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Abstract

A probabilistically checkable argument (PCA) is a computational relaxation of PCPs, where
soundness is guaranteed to hold only for false proofs generated by a computationally bounded
adversary. The advantage of PCAs is that they are able to overcome the limitations of PCPs. A
succinct PCA has a proof length that is polynomial in the witness length (and is independent of
the non-deterministic verification time), which is impossible for PCPs, under standard complex-
ity assumptions. Bronfman and Rothblum (ITCS 2022) constructed succinct PCAs for NC that
are publicly-verifiable and have constant query complexity under the sub-exponential hardness
of LWE.

We construct a publicly-verifiable succinct PCA with constant query complexity for all NP
in the adaptive security setting. Our PCA scheme offers several improvements compared to the
Bronfman and Rothblum construction: (1) it applies to all problems in NP, (2) it achieves adap-
tive security, and (3) it can be realized under any of the following assumptions: the polynomial
hardness of LWE; O(1)-LIN on bilinear maps; or sub-exponential DDH.

Moreover, our PCA scheme has a succinct prover, which means that for any NP relation that
can be verified in time T and space S, the proof can be generated in time Oλ,m(T · polylog(T ))
and space Oλ,m(S · polylog(T )). Here, Oλ,m accounts for polynomial factors in the security
parameter and in the size of the witness. En route, we construct a new complexity-preserving
RAM Delegation scheme that is used in our PCA construction and may be of independent interest.
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1 Introduction

Probabilistically checkable proofs (PCPs) play a significant role in complexity theory and cryptog-
raphy, leading to groundbreaking results in various fields. This is evidenced by the remarkable
PCP theorem which is one of the most important results in theoretical computer science. The PCP
theorem states that the satisfiability of a formula of size n can be proved in poly(n) time and can
be verified by querying only a constant number of bits from the proof.

While PCPs are a very powerful tool, they have several limitations. For example, Fortnow and
Santhanam [FS08] showed that PCPs cannot be succinct unless the polynomial hierarchy collapses.
A PCP proof is succinct if, for a formula of size n with witness length m, the proof length is poly(m),
rather than poly(n,m). Beyond showing a limit to the efficiency of PCPs, this fact has broader
implications. Harnik and Naor [HN10] raised the instance compression (IC) question, in which we
ask if it is possible to take any instance in any NP relation and compress it to a short instance while
preserving the information of whether the instance is in the language or not. The main focus of
this question is instances of size n with a witness of size m, where the instance is much larger than
the witness, i.e., m ≪ n. A line of work [HN10; FS08; Dru15; BDFH09] shows different use cases
for instance compression, including constructing a variety of fundamental cryptographic primitives.
Unfortunately, Fortnow and Santhanam showed that instance compression also implies succinct
PCPs, which means that instance compression does not exist (unless the polynomial hierarchy
collapses).

Probabilistically checkable arguments (PCA). The notion of PCA was introduced as a com-
putational analog of PCPs [KR09; Zim02; BR22]. That is, soundness is required to hold only
against computationally bounded adversaries. This allows PCAs to bypass information-theoretic
barriers that limit PCP constructions.

In more detail, PCAs rely on a (honestly generated) common reference string (CRS) which
is given to both the prover and the verifier. The key parameters of interest in a PCA scheme
include the size of the proof, the verifier’s query complexity and randomness complexity, and the
prover’s running time. Unlike typical cryptographic primitives, PCAs aim for constant soundness
error against polynomially bounded adversaries. This is inherent since PCAs additionally aim for
constant query complexity (independent of the security parameter). Note that the soundness error
is defined over the randomness of generating the CRS, the adversary, and the verifier.

Succinct PCAs. A PCA for an NP relation R with verification time t = t(n,m) is said to be
succinct if the PCA proof is of length poly(λ,m, log t), where n is the instance size, m is the witness
size, and λ is the security parameter. Importantly, poly refers to a fixed universal polynomial (that
does not depend on the relation R).

Previous work on PCAs. Kalai and Raz [KR09] constructed a privately-verifiable PCA. In
the privately-verifiable setting, the verifier must hold a trapdoor to the common reference string
in order to verify the proof. Their PCA construction relies on exponential hardness assumptions
for PIR schemes, providing non-adaptive soundness, ensuring security for instances that are chosen
independently of the common reference string. Their construction gives poly(d,m) proof size and
polylog(n) query complexity for languages that can be verified with circuits of size n and depth d,
using witness of size m.
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Later on, Bronfman and Rothblum [BR22] were the first to construct a publicly-verifiable succinct
PCA with constant query complexity, also with non-adaptive soundness. Their results were a big
step forward. However, they have two significant drawbacks. First, their PCA construction applies
only to relations in NC rather than to the entire NP class. Second, their PCA construction is under
the sub-exponential hardness assumption of the learning with error (LWE) problem.

Our PCA. We construct a publicly-verifiable succinct PCA with constant query complexity in
the adaptive security setting for all NP. Compared to the Bronfman and Rothblum construction,
our PCA scheme exhibits improvements in several aspects: (1) it applies to all problems in NP,
(2) it achieves adaptive security, (3) it can be realized under any of the following assumptions:
the polynomial hardness of LWE; O(1)-LIN on bilinear maps1; or sub-exponential Decisional Diffie-
Hellman (DDH), and (4) an efficient prover, which we denote as a succinct prover.

PCA with a succinct prover. We say that a PCA scheme has a succinct prover if, for any
NP relation R that can be verified in time t = poly(n,m) and space s = poly(n,m), the PCA
prover (given the instance and the witness) generates the proof in time t ·poly(λ,m, log t) and space
s · poly(λ,m, log t). Here, poly refers to a fixed universal polynomial (that does not depend on the
relation R).2

Theorem 1.1 (Informal). Every NP relation has a publicly-verifiable succinct PCA with constant
query complexity under any one of the following assumptions: (1) polynomial hardness of LWE; (2)
O(1)-LIN; or (3) sub-exponential Decisional Diffie-Hellman (DDH).

Moreover, the PCA protocol is adaptively sound and has a succinct prover.

In fact, our PCA construction (along with the argument presented in Theorem 1.2) relies on two
general components, non-interactive batch argument for NP and a rate-1 OT.3 Both components
can be constructed under any of the assumptions mentioned in the theorem, which enables us to
obtain our results.

Computational instance compression (CIC). An instance compression (IC) is a very strong
and useful tool. Unfortunately, it cannot be constructed under standard assumptions. Bronfman
and Rothblum [BR22] solved this problem by introducing computational instance compression or
CIC, which is the cryptographic equivalent for instance compression (IC). For a false statement, the
new instance computed by the scheme might be in the language, but it is computationally infeasible
to find a witness for the new instance. Bronfman and Rothblum show that PCA implies CIC. Their
CIC is for the class NC and can be realized under the sub-exponential hardness assumption of the
learning with error (LWE) problem. We combine their CIC construction with Theorem 1.1 and
immediately get CIC for all NP, under the same hardness assumptions as for our PCA.

Theorem 1.2 (Informal). Every NP relation has a CIC scheme under any one of the following
assumptions: (1) polynomial hardness of LWE; (2) O(1)-LIN; or (3) sub-exponential Decisional
Diffie-Hellman (DDH).

1Our PCA can be realized under the k-LIN assumption on bilinear maps for any arbitrary constant k ≥ 1. We
will refer to this assumption as O(1)-LIN assumption.

2Recall that a succinct PCA has proof size poly(λ,m, log t). In our construction, the prover’s time and space has
a multiplicative factor in that proof size. It remains open to achieve an additive factor, i.e, O(t) + poly(λ,m, log t)
running time and O(s) + poly(λ,m, log t) space.

3Both components are formally defined in [KLVW22].

2



Our main building block in our PCA construction (which in turn, leads to our results in Theo-
rem 1.1 and Theorem 1.2) is a RAM Delegation scheme. However, existing RAM Delegation schemes
in the literature do not meet our specific requirements. This leads us to construct a new RAM
Delegation scheme.4

RAM delegation. Efficient verification of computation is a fundamental notion in computer
science both in theory and, recently, has been deployed in practice in cloud services and block-
chains. This usage makes verification of computation schemes highly motivated in theory and
practice.

In this paper, the computation we wish to delegate is described as a RAM machine. In a RAM
Delegation scheme, a verifier wishes to evaluate the output of a RAM machine M on an input x
without investing the computational resources required for the computation. Instead, the verifier
delegates the computation to an untrusted prover, which generates the output of the computation
y = M(x) together with a proof Π that supports the correctness of the computation (given a
suitable common reference string crs). We would like to minimize the computation time for both
the prover and the verifier. The prover should run in time proportional to the original computation
(polynomial or even linear in the actual computation). Ideally, the verifier running time should be
sub-linear (or even poly-logarithmic) in the input size. In order to facilitate sub-linear computation
time, the verifier is given a digest d = Digest(crs, x) of its input rather than the input itself.

Previous work on RAM delegation. Our focus is on publicly-verifiable RAM Delegation
schemes that are constructed based on falsifiable and standard assumptions. There has been signif-
icant research trying to construct such delegation schemes: [KPY19; WW22] constructions achieve
poly(λ, tϵ) verification time for any constant ϵ > 0 under either the standard decisional assump-
tions on groups with bilinear maps or the O(1)-LIN assumption in prime-order groups. In contrast,
[CJJ21] achieves poly(λ, log t) verification time from LWE.

Kalai, Lombardi, Vaikuntanathan, and Wichs [KLVW22] construct the first RAM Delegation
scheme under any of the following assumptions: (1) LWE; (2) O(1)-LIN; or (3) sub-exponential
Decisional Diffie-Hellman (DDH). Their scheme has verification time poly(λ, log t). They prove
their results using a novel transformation from any non-trivial batch argument to a highly efficient,
strongly sound RAM Delegation scheme. Roughly, they begin with a non-trivial batch argument
(BARG) and boost it into a highly efficient one. Then they transform the efficient BARG into an
efficient RAM Delegation scheme. The [KLVW22] construction has another interesting property,
which is strong soundness. Note that their construction focuses on read-only RAM machines (where
the machine’s memory cannot be modified).

Our RAM delegation scheme. We construct publicly-verifiable RAM Delegation scheme for
read-write RAM machines and poly(λ, log t) verification time. Our RAMDelegation is also complexity-
preserving, a property left unexplored in previous work. That is, for any RAM machine that runs in
time T and space S, the honest RAM Delegation prover generates the proof in time that has quasi-
linear dependence in T and space that has linear dependence in S and poly-logarithmic dependence
in T . Our construction uses falsifiable assumptions (as mentioned in Theorem 1.1), while providing

4The discussion regarding the RAM Delegation scheme necessary for our PCA construction can be found in Sec-
tion 2.2.
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the strong soundness guarantee (as defined in [KLVW22]). 5

Theorem 1.3 (Informal). Under any of the assumptions mentioned in Theorem 1.1, there exists a
publicly-verifiable RAM Delegation scheme with strong soundness for any read-write RAM machine.
Moreover, the verifier running time is poly(λ, log t), while the prover runs in time Õλ(t + n) and
uses Õλ(w · polylog(t) + n) space.

Here, t = t(n) is the running time of the RAM machine, and w = w(n) is the number of distinct
memory locations written by the machine.

Here, the Õλ notation accounts for polynomial factors in the security parameter and in the size of
the local state of the machine. Note that similar to Theorem 1.1, our RAM Delegation construction
actually relies on two general components, a non-interactive batch argument for NP and a rate-1
OT. Both of which can be realized under any of the assumptions mentioned in Theorem 1.1. For
the formal theorem statement, please refer to Theorem 7.1.

Observe that w may be much smaller than both the running time and the total read-write
memory of the RAM machine. On close inspection of the construction of [KLVW22], their prover
runs in time Θ̃λ(t

2 + n) and space Θ̃λ(t + n). In comparison, the prover of Theorem 1.3, when
applied to read-only RAM machines, runs in time Õλ(t+ n) and uses space Õλ(polylog(t) + n).

Future work on efficient RAM delegation prover. Our current research on RAM delegation
schemes has yielded an efficient prover, where the running time has a quasi-linear dependency
on the running time of the original RAM computation, and the space has a quasi-linear linear
dependency on the space of the original RAM computation. Achieving linear dependency on the
original computation complexity remains an open question.

Future work on PCAs. In [BR22], Bronfman and Rothblum introduced the implications of
PCAs on the hardness of approximation. They demonstrated that if P ̸= NP and there exists
a publicly verifiable constant-query PCA for SAT, then there exists ϵ > 0 for which there is no
polynomial-time algorithm solving approximate MaxSATϵ6. The hardness of MaxSATϵ is expected,
as it follows from the PCP theorem. The interesting aspect is that we can get this result using
the notion of PCAs. We believe that our new results on succinct PCAs for NP can be useful in
achieving new hardness of approximation results.

One potential direction suggested by Bronfman and Rothblum is the hardness of approximation
in Fine-Grained complexity. Previously, PCPs were used to demonstrate the hardness of approxi-
mation in the Fine-Grained complexity of problems in P ([ARW17; CGLRR19]), where a significant
barrier to achieving the result was the size of the PCP proofs. We believe that the use of succinct
PCAs (instead of PCPs) may have new implications in this field.

2 Our Techniques

In this section, we begin by introducing our techniques for constructing a PCA scheme. Initially,
the prover in the PCA construction is not succinct. Once we achieve our PCA results, we’ll describe

5Both the standard soundness and strong soundness notions are sufficient for obtaining our results. However, the
strong soundness guarantee may be useful for other applications.

6In the MaxSAT problem, the goal is to find an assignment that maximizes the number of satisfied clauses in a
formula. In the approximate MaxSATϵ problem, the goal is to find an assignment that is ϵ close to maximizing the
number of satisfied clauses in a formula.
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how to refine our implementation to ensure a succinct prover.

To elaborate further, the primary tool for our PCA construction is RAM Delegation scheme. We
start by presenting a generic PCA construction from RAM Delegation scheme (Section 2.1). This
construction leads us to obtain a PCA protocol for all NP that is (1) succinct and (2) has constant
query complexity. The construction relies on the assumption that there exists a succinct RAM
Delegation scheme for all deterministic read-write RAM machines, where here, succinct means that
the proof size and verification time are poly-logarithmic in the original computation. It is important
to note that, at this stage, the resulting PCA protocol does not have a succinct prover.

In Section 2.2, we describe how to construct the required succinct RAM Delegation scheme for
any deterministic read-write RAM machines. The RAM Delegation scheme is also publicly verifiable
and adaptively sound, which implies the same properties for our PCA scheme. The RAM Delegation
scheme, and accordingly, the PCA scheme can be realized under any of the following assumptions:
(1) polynomial hardness of LWE, (2) O(1)-LIN, or (3) sub-exponential Decisional Diffie-Hellman
(DDH).

Subsequently, in Section 2.3, we delve into the implementation details of the same RAM
Delegation protocol introduced in Section 2.2, with a specific emphasis on achieving a complexity-
preserving prover. Integrating this RAM Delegation protocol into our PCA construction naturally
leads us to obtain a PCA with a succinct prover.

2.1 Adaptive PCA for all NP

The primary objective of this subsection is to provide an overview of our PCA construction. Here,
our focus is on constructing a PCA protocol for all NP that is (1) succinct and (2) has constant
query complexity. Recall that a succinct PCA has a proof size that is polynomial in the witness
size, and constant query complexity indicates that the verifier makes a constant number of queries
to the proof. Note that here, the resulting PCA prover is not succinct.

While achieving either succinctness or constant query complexity separately might be relatively
straightforward, the challenge arises when we aim to achieve both properties simultaneously. In
what follows, we begin with an overview of this challenge. Then, we describe the Bronfman and
Rothblum [BR22] construction, which successfully addresses this challenge and results in a PCA
protocol for any problem in NC. Finally, we describe our PCA construction that achieves both
properties simultaneously and provides a PCA protocol for any relation in NP.

