2, g
a
1 , g

ab
1 , gac1 , g

b/c
1 , gd2 , g

dc
2

)
≈
(
g1, g2, g

a
1 , g

ab
1 , gac1 , gr1, g

d
2 , g

dc
2

)
where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, d, r) ←$ Z5

p.

3 Definitions

We recall the notion of a verifiable random function (VRF) [MRV99]. Informally, a VRF is a keyed
function

VRF : K × {0, 1}λ → Y

that behaves like a random function, and simultaneously allows one to verify the validity of its
outputs.
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3.1 Verifiable Random Functions

We formally define the notion of a VRF, we adopt the standard definition [MRV99], except for
two syntactical modifications: First, we require the verification key to be a deterministic and
bijective function of the secret key. This is needed for our definition of aggregate pseudorandomness
(Def. 3.6). Furthermore, we allow for a one-time trusted setup.

Definition 3.1 (VRF). A verifiable random function (VRF) is a tuple of polynomial-time algo-
rithms with the following syntax.

• Setup(1λ): On input the security parameter 1λ, the setup algorithm returns the common
reference string crs.

• Gen(crs): On input the common reference string crs, the generation algorithm samples a secret
key k and returns k ∈ K and the verification key vk = VKey(k), where VKey is a bijective
function.

• Eval(k, x): On input the secret key k ∈ K and some point x ∈ {0, 1}λ, the evaluation algorithm
returns an image y ∈ Y.

• Prove(k, x): On input the secret key k ∈ K and some point x ∈ {0, 1}λ, the prover algorithm
returns a proof π ∈ P.

• Verify(vk, x, y, π): On input the verification key vk, some point x ∈ {0, 1}λ, an image y ∈ Y,
and a proof π ∈ P, the verification algorithm returns a bit b ∈ {0, 1} denoting acceptance or
rejection.

For correctness, we require that for all λ ∈ N, all crs in the support of Setup(1λ), all key pairs
(k, vk) in the support of the Gen(crs) algorithm, and all points x ∈ {0, 1}λ it holds that

Verify(vk, x,Eval(k, x),Prove(k, x)) = 1.

Next, we recall the security requirements of a VRF. The first property demands that it should be
impossible to find a valid proof π∗ for an invalid image y∗.

Definition 3.2 (Uniqueness). A VRF satisfies proof uniqueness if for λ ∈ N, all crs in the support
of Setup(1λ), all verification keys vk, all points x ∈ {0, 1}λ, and all images (y0, y1) ∈ Y2 and proofs
(π0, π1) ∈ P2 it holds that

1 = Verify(vk, x, y0, π0) = Verify(vk, x, y1, π1) =⇒ y0 = y1.

Finally, we recall the standard notion of pseudorandomness, which requires that the adversary
should not be able to distinguish the output of a VRF from a uniformly sampled function, even given
access to an oracle that computes images an proofs on arbitrary points chosen by the distinguisher.

Definition 3.3 (Pseudorandomness). A VRF satisfies pseudorandomness if there exists a negligible
function µ such that for λ ∈ N and all admissible PPT adversaries A it holds that∣∣∣∣12 − Pr

[
1← ExpRandomA(1

λ)
]∣∣∣∣ = µ(λ)

where the experiment ExpRandomA is defined as follows.
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• The challenger samples a reference string crs←$ Setup(1λ) and a key pair (k, vk)←$ Gen(crs)
and sends (crs, vk) to A.

• A can query adaptively and at any time an oracle on input xi and receives back from the
challenger a pair (yi, πi) where yi ← Eval(k, xi) and πi ← Prove(k, xi).

• At any point (including between evaluation queries) A can query a challenge input x∗. The
challenger flips a coin b ←$ {0, 1} and computes{

y∗ ← Eval(k, x∗) if b = 0

y∗ ←$ Y if b = 1
.

• In the end of the experiment, A outputs a guess b∗. The experiment returns 1 if and only if
b∗ = b.

Furthermore, we say that A is admissible if x∗ /∈ Q, where Q denotes the set of points queried to
the oracle as defined above.

3.2 Key Homomorphism

We define the central object of this work, namely the notion of key-homomorphic VRF (KH-VRF).
A KH-VRF is defined like a standard VRF with some additional structural properties, which allows
one to meaningfully combine the images and the proofs computed under different keys. To formally
define this notion, we will endow the key, the image, and the proof domain with a group structure,
which allows us to state this additional property.

Definition 3.4 (Key Homomorphism). A VRF is key homomorphic if (K,⊕), (Y,⊗), (P,⊗) are
groups and for all (k0, k1) ∈ K2 and all x ∈ {0, 1}λ it holds that

• Eval(k0, x)⊗ Eval(k1, x) = Eval(k0 ⊕ k1, x), and

• Prove(k0, x)⊗ Prove(k1, x) = Prove(k0 ⊕ k1, x).

Looking ahead at our instantiation in Sec. 4, the group (K,⊕) will consist of the additive group
Zp, for some prime p, whereas (Y,⊗) and (P,⊗) will be two multiplicative groups of order p.

3.3 Aggregation

Given the above defined homomorphic property, it is natural to derive an aggregation Agg algorithm
that allows us to compress n VRFs into a single one, while at the same time outputting a proof
of validity for the aggregate. We formally define the correctness of the algorithm in the following.
Importantly, we define the algorithms to be deterministic so that running the same aggregation
twice leads to exactly the same output.

Definition 3.5 (Aggregation). A VRF is aggregatable if there exists a triple of deterministic
polynomial-time algorithms with the following syntax.

• Agg(x, {vki, yi}i=1...n): On input a point x ∈ {0, 1}λ, n verification keys (vk1, . . . , vkn) and
images (y1, . . . , yn) ∈ Yn, the aggregation algorithm outputs an aggregate key ṽk and an
aggregate image ỹ.
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• AggProve(x, {vki, πi}i=1...n): On input a point x ∈ {0, 1}λ, n verification keys (vk1, . . . , vkn),
and proofs (π1, . . . , πn) ∈ Pn, the aggregate proof algorithm outputs an aggregate proof π̃.

• AggVerify({vki}i=1...n, x, ỹ, π̃): On input n verification keys (vk1, . . . , vkn), a point x ∈ {0, 1}λ,
and an aggregate image-proof pair (ỹ, π̃) the aggregate verification algorithm outputs a bit
b ∈ {0, 1} denoting acceptance or rejection.

The correctness of the aggregation algorithm requires that the aggregated image-proof pair
correctly verifies, provided that the inputs are all correctly formed. More formally, we require that
for all λ ∈ N, all polynomials n = n(λ), all crs in the support of Setup(1λ), all key pairs (ki, vki) in
the support of the Gen(crs) algorithm, and all points x ∈ {0, 1}λ it holds that

AggVerify ({vki}i=1...n, x, ỹ, π̃) = 1,

where

(ṽk, ỹ)← Agg (x, {vki,Eval(ki, x)}i=1...n) and π̃ ← AggProve (x, {vki,Prove(ki, x)}i=1...n) .

Aggregate Pseudorandomness. A desirable property for an aggregate VRF is that the output
of the aggregation algorithm should still satisfy pseudorandomness, even if some of the keys are
controlled by the adversary. It turns out that formalizing the correct version of this property is
surprisingly subtle.

To understand our definitional choice, consider the following natural (but flawed) attempt at a
formal definition: Given the adversary oracle access to the challenge VRF, we allow the adversary
to additionally return some verification keys of its choice {vki}i=1...n, along with the corresponding
image-proof pairs {yi, πi}i=1...n. The challenger then checks whether the proofs verify, and if so it
computes either

y∗ ← Agg (x, vk, y, {vki, yi}i=1...n) or y∗ ←$ Y.

While this is a perfectly well-defined notion, we argue that this definition is too weak, since it does
not allow the adversary to set its key depending on the honest keys. To see why this is the case,
consider the simplified case where the aggregation of images is simply their sum ỹ =

∑
i yi. The

adversary may launch an adaptive attack by setting its own verification key vk∗ depending on the
verification key of the challenger vk, in such a way that y∗ = −y. This way, the contribution
of y to the aggregate ỹ is canceled out, and the output of the aggregation algorithm is perfectly
predictable by the adversary, even before seeing the answer to the challenge query. Nevertheless,
this attacker would not be able to win the experiment as outlined above, because it would not be
able to compute y∗ before seeing y, and thus cannot send it as part of the query to the challenge
oracle. This is a strong indication that one needs a stronger definition of security for aggregate
pseudorandomness.

To obviate this problem, our idea is to make the life of the attacker easier, by simply delegating
to the challenger the task of computing the image of a verification key sent by the adversary. In
general, this is not an efficient procedure, but we can bypass this obstacle by letting the challenger
run in unbounded time. Note that the output of this procedure is always well-defined, since the
function VKey is bijective, and therefore its inverse is uniquely determined. We present the formal
definition below.
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Definition 3.6 (Aggregate Pseudorandomness). A VRF satisfies aggregate pseudorandomness if
there exists a negligible function µ such that for λ ∈ N and all admissible PPT adversaries A it
holds that ∣∣∣∣12 − Pr

[
1← ExpAggRandomA(1

λ)
]∣∣∣∣ = µ(λ)

where the experiment ExpAggRandomA is defined as follows.

• The challenger samples a reference string crs←$ Setup(1λ) and a key pair (k, vk)←$ Gen(crs)
and sends (crs, vk) to A.

• A can query adaptively and at any time an oracle on input xi and receives back from the
challenger a pair (yi, πi) where yi ← Eval(k, xi) and πi ← Prove(k, xi).

• At any point (including between evaluation queries) A can query a challenge input x∗ along
with some challenge keys {vki}i=1...n. The challenger (inefficiently) computes ki ← VKey−1(vki)
and sets yi ← Eval(ki, x

∗). Then it flips a coin b ←$ {0, 1} and computes{
y∗ ← Agg (x∗, vk,Eval(k, x∗), {vki, yi}i=1...n) if b = 0

y∗ ←$ Y if b = 1
.

• In the end of the experiment, A outputs a guess b∗. The experiment returns 1 if and only if
b∗ = b.

Furthermore, we say that A is admissible if x∗ /∈ Q, where Q denotes the set of points queried to
the oracle as defined above.

Aggregate Binding. We also require that no attacker should be able to find two different pre-
images for a given aggregate. This property is useful in settings where one stores an aggregate
proof, and wants to prevent changes the corresponding images after the fact. Given that the size of
the aggregate is independent of n, we can only hope to achieve a computational guarantee, where
finding collision is only computationally hard. We present a formal definition below.

Definition 3.7 (Aggregate Binding). A VRF satisfies aggregate binding if there exists a negligible
function µ such that for λ ∈ N and all PPT adversaries A it holds that

Pr
[
1← ExpAggBindA(1

λ)
]
= µ(λ)

where the experiment ExpAggBindA is defined as follows.

• The challenger samples a reference string crs ←$ Setup(1λ) and sends it to A.

• A returns a point x∗, n verification keys vk1, . . . , vkn, two tuples (y1, . . . , yn) and (y∗1, . . . , y
∗
n),

and proofs (π1, . . . , πn).

• The challenger computes

π̃ ← AggProve (x∗, {vki, πi}i=1...n) and ỹ ← Agg (x∗, {vki, y∗i }i=1...n)

and outputs 1 if and only if:{
Verify(vki, x

∗, yi, πi)
?
= 1
}
i=1...n

and AggVerify ({vki}i=1...n, x, ỹ, π̃)
?
= 1

and furthermore (y1, . . . , yn) ̸= (y∗1, . . . , y
∗
n).

14



Aggregate Uniqueness. Finally, we require that an aggregate key must also be a valid VRF key,
and in particular it must satisfy uniqueness. We formalize this property below.

Definition 3.8 (Aggregate Uniqueness). A VRF satisfies aggregate uniqueness if for λ ∈ N, all
polynomials n = n(λ), all crs in the support of Setup(1λ), all verification keys vki, and all points
x ∈ {0, 1}λ, it holds that ṽk satisfies proof uniqueness, where

(ṽk, ỹ)← Agg (x, {vki,Eval(ki, x)}i=1...n) .

4 Key-Homomorphic VRFs from Bilinear Groups

We describe our main construction for a KH-VRF. We begin by introducing a simple scheme with
key-homomorphic properties, then we show how to extend it to achieve several extra properties.

4.1 Base Scheme

We present our base KH-VRF in the following. The construction assumes the existence of a hash
function H where

H : {0, 1}λ → G2

is modelled as a random oracle. The algorithms are specified below.

• Setup(1λ): Sample a bilinear group

(G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ)

along with an integer s ←$ Zp. Then compute S = gs1 and set the crs to (g1, g2, S).

• Gen(crs): Sample k ←$ Zp and set vk to Sk. Return (k, vk).

• Eval(k, x): Compute and output
y = e (g1,H(x))k .

• Prove(k, x): Compute and output π = H(x)k.

• Verify(vk, x, y, π): Accept if vk ∈ G1 and

e (vk,H(x)) ?
= e (S, π) and y

?
= e (g1, π) .

We remark that, although we described the setup algorithm as sampling the secret integer s explic-
itly, an alternative (but equivalent) sampling procedure would be to derive S by hashing into the
group G1. This way, the setup can be done in a completely transparent manner, i.e., using public
random coins.

It is easy to check that the scheme is correct by simply substituting the variables

e (vk,H(x)) = e (g1,H(x))ks = e
(
gs1,H(x)k

)
= e (S, π)

and
y = e (g1,H(x))k = e

(
g1,H(x)k

)
= e (g1, π) .
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To establish that the scheme is also key-homomorphic, it is enough to observe that for all polyno-
mials n = n(λ) it holds that

n∏
i=1

Eval(ki, x) =
n∏

i=1

e (g1,H(x))ki = e (g1,H(x))
∑n

i=1 ki = Eval

(
n∑

i=1

ki, x

)

and similarly

n∏
i=1

Prove(ki, x) =
n∏

i=1

H(x)ki = H(x)
∑n

i=1 ki = Prove

(
n∑

i=1

ki, x

)
.

Furthermore, the scheme satisfies uniqueness, since π is uniquely determined by S, vk, and x.

Analysis. We state the main theorem of this section, namely that the base scheme is secure if the
BDH assumption holds.

Theorem 4.1. If the group generator GroupGen is BDH-hard, then the construction as described
above satisfies pseudorandomness, in the random oracle model.

Proof. The pseudorandomness of our VRF follows from a reduction to the BDH assumption
(Def. 2.1). Recall that the assumption stipulates that the following distributions are computa-
tionally indistinguishable(

g1, g2, g
a
1 , g

b
1, g

a
2 , g

b
2, g

c
2, e(g1, g2)

bc
a

)
≈
(
g1, g2, g

a
1 , g

b
1, g

a
2 , g

b
2, g

c
2, e(g1, g2)

r
)

where (G1,G2,GT , g1, g2, e) ←$ GroupGen(1λ) and (a, b, c, r) ←$ Z4
p. By a variable renaming, this

is equivalent to distinguishing between(
g1, g2, g

s
1, g

ks
1 , gs2, g

ks
2 , gz2 , e(g1, g2)

kz
)
≈
(
g1, g2, g

s
1, g

ks
1 , gs2, g

ks
2 , gz2 , e(g1, g2)

r
)
.

On input a sample from either distribution, the reduction sets S = gs1 and vk = gks1 , then it activates
the adversary A. Let Q be the number of queries of A to the random oracle, the reduction guesses
an index i∗ ∈ {1, . . . , Q} and simulates the oracle as follows: For i ̸= i∗, on input xi the reduction
programs the random oracle to

H(xi) = (gs2)
ρi where ρi ←$ Zp.

On the other hand, on input xi∗ the reduction sets

H(xi∗) = gz2 .