An attempt to balance succinctness and constant query complexity. Succinctness alone
can be achieved by simply sending the entire witness to the verifier. The difficulty arises when we aim
to combine this with constant query complexity. A standard approach would be to encode the wit-
ness using an error-correcting code and add a probabilistically checkable proof of proximity (PCPP)
certifying that the NP verifier would have accepted had it read the entire witness. In such construc-
tion, for any instance x ∈ {0, 1}n and witness w ∈ {0, 1}m, the proof is: π = (Enc(w),ΠPCPP).

This PCA construction has constant query complexity, but the proof size is poly(n,m), while our
goal is to have the proof size sub-linear in n. This large proof size follows from the fact that known
PCPPs have a proof length that depends polynomially on the running time of the computation that
the PCPP certifies (as described in [BGHSV05]). In our case, the computation being certified is the
NP verifier, whose running time is at least linear in n.
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This issue can be resolved by replacing the NP verifier with an alternative verifier that has a
significantly smaller running time. In our case, as well as in the previous construction by Bronfman
and Rothblum, the new verifier will run in time poly(log n,m).

The Bronfman and Rothblum PCA. Bronfman and Rothblum [BR22] constructed the first
publicly verifiable succinct PCA. Their construction uses the idea described above of replacing the
NP verifier with a more efficient one. In order to replace the NP verifier, [BR22] used SNARGs for
P (PSNARGs). PSNARG schemes are powerful tools that allow us to verify a long deterministic
computation in time that is sub-linear in the computation. Essentially, they apply a PSNARG to
the NP verifier’s computation, thus reducing the verification time. The resulting PCPP proof is
π = (Enc(w || ΠPSNARG),ΠPCPP).

Unfortunately, this is not enough. The PSNARG verifier needs to at least read its input, which
in our case is of size n +m (the NP verifier, when thought of as a P computation, takes as input
x
′ = (x,w)). The PCPP proof size in this construction is again poly(n,m). To solve this problem,

[BR22] used a specific type of PSNARG called a holographic PSNARG. In a holographic PSNARG
the verifier is given oracle access to an (honestly generated) encoding of the input (rather than input
explicitly). This enables the verifier to run in sub-linear time in the input size.

This still does not suffice, since PCPPs are not designed for computations involving an oracle. To
cope with this issue, they added a pre-processing phase that hashes the encoding of the input. For
this final phase to work, they need a PSNARG with even more specific requirements. For example,
the prover needs to know which are the input locations that the verifier is going to query. These re-
quirements limit [BR22] to using a very specific PSNARG construction due to [JKKZ21]. The use of
this PSNARG limits their PCA to work only for NC computations, and under sub-exponential LWE.

We take a different approach to lowering the verifier running time. Rather than working with
PSNARGs, we use a RAM Delegation scheme. This enables us to get around the limitations of
Bronfman and Rothblum’s PCA.

RAM delegation. Before delving into the details of our PCA construction, we introduce the
concept of a RAM Delegation scheme. It is worth noting that RAM Delegation schemes can have
different definitions in the literature. For our construction, we adopt the notion introduced in
[KLVW22] and extend it to apply to read-write RAM machines.

In more detail, we consider read-write RAM computations where the machine is given its input
in read-only memory and has access to a large read-write memory initially filled with zeros. It can
access both memory modules at an arbitrary location with unit cost. To allow for later flexibility,
we think of the input to the RAM machine as a pair x = (ximp, xexp), where we call ximp the implicit
input (which we think of as large), and xexp the explicit input (which we think of as small).

In a RAM Delegation scheme, the prover wants to convince the verifier that M(x) = y for
some RAM machine M , input x, and output y. In the completeness experiment, the prover is
given as input a common reference string crs and an input x = (ximp, xexp). The prover generates
a proof Π and sends it to the verifier. The verifier is given as input the crs, a digest of the
implicit input d ← Digest(crs, ximp), the explicit input xexp, and an output y. The verifier outputs
accept or reject. The soundness guarantee implies that it is computationally hard to generate
(M,x = (ximp, xexp), π, y) such that M(x) ̸= y, and yet the verifier accepts the proof with respect
to d← Digest(crs, ximp).
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For the efficiency parameters, we want the proof size and the verification time to be sub-linear
in the size of the (large) implicit input ximp and sub-linear in the running time t of the original RAM
computation. To capture this notation, we define a RAM Delegation scheme as succinct if both the
proof size and verification time are at most poly(λ, |xexp|, log |ximp|, log t).

PCA from RAM delegation. We turn back to constructing PCAs. Recall that our starting
point is a proof of the following structure: π = (Enc(w),ΠPCPP), where Enc(w) is an encoding of
the witness, and ΠPCPP is a PCPP proof certifying that the NP verifier would have accepted had it
read the entire witness w. Our goal is to replace the NP verifier with a more efficient computation.
For this purpose, we will use a succinct RAM Delegation scheme, in which the verifier runs in
poly-logarithmic time in the input size (given a digest of the input).

Fix a relation R in NP, and a RAM machine M that verifies the relation. Given an instance
x and a witness w, consider a RAM Delegation scheme certifying that M(ximp, xexp) = 1, where
ximp = x is the NP instance, and xexp = w is the NP witness. Observe that the running time of
the succinct RAM Delegation verifier is poly(λ,m, log n) given the digest of x, where m refers to the
witness size and n refers to the instance size.

We can now describe our PCA construction:

• Prover:

1. Compute the following

1.1. ΠRAM, the RAM Delegation proof certifying M(x,w) = 1.
1.2. d, the digest of the input x.
1.3. ΠPCPP, the PCPP proof certifying that after decoding Enc(w || ΠRAM) the RAM Delegation

verifier accepts given (d,w,ΠRAM).

2. Output Π = (Enc(w | ΠRAM),ΠPCPP).

• Verifier:

1. Compute d, the digest of the input x.

2. Check that the PCPP verifier accepts.

This construction achieves constant query complexity directly by the PCPP scheme. To estab-
lish succinctness, we need to bound the size of the proof, where Π = (Enc(w || ΠRAM),ΠPCPP).
By the running time vt = poly(λ,m, log n) of the RAM Delegation verifier, we get that |ΠRAM| ≤
poly(λ,m, log n). Recall that a PCPP proof is of size polynomial in the original computation. In
our case, this is the computation of the RAM Delegation verifier. Therefore, |Π| ≤ poly(vt) +
poly(λ,m, log n) ≤ poly(λ,m, log n). Overall, we get that the construction achieves both succinct-
ness and constant query complexity.

Regarding the publicly verifiable and adaptively sound properties of the PCA scheme, these
properties naturally follow when the RAM Delegation scheme is publicly verifiable and adaptively
sound.

We now turn to construct our RAM Delegation scheme.
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2.2 RAM delegation

In this subsection, we outline the construction of the succinct RAM Delegation scheme essential
for our PCA construction discussed in Section 2.1. By incorporating the resulting RAM Delegation
scheme into our PCA construction, we achieve publicly verifiable succinct PCA with constant query
complexity in the adaptive security setting under various standard assumptions. However, it is
important to note that this PCA prover is not yet succinct. We will address the succinctness of the
prover in Section 2.3 by constructing complexity-preserving RAM Delegation .

The RAM Delegation notion we use in our PCA construction is the notion presented in [KLVW22].
This notion differentiates itself from standard RAM Delegation by splitting the input into explicit
and implicit components, where the explicit input is considered small and the implicit input is
considered large. The verifier receives the explicit input in the clear and obtains only the digest of
the implicit input. This distinction is reflected in the soundness definition, which we inherently use
for proving security for our PCA construction. However, the RAM Delegation construction presented
in [KLVW22] is not sufficient for our PCA construction as it specifically applies to read-only RAM
machines.

There are two immediate potential approaches for achieving construction for read-write RAM
machines under the required notion. We could modify existing constructions that apply to read-
write RAM machines ([KPY19], [WW22], and [CJJ21]) to support explicit and implicit input. This
can be achieved relatively easily. However, as we will see in Section 2.3, updating the RAM
Delegation construction from [KLVW22] to apply to any read-write RAM machines allows us to
leverage the specific structure of the prover in that construction to achieve a complexity-preserving
prover. Ultimately, this leads to the desired succinct prover for our PCA scheme.

Moreover, extending the construction in [KPY19] maintains a stronger soundness security no-
tion than achieved in previous RAM Delegation constructions.7 Additionally, it provides a RAM
Delegation scheme for any read-write RAM machine assuming two generic components. That is, a
batch argument scheme and rate-1 OT (as formally defined in [KLVW22]). These components can,
in turn, be constructed from either one of the following assumptions: (1) polynomial hardness of
LWE; (2) O(1)-LIN; or (3) sub-exponential Decisional Diffie-Hellman (DDH), and achieve our PCA
construction under those assumptions.

In what follows we describe the techniques we used for constructing our RAM Delegation scheme.
The main tool that we use is a somewhere extractable batch argument (BARG) scheme.

Somewhere extractable batch arguments (seBARGs). In a batch argument scheme (BARG),
the goal is to efficiently verify a batch of k NP statements. The prover is given a batch of k NP
statements x1, . . . ,xk along with their corresponding witnesses w1, . . . ,wk, and sends a short proof
to the verifier. We want the proof size and verification time to be significantly smaller than the
total size of the witnesses. Specifically, the main interest is to have a sub-linear (or ideally, poly-
logarithmic) dependence in the number of statements.

Our construction actually uses a stronger primitive called somewhere extractable batch argument
(seBARG). A BARG is said to be somewhere extractable if, for some (hidden) pre-choice of i, given
a trapdoor to the crs and an accepting proof, it is possible to extract a witness wi for the i-th NP
statement.

7Our construction maintains the same strong soundness guarantee as defined in [KLVW22]. The weaker notion is
sufficient for our construction. See Definition 3.9 for the formal definition of both security notions.
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We upgrade any BARG to be seBARG using somewhere extractable hash with local opening (SEH).
An SEH family is a family of hash functions with local openings where, given a hashed value and
a suitable trapdoor for the i-th bit (generated during the SEH setup), one can efficiently extract
the i-th bit of the hashed input. Upgrading BARG to be seBARG using SEH can be done by first
committing to all the witnesses using the SEH, and then modifying the NP statements to include
consistency with the hashed value. In our construction, we replace BARG with seBARG without
loss of generality since we also use SEH explicitly (as previously done implicitly in [CJJ21; KVZ21],
and explicitly in [KLVW22]).

Our RAM delegation scheme. Our RAM Delegation construction extends the Kalai, Lombardi,
Vaikuntanathan, and Wichs [KLVW22] construction which, in turn, is inspired by the transforma-
tions of [CJJ21; KVZ21]. To prove that M(x) = y using a BARG scheme, [KLVW22] employs a
step-by-step approach, dividing the computation into smaller steps. The read-only RAM machine
M starts with an initial state st0. At each step i ∈ [t], it reads one bit from the input x at some
location ji and transitions from state sti to state sti+1. The BARG proof should certify that each
computation step is performed correctly.

In more detail, for computing the proof, the prover in [KLVW22] first computes the digest of
the input d ← Digest(x) (using a hash family with local openings) and a somewhere extractable
hash comst ← SEH.Hash(st0, . . . , stt). Then, the prover constructs a seBARG proof for the following
batch NP statement: For each i ∈ [t], (1) the values (sti−1, sti) are consistent with comst, (2) the bit
x[ji] is consistent with d, (3) the machine transformation sti−1 → sti consist with the bit x[ji], (4)
if i = t then check that stt is an accepting state. The witness wi includes the values (sti−1, sti, x[ji])
along with local opening certifying the consistency of the values with their digest.

Moving forward to constructing read-write RAM Delegation, in addition to the input and the
intermediate states, to describe one computation step of a read-write RAM machine, we need more
information. The read-write machine M starts with an initial state st0 and an all-zero memory D0.
Then, at each step, the machine reads one bit from the input, reads one bit from the memory, and
writes one bit to the memory. The state of the machine is then transformed from (sti−1, Di−1) to
(sti, Di).

One possible strategy is to reconsider the definition of the machine’s state to include both the
local state and the memory: st′i = (sti, Di). Then we can use the same algorithm in [KLVW22]. The
witness, wi, is now the values (st′i−1, st

′
i, x[ji]) along with local opening certifying the consistency of

the values with their digest. However, incorporating the memory into the state definition introduces
a challenge in terms of proof size. The size of the state includes the description of the entire memory,
which can be arbitrarily large (even exceeding the computation time t). Consequently, the size of
one witness, and accordingly the resulting seBARG proof, may become too large (larger than the
computation itself).

We combine techniques from [KPY19; CJJ21] to overcome this obstacle and gain succinctness
again. Instead of directly computing comst ← SEH.Hash(st′0, . . . , st

′
t), we introduce an intermediate

step. First, we compute the Merkle roots rt0, . . . , rtt of the memory states D0, . . . , Dt. These Merkle
roots serve as compact representations of the entire memory throughout the computation. Next,
we compute com ← SEH.Hash((st0, rt0), . . . , (stt, rtt)). Our batch NP statement is now: For each
i ∈ [t], (1) the values ((sti−1, rti−1), (sti, rti)) are consistent with com, (2) the bit x[ji] is consistent
with d, (3) the bit Di−1[k] is consistent with rti−1, (4) assuming the bit x[ji], Di−1[k] has been
read, the machine transformation is (sti−1, rti−1) → (sti, rti), and (5) if i = t then check that stt
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is an accepting state. The witness wi includes the values ((sti−1, rti−1), (sti, rti) , x[ji]) along with
local opening certifying the consistency of the values with their digest, and the proof that the
transformation rti−1 → rti is correct.

Our RAM Delegation construction is then:

• Prover:

1. Compute the following:
1.1. d, the digest of the input.
1.2. (st0, D0), . . . , (stt, Dt), the states of the machine through the computation.
1.3. rt0, . . . , rtt, the Merkle roots of the values D0, . . . , Dt.
1.4. com, the SEH of ((st0, rt0) , . . . , (stt, rtt)), along with correlated openings to each one of

the values.
1.5. w1, . . . ,wt, the witnesses for the NP statements.
1.6. Π, the seBARG proof for the NP statements (using w1, . . . ,wt).

2. Output (Π, com).

• Verifier:

1. Given the digest d, check that the BARG proof accepts (relative to the NP statement defined
by com).

Our analysis is based on the analysis in [KLVW22]. However, in our case, we need to pay spe-
cial attention to the proof of each computation step, verifying efficiently that the transformation
((sti−1, rti−1)→ (sti, rti)) is done correctly. See full analysis in Section 6.

Note that the space complexity of the prover is Õλ(t + S + n) since the prover simulates the
RAM machine that uses space of size S, and it holds a list of t elements in the memory. Moreover,
the running time of the prover is Õλ(t · S + n) since it computes the Merkle root of the memory
at each step (which takes time t · S), and in step 1.4. it computes the t openings to com (which
takes time t for each opening). Here, Õλ notation accounts for polynomial factors in the security
parameter and in the size of the machine’s local state. In the following subsection, we improve the
time and space complexity of the prover.

2.3 Complexity-preserving RAM delegation.

Up to this point, we constructed a publicly verifiable succinct PCA with constant query complexity
for all NP in the adaptive security setting. However, the PCA prover is not yet succinct. The
running time of our PCA prover (described in Section 2.2) is dominated by the running time of the
RAM Delegation prover. Ultimately, improving the running time of the RAM Delegation prover to
be complexity-preserving results in a PCA scheme with a succinct prover.8

This subsection presents an efficient implementation of the RAM Delegation prover introduced
in Section 2.2, that achieves complexity-preserving RAM Delegation scheme.

The implementation of the prover presented in Section 2.2 demonstrates a time complexity of
Õλ(t

2 + t · S + n), and space complexity of at least Õλ(t+ S + n), where S denotes the size of the
large read-write memory used by the machine. For simplicity, in what follows, we will focus on a

8See Section 4 for the running time analysis.
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specific inefficient part of the prover’s computation and see how to improve both the running time
and space complexity. By applying the same approach to other parts of the computation, we can
achieve time complexity Õλ(t + n) and a space complexity Õλ(w · polylog(t) + n), where w is the
number of distinct memory locations written by the RAM machine.

For this high-level overview, we are specifically targeting a simplified version of the prover, with
a focus on enhancing selected steps. These steps include the computation of:
1. (st1, . . . , stt), the machine’s states list through the process.
2. (com, ρ1, . . . , ρt), a commitment to the machine’s states list and the corresponding openings.
3. (w1, . . . ,wt), the witnesses to the NP statement.
4. Π, the BARG proof for the NP statements which is generated using (w1, . . . ,wt).

Note that the underlying structure of the commitment scheme in our construction is essentially
a Merkle tree. Hence, in the subsequent discussion, we will refer to the commitment mentioned in
step 2 as a Merkle root, and the openings as the authentication paths within this tree.

We divided the description of our improved implementation into three phases. The starting
point is the naive implementation as described above that achieves Õλ(t

2 + t · S + n) running time
and Õλ(t+S+n) space. Then, in each phase, we incrementally improve these parameters as follows:
• In phase one, we achieve Õλ(t

2 + t · w + n) running time and Õλ(t+ w + n) space.

• In phase two, we achieve Õλ(t · w + n) running time and Õλ(w · polylog(t) + n) space.

• In phase three, we achieve Õλ(t+ n) running time and Õλ(w · polylog(t) + n) space.

Phase one: Our first step towards complexity-preserving is to reduce the large read-write space
factor and achieve Õλ(t

2 + t · w + n) running time and Õλ(t+ w + n) space.
For generating the RAM proof, the prover is required to at least simulate the RAM computation.

It is important to note that even though the machine might have access to a large read-write memory,
it might only write to a small number of locations. In other words, the memory might be sparse. In
our construction, we take advantage of this property by emulating the machine’s read-write memory
using a sparse hash tree scheme.

Sparse hash tree. A sparse hash tree scheme is a data structure that represents a Merkle tree,
particularly suited for sparse Merkle trees, meaning that most of the leaf nodes are empty. The
sparsity of the tree enables efficient simulation of the tree, with time complexity proportional to the
tree’s depth and the number of non-empty elements, rather than being proportional to the entire
tree’s size. Specifically, we construct a sparse hash tree that requires space that is linear in the
number of non-zero elements, and each read or write operation takes time that is proportional to
the depth of the tree.

The RAM machine starts with all zero memory and writes to at most w distinct locations in
the memory, which allows us to emulate the read-write memory of size S with Õλ(w) space. This
naturally results in a time complexity of Õλ(t

2+ t ·w+n) and a space complexity of Õλ(t+w+n).

Phase two: In what follows, we reduce the running time to Õλ(t · w + n) and space to Õλ(w ·
polylog(t) + n). For that purpose, the focus of this phase is to maintain a running time that is
quasi-linear in t, and simultaneously, avoid storing t elements in the memory.
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Initially, our RAM Delegation prover stores the entire computation history (st1, . . . , stt) in mem-
ory, leading to a memory overhead of Õλ(t). Instead, we construct a stream of the following data:
(st1, . . . , stt). However, simply creating a stream of states is not sufficient, as we need to access this
information multiple times for various computations. 9 Same challenges also apply for the list of
openings (ρ1, . . . , ρt) and for the list of witnesses (w1, . . . ,wt). To address this issue, we introduce
the new notion of rewindable stream.

Rewindable stream. A stream is a sequence of elements that are accessed incrementally over
time. In our context, we introduce the concept of a rewindable stream, which refers to the ability to
return to a specific point in the stream and continue generating the stream from that point onward.
In more detail, a rewindable stream allows a client to efficiently create a backup of the stream’s
state at any time and later restore the stream’s state to that specific time point.

In what follows, we describe how to (1) construct rewindable stream of states (st1, . . . , stt), (2)
compute the commitment com to the state’s list based on the stream of states, (3) compute a
rewindable stream of openings (ρ1, . . . , ρt) using the stream of states, and (4) generate the BARG
proof in step 4 based on a stream of witnesses (which is essentially the stream of openings).

Rewindable stream of states. The computation of a RAM machine progresses in a step-by-
step manner. Given a configuration of the machine, which includes its state and the contents of its
read-write memory, the next configuration can be computed efficiently. Leveraging this structure,
we can design a rewindable stream where the states of the stream correspond to an intermediate
configuration of the RAM machine. For the backup operation, we simply copy the entire interme-
diate configuration of the RAM machine. This process can be implemented using Õλ(w) time and
space, as we use a sparse hash tree to emulate the machine’s memory.

In what follows we explain how to compute the commitment com to the state’s list based on
the stream of states. Recall that we refer to the commitment in step 2 as a Merkle root, and the
openings are the authentication paths in the Merkle tree. This brings us to the broader challenge
of efficiently computing a Merkle root when provided with rewindable stream access to the data.

Computing the commitment com. Our task is to efficiently compute Merkle root given a
rewindable stream access to the data. It is well-known that computing a Merkle root can be done
in quasi-linear time while storing only a logarithmic number of elements in memory (as proved in
[Szy04]). A careful look at the algorithm will show that this can be done using a single pass over the
data, allowing us to use the stream of states to implement step 2 while storing only log t elements
in the memory, and in time Õλ(t · log t).

We have explained how to efficiently compute the commitment com, and reduce the space com-
plexity required for this operation. Now, we will describe how to efficiently construct a rewindable
stream of openings. Both steps together ensure the time and space efficiency of step 2 .

9Note that naively traversing the entire stream from the beginning for each access to sti would result in an overhead
of at least Õλ(t

2) running time.
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Rewindable stream of openings. Recall that each opening to com is essentially an authenti-
cation path in a Merkle tree. An authentication path can be computed in a quasi-linear time while
storing only a logarithmic number of elements in memory (as proved in [Szy04]). We can use the
algorithm to generate a stream of t authentication paths while storing only log t elements in the
memory. However, each authentication path is computed in time Õλ(t · log t · w), which concludes
with an overall running time of Õλ(t

2 · log t · w) for computing all the authentication paths.
Our next challenge is to reduce the running time of the stream. Instead of generating each

authentication path authi+1 from scratch, our algorithm leverages the information in the previous
authentication path authi. An authentication path represents the path from a leaf to the root and
consists of the sibling’s values encountered along the way. By exploiting the concept of the lowest
common ancestor, we observe that the leaves (i, i+1) share the same path from the lowest common
ancestor to the root and, therefore, also share the same siblings from the lowest common ancestor to
the root. Consequently, for the lowest common ancestor of height h, these two authentication paths
have (log t − h) identical values. With this insight, we can split the computation of Next into two
steps. The first step will take the relevant data from the previous authentication path authi, and
the second step will compute the authentication path within the sub-tree of height h. By utilizing
the rewind property of the stream, which allows us to start from a specific point in the stream, the
second step will take Õλ(2

h · h · w) time rather than Õλ(t · log2 t · w).
This approach achieves a running time of Õλ(t · log2 t · w) for one pass over the entire stream.

In other words, in the amortized case, the running time is Õλ(log
2 t · w).10

To efficiently compute the list of witnesses (step 3), we construct a rewindable stream of witnesses
that contain the machine’s states and the corresponding openings to com by simply wrapping the
rewindable streams we constructed. The following step computes the BARG proof efficiently using
only rewindable stream access to the witnesses, thereby avoiding the need for explicit access to the
witness list.

Computing the BARG proof. For this step, we need to construct an efficient BARG with stream
rewind access to the witnesses. For t instances, the BARG prover will run in time Õ(t · |w|) ·poly(λ),
and use space of size Õ(|w|·polylog(t))·poly(λ). Moreover, the prover will access each element in the
stream at most polylog(t) times. Note that the bounded access to the stream will allow us to start
with a stream that is efficient only in the amortized case, and yet conclude with Õ(t · |w|) · poly(λ)
time complexity.

We use the BARG scheme constructed in [KLVW22], but we suggest an alternative implemen-
tation for the prover. The implementation will use the same techniques as described above for the
RAM Delegation efficient prover (see Section 7.3 for more details).

Overall, we reduced the t2 overhead in the running time and t space overhead. This leads us to
Õλ(t · w + n) running time and Õλ(w · polylog(t) + n) space complexity.

Phase three: As a final step toward complexity-preserving, in this phase, we achieve Õλ(t + n)
running time and Õλ(w · polylog(t) + n) space.

To achieve this, we implement the rewindable stream of states in a way that each operation in
the stream, including backup, restore, and advancing to the next element, only takes Õλ(polylog(t))

10For a more detailed analysis of the algorithm’s efficiency, please refer to Section 7.1.
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time, rather than Õλ(w · polylog(t)). By following a similar analysis as in Phase 2, but with the
improved stream running time, we attain the necessary complexity parameters for the prover.

The challenge arises in the stream backup operation that requires copying the entire memory
of the RAM machine. Here, instead of copying the entire memory, we use a data structure that
represents the RAM memory and allows for efficient backup operation.

Memory scheme. Memory scheme is a data structure that represents a memory of a determin-
istic program, allowing for reading, writing, backing up, and restoration of the memory.

We construct a memory scheme, where each operation, including backups, takes time that is
poly-logarithmic in the size of the original memory. This construction allows us to implement
the rewindable stream of states efficiently, and consecutively, to achieve our desirable complexity
parameters.

3 Preliminaries

Notations. We denote the set of all positive integers up to n as [n] := {1, ..., n}. For any two
string x, y ∈ Σ∗ over alphabet Σ, we denote (a || b) to be the concatenation of the two strings. The
relative distance between strings x, y ∈ Σℓ over alphabet Σ is ∆(x, y) := |{i | xi ̸=yi}|

ℓ . The relative
distance between x ∈ Σℓ and a non-empty set S ⊆ Σℓ is ∆(x, S) := miny∈S(∆(x, y)).

3.1 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) is a special format for writing a proof that can be verified
by reading only a few bits. The following definition is taken from [BR22].

Definition 3.1 (PCP). A probabilistically checkable proof (PCP) for language L ∈ NTIME(t) con-
sists of a poly(t) prover PCP.P, that gets as input the instance x as well as a witness w, and a
poly(|x|, log t) time oracle machine PCP.V, that recieves x as input as well as an oracle to a proof
string π.

Completness. For every (x,w) ∈ R it holds that:

Pr
[
PCP.Vπ(x) = 1

∣∣ π ← PCP.P(x,w)
]
= 1 .

Soundness. For every x /∈ L, and for every oracle π̃ it holds that

Pr
[
PCP.Vπ̃(x) = 1

]
<

1

2

The length of π as a function of |x| and |w| is called the proof length. In order to verify its oracle,
the verifier PCP.V tosses r = r(|x|) random coins, and makes q = q(|x|) queries to π. The functions
r and q are called the randomness complexity and query complexity, respectively.

Theorem 3.2 ([ALMSS98]). Every L ∈ NP has a PCP with constant query complexity and loga-
rithmic randomness complexity
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Succinct PCPs. A PCP for L ∈ NP is said to be succinct [FS08; KR09] if there exists a polynomial
p (which may depend on L), such that for every (x,w) ∈ R it holds that |π| = p(|w|, log(|x|)), for
π = PCP.P(x,w).

3.2 Probabilistically checkable proofs of proximity

In what follows, we define probabilistically checkable proofs of proximity (PCPP). The definition is
taken from [BR22].

PCPPs, much like PCPs, allows the verifier to read only a small number of bits from the proof.
However, the key distinction between PCPs and PCPPs is that a PCPP verifier also reads only a
small number of bits from its input, and is therefore, only required to reject inputs that are far from
its language. In what follows, we define PCPP for pair languages.

Pair languages. A language L is said to be a pair language if L ⊆ {0, 1}∗ × {0, 1}∗. Given
instance x, the projection of L on x is the set L(x) = {y | (x, y) ∈ L}.

Definition 3.3 (PCPP). A probabilistically checkable proof of proximity (PCPP) for a pair lan-
guage L ∈ DTIME(t) consists of a poly(t) prover PCPP.P, that gets as input the pair (x, y) and
a poly(|x|, log t) time oracle machine PCPP.V, that recieves x as an explicit input, oracle access
to implicit input y, and oracle access to a proof string π. The verifier also recieves (explicitly) a
proximity parameter δ > 0. For proximity parameter δ ∈ [0, 1] and input (x, y) the following holds:

Completness. For every (x, y) ∈ L it holds that

Pr
[
PCPP.Vy,π(x, |y|, |π|, δ) = 1

∣∣ π ← PCPP.P(x, y)
]
= 1 .

Soundness. For every ∆(y, L(x)) ≥ δ, and for every oracle π̃ it holds that

Pr
[
PCPP.Vy,π̃(x, |y|, |π|, δ) = 1

]
<

1

2

The length of π as a function of |x| and |y| is called the proof length. In order to verify its oracles,
the verifier PCPP.V tosses r = r(|x|, |y|, δ) random coins, and makes q = q(|x|, |y|, δ) queries to y and
π. The functions r and q are called the randomness complexity and query complexity, respectively.

Theorem 3.4 ([BGHSV05]). Let L be a pair language, with instances (x, y), computable in time
t = t(|x|, |y|), and let δ ∈ [0, 1]. There exists a PCPP for L with respect to proximity parameter
δ, with query complexity O(1/δ), randomness complexity O(log t

δ ), and proof length poly(t). The
verifier runs in time poly(|x|, log t, 1δ ) and the prover runs in time poly(t).

3.3 Probabilistically checkable arguments

In what follows, we define probabilistically checkable argument (PCA). The definition is taken from
[BR22].

Much like a PCPs , PCAs are a special format in which the verifier only has to read a few
bits from the proof. Unlike PCPs, in which any proof for a false statement is rejected with high
probability, for PCAs, accepting proofs may exist, but we require that it is computationally hard to
find them.
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Definition 3.5 (publicly-verifiable PCA.). A publicly-verifiable probabilistically checkable argument
(PCA) for an NP relation R is a triplet of poly(n,m, λ)-time algorithms (PCA.G,PCA.P,PCA.V),
with deterministic PCA.P and probabilistic PCA.G and PCA.V, such that for every instance length
n and witness length m the following holds:

Completness. For every x ∈ {0, 1}n and w ∈ {0, 1}m, such that (x,w) ∈ R, every λ ∈ N, and
every crs← PCA.G(1n, 1m, 1λ) it holds that:

Pr
[
PCA.Vπ(crs,x) = 1

∣∣ π ← PCA.P(crs,x,w)
]
= 1 .

Computational adaptive soundness. For every λ ∈ N, and poly-size adversary P̃, with all but
negl(λ) probability over the choice of crs← PCA.G(1n, 1m, 1λ) it holds that:

Pr

[
PCA.Vπ̃(crs,x) = 1
R(x) = ∅

∣∣∣∣ (x, π̃)← P̃(crs)

]
<

1

2
.

The length of π, as a function of n, m, and λ is called the proof length. In order to verify its oracle,
the verifier PCA.V tosses r = r(n,m, λ) random coins, and makes q = q(n,m, λ) queries to π. The
functions r and q are called the randomness complexity and query complexity, respectively.

Note that in Definition 3.5 we distinguish between the randomness used for generating the crs
and the randomness of the verifier. This separation allows us to define the crs as “good” with
overwhelming probability while the verifier only guarantees constant soundness (since the verifier
only makes a small number of queries).

Succinct PCAs. A PCA for an NP relation R, which is decidable in some time t = t(n,m) ≥ n,
is said to be succinct if the PCA proof is of length poly(m,λ, log t), where poly refers to a fixed
universal polynomial (that does not depend on the relation R).

PCA with a succinct prover. We say that a PCA scheme has a succinct prover if for any
NP relation R that can be verified in time t = poly(n,m) and space s = poly(n,m), the PCA
prover (given the instance and the witness) generates the proof in time t ·poly(λ,m, log t) and space
s · poly(λ,m, log t). Here, poly refers to a fixed universal polynomial (that does not depend on the
relation R).