Next, we show how the reduction simulates the queries to the VRF evaluation oracle. Without
loss of generality, we assume that the adversary already queried the input xi to the random oracle
(otherwise, the reduction can perform the query itself before answering to A). If xi = xi∗ , the
reduction aborts and returns a random bit. Otherwise, the reduction computes

πi =
(
gks2

)ρi
and yi = e(g1, π)
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by fetching the appropriate value of ρi. On input the challenge query x∗, the reduction checks if
x∗ = xi∗ and returns a random bit if this is not the case. Otherwise, it computes

y∗ =
{
e(g1, g2)

kz, e(g1, g2)
r
}

i.e., it simply returns the last group element from the challenge tuple. The reduction returns
whatever bit A returns.

First, observe that the reduction is efficient, as it only performs basic group operations. Consider
the case where the reduction guesses correctly the query to the random oracle that contains the
challenge input x∗. In this case, the reduction perfectly simulates the queries to the oracle offered
by the pseudorandomness experiment, since

πi =
(
gks2

)ρi
= (gsρi2 )

k
= H(xi)k

and sρi is uniformly distributed in Zp. Finally, note that the case where the last group element is
uniform perfectly simulates the experiment where b = 1, whereas in the other case

y∗ = e(g1, g2)
kz = e(g1, g

z
2)

k = e (g1,H(x∗))k

the view is identical for the case where b = 0. Since the reduction guesses correctly with probability
at least 1/Q, which is inverse polynomial, the success probability of the reduction in distinguishing
the two distributions is at most a polynomial factor smaller than to that of A. This contradicts
the BDH assumption and concludes our proof.

4.2 Aggregation

The base scheme described above enjoys useful structural properties that make it amenable to
aggregation. A naive proposal to aggregate VRF would be to simply compute the product of the
images and proofs, i.e.,

ỹ =
n∏

i=1

yi =
n∏

i=1

e (g1,H(x))ki and π̃ =
n∏

i=1

πi =
n∏

i=1

H(x)ki .

This is syntactically correct, since it corresponds to the output of the Eval and Prove algorithms
on with key k̃ =

∑n
i=1 ki. Unfortunately this simple proposal suffers from many issues: (i) First

of all, it does not achieve aggregate pseudorandomness, since it is vulnerable to rogue key attacks.
To see why, it suffices to observe that, on input an honest key vk = Sk, an attacker could set their
key to vk−1 = S−k (which is efficiently computable). This way, the output of the aggregate on any
input x is simply

e (g1,H(x))k · e (g1,H(x))−k = 1

which is clearly not pseudorandom. This particular problem can be fixed by adding non-interactive
zero-knowledge proof (NIZK) [FLS90] to the public key, however the resulting VRF would no longer
be key-homomorphic. Moreover, even with the NIZK in place, (ii) this construction does not satisfy
aggregate binding. To illustrate this last point, observe that it is easy to compute an x∗ and a pair
(y1, . . . , yn) ̸= (y∗1, . . . , y

∗
n) such that

Agg (x∗, {vki, yi}i=1...n) =
n∏

i=1

yi =
n∏

i=1

y∗i = Agg (x∗, {vki, y∗i }i=1...n)
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by simple linear algebra. In the following, we propose a different aggregation function that simul-
taneously resolves both limitations.

Aggregate VRF. Our approach is inspired by the work of [BDN18], although our construction
and analysis turns out to be substantially different. We assume the existence of two hash functions

G̃ : {0, 1}λ ×Gn
1 ×Gn

T → {0, 1}λ and H̃ : {0, 1}λ → Zn
q .

modeled as random oracles. Loosely speaking, the first random oracle will be used to sample a
random seed, which is included in the proof, whereas the second random oracle will be used to
sample the coefficients for a linear combination of the VRF images. Since the output of this oracle
is unpredictable to the adversary, we will be able to show that no (efficient) adversary can cancel
out the contributions of the honest keys. Our aggregation algorithms are described below.

• Agg(x, {vki, yi}i=1...n): Compute R ← G̃(x, vk1, . . . , vkn, y1, . . . , yn) and (r1, . . . , rn)← H̃(R),
then return ỹ =

∏n
i=1 y

ri
i .

• AggProve(x, {vki, πi}i=1...n): Compute R ← G̃(x, vk1, . . . , vkn, e(g1, π1), . . . , e(g1, πn)) along
with (r1, . . . , rn)← H̃(R), then return (π̃ =

∏n
i=1 π

ri
i , R).

• AggVerify({vki}i=1...n, x, ỹ, (π̃, R)): Compute (r1, . . . , rn)← H̃(R) and define ṽk =
∏n

i=1 vk
ri
i .

Return

1
?
= Verify(ṽk, x, ỹ, π̃) and y

?
̸= 1.

Aggregate correctness follows immediately from the key homomorphic property of our VRF, since
the pair (ỹ, π̃) is a valid image-proof pair under the key k̃ =

∑n
i=1 ki · ri, and furthermore yi =

e(g1, πi). Furthermore, y = 1 only with negligible probability. Next we show that the construction
satisfies aggregate pseudorandomness.

The Algebraic Group Model. Before delving into the proof, we recall the basics of the algebraic
group model (AGM) [FKL18]. In the AGM, all algorithms are treated as algebraic algorithms. That
is, along with every group element that they return, they are required to add an explanation of
such element as a linear combination of the input group elements. We define the notion of algebraic
algorithms below.

Definition 4.2 (Algebraic Algorithms). An algorithm A is algebraic if, for every group element
h ∈ G that it outputs, it also returns the corresponding list of algebraic coefficients. That is

(h, c1, . . . , ct) ←$ A(h1, . . . , ht) such that h =

t∏
i=1

hcii .

For an adversary A that has access to oracles during its runtime, we impose the above restriction
to all group elements that it sends to the oracle. Similarly, all group elements that A receives from
the oracle are treated as new inputs to A.

We also recall the Schwartz–Zippel lemma, which is going to be useful in our analysis.

Lemma 4.3 (Schwartz–Zippel). Let P ∈ F[X1, . . . , Xn] be a non-zero n-variate polynomial over a
field F of degree d. Let r1, . . . , rn be selected uniformly at random from F, then

Pr [P (r1, . . . , rn) = 0] ≤ d

|F|
.
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Aggregate Pseudorandomness. We are now in the position to show that our construction
satisfies aggregate pseudorandomness in the AGM and in the random oracle model.

Theorem 4.4. If the group generator GroupGen is ABDH-hard, then the construction as described
above satisfies aggregate pseudorandomness against algebraic adversaries, in the random oracle
model.

Proof. The proof of aggregate pseudorandomnes consists of a reduction against the ABDH assump-
tion (Def. 2.2). Recall that, up to a variable renaming, the assumption states that the following
distributions are computationally indistinguishable(

g1, g2, g
s
1, g

ks
1 , gs2, g

ks
2 , gz2 , e(g1, g2)

z
s , e(g1, g2)

z2

s , e(g1, g2)
kz

)
≈
(
g1, g2, g

s
1, g

ks
1 , gs2, g

ks
2 , gz2 , e(g1, g2)

z
s , e(g1, g2)

z2

s , e(g1, g2)
r

)
.

On input a sample from either distribution, the reduction sets S = gs1 and vk = gks1 , then it activates
the adversary A. The reduction simulates the composition of random oracles H̃◦G̃ by lazy sampling.
More specifically, for any input query q to G̃, the reduction samples a random output for H̃ on
input G̃(q) and records the pair (q, H̃(G̃(q))) as the output of the combined oracle. Note that such
a simulation fails when one of the outputs of G̃ (as defined in the simulation) was queried to H̃
before the corresponding input is queried to G̃. However, this happens with negligible probability
by a standard birthday bound. Let Q be the number of queries of A to the random oracle H, the
reduction guesses an index i∗ ∈ {1, . . . , Q} and simulates the oracle as follows: For i ̸= i∗, on input
xi the reduction programs the random oracle to

H(xi) = (gs2)
ρi where ρi ←$ Zp.

On the other hand, on input xi∗ the reduction sets

H(xi∗) = gz2 .