3.4 Batch arguments

In what follows, we define batch argument (BARG) scheme for BatchCSAT. The definition is taken
from [KLVW22].

Let CSAT be the following language:

CSAT = {(C,x) | ∃w ∈ {0, 1}m s.t. C(x,w) = 1}

where C : {0, 1}n × {0, 1}m → {0, 1} is a Boolean circuit and x ∈ {0, 1}n is an instance.
Let BatchCSAT be the following language:

BatchCSAT = {C | ∃w1, . . . ,wk ∈ {0, 1}m s.t. ∀i ∈ [k], C(i,wi) = 1}
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Definition 3.6 (BARG for BatchCSAT). A non-interactive batch argument for the index language
BARG = (BARG.G,BARG.P,BARG.V) has the following syntax:

BARG.G(1λ, k, s, i∗)→ (crs, td). This is a randomized algorithm that takes as input a security pa-
rameter 1λ, a number of instances k, a circuit size 1s, and an index i∗ ∈ [k]. It outputs a
common reference string crs, and a trapdoor td.

BARG.P(crs, C,w1, . . . ,wk)→ π. This is a deterministic poly-time algorithm that takes as input
a common reference string crs, a circuit C : {0, 1}n × {0, 1}m → {0, 1} and a witnesses
w1, . . . ,wk ∈ {0, 1}m. It outputs a proof π.

BARG.V(crs, C, π)→ {0, 1}. This is a deterministic poly-time algorithm that takes as input a circuit
C : {0, 1}n × {0, 1}m → {0, 1}, and a proof π. It outputs an acceptance bit.

An L(·, ·)-succinct BARG protocol for the relation R satisfies the following requirements:

L-Succinct. The running time of BARG.G is at most L(k, λ) · poly(s), and the length of the crs
and the proof π is at most L(k, λ) · poly(s).

L-Verifier efficiency. The running time of BARG.V is at most L(k, λ) · poly(s).

Prover efficiency. The running time of BARG.P is polynomial in its input.

Completeness. For every k = k(λ),m = m(λ), s = s(λ) of size at most 2λ, witnesses w1, . . . ,wk ∈
{0, 1}m, and circuit C ∈ {0, 1}s such that ∀i ∈ [k] C(i,wi) = 1, and for every index i∗ ∈ [k],
there exists a negligible function µ such that for any λ ∈ N:

Pr

[
BARG.V(crs, C, π) = 1

∣∣∣∣ (crs, td)← BARG.G(1λ, s, k,m, i∗)
π ← BARG.P(crs, C, (w1, . . . ,wk))

]
= 1− µ(λ) .

Indistiguishability. For every poly-size adversary A, and any polynomials k = k(λ),m = m(λ), s =
s(λ), there exists a function µ such that for every λ ∈ N and two indexes i1, i2 ∈ [k]:∣∣∣ Pr

[
A(crs) = 1 | (crs, ·)← BARG.G(1λ, s, k,m, i1)

]
−Pr

[
A(crs) = 1 | (crs, ·)← BARG.G(1λ, s, k,m, i2)

] ∣∣∣ ≤ µ(λ) .

Semi-adaptive soundness. For every poly-size adversary A, and any polynomials k = k(λ),m =
m(λ), s = s(λ), there exists a function µ such that for every λ ∈ N and index i∗ ∈ [k]:

Pr

[
BARG.V(crs, C, π) = 1
(C, i∗) /∈ CSAT

∣∣∣∣ (crs, td)← BARG.G(1λ, s, k,m, i∗)
(C, π)← A(crs)

]
≤ µ(λ) .

Definition 3.7 (seBARG for BatchCSAT). A somewhere extractable non-interactive batch argu-
ment for the index language seBARG = (BARG.G,BARG.P,BARG.V,BARG.E) is a BARG with the
following augmented syntax:

BARG.E(td, C, π)→ w
∗. This is a deterministic poly-time algorithm that takes as input a trapdoor

key td, a circuit C : {0, 1}n×{0, 1}m → {0, 1}, and a proof π. It outputs a witness w ∈ {0, 1}m.

An L(·, ·)-succinct seBARG protocol for the relation R satisfies the following additional require-
ments to that of an L(·, ·)-succinct BARG
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Somewhere argument of knowelege. For every poly-size adversary A, and any polynomials k =
k(λ),m = m(λ), s = s(λ), there exists a function µ such that for every λ ∈ N and index
i∗ ∈ [k]:

Pr

 BARG.V(crs, C, π) = 1
C(i∗,w∗) ̸= 1

∣∣∣∣∣∣
(crs, td)← BARG.G(1λ, s, k,m, i∗)
(C, π)← A(crs)
w

∗ ← BARG.E(td, π)

 ≤ µ(λ) .

The following theorem follows by implying the [KLVW22] BARG transformation on the BARG
constructions from [CJJ21; WW22; CGJJZ23].

Theorem 3.8 ([KLVW22; CJJ21; WW22; CGJJZ23]). There exist poly(λ, log k)-succinct index
BARGs for BatchCSAT with somewhere argument of knowledge under any of the following assump-
tions:

1. The O(1)-LIN assumption on a pair of cryptographic groups with efficient bilinear map.

2. The hardness of Learning with errors (LWE) problem against polynomial time adversaries.

3. The sub-exponential Decisional Diffie-Hellman (DDH) assumptions.

3.5 RAM delegation

In what follows we define RAM Delegation scheme for read-write RAM machines. The definition is
taken from [KLVW22].

A read-write RAM machine is modeled as a deterministic machine with random access to a
read-write memory of large size. In its standard definition, the machine has a local state of length
logarithmic in the memory size. At each time step, the machine reads or writes to a single memory
cell and updates its local state. Often it is assumed that the machine has no input outside of its
memory.

We say that without loss of generality, the RAM machine has random access to a read-only
memory of size n and a large read-write memory initially filled with zeros. We refer to the specific
memory locations where the machine performs write operations as the write-memory of the machine.
We denote t(n) as the number of steps executed by the machine, and w(n) as the size of the write-
memory. The input to the RAM machine is represented as a pair x = (ximp, xexp), where ximp is
large and stored in the random access memory, and xexp is a compact explicit input. Having defined
this model, we can now proceed to formalize the concept of RAM Delegation.

Definition 3.9. An L-succinct RAM Delegation = (RAM.G,RAM.D,RAM.P,RAM.V) for a RAM
computation M with local state of size Lst ≥ |xexp|+ log |ximp|, satisfies the following properties:

L-succinct. The running time of RAM.G is at most L(λ, t) · poly(Lst), and the length of a proof π
is at most L(λ, t) · poly(Lst).

L-Verifier efficiency. The running time of RAM.V is at most L(λ, t) · poly(Lst).

Prover efficiency. The running time of RAM.P is polynomial in its input and the read-write mem-
ory of the machine.
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Digest efficiency. The running time of RAM.D is linear in its input, |x| · poly(λ).

Completeness. For any λ, n ∈ N such that n ≤ w(n) ≤ t(n) ≤ 2λ, and for any x = (ximp, xexp) ∈
{0, 1}n such that M(x) halts within t time steps, we have that

Pr

 RAM.V(crs, dimp, xexp, b, π) = 1
M(x) = 1

∣∣∣∣∣∣
crs← RAM.G(1λ, t)
dimp = RAM.D(crs, ximp)
(b, π)← RAM.P(crs, ximp, xexp)

 = 1− negl(λ) .

Collistion resistance of RAM digest. For any poly-size adversary A, and polynomial t = t(λ),
there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
RAM.D(crs, x) = RAM.D(crs, x′)
x ̸= x′

∣∣∣∣ crs← RAM.G(1λ, t)
(x, x′)← A(crs)

]
≤ negl(λ) .

Weak soundness. For any poly-size adversary A, and polynomial t = t(λ), there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

 RAM.V(crs, dimp, xexp, 0, π0) = 1
RAM.V(crs, dimp, xexp, 1, π1) = 1

∣∣∣∣∣∣
crs← RAM.G(1λ, t)
(x = (ximp, xexp), π0, π1)← A(crs)
dimp ← RAM.D(crs, ximp)

 ≤ negl(λ) .

We say that the RAM Delegation scheme has a strong soundness if it also satisfies the following
strong soundness definition:

Strong soundness. For any poly-size adversary A, and polynomial t = t(λ), there exists a negli-
gible function negl(·) such that for every λ ∈ N,

Pr

[
RAM.V(crs, dimp, xexp, 0, π0) = 1
RAM.V(crs, dimp, xexp, 1, π1) = 1

∣∣∣∣ crs← RAM.G(1λ, t)
(dimp, xexp, π0, π1)← A(crs)

]
≤ negl(λ) .

4 PCA from RAM Delegation

In this section we construct a publicly-verifiable and adaptively sound succinct PCA with constant
query complexity for any relation in NP. The construction is introduced in Section 4.1. We then
proceed to prove the completeness, efficiency, and soundness of the scheme in Section 4.2. By
combining these results, we establish the following theorem.

Theorem 4.1. Assume there exists a poly(log t, λ)-succinct RAM Delegation with weak soundness
for any read-write RAM machine, then for any relation R in NP there exists a publicly-verifiable
and adaptively sound succinct PCA with constant query complexity.

Furthermore,

• The verifier runs in time n · poly(λ) + polylog(λ,m, log n).

• The verifier has randomness size O(logm+ loglogn+ log λ).
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• The prover runs in time T + n · poly(λ) + poly(λ,m, log n), and uses space S + n · poly(λ) +
poly(λ,m, log n), where T, S are the running time and space complexity of the RAM Delegation
prover.

Where n is the instance size, and m is the witness size.

By combining Theorem 4.1 with Corollary 7.2 we get the following corollary.

Corollary 4.2. For any relation R in NP there exists a publicly-verifiable and adaptively sound
succinct PCA with constant query complexity under any of the following assumptions:

1. The O(1)-LIN assumption on a pair of cryptographic groups with efficient bilinear map.

2. The hardness of Learning with errors (LWE) problem against polynomial time adversaries.

3. The sub-exponential Decisional Diffie-Hellman (DDH) assumptions.

Furthermore,

• The verifier runs in time n · poly(λ) + polylog(λ,m, log n).

• The verifier has randomness size O(logm+ loglogn+ log λ).

• The prover runs in time T · poly(λ,m, log T ), and uses space S · poly(λ,m, log T ), where T, S are
the time and space required for verifying the language.

4.1 Construction

In this section, we present the construction of a publicly-verifiable and adaptively sound succinct
PCA with constant query complexity for any relation in NP. We begin by introducing relevant
notations that will be used throughout the construction.

Notations. Fix a relation R in NP. Let M ′ be a deterministic Turing machine that can verify
whether an instance of size n and a witness of size m belong to R in time t = poly(n). We denote
M as a RAM machine that, given an an implicit input ximp = x and an explicit input w, emulates
M ′(x,w). The machine will output 1 if and only if M ′(x,w) accepts. The running time of M is
t. The read-write memory of the machine is of size S = t+ n+m. The local state of the machine
includes the description of the state of the Turing machine and the last location read from memory,
which requires at most polylog(t, n,m). We define the size of the local state of the machine to be
Lst = |xexp|+ log |ximp|+ polylog(t, n,m) = m+ polylog(t, n,m).

Let (RAM.G,RAM.D,RAM.P,RAM.V) be a RAM Delegation scheme for the machine M , and let
Enc be an efficiently encodable and decodable error correcting code ensemble with relative distance
δ > 0. Denote by Enc−1 the (poly-time) decoding algorithm for Enc. We require the decoding
algorithm to work only for valid codewords. The language L′ is defined as follows:

L′ =
{(

crs, dimp
)
,Enc(w||π) | RAM.V(crs, dimp,w, 1, π)

}
In other words, the language L′ is the set of pairs of the following structure:

1. The first component consists of inputs known to RAM.V explicitly, namely, the common reference
string crs and a digest of the implicit input.
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2. The second component consists of inputs given to RAM.V by the prover, namely, the witness w,
and the RAM Delegation proof π. All of these are encoded by the error correcting code Enc.

We define PCPP = (PCPP.P,PCPP.V) scheme to be a PCPP scheme for the language L′.

Construction 4.3. The construction of the PCA scheme is as follows:

• PCA.G(1n, 1m, 1λ).

1. Output crs← RAM.G(1λ, t(n,m)).

• PCA.P(crs,x,w).

1. Set π1 = RAM.P(crs,x,w).
2. Set dimp = RAM.D(crs,x).
3. Set π2 = PCPP.P((crs, dimp),Enc(w||π1)).
4. Output a proof π = (Enc(w||π1)||π2).

• PCA.Vπ(crs,x).

1. Set dimp = RAM.D(crs,x).
2. Parse π as Enc(w||π1)||π2.
3. Output PCPP.VEnc(w||π1),π2((crs, dimp), δ2).

4.2 Analysis

In what follows, we will provide proofs for completeness, efficiency, and soundness for the PCA
construction in section Section 4.1.

Completeness. Follows directly from the completeness properties of the underlying encoding,
RAM Delegation and PCPP schemes.

Efficiency. We start by defining the efficiency properties of the underlying RAM Delegation
scheme. Let Lst be the size of the local state of M , let vt be the running time of RAM.V, let
Lcrs be the size of crs, and let Lπ1 be the size of the proof π1. By the poly(λ, log t)-verifier effi-
ciency and the poly(λ, log t)-succinctness of the underlying RAM Delegation scheme, we get that for
Lst ≥ |xexp|+ log |ximp| the following holds (Definition 3.9),

vt, Lcrs, Lπ1 ≤ poly(λ, log t) · poly(Lst) .

Given that Lst = m+polylog(t, n,m), we get that Lst ≥ |xexp|+ log |ximp|. Therefore, by the above
equation,

vt, Lcrs, Lπ1 ≤ poly(λ, log t) · poly(log t, log n,m)

≤ poly(λ, log n,m) . (1)

Furthermore, we define the running time required for verifying the language L′ to be the t′.
By the efficiency of the underlying RAM Delegation scheme and the efficiency of the underlying
encoding scheme, we get that,

t′ = vt+ poly(m, Lπ1) .
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By combining the above equation with Equation 1 we get that:

t′ ≤ poly(λ, log n,m) . (2)

Now, we can proceed to prove the succinctness of our scheme.

• Proof size: By the efficiency of the underlying encoding scheme, and by the size of π1 described
in Equation 1, we get that,

|Enc(w||π1)| ≤ poly(λ, log n,m) . (3)

By the running time of RAM.V described in Equation 1, combining with Theorem 3.4, we get
that,

|π2| ≤ poly(λ, log n,m) . (4)

Overall, by combining Equations 3, 4 we get that,

|π| = |(Enc(w||π1)||π2)| ≤ poly(λ, log n,m) ,

as required.

• Prover complexity: We start by analyzing the running time of all the steps except for the RAM
Delegation prover execution. The PCA prover first computes π1, the RAM Delegation proof. Then,
the PCA prover computes the digest of x using RAM.D. By the efficiency of the underlying RAM
Delegation, this step takes time:

|x| · poly(λ) = n · poly(λ) . (5)

Finally, the prover computes π2 by encoding (w || π1), followed by the computation of a PCPP
proof for the language L′. Since the running time of verifying L′ is t′, this step takes poly(t′)
(Theorem 3.4 ). By equation Equation 2, we get that this step takes time:

poly(λ, log n,m) . (6)

By Equation 1 we get that,

poly(vt,m, Lπ1) ≤ poly(λ, log n,m) . (7)

By Equation 5 to Equation 7, we get that all the steps of the PCA prover, except for the execution
of the RAM Delegation prover, takes time:

n · poly(λ) + poly(λ, log n,m) . (8)

Overall, for a RAM Delegation prover with running time bounded by T , we get that the running
time of the PCA prover is bounded by:

T + n · poly(λ) + poly(λ, log n,m) .

22



Regarding the space complexity of the PCA prover, it is determined by the space used by the
RAM Delegation prover and the runtime of the remaining steps. Therefore, referring to equation
8, for a RAM Delegation prover with space complexity bounded by S, the space complexity of the
PCA prover is bounded by:

S + n · poly(λ) + poly(λ, log n,m)

as required.

• Verifier running time: The PCA verifier starts by computing the digest of x using RAM.D. By
the efficiency of the underlying RAM Delegation scheme, this step takes time

|x| · poly(λ) = n · poly(λ) . (9)

Then, the PCA verifier validates the PCPP proof. By Theorem 3.4, verifying the PCPP proof
takes time:

polylog(vt,m, Lπ1) . (10)

By Equation 1 we get that,

polylog(vt,m, Lπ1) ≤ polylog(λ,m, log n) . (11)

Overall, by combining Equation 9 to Equation 11 we get that the verifier runs in time n ·poly(λ)+
polylog(λ,m, log n), as required.

• Verifier’s randomness size: The PCA verifier only uses randomness required for the PCPP verifier.
Therefore, by Theorem 3.4, the randomness complexity is O(log t′). By Equation 2 we get that
the randomness complexity is

O(log(poly(λ, log n,m))) ≤ O(log(λ) + loglog(n) + log(m)),

as requires.

• Query complexity: The PCA verifier only queries its oracle when running the PCPP verifier.
Therefore, for a fixed proximity parameter, by Theorem 3.4, the query complexity is O(1), as
required.

Soundness. Fix some n,m ∈ N, security parameter λ ∈ N, and deterministic malicious prover P̃
of size s(λ) = poly(λ).

Fix a crs generated by PCA.G(1n, 1m, 1λ), a malicious prover message (x, π̃) = P̃(crs) such that
R(x) = ∅, and a digest of the input dimp = RAM.D(crs,x). Parse the proof as π̃ = τ̃1||τ̃2. Consider
the case where:

∆(τ̃1, Image(Enc)) ≥ δ

2
.

In this case, since L′(crs, dimp) ⊆ Image(Enc), it holds that:

∆(τ̃1, L
′(crs, dimp)) ≥ δ

2
.
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By the soundness property of the PCPP, we get that:

Pr

 PCPP.Vτ̃1,τ̃2((crs, dimp), δ2) = 1

∣∣∣∣∣∣∣∣
(x, π̃)← P̃(crs)
dimp ← RAM.D(crs,x)
π̃ := τ̃1||τ̃2
∆(τ̃1, L

′(crs, dimp)) ≥ δ
2

 <
1

2
.

By the above equation, for the case where ∆(τ̃1, Image(Enc)) ≥ δ
2 , the following holds:

Pr
[
PCA.Vπ̃(crs,x) = 1 ∧ R(x)

∣∣ (x, π̃)← P̃(crs)
]
<

1

2
,

as required.
Therefore, moving forward, we will only consider the case where:

∆(τ̃1, Image(Enc)) <
δ

2
.

In this case, the prefix τ̃1 can be decoded efficiently into w̃||π̃1 = Enc−1(τ̃1).
Given a crs we define the event BADb to be the following event:

BADb :=

 RAM.V(crs, dimp, w̃, 1, π̃1) = b
R(x) = ∅

∣∣∣∣∣∣∣∣
(x, π̃)← P̃(crs)
dimp ← RAM.D(crs,x)
π̃ := τ̃1||τ̃2
w̃||π̃1 ← Enc−1(τ̃1)

 .

In other words, the occurrence of event BAD1 implies that the proof π̃ consists of a false witness
w̃ and an accepting RAM Delegation proof π̃1. We’ll argue that (1) the probability of sampling a
PCA common reference string such that the event BAD1 occurs is negligible, and (2) the probability
of sampling a PCA common reference string such that the event BAD0 occurs and that the PCA
verifier accepts is at most 1

2 . Combining both claims will give us the required soundness guarantee
for our PCA.

By the soundness property of the underlying RAM Delegation scheme, we get that:

Pr
[
BAD1

∣∣ crs← PCA.G(1n, 1m, 1λ)
]
≤ negl(λ) .

Otherwise, we could use (x, π̃)← P̃(crs) to construct an adversary for the RAM Delegation scheme
that breaks the weak soundness with the same probability that the event BAD1 occurs. The
adversary for the RAM Delegation scheme will extract the witness w̃ and the proof π̃1 from π̃.
Then, the adversary will generate an honest proof π0 for the statement that M(x,w) = 0 (which
can be done by the completeness of the RAM Delegation scheme). The adversary will output
(x = (x,w), π0, π1 = π̃1).

Next, we want to bound the following probability of BAD0. By the definition of BAD0, this
means that RAM.V rejects its input. Therefore, the claim proven by τ̃2 is false. In this case, by
the soundness of the PCPP verifier for L′ it holds that the probability of PCPP.V accepting input
((crs, dimp),Enc(w̃||π̃1)) with proof τ̃2 is at most 1

2 . Therefore, we get that:

Pr

[
PCA.Vπ̃(crs,x) = 1 ∧ R(x)
BAD0

∣∣∣∣ crs← PCA.G(1n, 1m, 1λ)

]
<

1

2
.

Overall, with all but negl(λ) probability over the choice of crs, the probability of PCPP.V ac-
cepting x with proof π̃ is at most 1

2 .
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5 Preliminaries - Hash Families

In this section, we present a collection of diverse hash family definitions. Each hash family we
introduce includes the desirable property of local opening and a unique combination of soundness
and efficiency attributes.

5.1 Hash Tree

In this section we recall the definition of a hash tree scheme taken from [KPY19]. A hash tree
scheme HT = (HT.G,HT.H,HT.R,HT.VR) has the following syntax:

HT.G(λ)→ hk. The probabilistic setup algorithm HT.G takes as input the security parameter λ
and outputs a hash key hk.

HT.H(hk, x)→ (T, rt). The deterministic hash algorithm HT.H takes as input a key hk, and an
input x ∈ {0, 1}∗. It outputs a hash tree T, and a root rt.

HT.R(T, j)→ (b, π). The deterministic read algorithm HT.R takes as input a tree T and an index
j. It outputs a bit b, and a proof π.

HT.W(T, j, b)→ (T′, rt′, π) The deterministic write algorithm HT.W takes as input a tree T, an
index j, and a bit b. It outputs a new tree T′, a new root rt′ and a proof π.

HT.VR(hk, rt, j, b, π)→ 0/1. The deterministic verify read algorithm HT.VR takes as input a key
hk, a root rt, an index j, a bit b, and a proof π. It outputs an acceptance bit.

HT.VW(hk, rt, j, b, rt′, π)→ 0/1. The deterministic verify write algorithm HT.VW takes as input a
key hk, a root rt, an index j, a bit b, a new root rt′, and a proof π. It outputs an acceptance
bit.

Definition 5.1 (Hash Tree). A secure hash tree scheme satisfies the following requirements:

Completeness of read. For every λ ∈ N, N ≤ 2λ, x ∈ {0, 1}N , and j ∈ [N ]:

Pr

 HT.VR(hk, rt, j, b, π) = 1
x[j] = b

hk← HT.G(λ)
(T, rt)← HT.H(hk, x)
(b, π)← HT.R(T, j)

 = 1 .

Completeness of write. For every λ ∈ N, N ≤ 2λ, x ∈ {0, 1}N , j ∈ [N ] and b ∈ {0, 1}, let x′ be
the string x with its j-th location set to b. We have that:

Pr

 HT.VW(hk, rt, j, b, rt′, π) = 1
(T′, rt′) = HT.H(hk, x′)

hk← HT.G(λ)
(T, rt)← HT.H(hk, x)
(T′, rt′, π)← HT.W(T, j, b)

 = 1 .

Efficiency. In the completeness experiment above:

• The setup, read, write, verify read, and verify write algorithms run in time logN · poly(λ).
• The hash algorithm runs in time N · poly(λ)
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• The length of the root is poly(λ).
• The length of the proof is logN · poly(λ).

Soundness of read. For every poly(λ)-size adversary A there exists a negligible function µ such
that for every λ ∈ N:

Pr

 b1 ̸= b2
HT.VR(hk, rt, j, b1, π1) = 1
HT.VR(hk, rt, j, b2, π2) = 1

hk← HT.G(λ)
(rt, j, b1, π1, b2, π2)← A(hk)

 ≤ µ(λ) .

Soundness of write. For every poly(λ)-size adversary A there exists a negligible function µ such
that for every λ ∈ N:

Pr

 rt1 ̸= rt2
HT.VW(hk, rt, j, b, rt1, π1) = 1
HT.VW(hk, rt, j, b, rt2, π2) = 1

hk← HT.G(λ)
(rt, j, b, rt1, π1, rt2, π2)← A(hk)

 ≤ µ(λ) .

Theorem 5.2 ([Mer87]). A hash-tree scheme can be constructed from any family of collision-
resistant hash functions.

5.2 Somewhere Extractable Hash

In this section we recall the definition of a hash tree scheme. The definition is taken from. A
somewhere extractable hash

SEH = (SEH.G, SEH.H, SEH.O,SEH.V,SEH.E)

has the following syntax:

SEH.G(1λ, N, i)→ (hk, td). This is a randomized algorithm that takes as input a security parameter
1λ, input size N , and an index i ∈ [N ]. It outputs a hash key hk, and a trapdoor td.

SEH.O(hk, x, j)→ (b, ρ). This is a deterministic poly-time algorithm that takes as input a hash key
hk, an input x, and an index j ∈ [N ]. It outputs a bit b, and an opening ρ.

SEH.V(hk, v, j, b, ρ)→ 0/1. This is a deterministic poly-time algorithm that takes as input a hash
key hk, a hash value v, an index j ∈ [N ], a bit b, and an opening ρ. It outputs an acceptance
bit.

SEH.E(td, v)→ b. This is a deterministic poly-time algorithm that takes as input a trapdoor hk,
and a hash value v. It outputs a bit b.

Definition 5.3 (SEH). An L-succinct SEH hash family

(SEH.G,SEH.H,SEH.O, SEH.V, SEH.E) ,

is required to satisfy the following properties:

L-succinct. The runtime of SEH.G(1λ, N, i) is bounded by L(N,λ), and the runtime of SEH.V (and
hence the size of v, ρ) is at most L(N,λ).

26



Opening completness. For any λ ∈ N, any N ≤ 2λ, any indices i, j ∈ [N ], and x ∈ {0, 1}N ,

Pr

 b = xj
SEH.V(hk, v, i, b, ρ) = 1

∣∣∣∣∣∣
(hk, td)← SEH.G(1λ, N, i)
(v, ·)← SEH.H(hk, x)
(b, ρ)← SEH.O(hk, x, j)

 ≥ 1− negl(λ) .

Pr

 ρj = ρ

∣∣∣∣∣∣
(hk, td)← SEH.G(1λ, N, i)
(v, ρ1, . . . , ρ|x|)← SEH.H(hk, x)
(b, ρ)← SEH.O(hk, x, j)

 = 1 .

Index hiding. For any poly-size adversary A = (A1, A2), and indexes i0, i1 ∈ N, there exists a
negligible function negl(·) such that for every λ ∈ N,

Pr

[
A2(hk) = b

∣∣∣∣ (i0, i1, N)← A1(1
λ), b← {0, 1}

(hk, td)← SEH.G(1λ, N, ib)

]
≤ 1

2
+ negl(λ) .

Somewhere statistical (resp. computational) extractability for any all powerful (resp. poly-
size) adversary A = (A1, A2) there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

 b ̸= SEH.E(td, v)
SEH.V(hk, v, i, b, ρ) = 1

∣∣∣∣∣∣
(i,N)← A1(1

λ)
(hk, td)← SEH.G(1λ, N, i)
(v, b, ρ)← A2(hk)

 ≤ negl(λ) .

We say that a SEH scheme has succinct local openings if

• SEH.G runs in time poly(λ).

• L(N,λ) = poly(λ, logN).

Remark 5.4 (m-SEH). As remarked in [KLVW22], any SEH hash family can be converted into one
that is extractable on m indices i1, . . . , im by simply running all the algorithms in parallel m times.
Under this transformation, if the original SEH family had ℓ-local openings, the new family will have
ℓ ·m-local openings. Thus, more generally, we think of SEH.G as taking as input (1λ, N, s) where
I ⊆ [N ], in which case SEH.E(td, v) outputs |I| bits (bi)i∈I . We sometimes refer to this an m-SEH
hash family, and sometimes we omit m, and simply refer to it as an SEH hash family.

Theorem 5.5 ([KLVW22]). SEH schemes with succinct local openings exist under any of the fol-
lowing cryptographic hardness assumptions: (1) O(1)-LIN assumption; (2) The LWE assumption; or
(3) Decisional Diffie-Hellman (DDH).

Definition 5.6 (Two-mode SEH). We say that a SEH is a two-mode SEH if for a fixed input length
N = 2 and flexible block size m, the output length of SEH.H is m · (1 + 1/Ω(λ)) + poly(λ).

Theorem 5.7 ([KLVW22]). Two-mode SEH schemes exist under any of the following cryptographic
hardness assumptions: (1) O(1)-LIN assumption; (2) The LWE assumption; or (3) Decisional Diffie-
Hellman (DDH).
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5.3 Sparse Hash Tree

In this section we recall the definition of a hash tree scheme ([DPP16]). A sparse hash tree scheme
SparseHT = (SparseHT.G, SparseHT.H,SparseHT.R,SparseHT.VR) has the same syntax as for the
HT scheme except for the following syntax:

SparseHT.H(hk, N, I)→ (T, rt). The deterministic hash algorithm SparseHT.H takes as input a key
hk, an input size N ∈ N, and a set of indexes I ⊆ [N ]. It outputs a description of a hash tree
T, and a root rt.

Definition 5.8 (Sparse Hash Tree). A secure hash tree scheme satisfies the following requirements:

Completeness of read. For every security parameter λ ∈ N, input size N ∈ N, input x ∈ {0, 1}N ,
a set of indexes I = {j ∈ [N ] | x[j] = 1}, and index j ∈ [N ]:

Pr

 SparseHT.VR(hk, rt, j, b, π) = 1
x[j] = b

hk← SparseHT.G(λ)
(T, rt)← SparseHT.H(hk, N, I)
(b, π)← SparseHT.R(T, j)

 = 1 .

Completeness of write. For every security parameter λ ∈ N, input size N ∈ N, input x ∈
{0, 1}N , a set of indexes I = {j ∈ [N ] | x[j] = 1}, index j ∈ [N ], b ∈ {0, 1}, let x′ be the
string x with its j-th location set to b, and let I ′ = {j ∈ [N ] | x′[j] = 1}. We have that:

Pr

 SparseHT.VW(hk, rt, j, b, rt′, π) = 1
(T′, rt′) = SparseHT.H(hk, N, I ′)

hk← SparseHT.G(λ)
(T, rt)← SparseHT.H(hk, N, I)
(T′, rt′, π)← SparseHT.W(T, j, b)

 = 1 .

Efficiency. In the completeness experiment above:

• The setup, read, write, verify read, and verify write algorithms run in time logN · poly(λ).
• The hash algorithm runs in time |I| · logN · poly(λ).
• The length of the root is poly(λ).

• The length of the proof is logN · poly(λ).

Soundness of read. For every poly(λ)-size adversary A there exists a negligible function µ such
that for every λ ∈ N:

Pr

 b1 ̸= b2
SparseHT.VR(hk, rt, j, b1, π1) = 1
SparseHT.VR(hk, rt, j, b2, π2) = 1

hk← SparseHT.G(λ)
(rt, j, b1, π1, b2, π2)← A(hk)

 ≤ µ(λ) .

Soundness of write. For every poly(λ)-size adversary A there exists a negligible function µ such
that for every λ ∈ N:

Pr

 rt1 ̸= rt2
SparseHT.VW(hk, rt, j, b, rt1, π1) = 1
SparseHT.VW(hk, rt, j, b, rt2, π2) = 1

hk← SparseHT.G(λ)
(rt, j, b, rt1, π1, rt2, π2)← A(hk)

 ≤ µ(λ) .
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Theorem 5.9. If there exists a secure family of collision-resistant hash functions, then there exists
a secure sparse hash tree scheme.