For the VRF evaluation oracle, we assume without loss of generality that the adversary already
queried the input xi to the random oracle. The reduction proceeds as follows: If xi = xi∗ , the
reduction aborts and returns a random bit. Otherwise, the reduction computes

πi =
(
gks2

)ρi
and yi = e(g1, π)

by fetching the appropriate value of ρi. The challenge query of the (algebraic) adversary is inter-
preted by the reduction as

(x∗, vk1, . . . , vkn) and
{
Pi such that g

Pi(1,s,ks,z)
1 = vki

}
i=1...n

where Pi is a multilinear polynomial in the variables (1, s, ks, z), in its coefficient embedding. For
notational convenience, we group the coefficients corresponding to the variables ρ1, . . . , ρQ (which
are also formal variables from the point of view of the adversary) in the constant term. This is
always possible since the reduction samples ρi itself and therefore knows the corresponding integer
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in the plain. The reduction checks if x∗ = xi∗ and returns a random bit if this is not the case. Else
it defines P0 as

P0 = (0, 0, 1, 0)

and computes

y∗ =

n∏
i=0

e(g1, g2)
riPi(z/s,z,{kz,r},z2/s).

where r0, . . . , rn is the output of the random oracle H̃ ◦ G̃ on input (x∗, vk, vk1, . . . , vkn). Finally,
the reduction returns whatever bit A returns.

Note that, in case the reduction guesses correctly the query to the random oracle that contains
the challenge input x∗, the answers to the oracle queries of the adversary are perfectly simulated
by the reduction. This follows using the same argument as in Thm. 4.1. Furthermore, observe that
the reduction is efficient, since it only performs basic group operations. In particular, the reduction
is supplied by the challenger all group elements needed to compute the evaluation at the challenge
point y∗.

In case where the challenge tuple contains the element e(g1, g2)
kz, we argue that the reduction

perfectly simulates the view of the adversary with the bit b = 0. To see why this is the case, it
suffices to observe that

y∗ =

n∏
i=0

e(g1, g2)
riPi(z/s,z,kz,z

2/s)

= e(g1, g2)
r0kz

n∏
i=1

e(g1, g2)
riPi(z/s,z,kz,z

2/s)

= e(g1,H(x∗))r0k
n∏

i=1

e(g1,H(x∗))riPi(1/s,1,k,z/s)

= e(g1,H(x∗))r0k
n∏

i=1

e(g1,H(x∗))riDLogS(vki)

= e(g1,H(x∗))r0k
n∏

i=1

e(g1,H(x∗))riVKey
−1(vki)

= Agg
(
x∗, vk, e(g1,H(x∗))k,

{
vki, e(g1,H(x∗))ki

}
i=1...n

)
which is precisely what the attacker is expecting. On the other hand, in case the challenge tuple
contains the element e(g1, g2)

r, we argue that the output y∗ computed by the reduction is uniform,
and therefore perfectly simulates the case where b = 1, except with negligible probability. Let

P̃ =

n∑
i=0

riPi,

then, since Zp is a field, the y∗ computed by the reduction is uniform if and only if the third
coefficient of P̃ is non-zero. Since the tuple r0, . . . , rn is sampled uniformly by the reduction after
the polynomials P0, . . . , Pn are fixed, by Lmm. 4.3, this happens with probability at most 1/p,
which is negligible.
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The above argument shows that the reduction succeeds perfectly in case of a correct guess and
otherwise returns a random bit. Since this happens with probability at least 1/Q, the success
probability of the reduction in distinguishing the two distributions is at most a polynomial factor
smaller than to that of A. This contradicts the ABDH assumption and concludes our proof.

Aggregate Uniqueness. It can be easily shown that the construction satisfies aggregate unique-
ness, unconditionally.

Theorem 4.5. The construction as described above satisfies aggregate uniqueness.

Proof. The proof follows immediately by observing that the aggregate verification key

ṽk =
n∏

i=1

vkrii = S
∑n

i=1 ki·ri = Sk̃

is a well-formed VRF key, and thus aggregate uniqueness follows from the uniqueness of the base
construction.

Aggregate Binding. In the following we show that the scheme satisfies aggregate binding. In
fact, we show a slightly stronger statement, namely that aggregate binding holds against unbounded
adversaries that make a polynomial number of queries to the random oracle.

Theorem 4.6. The construction as described above satisfies aggregate binding in the random
oracle model.

Proof. Given the aggregate secret key ṽk, the image-proof pair is unique, thus the only way to break
the aggregate uniqueness is to find a collision in the images. That is, for any given set of verification
keys vk1, . . . , vkn, the adversary must find a point x∗ and two tuples (y1, . . . , yn) ̸= (y∗1, . . . , y

∗
n) such

that
Agg (x∗, {vki, yi}i=1...n) = Agg (x∗, {vki, y∗i }i=1...n) .

In the following we argue that this happens only with negligible probability, over the random choice
of G̃ and H̃ . Recall that the aggregation algorithm computes

(r1, . . . , rn)← H̃
(
G̃(x, vk1, . . . , vkn, y1, . . . , yn)

)
.

and outputs ỹ =
∏n

i=1 y
ri
i . First, note that we can equivalently analyze the experiment where

H̃ ◦ G̃ is simulated by lazy sampling (see the proof of Thm. 4.4), with only a negligible loss in the
advantage. Second, observe that, except for the tuple (y1, . . . , yn) = (1, . . . , 1), the output of the
aggregation algorithm is uniformly distributed in G1. It follows that, for any (possibly unbounded)
algorithm making a polynomial number of queries to the random oracle, the probability of finding
a collision is negligible (in λ) by a standard birthday bound.
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4.3 Anonymity

The notion of anonymity, as defined in [GOT19] requires that the verification key of the VRF can
be updated to a new verification key

vk′ ← Update(vk, k; ρ)

where ρ denotes the random coins used by the Update algorithm, in such a way that the updated
key vk′ is not linkable to the original key vk. Furthermore, there exists an updated proof algorithm
UProve that, on input the secret key k and the random coins ρ used during the update procedure,
produces a valid proof π′ to correctly verify the image of the VRF at any point. We define more
formally the anonymity property below. Note that, compared with the syntax of [GOT19], we
define a more permissive variant, where the update algorithm is allowed to take as input the secret
key as well. Nevertheless, this variant still suffices for all applications presented in [GOT19].

Definition 4.7 (Anonymity). A VRF satisfies anonymity if there exists a negligible function µ
such that for λ ∈ N and all admissible PPT adversaries A it holds that∣∣∣∣12 − Pr

[
1← ExpAnonA(1

λ)
]∣∣∣∣ = µ(λ)

where the experiment ExpAnonA is defined as follows.

• The challenger samples a reference string crs ←$ Setup(1λ) and two key pairs

(k0, vk0) ←$ Gen(crs) and (k1, vk1) ←$ Gen(crs)

and sends (crs, vk0, vk1) to A.

• A outputs a challenge input x∗.

• The challenger flips a coin b←$ {0, 1} and updates the verification key vk∗ ← Update(vkb, kb).
Denote by ρ the random coins of the Update procedure, the challenger computes

y∗ ← Eval(kb, x
∗) and π∗ ← UProve(kb, ρ, x

∗)

and sends (vk∗, y∗, π∗) to A.

• In the end of the experiment, A outputs a guess b∗. The experiment returns 1 if and only if
b∗ = b.

Update Algorithm. Next, we describe an update algorithm suitable for our construction. We
stress here that the updated key belongs to a different domain than the original key, and in particular
it no longer satisfies the same homomorphic properties. Nevertheless, this property can still be
useful in settings where one performs the homomorphic computation before updating the key.

On input a verification key vk = Sk = gks1 , the update algorithm Update samples a uniform
κ ←$ Zp and computes the updated key vk′ as

vk′ =
(
V = gsκ1 , T = g

k/κ
1

)
.
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The updated proof of correct evaluation π′ at point x is computed as π′ = H(x)κ and is verified by
checking the equations

y
?
= e

(
T, π′) and e

(
S, π′) ?