Proof Sketch. We construct a Merkle tree with an efficient representation. Fix any N ∈ N, and let
d := logN be the depth of the tree. We observe that when I = ∅, all the leaf nodes in the tree have
the value H(0). As each node in the tree is computed by hashing its two child nodes, it follows that
all the nodes within a given layer of the tree will have the same value. We leverage this information,
and we compute only one value for each layer in the tree. We define v0 = H(0), and for each i ∈ [d]
we define vi := H(vi−1 || vi−1). This computation can be done using poly(λ, logN) time and space.

Our next step is to address the values in the locations I. We start with just a null root that
does not point to anything. At every step of the algorithm we will think of the tree as a virtual
complete binary tree, where a null node at level i means that the values of that node is vi. We now
gradually add values to the tree according to I. The main idea is to use the well-known algorithm
for updating a Merkle tree. The values of the path from the leaf to the root can be computed in
time poly(λ, logN). We update the values of the path from the leaf to the root, while adding the
nodes that are absent from that path.

Overall, the running time for constructing the tree is (|I|+ 1) · logN · poly(λ).

6 RAM Delegation from BARGs

In this section we construct a poly(λ, log t)-succinct RAM Delegation scheme for any read-write RAM
machine. The construction is introduced in Section 6.1. We then proceed to prove the completeness,
efficiency, and soundness of the scheme in Section 6.2. By combining these results, we establish the
following theorem.

Theorem 6.1. Assume there exists a secure hash tree HT, a secure sparse hash tree SparseHT, a
secure somewhere extractable hash SEH with succinct local opening, and an L-succinct somewhere
extractable batch argument seBARG for BatchCSAT, then there exists an L(λ, t) · poly(λ, log t)-
succinct RAM Delegation scheme with strong soundness for any read-write RAM machine.

By combining Theorem 6.1 with Theorems 5.2, 5.9, 5.5, and 3.8 we get the following corollary.

Corollary 6.2. There exist poly(λ, log t)-succinct RAM Delegation scheme for any read-write RAM
machine under any of the following assumptions:

1. The O(1)-LIN assumption on a pair of cryptographic groups with efficient bilinear map.

2. The hardness of Learning with errors (LWE) problem against polynomial time adversaries.

3. The sub-exponential Decisional Diffie-Hellman (DDH) assumptions.

6.1 Construction

In this section, we present the construction of a L(λ, t) · poly(λ, log t)-succinct RAM Delegation
scheme with strong soundness for read-write RAM machines. To lay the foundation, we first provide
a formal definition of a single step in a RAM machine. We then introduce relevant notations that
will facilitate the subsequent construction process.
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The RAM machine. Fix RAM machine M . We assume for simplicity, and without loss of gen-
erality that in every step RAM reads from one input location, then reads from one memory location,
and then writes to one memory location. Moreover, without loss of generality, we assume that M
zeros its memory before accepting or rejecting. Let (StepInputRead,StepMemRead, StepMemWrite)
be the following deterministic polynomial-time algorithms:

• StepInputRead(st) → (type, ℓinp): Given an input st, the algorithm StepInputRead outputs an
input type type ∈ {imp, exp} together with a location ℓinp such that RAM in state st reads the
type input at location ℓinp.

• StepMemRead(st, zinp) → ℓmr: Given an input (st, zinp), the algorithm StepMemRead outputs a
memory location ℓmr such that RAM in state st, after reading the bit zinp from the input, reads
from location ℓmr in the memory.

• StepMemWrite(st, zinp, zmr)→ (zmw, ℓmw, st′): Given an input (st, zinp, zmr), the algorithm StepMemWrite
outputs a bit zmw, memory location ℓmw and a state st′, such that RAM in state st, after reading
the bit zinp from the input and reading the bit zmr from the memory, writes the bit zmw to location
ℓmw in the memory and transitions to state st′.

Notations. Let M be some RAM machine, let Lst be its local state size, and let N = |ximp| be
the implicit input size. We denote Lrt to be the root size of a Merkle tree using HT.G(1λ). Note
that Lrt = poly(λ). Furthermore, we define C = CHT.hk,SparseHT.hk,SEH.hk1,SEH.hk2,xexp,dimp,rth,rtst,h0,out

to be the circuit that on input (i,wi) outputs 1 if and only if the following conditions hold:

1. Parse wi := (st, st′, h, h′, zmr, authmr, authmw, zinp, authinp, ρst, ρst′ , ρh, ρh′).

2. Check that the initial and end state, and the initial and end memory hash are correct:

(a) If i = 1 check that st is the initial state.
(b) If i = t and out = 1 then check that st′ is an accepting state.
(c) If i = t and out = 0 then check that st′ is a rejecting state.
(d) If i = 1 or i = t then check that h = h0. (we assume WLOG that M zeros its memory).

3. Check that the state and memory hash are consistent with the hash values:

(a) For all i ∈ [t], we define Isti = {(i− 1) · Lst + 1, . . . , i · Lst}.
(b) For all i ∈ [t], we define Ihi = {(i− 1) · Lrt + 1, . . . , i · Lrt}.
(c) If i > 1 then check that 1 = SEH.V(SEH.hk1, rtst, I

st
i−1, st, ρst).

(d) If i > 1 then check that 1 = SEH.V(SEH.hk2, rth, I
h
i−1, h, ρh).

(e) Check that 1 = SEH.V(SEH.hk1, rtst, I
st
i , st

′, ρst′).
(f) Check that 1 = SEH.V(SEH.hk2, rth, I

h
i , h

′, ρh′).

4. Check that M transitions from (st, h) to (st′, h′) correctly:

(a) Set (type, ℓinp)← StepInputRead(st).
(b) Set ℓmr ← StepMemRead(st, zinp).
(c) Set (zmw, ℓmw, st′′)← StepMemWrite(st, zinp, zmr).
(d) Check that st′ = st′′.
(e) Check that 1 = SparseHT.VR(SparseHT.hk, h, ℓmr, zmr, authmr).
(f) Check that 1 = SparseHT.VW(SparseHT.hk, h, ℓmw, zmw, h′, authmw).
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(g) If type = imp then check that 1 = HT.VR(HT.hk, dimp, ℓinp, zmw, authinp).
(h) If type = exp then check that zinp = (xexp)ℓinp .

Construction 6.3. The construction of the RAM Delegation scheme is as follows:

RAM.G(1λ, t):

1. Set i := 1 (arbitrarily).

2. Set (BARG.crs,BARG.td)← BARG.G(1λ, t, LC , i), where LC = |C|.
3. Set HT.hk← HT.G(λ).

4. Set SparseHT.hk← SparseHT.G(λ).

5. Sample (SEH.hk1, SEH.td1)← SEH.G(1λ, t ·Lst, Isti ) where Isti = {(i−1) ·Lst+1, . . . , i ·Lst}.
6. Sample (SEH.hk2,SEH.td2)← SEH.G(1λ, t · Lrt, Ihi ) where Ihi = {(i− 1) · Lrt +1, . . . , i · Lrt}.
7. Output crs := (BARG.crs,HT.hk, SparseHT.hk, SEH.hk1, SEH.hk2, t).

RAM.D(crs, ximp):

1. Parse crs := (BARG.crs,HT.hk,SparseHT.hk,SEH.hk1,SEH.hk2, t).

2. Output dimp where (·, dimp) := HT.H(HT.hk, ximp).

RAM.P(crs, ximp, xexp):

1. Parse crs = (BARG.crs,HT.hk,SparseHT.hk,SEH.hk1,SEH.hk2, t).

2. Set (Timp, dimp) := HT.H(HT.hk, ximp).

3. Set (Tmem
0 , h0) := SparseHT.H(SparseHT.hk, 2Lst , ∅).

4. Set st0 to be the initialize state of M .

5. For every i ∈ [t] set the following values:

• Set (typei, ℓ
inp
i ) := StepInputRead(sti−1).

• If type = imp then set (zinpi , authinpi ) := HT.R(Timp, ℓinpi ).
• If type = exp then set zinpi := (xexp)

ℓinpi
, authinpi := ⊥.

• Set ℓmr
i := StepMemRead(sti−1, z

inp
i ).

• Set (zmr
i , authmr

i ) := SparseHT.R(Tmem
i−1 , ℓmr

i ).

• Set (zmw
i , ℓmw

i , sti) := StepMemWrite(sti−1, z
inp
i , zmr

i ).
• Set (Tmem

i , hi, auth
mw
i ) := SparseHT.W(Tmem

i−1 , ℓmw
i , zmw

i ).

6. Set rtst := SEH.H(SEH.hk1, (st1, . . . , stt)).

7. Set rth := SEH.H(SEH.hk2, (h1, . . . , ht)).

8. Set ρh,0, ρst,0 = ⊥.

9. For every i ∈ [t]:

• Set (·, ρst,i) := SEH.O(SEH.hk1, (st1, . . . , stt), I
st
i ).

• Set (·, ρh,i) := SEH.O(SEH.hk2, (h1, . . . , ht), I
h
i ).

10. For every i ∈ [t]:
set wi := (sti−1, sti, hi−1, hi, z

mr
i , authmr

i , authmw
i , zinpi , authinpi , ρst,i−1, ρst,i, ρh,i−1, ρh,i).
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11. If stt is an accepting state then set out = 1, and if stt is a rejecting state then set out = 0.

12. Set BARG.π := BARG.P(BARG.crs, C, (w1, . . . ,wt)).

13. Output (out, π = (BARG.π, rtst, rth)).

RAM.V(crs, dimp, xexp, b, π):

1. Parse crs := (BARG.crs,HT.hk,SparseHT.hk,SEH.hk1,SEH.hk2, t), π = (BARG.π, rtst, rth).

2. Set (·, h0) := SparseHT.H(SparseHT.hk, 2Lst , ∅).
3. Output BARG.V(BARG.crs, CHT.hk,SEH.hk1,SEH.hk2,xexp,dimp,rth,rtst,h0,out,BARG.π).

6.2 Analysis

In what follows, we will provide proofs for completeness, efficiency, and soundness for the RAM
Delegation construction in section Section 6.1.
Completeness. Follows directly from the completeness properties of the underlying HT, SEH and
seBARG schemes.
Complexity. We bound the following functions with L(λ, t) · poly(λ, log t) · poly(Lst).

• To bound the running time of RAM.G we use the following facts:

– The underlying SEH is succinct, and therefore the SEH.G(1λ, t · Lst, Isti ) takes poly(λ, log t) · Lst
time.

– The underlying SEH is succinct, and therefore the SEH.G(1λ, t ·Lrt, Ihi ) takes poly(λ, log t) time.

– The underlying seBARG is L-succinct, and therefore the (BARG.crs,BARG.td)← BARG.G(1λ, t, LC , i)
takes L(λ, t) · poly(LC) time, where LC = |C| ≤ poly(λ, Lst, log t).

• To bound the proof size we use the following facts:

– The underlying SEH is succinct, and therefore |rtst| ≤ poly(λ, log t) · Lst.
– The underlying SEH is succinct, and therefore |rth| ≤ poly(λ, log t).

– The underlying seBARG is L-succinct, and therefore BARG.π ≤ L(λ, t) · poly(LC), where LC =
|C| ≤ poly(λ, Lst, log t).

• To bound the running time of RAM.V we use the following facts:

– By bounding RAM.G we got that |crs| ≤ L(λ, t) · poly(Lst).
– We got that the proof size is at most L(λ, t) · poly(Lst).
– SparseHT.H(SparseHT.hk, 2Lst , ∅) takes poly(λ, Lst) time.

– The underlying seBARG is L-succinct, and therefore the BARG.V takes L(λ, t) · poly(LC) time,
where LC = |C| ≤ poly(λ, Lst, log t).

• To bound the running time of RAM.P we use the following facts:

– By bounding RAM.G we got that |crs| ≤ L(λ, t) · poly(Lst).
– SparseHT.H operations on a tree with at most t elements takes (t+ 1) · poly(λ).
– The algorithms StepInputRead,StepMemRead,StepMemWrite takes poly-time in Lst.
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– The underlying seBARG prover runs in time polynomial in its input.

Soundness. Fix a read-write RAM machine M . Assume there exists:

• a secure hash tree,

HT = (HT.G,HT.H,HT.R,HT.W,HT.VR,HT.VW) .

• a secure sparse hash tree,

SparseHT =

(SparseHT.G, SparseHT.H,SparseHT.R,SparseHT.W,SparseHT.VR, SparseHT.VW) .

• a secure somewhere extractable hash with succinct local opening,

SEH = (SEH.G, SEH.H, SEH.O,SEH.V,SEH.E) .

• an L-succinct somewhere extractable batch argument for BatchCSAT,

seBARG = (BARG.G,BARG.P,BARG.V,BARG.E) .

Suppose toward contradiction that there exists a poly-size adversary A, polynomial t = t(λ), and
non-negligible function ϵ(·) such that for every λ ∈ N,

Pr

[
∀b ∈ {0, 1}
RAM.V(crs, dimp, xexp, b, πb) = 1

∣∣∣∣ crs← RAM.G(1λ, t)
(dimp, xexp, π0, π1)← A(crs)

]
≥ ϵ(λ) .

Parse crs = (BARG.crs,HT.hk, SparseHT.hk, hk1, hk2, t), and πb = (BARG.πb, rtb,st, rtb,h). By the
definition of RAM.V, we get that for every λ ∈ N,

Pr

[
∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1

∣∣∣∣ crs← RAM.G(1λ, t)
(dimp, xexp, π0, π1)← A(crs)

]
≥ ϵ(λ) .

where Cb = CHT.hk,SparseHT.hk,hk1,hk2,xexp,dimp,rtb,h,rtb,st,h0,b.
For every j ∈ [t], let RAM.Gj be identical to RAM.G, except that rather than setting i = 1 it

sets i = j. By the index hiding property of SEH and the index hiding property of seBARG, the
above equation implies that there exists a negligible function µ1(·) such that for every i ∈ [t] and
every λ ∈ N,

Pr

[
∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1

∣∣∣∣ crs← RAM.Gi(1
λ, t)

(dimp, xexp, π0, π1)← A(crs)

]
≥ ϵ(λ)− µ1(λ) .

In the equations below, to avoid lengthy equations, we omit the prefix of BARG.td,SEH.td1,SEH.td2
and use it as td, td1, td2 accordingly.

By the somewhere argument of knowledge property of the underlying seBARG scheme, the above
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equation implies that there exists a negligible function µ2(·) such that for every i ∈ [t] and every
λ ∈ N,

Pr

 ∀b ∈ {0, 1}BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1

∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ϵ(λ)− µ2(λ) . (12)

For every b ∈ {0, 1} parse

wb = (stb,i−1, stb,i, hb,i−1, hb,i, z
mr
b , authmr

b , authmw
b , zinpb , authinpb , ρb,sti−1

, ρb,sti , ρb,hi−1
, ρb,hi

).

We next argue that Equation 12 implies that there exists a negligible function ξ(·) such that for
every i ∈ [t] and every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1
st0,i = st1,i, h0,i = h1,i

∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)

 ≥ ϵ(λ)− i · ξ(λ) .

(13)
Fix i = t. By the definition of Cb, the above equation implies that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(t,wb) = 1
st0,t = reject, st1,t = accept
st0,t = st1,t

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gt(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)

 ≥ ϵ(λ)− i · ξ(λ) .

Which is a contradiction, since st0,t = reject, st1,t = accept implies that st0,t ̸= st1,t.
In order to prove Equation 13 , we start by stating a useful claim, which we will prove later on.

Claim 6.4. There exists a negligible function η(·) such that for every i ∈ [t] and every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1
st0,i−1 = st1,i−1, h0,i−1 = h1,i−1

∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)



− Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1
st0,i−1 = st1,i−1, h0,i−1 = h1,i−1

st0,i = st1,i, h0,i = h1,i

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)

 ≤ η(λ) .