= e (V,H(x)) .
Both equations are satisfied with probability 1 since

e
(
T, π′) = e

(
g
k/κ
1 ,H(x)κ

)
= e(g1,H(x))k = y

and
e (V,H(x)) = e (g1,H(x))sκ = e

(
S, π′) .

Furthermore, for any given V and T , the value of π′ is uniquely determined.

Analysis. The following theorem shows that the update algorithm as defined above satisfies
anonymity.

Theorem 4.8. If the group generator GroupGen is XIBDH-hard, then the construction as described
above satisfies anonymity in the random oracle model.

Proof. Observe that the view of the adversary in the experiment with the challenge bit fixed to
b = 0 consists of the tuple (

gs1, g
sk0
1 , gsk11 , gsκ1 , g

k0/κ
1 , gz2 , g

zκ
2 , e(g1, g

zκ
2 )
)

where gz2 = H(x∗). By the XIBDH Assumption, this distribution is computationally indistinguish-
able from (

gs1, g
sk0
1 , gsk11 , gsκ1 , gδ1, g

z
2 , g

zκ
2 , e(g1, g

zκ
2 )
)

where δ ←$ Zp. Another invocation of the XIBDH Assumption allows us to argue that this is
computationally indistinguishable from(

gs1, g
sk0
1 , gsk11 , gsκ1 , g

k1/κ
1 , gz2 , g

zκ
2 , e(g1, g

zκ
2 )
)

which is exactly the view in the experiment with the challenge bit fixed to b = 1.

4.4 Threshold

We briefly outline how our KH-VRF immediately implies a t-out-of-n threshold VRF, exploiting
the linearity of the key to combine the construction with a linear secret-sharing scheme. This
transformation is analogous to [BLMR13] and therefore we only provide a sketch of the scheme
here, and we refer the reader to [BLMR13] for more details. In the threshold variant, we sample
a random key k ←$ Zp and we interpret it as the constant coefficient of a degree t − 1 univariate
polynomial P , where the rest of the coefficients are also sampled uniformly from Zp. The share
of the i-th party consists of the evaluation of the polynomial ki = P (i) at point i. For any point
x ∈ {0, 1}λ, each party publishes

yi = e(g1,H(x))ki and πi = H(x)ki .

Given t such share, it is possible to publicly reconstruct a valid image-proof pair, by running
Lagrange interpolation in the exponent, i.e., computing

y =
t∏

i=1

y
Li(0)
i and π =

t∏
i=1

π
Li(0)
i

where Li is the i-th Lagrange polynomial.

23



5 Aggregate VRFs from LWE

In the following we describe a generic approach to construct a VRF from generic cryptographic
primitives, which can be all instantiated from the standard learning with errors (LWE) assump-
tion [Reg05].

5.1 Information Theory

Recall the definition of the min-entropy of a random variable X as

H∞(X) = − log (maxx Pr[X = x]) .

We recall the definition of average conditional min-entropy in the following.

Definition 5.1 (Average Conditional Min-Entropy). Let X be a random-variable supported on a
finite set X and let Z be a (possibly correlated) random variable supported on a finite set Z. The
average-conditional min-entropy H̃∞(X|Z) is defined as

H̃∞(X|Z) = − log (Ez [maxx∈X Pr[X = x|Z = z]]) .

It is shown in [DRS04, DORS08] that the average conditional min-entropy satisfies a chain rule,
that is

H̃∞(X|Z) ≥ H∞(X)−H0(Z) (1)

where H0(Z) denotes the logarithm of the size of the support of Z. Next, we recall the definition
of a seeded randomness extractor.

Definition 5.2 (Extractor). A function Ext : {0, 1}d × X → {0, 1}ℓ is called a seeded strong
average-case (k, ε)-extractor, if it holds for all random variables X with support X and Z defined
on some finite support that if H̃∞(X|Z) ≥ k, then it holds that the statistical distance of the
following distributions is a most ε

(seed,Ext(seed, X), Z) ≈ε (seed, U, Z)

where seed← {0, 1}d and U ← {0, 1}ℓ.

Recall that a hash function Hash : X → Y is a universal hash if for all x ̸= x′ ∈ X it holds that

Pr[Hash(x) = Hash(x′)] ≤ 1

|Y|

where the probability is taken over the choice of the hash function. It is shown [DRS04, DORS08]
that any universal hash function is an average-case randomness extractor.

Lemma 5.3 (Leftover Hash Lemma). Let X be a random-variable supported on a finite set X and
let Z be a (possibly correlated) random variable supported on a finite set Z such that H̃∞(X|Z) ≥ k.
Let Hash : X → {0, 1}ℓ, where ℓ ≤ k− 2 log

(
1
ε

)
, be a family of universal functions. Then Hash is a

seeded strong average-case (k, ε)-extractor.

24



5.2 Cryptographic Building Blocks

Before presenting our scheme, we recall some useful cryptographic building blocks.

Statistically-Binding Commitments. A commitment scheme Com(m; r) allows one to commit
to a message m without revealing it. We require the commitment scheme to be statistically binding
and for all messages m0 and m1 we require that the distributions

Com(m0; r) ≈ Com(m1; r) where r ← {0, 1}λ

are computationally indistinguishable (computationally hiding). In this work we assume that the
verification of the commitment is canonical: Given the message m and the random coins r used
in the commitment phase, the verifier simply recomputes the commitment and checks whether
it matches the one sent in the commitment phase. In the common reference string model, such
commitments can be built from any one-way function [Nao89].

Simulation Extractable Statistically-Sound NIZK. Let L be an NP-language with relationR.
We say that a statement x ∈ L if there exists a witness w such that R(x,w) = 1. A non-interactive
zero-knowledge (NIZK) proof for NP [FLS90], allows one to produce a proof π that certifies the
membership for a given language, that reveals nothing but its validity. A NIZK assumes a common
reference string crs and satisfies the following properties:

• Soundness: For all x /∈ L, there does not exist an accepting proof π, with overwhelming
probability over the random choice of crs.

• Zero-Knowledge: There exists a simulator Sim such that for all x and w such that R(x,w) = 1
it holds that the following distributions are computationally indistinguishable

(crs, π) ≈ Sim(1λ, x)

where crs and π are honestly computed.

In this work we are interested in a stronger property, namely simulation-sound extractability, which
requires that there exists an efficient extractor Ext that (given a trapdoor sampled together with
the crs) recovers the witness from any valid proof. Such extractor is required to succeed even if an
adversary sees arbitrary simulated proofs. NIZK for NP are known from LWE [PS19] and can be
generically lifted to the simulation-extractable settings [Sah99].

Somewhere-Extractable BARGs for NP. We informally recall the notion of somewhere-
extractable batch-arguments (BARGs) for NP, and we refer the reader to [CJJ21a, KLVW23,
BBK+23] for a precise definition. A BARG allows one to prove n instances of a given NP language
with proof size and verification time logarithmic in n. More precisely, we say that an instance
(M, x, n, T ) is in the batched language L, if there exist witnesses (w1 . . . wn) such that{

M(i, x, wi)
?
= 1
}
i=1...n

and furthermore M accepts within T steps. A BARG for NP allows one to compute a proof π
for such instances, with the requirement that the size of π is linear in the maximum size of each
witness (ignoring polynomial factors in the security paramter) and furthermore the verifier runtime
is bounded by a polynomial in the size of the proof, and a linear function in the size of the intance.
In particular, note that the verifier runtime is polylogarithmic in n. We require that a BARG
satisfies the following properties:
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• Index-Hiding: The setup algorithm of a BARG Setup(1λ, i) takes as additional input an index
i ∈ {1. . . n} and we require that for all i0 and i1 the following distributions

Setup(1λ, i0) ≈ Setup(1λ, i1)

are computationally indistinguishable.

• Somewhere Extractability: There exists an efficient extractor Ext such that, for any index
i ∈ {1. . . n}, if the setup algorithm is run on input i, then Ext can recover a valid witness wi

from any accepting proof.

For convenience we say that a BARG is extractable on i, if the setup is initialized on index i. Note
that the latter property implies the more standard notion of soundness. BARGs satisfying these
properties can be built from a variety of assumptions [CJJ21a, CJJ21b, WW22, KLVW23, CGJ+23],
including LWE.

Function-Binding Hash with Local Openings. In the following we present an instantiation of
a tree-based function-binding hash. The construction extends prior works [FWW23, BBK+23] by
generalizing the class of functions supported beyond one-bit predicates, although the main ideas
are very similar, tracing back to the work of [HW15]. Our hash function assumes the existence of a
rate-1 levelled fully-homomorphic encryption (FHE) scheme [Gen09, BV11], which in turn can be
constructed from LWE [BDGM19, GH19]. For notational convenience, we assume that the domain
of the FHE ciphertexts and the domain of the leaves of the tree coincide (this is without loss of
generality since we can always pad the blocks of the hash to satisfy this requirement).

Before proceeding with the description of the construction, let us establish some notation: We
consider a binary tree with n leaves, where each node in the tree is identified by its canonical
bitstring (e.g., the left-most leaf is identified by the string 0log(n)). Note that the length of the
string is equivalent to the depth of the node. We further refer to a node (except for the root of the
tree) as either a 0-node or a 1-node, depending on whether they are the left or the right child of
their parent node. A root-to-leaf path consists of the 2 log(n) − 1 nodes of the tree,1 and can be
checked for validity by verifying that the children correctly hash to the parent node. We are now
ready to describe the algorithms of the hash function.

• Setup: The setup consists of a uniformly sampled rate-1 FHE public key pk, along with a
ciphertext

Cnode = FHEnc(pk, id∗)

which is parsed as an encryption of the identifier id∗ of a node in the tree.

• Hash: The hash function Hash is the standard Merkle tree, except that we define a particular
underlying two-to-one function. Specifically, we define such a function to compute:

C = FHEval(pk, fnode0,node1,id0,id1 , (Cnode, node0, node1)).

Note that the variables (node0, node1) are parsed both as bitstrings (when hardwired in the
description of the function) and as ciphertexts (when taken as input for the homomorphic
evaluation). The function fnode0,node1,id0,id1 takes as input a node identifier id∗ and two mes-
sages m0 and m1 and is defined as follows.

1Although half of these nodes can be omitted, we favor this slightly redundant representation for notational
convenience.
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– If id0 = id∗: Return node0.

– Else if id1 = id∗: Return node1.

– Else if id0 is a prefix of id∗: Return m0.

– Else if id1 is a prefix if id∗: Return m1.

– Else: Return 0.

To see why the construction satisfies the standard notion of compactness (and, consequently, verifi-
cation efficiency) for a Merkle-tree hash functions, it suffices to upperbound the size of the computed
ciphertext at each layer of the tree. Let si be the size of the nodes at depth i (they all have the
same size). Then the size of the evaluated ciphertext and, consequently, the nodes at the (i− 1)-th
layer is bounded by

si−1 = si + poly(λ)

since the FHE scheme has rate-1 for the evaluated ciphertexts and the maximum size of the output
of f is si. Setting slog(n) (the size of the leaves) to be a fixed polynomial in the security parameter,
and unrolling the recursion, we obtain that the size of all nodes in the tree is bounded by

log(n) · poly(λ) = poly(λ)

by upper bounding log(n) ≤ λ. Note that this also implies that the size of a root-to-leaf path is
also bounded by a polynomial in the security parameter.

Let us now discuss a few properties that we are going to use later in our construction. First of
all, it can be verified that the root ciphertext C encodes the node of the tree corresponding to the
identifier id∗. This property is analogous to the somewhere statistically binding (SSB) guarantee
from [HW15], except that we generalize it to non-leaf nodes. In a slight abuse of notation, we say
that Hash is SSB on id∗, if Cnode = FHEnc(pk, id∗). By default we set the hash function to be
SSB on 0log(n). Finally, a straightforward reduction to the semantic security of the FHE scheme
establishes that

FHEnc(pk, id∗0) ≈ FHEnc(pk, id∗1)

for all node identifiers id∗0 and id∗1. In particular, this means that all modes are computationally
indistinguishable.

Obfuscation of Compute-and-Compare Branching Programs. We recall the notion of
obfuscation for branching programs [WZ17, GKW17]. Given a branching program f , one can
compute an obfuscation Obf(f), which is parametrized by random matrices {Ai,b} and that satisfies
the following properties:

• For any x where f(x) = y ∈ {0, 1}λ it holds that

Obf(f)(x) = D1∥ . . . ∥Dλ where Di = SxAi,yi +Ei

where the matrix Sx is an invertible matrix and it is a public function of x and in particular
is independent of {Ai,b}. Furthermore ∥Ei∥∞ ≤ B, where B is some a-priori fixed bound.

• There exists a simulator Sim such that

Obf(f) ≈ Sim(1λ, 1|f |).
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For convenience, we define the function Round to be the rounding function that discards the least
significant bits of a matrix (component-wise). In particular, we require that for a uniformly sampled
A and all E such that ∥E∥∞ ≤ λB it holds that

Round (A+E) = Round (A)

except with negligible probability.

5.3 Base Construction

As the base VRF construction we use the folklore commit-and-prove VRF scheme [MRV99], which
we recall in the following. The verification key for the VRF consists of a staistically binding
commitment c = Com(k; r) where k is the key of a pseudorandom function (PRF) [GGM84]. The
evaluation algorithm (using the secret key k) simply evaluates the PRF at point x. To prove the
correctness of a image y, one simply computes a NIZK for the language:

L =
{
(c, y) : ∃ (r, k) such that c

?
= Com(k; r) and y

?
= PRFk(x)

}
.

For technical reasons, in our construction we will use a simulation-extractable NIZK [Sah99] and
we will include the image y also in the proof of evaluation correctness (which will be checked for
consistency). Note that all ingredients needed for this construction can be instantiated from LWE.
However, we explicitly point out that this VRF satisfies a slightly weaker notion of uniqueness:
While the image y is uniquely determined by vk, the proof π can be randomized.

5.4 Aggregation

Our aggregation uses the following ingredients: The VRF construction as described above, a
somewhere extractable BARG for NP, a function-binding hash function Hash, and a compute-
and-compare obfuscation. Note that, as discussed above, all of the above building blocks admit
construction in the standard model, assuming the intractability of LWE. We augment the setup of
the VRF to include the public parameters of these building blocks, along with a simulated circuit
C̃ = Sim(1λ, 1|f |), where f is the circuit describing the FHE decryption, which can be expressed as
a branching program [BDGM19].

• Agg(x, {vki, yi}i=1...n): Compute

ỹ = Round

(
λ∑

i=1

Di

)
and ṽk = Hash(vk1, . . . , vkn)

where C̃ (Hash(y1, . . . , yn)) = D1∥ . . . ∥Dλ.

• AggProve(x, {vki, πi}i=1...n): Compute y′ = Hash(y1, . . . , yn), where the image yi can be read
off the proof πi. Then compute two BARGs for NP, denoted by σ0 and σ1, certifying that,
for all i ∈ {1, . . . , n}, there exists a tuple (yi, pathi, πi) such that:

– The pathi is a valid root-to-leaf path for the tree rooted in y′ with leaf yi.

– The proof πi is a valid VRF proof for yi being the correct evaluation of the VRF at point
x under key vki.
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Return π̃ = (y′, σ0, σ1).

• AggVerify({vki}i=1...n, x, ỹ, π̃): Verify that

– The BARGs σ0 and σ1 correctly verify.

– ỹ
?
= Round

(∑λ
i=1Di

)
where C̃ (y′) = D1∥ . . . ∥Dλ.

Correctness follows immediately by the correctness of the underlying building blocks, whereas it
can be verified that the aggregates are compact by appealing to the efficiency properties of the
function-binding hash and the BARGs for NP. Next, we show that our construction satisfies all
properties for an aggregate VRF.

Aggregate Pseudorandomness. We show that our construction satisfies aggregate pseudoran-
domness.