Base case. i = 1. Follows directly from Claim 6.4 together with the definition of Cb that includes
a unique initial state st0 and a unique initial memory root h0.
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Inductive step. Supposing Equation 13 holds for i − 1, we proceed to prove that it holds for i.
By the inductive assumption together with the somewhere extractability property of the underlying
SEH scheme, it holds that there exists a negligible function ν1(·) such that for every λ ∈ N,

Pr



∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i− 1,wb)
st0,i−1 = st1,i−1, h0,i−1 = h1,i−1

∀b ∈ {0, 1}
stb,i−1 = SEH.E(td1, rtb,st)
hb,i−1 = SEH.E(td2, rtb,h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← RAM.Gi−1(1
λ, t)

(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ϵ(λ)− (i− 1) · ξ(λ)− ν1(λ) .

Let RAM.G′
i be the algorithm that on input (1λ, t) generates BARG.crs w.r.t. index i, but

generates SEH.hk1, SEH.hk2 w.r.t. Isti−1, I
h
i−1 (as opposed to Isti , I

h
i ). More formally, RAM.G′

i gen-
erates (BARG.crs,BARG.td) ← BARG.G(1λ, t, LC , i), (SEH.hk1, SEH.td1) ← SEH.G(1λ, t · Lst, Isti−1)
for Isti = {(i − 2) · Lst + 1, . . . , (i − 1) · Lst} and (SEH.hk2,SEH.td2) ← SEH.G(1λ, t · Lrt, Ihi−1) for
Ihi = {(i− 2) · Lrt + 1, . . . , (i− 1) · Lrt}.

The equation above, together with the index hiding of the underlying seBARG scheme, implies
that there exists a negligible function ν2(·) such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
SEH.E(td1, rt0,st) = SEH.E(td1, rt1,st)
SEH.E(td2, rt0,h) = SEH.E(td2, rt1,h)

∣∣∣∣∣∣∣∣
crs← RAM.G′

i(1
λ, t)

(dimp, xexp, π0, π1)← A(crs)


≥ ϵ(λ)− (i− 1) · ξ(λ)− ν1(λ)− ν2(λ) .

By the somewhere argument of knowledge property of the underlying seBARG scheme, the above
equation implies that there exists a negligible function ν3(·) such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1
SEH.E(td1, rt0,st) = SEH.E(td1, rt1,st)
SEH.E(td2, rt0,h) = SEH.E(td2, rt1,h)

∣∣∣∣∣∣∣∣∣∣
crs← RAM.G′

i(1
λ, t)

(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ϵ(λ)− (i− 1) · ξ(λ)− ν1(λ)− ν2(λ)− ν3(λ) .

By the somewhere extractability property of the underlying SEH scheme, together with the
definition of Cb, there exists a negligible function ν4(·) such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1
st0,i−1 = st1,i−1, h0,i−1 = h1,i−1

∣∣∣∣∣∣∣∣
crs← RAM.G′

i(1
λ, t)

(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ϵ(λ)− (i− 1) · ξ(λ)− ν1(λ)− ν2(λ)− ν3(λ)− ν4(λ) .
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By the index hiding property of the underlying SEH scheme, there exists a negligible function
ν5(·) such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb) = 1
st0,i−1 = st1,i−1, h0,i−1 = h1,i−1

∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ϵ(λ)− (i− 1) · ξ(λ)− ν1(λ)− ν2(λ)− ν3(λ)− ν4(λ)− ν5(λ) .

By the above, and by Claim 6.4 we get that:

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0,i−1 = st1,i−1, h0,i−1 = h1,i−1

st0,i = st1,i, h0,i = h1,i

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ϵ(λ)− (i− 1) · ξ(λ)− ν1(λ)− ν2(λ)− ν3(λ)− ν4(λ)− ν5(λ)− η(λ) .

By setting ξ(λ) = η(λ) +
∑5

j=1 νj(λ), the above proves the inductive step, as desired.
We now left to prove Claim 6.4.

Proof of Claim 6.4. Fix some i ∈ [t]. Let ε(·) be a function such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1

∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)

 = ε(λ) . (14)

where for every b ∈ {0, 1} parse

wb = (stb, st
′
b, hb, h

′
b, z

mr
b , authmr

b , authmw
b , zinpb , authinpb , ρb,st, ρb,st′ , ρb,hi−1

, ρb,h′
i
) .

For the experiment above, for every b ∈ {0, 1} let:

ℓinpb ← StepInputRead(stb)

ℓmr
b ← StepMemRead(stb, z

inp
b )

(zmw
b , ℓmw

b , st′′b )← StepMemWrite(stb, z
inp
b , zmr

b )

By the definition of ℓinpb , Equation 14 implies that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1,

ℓinp0 = ℓinp1

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)

 = ε(λ) .
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By the soundness of read property of the underlying HT scheme, together with the definition
of Cb, the above equation implies that there exists a negligible function ν1(·) such that for every
λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1,

zinp0 = zinp1

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ε(λ)− ν1(λ) .

By the definition of ℓb, the above equation implies that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1,

zinp0 = zinp1 , ℓmr
0 = ℓmr

1

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ε(λ)− ν1(λ) .

By the soundness of read property of the underlying SparseHT scheme, together with the defi-
nition of Cb, and since (h0 = h1), the above equation implies that there exists a negligible function
ν2(·) such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1,

zinp0 = zinp1 , zmr
0 = zmr

1

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ε(λ)− ν1(λ)− ν2(λ) .

By the definition of (zmw
b , ℓmw

b , st′′b ), we get that the above equation implies that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1,
(zmw

0 , ℓmw
0 , st′′0) = (zmw

1 , ℓmw
1 , st′′1)

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ε(λ)− ν1(λ)− ν2(λ) .

By the soundness of write property of the underlying SparseHT scheme, together with the def-
inition of Cb, and since in the above equation (zmw

0 , ℓmw
0 , st′′0) = (zmw

1 , ℓmw
1 , st′′1), the above equation
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implies that there exists a negligible function ν3(·) such that for every λ ∈ N,

Pr


∀b ∈ {0, 1}
BARG.V(BARG.crs, Cb,BARG.πb) = 1
Cb(i,wb)
st0 = st1, h0 = h1,
st′0 = st′1, h

′
0 = h′1

∣∣∣∣∣∣∣∣∣∣
crs← RAM.Gi(1

λ, t)
(dimp, xexp, π0, π1)← A(crs)
∀b ∈ {0, 1}
wb = BARG.E(td, Cb,BARG.πb)


≥ ε(λ)− ν1(λ)− ν2(λ)− ν3(λ) .

By setting η(λ) =
∑3

j=1 νj(λ), the above proves the claim, as desired.

7 Complexity-Preserving RAM Delegation Scheme

In this section, we present an alternative implementation of the RAM Delegation prover introduced
in Section 6.1. We begin by introducing time- and space-efficient algorithms for Merkle trees in
Section 7.1. These algorithms are designed to operate on a stream as input, ensuring space efficiency.
In Section 7.2 we define and construct a data structure that serves as an efficient memory manager.
In Section 7.3, we use the techniques and algorithms presented in Section 7.1 and the efficient data
structure provided in Section 7.2 to develop a complexity-preserving prover for our RAM Delegation
scheme. By replacing the original RAM Delegation prover with our efficient implementation from
Section 6.1, we establish the following theorem.

Theorem 7.1. Assume there exists a secure hash tree HT, a secure sparse hash tree SparseHT, a se-
cure two-mode somewhere extractable hash SEH with succinct local opening, and an L-succinct some-
where extractable batch argument seBARG for BatchCSAT, then there exists an L(λ, t)·poly(λ, log t)-
succinct RAM Delegation scheme RAM with strong soundness for any read and write RAM machine
M . Moreover, the RAM prover has the following properties:
• The prover runs in time

(
t · poly(Lst, log t) + |ximp|

)
· poly(λ).

• The prover uses sapce
(
w · poly(Lst, log t) + |ximp|

)
· poly(λ).

where (ximp, xexp) is the input to M , t is the running time of M(ximp, xexp), and w is the space used
by M(ximp, xexp).

By combining Theorem 7.1 with Theorems 5.2, 5.9, 5.7, and 3.8 we get the following corollary.

Corollary 7.2. There exist poly(λ, log t)-succinct RAM Delegation scheme for any read-write RAM
machine under any of the following assumptions:

1. The O(1)-LIN assumption on a pair of cryptographic groups with efficient bilinear map.

2. The hardness of Learning with errors (LWE) problem against polynomial time adversaries.

3. The sub-exponential Decisional Diffie-Hellman (DDH) assumptions.

Moreover, the RAM prover has the following properties:
• The prover runs in time

(
t · poly(Lst, log t) + |ximp|

)
· poly(λ).

• The prover uses sapce
(
w · poly(Lst, log t) + |ximp|

)
· poly(λ).

where (ximp, xexp) is the input to M , t is the running time of M(ximp, xexp), and w is the space used
by M(ximp, xexp).
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7.1 Efficient Merkle tree for streaming data

In this subsection, we will introduce a set of procedures for Merkle trees that are designed to be
efficient both in terms of time and space. To accommodate the space constraints, these procedures
operate on a stream of elements rather than requiring the entire input to be stored in memory. To
ensure efficiency in terms of time, we will employ a specific stream scheme that enables us to back
up the state of the stream and then return to that state at any given time. For a more detailed
explanation of this stream scheme, please refer to Definition 7.3.

A stateful (deterministic) stream scheme

Stm = (Init,Next,Backup,DeleteBackup, Jump,GetData)

has the following syntax:

Init(x, k). The algorithm takes as input a setup data x, and the maximum number of saves that the
scheme can store. The algorithm initialize the parameters of the stream accordingly.

Next(). The algorithm advances the stream’s state to point to the subsequent element in the stream.

Backup()→ i. The algorithm creates a backup for the current state of the stream. It outputs the
index of the current element in the stream.

DeleteBackup(i). The algorithm deletes the backup of for the i-th element in the stream.

Jump(i). This algorithm accepts an input index i. If there are at most k backups in the stream,
and a backup was created when the stream was at index i (and has not been subsequently
deleted), then the algorithm restores the stream to index i.

GetData()→ data. The algorithm outputs the data data corresponding to the element currently
referenced by the stream.

Definition 7.3 (Stm). A stateful stream has the following requirements,

Efficiency. We bound the efficiency parameters of the stream as follows:

• Let TStm be the bound on the running time of one stream operation (Next,Backup,DeleteBackup, Jump,
GetData).

• Let
−→
T Stm : N→ N be a function that gets as input a bound on the number of times that one

stream element is accessed, and outputs the total running time of the stream.

• Let SStm be a bound on the space used in the stream.

• Let Sdata be the output size of GetData.

The five Merkle tree (deterministic) procedure are as follows:

ComputeTreeHash(H, stm, n)→ rt. This algorithm takes as input a hash function H, a reference to
a stream stm, and a number n. The algorithm outputs the Merkle root rt of n elements in the
stream stm.
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ComputeAuthPath(H, stm, i, n)→ auth. This algorithm takes as input a hash function H, a refer-
ence to a stream stm, an index i, and a number n. The algorithm computes the Merkle tree
of n elements in the stream stm, and outputs the authentication path of the i-th element.

ComputeTreeRootUsingAuthPath(H, i, Leaf, auth, n)→ rt. This algorithm takes as input a hash func-
tion H, an index i, a leaf in the tree Leaf, an authentication path auth, and the number of
leafs in the tree n. It outputs the root of the tree rt.

ComputeNextAuthPath(H, stm, i, authi, n)→ auth. This algorithm takes as input a hash function H,
a reference to a stream stm, an index i, an authentication path authi to the i-th leaf in the
tree, and a number n. The algorithm outputs an authentication path auth of the i+ 1 leaf in
the tree, where the leafs are the elements in the stream stm.

StreamAllAuthPaths(H, stm, n) → (auth1, . . . , authn). This algorithm takes as input a hash func-
tion H, a reference to a stream stm, and a number n. The algorithm outputs a stream of
authentication paths auth1, . . . , authn of all the leafs in a Merkle tree, where the leafs are the
elements in the stream stm.

Each of the described procedures leaves the stream’s state unaltered. To ensure this, we im-
plicitly follow a specific sequence: We initiate the procedure by saving the current stream state
using i := stm.Backup(). We then proceed to execute the relevant procedure. Once the procedure is
completed, we restore the stream’s state by employing stm.Jump(i). Finally, we remove the saved
state using stm.DeleteBackup(i).

Remark 7.4. We note that, since each backup is invoked at the beginning of the procedure, and
discarded by the end, the number of backups stored at any point is determined by the size of the
function-calling stack. As we will see, each function has a function-calling stack of size at most 3,
which results in at most 3 backups stored at any time.

We start by describing the procedure ComputeTreeHash. While this algorithm is already well-
established, with a mention in [Szy04], we provide a detailed description to adapt it for stream input
access instead of random access to the input.

ComputeTreeHash(H, stm, n):

1. If the top two nodes on the stack have the same height in the tree,
1.1. Pop vright.
1.2. Pop vleft.
1.3. Execute vparent := H(vleft || vright).
1.4. If the height of vparent is log n, output vparent, destroy the stack, and stop.
1.5. Push vparent onto the stack.

2. Else,
2.1. Push stm.GetData() onto the stack.
2.2. Execute stm.Next().

3. Loop to step 1.

Complexity: The above algorithm does T = O(n) steps, go over each element in the stream at
most Nelem = 1 times, and stores a maximum of S = log n+ 1 hashed values at once.
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The next algorithm computes an authentication path of some leaf in the tree. The algorithm
is implemented the same as ComputeTreeHash, except for collecting the relevant nodes for the
authentication path while going over the tree. Note that for each height d′ < d, we define authd′

to be the value of the sibling of the height d′ node on the path from the leaf to the root. The
authentication path is then the set auth = {authj | 0 ≤ j < d}.

ComputeAuthPath(H, stm, i, n):

1. If the top two nodes on the stack have the same height in the tree,
1.1. Set i to be the height of the top two nodes.
1.2. Pop vright.
1.3. Pop vleft.
1.4. If

⌈
i
2j

⌉
is odd then authj := vright.

1.5. If
⌈

i
2j

⌉
is even then authj := vleft.

1.6. If d′ = log n− 1, output {auth0, . . . , authlogn−1}, destroy the stack, and stop.
1.7. Compute vparent := H(vleft || vright).
1.8. Push vparent onto the stack.

2. Else,
2.1. Push stm.GetData() onto the stack.
2.2. Execute stm.Next().

3. Loop to step 1.

Complexity: Similarly to the ComputeTreeHash, the above algorithm does T = O(n) steps, and
go over each element in the stream at most Nelem = 1 times. The algorithm stores a maximum of
S = log n+ 1 hash values on the stack and additional log n elements for the authentication path.

The next algorithm computes the root of a tree using a leaf in the tree, the authentication path
of the root, and the number of leafs in the tree.

ComputeTreeRootUsingAuthPath(H, i, Leaf, auth, n):

1. Set v := Leaf.
2. For every j ∈ {0, . . . , log n− 1} do the following:

2.1. If
⌈

i
2j

⌉
is odd then v := H(v || authj).

2.2. Else if
⌈

i
2j

⌉
is even then v := H(authj || v).

3. Output v as the root.

Complexity: The algorithm does T = O(log n) steps, and stores constant number of hashed values
at every step.

ComputeNextAuthPath(H, stm, i, auth, n):

1. Parse auth := {auth0, . . . , authlogn−1}.
2. Set d′ to be the height of the first common ancestor of the i and (i+ 1) leafs in the tree.
3. For every d′ ≤ j < log n, set authnextj := authj .
4. Set authnextd′−1 :=

ComputeTreeRootUsingAuthPath
(
H, stm.GetData(), {auth0, . . . , authd′−2}, 2d

′−1
)
.
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5. Set {auth0, . . . , authd′−2} := ComputeAuthPath(H, stm, 1, 2d
′−1).