Theorem 5.4. If Hash is function binding and the base VRF is as described above, the construction
as described above satisfies aggregate pseudorandomness.

Proof. The proof proceeds by introducing a series of hybrids and arguing that adjacent experiments
are indistinguishable.

• Hybrid 0: This is the original experiment as defined in Def. 3.6.

• Hybrid 1: In this hybrid, we run the NIZK extractor on the challenge keys, instead of (in-
efficiently) inverting the adversarially-chosen keys. Indistinguishability follows by the ex-
tractability of the NIZK. Note that in this hybrid the challenger runs in polynomial time.

• Hybrid 2: In this hybrid, we simulate the NIZK of the VRF when answering the oracle queries
of the adversary. This switch is computationally indistinguishable by the zero-knowledge of
the NIZK.

• Hybrid 3: In this hybrid, we modify the commitment c in the challenge VRF to c = Com(0; r).
Indistinguishability follows from the computational hiding of the commitment scheme.

• Hybrid 4: In this hybrid, we switch the evaluation of the challenge VRF with a truly random
function, which can be efficiently simulated via lazy sampling. This hybrid is indistinguishable
from the previous one by the pseudorandomness of the VRF.

• Hybrid 5: In this hybrid, we guess a random index i∗ ∈ {1, . . . , n} and we abort if the challenge
key is not in the i∗ position. Since this happens with probability exactly 1/n it follows that,
conditioned on abort not happening, the distinguishing advantage of the adversary must still
be at least inverse polynomial.

• Hybrid 6: In this hybrid, we make the hash function SSB on the i∗ leaf. This step is
indistinguishable by the mode indistinguishability of Hash.

• Hybrid 7: In this hybrid, we compute C̃ = Obf(FHDec(sk, ·)), where sk is the secret key
of the FHE scheme. This step is computationally indistinguishable by the security of the
compute-and-compare obfuscation.
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Note that, in the last hybrid we that, by the correctness of the compute-and-compare obfuscator

C̃(Hash(y1, . . . , yn)) = D1∥ . . . ∥Dλ where Di = SAi,yi∗,i +Ei

where we denote by yi∗,i the i-th bit of yi∗ which is the challenge image of the VRF. This holds
because Hash(y1, . . . , yn) is an FHE encryption of the i∗ leaf, as described in the above hybrid.
Recall that the aggregate ỹ is defined as

Round

(
λ∑

i=1

Di

)
= Round

(
S∗

λ∑
i=1

Ai,yi∗,i +Ei

)
= Round

(
S∗

λ∑
i=1

Ai,yi∗,i

)

where S∗ is independent of {Ai,b}. By Eq. 1 (Chain Rule), conditioned on S∗, the string yi∗ has at
least λ− |S∗| bits of min-entropy. For a large enough λ, by Lmm. 5.3, it holds that(

S∗,
λ∑

i=1

Ai,yi∗,i

)
≈ (S∗,U)

are statistically close, where U is uniformly sampled. Since S∗ is invertible with all but negligible
probability, it follows that S∗U is also a uniformly sampled matrix. Consequently, so it is its
rounding.

Aggregate Uniqueness. In the following, we prove that our construction satisfies aggregate
uniqueness, although only in a computational sense. I.e., we show that there exists no efficient
attacker that, given an honestly-computed aggregate key ṽk and image ỹ, can produce a valid proof
for a different aggregate image.

Theorem 5.5. If Hash is function binding and mode indistinguishable, the BARG is somewhere
extractable and index-hiding, and the base VRF is as described above, the construction as described
above satisfies aggregate uniqueness.

Proof. Let us assume towards contradiction that there exists an adversary such that, given an
honestly computed aggregate

(ỹ, ṽk)← Agg(x, {vki, yi}i=1...n)

on valid images yi, returns an image y∗ ̸= ỹ and a proof π∗ that certifies that y∗ is a valid aggregate
under ṽk, with at least inverse-polynomial probability. Note that the proof π∗ consists of

• A string y∗∗ such that y∗=Round
(∑λ

i=1Di

)
where C̃ (y∗∗) = D1∥ . . . ∥Dλ.

• Two BARGs σ∗
0 and σ∗

1 that certify the validity of y∗.

Note that, since C̃ is a deterministic function, it must be the case that y∗∗ ̸= y′, where y′ =
Hash(y1, . . . , yn) is the honestly computed hash. By the extractability of the BARGs, we can
efficiently recover from σ∗

0 and σ∗
1 two root-to-leaf paths path∗0 and path∗1 corresponding to the leaf

indexed by 0log(n). We can also efficiently compute the same root-to-leaf path corresponding to the
honest computation of Hash(y1, . . . , yn), which we denote by path. Next, we compare path∗0 with
path and consider three cases:
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1. The two root-to-leaf paths path∗0 and path are identical: This cannot happen, since otherwise
the roots would also be identical, which we already established that is not the case.

2. The two root-to-leaf paths path∗0 and path differ in the leaf node: To see why this case
happens only with negligible probability, it suffices to recall that the extractor of the BARG
is guaranteed to extract valid witnesses for the language, which in particular means that the
extracted y∗1 (the leaf contained in the extracted path) is a valid VRF image and π∗

1 (the
extracted proof) is an accepting proof. However, this contradicts the uniqueness of the VRF
since, by assumption, y∗1 ̸= y1.

3. The two root-to-leaf paths path∗0 and path differ in a non-leaf node: In this case, the extracted
paths differ from the honest one at some 1-node at depth i ∈ {1, . . . , log(n) − 1}. Bounding
this case is somewhat more involved and we do this below.

It is easy to see that the three cases above describe the entire probability space, so what is left to
be shown is to bound the probability of the last event to happen. In the following, we show that
this probability is indeed negligible. Let DIFF(d) denote the event that the extracted paths differ
at the 1-node at the d-th layer, and let i be the largest such index. We can now rephrase the above
condition as the existence of an index i ∈ {1, . . . , log(n)− 1} such that

Pr
[
DIFF(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, 1) and Hash is SSB at 0log(n)

]
≥ 1

poly(λ)

where Setup0 and Setup1 are the setup algorithms of the two BARGs. Denote by j ∈ {1 . . . , n} the
leaf corresponding to the identifier

id = 0 . . . 0 1︸︷︷︸
i-th bit

0 . . . 0

and let idi be the same string but truncated after the 1. We claim that also

Pr
[
DIFF(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, 1) and Hash is SSB at 0log(n)

]
≈ Pr

[
DIFF(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, 1) and Hash is SSB at idi

]
by the mode indistinguishability of the SSB hash function, since such an event is efficiently de-
tectable and can be used to distinguish the two modes of the hash function. Next we claim that,
similarly, it holds that

Pr
[
DIFF(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, 1) and Hash is SSB at idi

]
≈ Pr

[
DIFF(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, j) and Hash is SSB at idi

]
by the index-hiding of the BARG, since once again the event is efficiently observable without
extracting the BARG σ∗

0. Let us now define the event DIFF1(i) as DIFF(i), except that we look at
the extracted path path∗1, instead of path∗0. We claim that the probabilities

Pr
[
DIFF(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, j) and Hash is SSB at idi

]
≈ Pr

[
DIFF1(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, j) and Hash is SSB at idi

]
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are identical, except for negligible factors. This holds because, by definition, node identified by
idi belongs to both root-to-leaf path for the leaves 1 and j. Furthermore, the hash function is
statistically bound for the node indexed by id1. We can now appeal to the index-hiding of the
BARG to show that

Pr
[
DIFF1(i)

∣∣∣ Setup0(1λ, 1) and Setup1(1
λ, j) and Hash is SSB at idi

]
≈ Pr

[
DIFF1(i)

∣∣∣ Setup0(1λ, j) and Setup1(1
λ, j) and Hash is SSB at idi

]
≈ Pr

[
DIFF(i)

∣∣∣ Setup0(1λ, j) and Setup1(1
λ, j) and Hash is SSB at idi

]
where the second equality follows using a similar argument as above. At this point it is useful to
recall that the i-th bit of id1 is 1. In particular, this means that the children of such node must
be part of the root-to-leaf path corresponding to j and are therefore part of path∗0. Note that
at least one of these children must differ from the same node in the honest path, since Hash is a
deterministic procedure. Let us consider two cases:

• The differing child is a 0-node: In this case, the children of such node are also included in the
root-to-leaf path. If this is the case, we simply look at one layer below and check one again
which children differ.

• The differing child is a 1-node: Let i∗ > i be the depth of such node. In this case the index i
is no longer the largest index such that DIFF(i) holds.

Overall, we have established that there must exists an i∗ > i such that

Pr
[
DIFF(i∗)

∣∣∣ Setup0(1λ, j) and Setup1(1
λ, j) and Hash is SSB at idi

]
≥ 1

poly(λ)
− negl(λ).

Now we can recursively apply the same argument as above, until i∗ = log(n), in which case the
differing node is a leaf. We now have reached the case where the differing node is a leaf, which we
already argued that contradicts the uniqueness of the VRF.

Aggregate Binding. Finally, we show that the scheme satisfies aggregate binding.

Theorem 5.6. If Hash is function binding, the BARG is somewhere extractable, and the base
VRF is as described above, the construction as described above satisfies aggregate binding.

Proof. The claim follows by a reduction to the SSB of Hash and to the index-hiding of the BARG.
The reduction samples a random index i ∈ {1 . . . n} and makes the function Hash SSB on the i-th
leaf and the BARGs extractable on index i; If the tuples (y1, . . . , yn) and (y∗1 . . . y

∗
n) are identical in

the i-th element, the reduction aborts. Note that the probability of the latter event happening can
only change by a negligible amount, since otherwise one would violate the mode indistinguishability
of Hash or the index-hiding of the BARGs. Thus, with at least inverse-polynomial probability, we
have that the Hash is SSB at position i and (y1, . . . , yn) and (y∗1 . . . y

∗
n) differ in the i-th element.

This contradicts the verifiability of VRF: Recall that y∗i ̸= yi, which in particular means that y∗i is
not a valid VRF image. However, one can efficiently extract a valid proof for y∗i from the BARGs,
contradicting the uniqueness of the VRF.

32



6 Applications

We discuss several motivating applications for the notion of key-homomorphic and aggregate VRFs.
In favor of a more intuitive explanation, we keep the following discussion at a high-level and we
leave the precise formalization of the security properties and the protocol description as ground for
future work. We stress that the purpose of this discussion is to demonstrate the usefulness and the
versatility of the notion of our VRFs, but we do not claim that our solutions are superior in all
aspects compared to existing protocols.

6.1 Distributed VRF without a Trusted Dealer

As a warm-up application, we show how an aggregate VRF imply a simple and efficient construction
of an n-out-of-n VRF where the key is distributed across n parties. The key generation is completely
non-interactive and performed locally by all parties, which do not be even be aware of each other’s
existence. In particular, no trusted dealer is needed to distribute the shares of the key. We outline
the protocol below.

• Local Key Generation: On input the common reference string crs, each party simply samples
a key-pair locally

(k, vk) ←$ Gen(crs)

and outputs vk.

• Shared Key Computation: The shared key pair is defined to be

k̃ =
n∑

i=1

ki and ṽk =
n∏

i=1

vki.

It is easy to see that the resulting key is well-formed by the homomorphic property of the un-
derlying VRF, and that each party can compute the share of the the evaluation at any point x,
once again by appealing to the linear homomorphism of the key. The above scheme only ensures
correctness against semi-honest parties, whereas if one wants to defend against rogue-key attacks
the aggregation function presented in Sec. 4.2 can be used.

6.2 Proof of Stake Blockchains

To see how aggregate VRF provide substantial advantages when applied to proof of stake (PoS)
protocols, we briefly recall how PoS protocols work [DGKR18]. In a nutshell, any user in the system
uploads their VRF verification key to the blockchain. In each epoch, each user can evaluate the
VRF on the slot number (which will play the role as a unique identifier for the epoch) to compute
the corresponding image. If the image is less than (a function of) their wealth, then that user is
identified as the designated party to generate the new block. Such party can then compute a proof
to convince the all other parties that the VRF was evaluated correctly. This way, it can be publicly
verified that the user was indeed the winner of the round. In committee-based PoS protocols, such
as Algorand [GHM+17], a similar process is performed in order to elect members of a committee,
that collectively determine the value of the next block.

Plugging in a KH-VRF in the above protocol, we immediately obtain the following properties:
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1. In committee-based PoS, we can aggregate individual proofs

π̃ ← AggProve(x, {vki, πi}i=1...n)

so that the size of the proof becomes independent of the size of the committee. By the
aggregate binding of the VRF, an attacker cannot later change the images in such a way that
they will pass the aggregate verification test.

2. One does not need to store a proof for each block (which is needed to make the blockchain
publicly verifiable) but one can instead store a single proof throughout the lifetime of the
system, by recursively aggregating all of the existing proofs. One can still verify that the
images are still valid, and an attacker cannot change images after the fact, in such a way
that they will pass the aggregate verification test (assuming that the VRF satisfies aggregate
binding).

6.3 Verifiable Symmetric-Key Proxy Re-Encryption

The work of [BLMR13] introduces the notion of key-homomorphic pseudorandom functions (KH-
PRF), which is analogous to KH-VRF, with the crucial difference that there is no verification
procedure for the output of the PRF. In [BLMR13] the authors show a number of applications for
this primitive, such as distributed PRFs, symmetric-key proxy re-encryption, updatable encryption,
and PRFs secure against related-key attacks. Our key-homomorphic VRF construction can be used
as a drop-in replacement to augment all of these applications with an efficient verification procedure.

To exemplify this claim, we discuss the case of symmetric-key proxy re-encryption. Suppose we
have a dataset where each message Mi ∈ GT is encrypted as

Enc(k,Mi) = Eval(k, ni) ·Mi

where ni is a public nonce associated with the i-th location. A trivial solution to update the key k
is to download the entire dataset and re-encrypt all data. A more efficient solution is for the client
to provide the server with the key δ− k (where δ ∈ Zp is the newly sampled key). Then the server
can update all ciphertext by computing

Enc(k,Mi) · Eval(δ − k, ni) = Eval(δ, ni) ·Mi = Enc(δ,Mi).

Provided that the server deletes δ − k, it is shown that this protocol satisfies security. If we
plug a key-homomorphic VRF in this template, we enable an additional verification property: For
each ciphertext, the server can efficiently compute a proof that certifies that the update was done
correctly. An external auditor, can be convinced that cipheretexts have been correctly updated,
without the need to know the secret key δ − k.
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A Assumptions in the GGM

We briefly discuss why the assumption that we consider are true (unconditionally) in the generic
group model (GGM). The following discussion assumes familiarity with basic concepts of the GGM,
and we refer the reader to [Sho97] for a thorough introduction. Since both assumptions are static,
it suffices to show that there is no way to express that “target” variable τ (i.e., the group element
that is different in the two distributions) as a linear combination of other variables in GT . This is
without loss of generality, since we can always move all variables in the target group by computing
all possible pairings with the given variables. The claim then follows by Lmm. 4.3.

For Def. 2.2, the adversary’s view contain the handles corresponding to the formal variables(
1, a, b, c, ab, ac, bc,

c

a
,
c2

a
, τ

)
where τ =

{
bc

a
, r

}
by taking all possible pairings with the element from the source groups. Since τ is linearly inde-
pendent from all other variables, our claim follows.

For Def. 2.3, again moving all variables to the target group, we have that the adversary’s view
contains (

1, a, ab, ac, d, dc, ad, adc, abd, abdc, acd, adc2, τ0, τ1, τ2
)

where

τ0 =

{
b

c
, r

}
and τ1 =

{
bd

c
, rd

}
and τ2 = {bd, rdc} .

Once again, the claim follows from the fact that τ0, τ1, τ2 are linearly independent from the rest of
the variables.
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