Complexity: Let d′ be the height of the first common ancestor of the input element and the
next element. The algorithm does T = O(log n+ 2d

′
), go over each element in the stream at most

Nelem = O(1) times, and stores at most S = O(log n) hashed values in the memory at each step:

• Step 3 has O(log n− d′) inner steps, and stores O(log n− d′) elements in the memory.
• By the complexity of ComputeTreeRootUsingAuthPath, step 4 has O(d′) inner steps, and stores
O(d′) hashed values in the memory.

• By the complexity of ComputeAuthPath, step 5 has O(2d
′
) inner steps, and stores O(d′) hashed

values in the memory.

Note that in the worst case, the algorithm does O(n) steps, but as we will see in the next algorithm,
on the average case, the algorithm does O(log n) steps. In addition, the algorithm go over each
element in the stream at most Nelem = O(1) times, but specifically, it goes only over elements in
the smallest common sub-tree of the i-th and (i+ 1)-th elements.

StreamAllAuthPaths(H, stm, n):

1. Set auth := ComputeAuthPath(H, stm, start, 1, n).
2. Output auth.
3. For i ∈ [n− 1] do as follows:

3.1. Set authnext := ComputeNextAuthPath(H, stm, elem, i, auth, n).
3.2. Set auth := authnext.
3.3. Output auth, and continue to the next iteration.

Complexity: The algorithm does T = O(n · log n) steps, go over each element in the stream at
most Nelem = O(log n) times, and stores at most S = O(log n) hashed values in the memory at each
step.

The value of Nelem is directly implied by the complexity of ComputeNextAuthPath, ComputeAuthPath.
In what follows, we focus on proving the value of T,Nelem. To prove T = O(n · log n), we define a
new function c : [n]× [n]→ [log n]. This function is given two indexes of leafs in the tree i, j ∈ [n],
and outputs the height of the first common ancestor of the i-th and j-th leafs in the tree. Let
T : N → N be a function that gets as an input the number of leafs in the tree, and outputs the
number of steps the algorithm does. Note that by the complexity of ComputeNextAuthPath and
ComputeAuthPath, for any n ∈ N:

f(n) ≤ O(n) +
n−1∑
i=1

O
(
log n+ 2c(i,i+1)

)
≤ O(n · log n) +

n−1∑
i=1

O
(
2c(i,i+1)

)
.

Note that the output values of c for the leafs in the left sub-tree is the same as the values of c for
the leafs in the right sub-tree:{

c(1, 2), . . . , c
(n
2
− 1,

n

2

)}
=

{
c
(n
2
+ 1,

n

2
+ 2

)
, . . . , c (n− 1, n)

}
.
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Therefore, the function f can be computed as:

f(n) ≤ O(n · log n) +O
(
2c(

n
2
,n
2
+1)

)
+ 2 ·

n
2∑

i=1

O
(
2c(i,i+1)

)
.

We have that the first ancestor of the of n
2 ,

n
2 + 1 is the root. Therefore, c

(
n
2 ,

n
2 + 1

)
= log n,

and we get that:

f(n) ≤ O(n · log n) +O (n) + 2 ·

n
2∑

i=1

O
(
2c(i,i+1)

)
.

It can be shown by induction that:

f(n) ≤ O(n · log n) +
logn−1∑
i=0

2i ·O(2logn−i) .

Which implies that:

f(n) ≤ O(n · log n) +
logn−1∑
i=0

O(n)

= O(n · log n) .

As required.

We left to prove the value of Nelem. The value of Nelem is dominated by the complexity of
ComputeNextAuthPath. As mentioned in the complexity of ComputeNextAuthPath, the elements in
the stream accessed by the function ComputeNextAuthPath(·, i, ·) are only the elements that are
under the smallest common sub-tree of (i, i+1). Note that when going over the pairs of leafs in the
tree (1, 2), (2, 3), . . ., each node in the tree gets to be the smallest common ancestor only once. Fix
some element in the stream. This element exists in at most log n sub-trees (one for each level in the
tree). Since each node in the tree is a smallest common ancestor only once, we get that overall, the
element is accessed log n times, as required.

7.2 Efficient memory scheme

We define a stateful data structure that represents the memory of a deterministic program, allowing
for reading, writing, backing up, and restoration of the memory. A stateful (deterministic) memory
scheme,

Mem = (Init,Read,Write,Backup,DeleteBackup,Restore) ,

is a data structure with the following syntax:

Init(S,M, k). This algorithm takes as input the memory size S, the initial state of the memory M ,
and the maximum number of backups k that the scheme can store. The algorithm initializes
the parameters of the scheme.

Read(ℓ)→ b. This algorithm takes as input a memory location ℓ. The algorithm outputs the value
of the memory in location ℓ. If no write operations were performed on location ℓ, Read(ℓ)
outputs M [ℓ], where M is the initial memory.

43



Write(ℓ, b). This algorithm takes as input a memory location ℓ, and a bit b. The algorithm updates
the memory at a location ℓ with the value b.

Backup()→ ts. This algorithm creates a backup for the current state of the memory, and returns
the time stamp in which the backup created.

DeleteBackup(ts). This algorithm takes as input a time stamp ts. The algorithm deletes the backup
created in time ts.

Restore(ts). This algorithm takes as input a time stamp ts. If there are at most k backups and
a backup was preformed in time ts (and was not subsequently deleted), then the algorithm
restores the memory to its state at time ts. This operation does not delete the backups
preformed after time ts.

Definition 7.5 (Mem). A stateful memory scheme satisfies the following requirements,

Completeness. The restore functionality holds only for memory changes that can be described by
a deterministic RAM machine. In simpler terms, we expect the same write operation to occur
even after a restore has been performed at time ts.

Efficiency. We bound the efficiency parameters of the stream as follows:

• The initialization algorithm runs in time T init
Mem(k, S).

• The read, write, backup, and restore algorithms take time TMem(k, S).

• The total memory required for the scheme is SMem(k, S).

Claim 7.6. There exists a Mem scheme with efficiency parameters

T init
Mem = O(k · S), TMem = k · polylog(w, S), SMem = k · S · polylog(w) ,

Here, S is the size of the memory, k is the maximum number of stored backups, and w is the number
of write operations performed.

Proof. The primary challenge in our proof arises from the efficiency requirements we aim to meet.
These requirements dictate that the backup operation cannot directly create a copy of the memory,
as doing so would take time proportional to the size of the memory itself.

Our construction takes a high-level approach as follows: We consider a sequence of memory
writes as occurring within intervals, each consisting of S write operations, where S corresponds to
the memory’s size. Over the course of these S write operations, we record all updates made to
the memory in a designated block. This block contains the initial state of the memory within the
relevant interval and an array called updates of S elements. Each element at location ℓ in the updates
array contains a binary search tree, representing the updates to the memory at location ℓ. These
trees contain key-value pairs, where the key signifies the time when the write operation occurred,
and the value denotes the bit that was written to the memory. At the start of each interval, all
elements in the updates array are initialized as empty binary search trees. With each subsequent
write operation, the update to the memory is added to the corresponding tree. This construction
facilitates the ability to restore the memory to any point within the interval efficiently.
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To enable memory restoration at any time, we use additional blocks. The scheme commences
by initializing a certain number of blocks before the process begins. As previously described, the
scheme stores all pertinent data for the interval within a specific block. When the Backup function
is executed, the scheme marks the block as saved. After completing S write operations, the scheme
searches for an available (unsaved) block and begins updating it. This allows to restore any memory
backup at any time.

The problem with this approach lies in the initiation of a new block when transitioning to a
new interval, which incurs a time cost of S. To address this issue, we initialize the next block in
advance. With each write operation, we also take one step in the initialization process for the next
block. Given that we have S write operations within an interval, by the interval’s conclusion, the
next block is fully initialized and ready for use.

Notation. Let B be a block of data containing (I, saved,M, updates, pnext), where I is the index
of the interval of writes that this block represents, saved is a counter represents how many times the
block has been saved, updates is an array of S binary search trees, and pnext is a pointer to some
block in the memory. Let Blocks be an array of m = 3 · (k + 1) blocks, where k is the maximum
number of backups that the scheme supports. Let ts be a timestamp indicating that the memory’s
state is aligned with the state it had at time ts. Note that Blocks, ts,B1,B2,B3 are global parameters
in the stream.

Construction 7.7. The construction of the Mem scheme is as follows:

Global Parameters.

– Blocks := ⊥.
– B1,B2,B3 := ⊥.
– ts := ⊥.

The following function initializes the scheme’s global parameters. It iterates through each block
in Blocks, setting the value of saved to 0 and initializing updates as an empty array of binary search
trees. Furthermore, specific blocks, namely B1, B2, and B3, are set to be a reference to three specific
blocks within Blocks. These three blocks function as the initial storage for memory changes and are
flagged as "saved". Additionally, they are initialized with the input memory state M .

Mem.Init(S,M, k).

1. Set ts := 0.
2. Set Blocks as an array of m blocks.
3. For each i ∈ {0, . . . ,m− 1},

3.1. Set Blocks[i].saved := 0.
3.2. Set Blocks[i].updates to be an array of S empty binary search trees.

4. For each i ∈ [3]

4.1. Set Bi := Blocks[i− 1] (soft copy).
4.2. Set Bi.saved := 1.
4.3. Set Bi.M := M .
4.4. Set I := i.
4.5. Set Bi.p

next := Blocks[i (mod m)] (soft copy).
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The following function outputs the memory value at location ℓ. This value is expected to
correspond with the memory’s state at time ts. To accomplish this, the function identifies the most
recent memory update at ℓ that occurred before ts.

Mem.Read(ℓ).

1. Find the largest key in B1.updates[j] that is ≤ ts, and return its value.
2. If such key does not exist, return B1.M [j].

The following function is responsible for modifying the memory at location ℓ with the value b.
To achieve this, the function adds the update to the updates array within B1. Additionally, the
scheme takes a step in initializing the next available block. In the event that B1 already contains S
updates, B1 is updated to reference the newly initialized block, and the function identifies the new
next block accordingly.

Mem.Write(ℓ, b).

1. Set ts := ts+ 1.
2. If ts (mod S) ≡ 0, then:

2.1. Set B1.saved := B1.saved− 1.
2.2. Set B1 := B2 (soft copy).
2.3. Set B2 := B3 (soft copy).
2.4. Set B3 := FindFreeBlock() (soft copy).
2.5. Set B3.I := B2.I + 1.
2.6. Set B2.p

next := B3 (soft copy).
3. Add the key-value pair ⟨ts, b⟩ to the binary search tree B1.updates[ℓ] (ignore duplicates).
4. Set B2.M [ℓ] := b.
5. Do one step in initializing B3,

5.1. Set B3.M [ts− 1 (mod S)] := B2.M [ts− 1 (mod S)].
5.2. Set B3.updates[ts− 1 (mod S)] to be an empty binary search tree.

The following functions has a trivial implementation.

Mem.Backup().

1. B1.saved := B1.saved+ 1.
2. B2.saved := B2.saved+ 1.
3. B3.saved := B3.saved+ 1.
4. Output ts.

Mem.DeleteBackup(ts′).

1. Set B′
1 := FindBlock(ts′) (soft copy).

2. Set B′
2 := B1.p

next (soft copy).
3. Set B′

3 := B2.p
next (soft copy).

4. B′
1.saved := B1.saved− 1.

5. B′
2.saved := B2.saved− 1.

6. B′
3.saved := B3.saved− 1.
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Mem.Restore(ts′).

1. Set ts := ts′.
2. Set B1 := FindBlock(ts) (soft copy).
3. Set B2 := B1.p

next (soft copy).
4. Set B3 := B2.p

next (soft copy).

FindFreeBlock().

1. For each block B in Blocks, if B.saved = 0 return B (soft copy).

FindBlock(ts′).

1. For each block B of Blocks, if B.I =
⌈
ts′

S

⌉
return B (soft copy).

Both the efficiency and the correctness comes directly from the construction. In what follows,
we will describe some key considerations in the efficiency analysis.

Efficiency. The efficiency parameters are mainly dominated by the following consideration:

• The Init function initializes O(k) blocks of size O(S). This takes time T init
Mem = (k · S).

• In one step of the scheme, the dominant operation is a single Write operation, which takes
TMem = k · polylog(ts, S) time. This includes:

– polylog(ts) time for updating the timestamp.

– O(k) time for finding free block.

– polylog(S) time for updating the updates array. (adding a single element to a binary search
tree of size at most S).

– polylog(ts) time is spent on one step of the initialization process for the next free block.

• The memory of the scheme is bounded by SMem = k · S · polylog(ts). This includes O(k) blocks,
each of size S · polylog(ts).

7.3 RAM delegation with complexity-preserving prover

In Section 6, we introduced an L(λ, t) · poly(λ, log t)-succinct RAM Delegation scheme with strong
soundness for any read and write RAM machine. In this section, we introduce an alternative
implementation to the prover from Construction 6.3. The alternative implementation will generate
the same proof but in a complexity-preserving way.

One of the challenges in converting the original prover (see Construction 6.3) into a complexity-
preserving prover is that the prover stores in memory the list (w1, . . . ,wt), while our goal is to
construct a prover with space that depends poly-logarithmic on t. To overcome this issue, we
first construct a stream that will allow a stream rewind access to the witnesses in a complexity
preserving way, and then we will construct a seBARG with prover that can generate the proof using
a restricted stream rewind access to the witness. In addition to the list of witness, our prover holds
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a list (st1, . . . , stt), and a list (h1, . . . , ht). These t size lists has a similar issue. To overcome this
issue, we will describe a stream with a stream rewind access to (st1, . . . , stt), and a stream with a
stream rewind access to (h1, . . . , ht), and we’ll use those streams in order to construct the required
data in the proof.

Let SEH = (SEH.G, SEH.H,SEH.O,SEH.V,SEH.E) be a secure two-mode somewhere extractable
hash with succinct local opening Assume there exists:

• a secure hash tree,

HT = (HT.G,HT.H,HT.R,HT.W,HT.VR,HT.VW) .

• a secure sparse hash tree,

SparseHT =

(SparseHT.G, SparseHT.H,SparseHT.R,SparseHT.W,SparseHT.VR, SparseHT.VW) .

• a secure two-mode somewhere extractable hash with succinct local opening,

SEH = (SEH.G, SEH.H, SEH.O,SEH.V,SEH.E) .

• an L-succinct somewhere extractable batch argument for BatchCSAT,

seBARG = (BARG.G,BARG.P,BARG.V,BARG.E) .

In what follows, we assume without loss of generality that t is a power of 2, and let d ∈ N be
such that t = 2d.

7.3.1 Constructing rewindable streams.

In this subsection, we construct the required streams for the RAM Delegation prover construction.
This includes a rewindable stream for each one of the following lists:

• The list of witnesses: w1, . . . ,wt.

• The list of local states: st1, . . . , stt.

• The list of the hash of the intermediate configuration of the memory: h1, . . . , ht.

Recall that the RAM Delegation prover from Section 6 uses SparseHT to emulate the machine’s
memory. As a first step stone, for allowing the rewindable property to the streams that we construct,
we wrap the memory of the SparseHT using the memory scheme presented in Section 7.2 to provide
additional functionality of jumping back to a previous state of the memory.

Soft copy. Throughout the subsequent constructions, when we mention a copy of the parameters
Timp, TMem or xexp, we are essentially referring to a soft-copy, meaning that only a reference to the
instance is duplicated.
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Memory management. In the RAM.P construction, detailed in Section 6, the parameter Tmem

contains sparse-tree representation of the RAM machine’s memory. Within this section, we man-
age the memory of the variable Tmem using the Mem scheme. The new parameter responsible for
handling Tmem’s memory is known as TMem. Essentially, TMem is an instance of Mem that encap-
sulates the memory of Tmem. To access the tree Tmem, one must utilize the read/write functions of
the scheme. For instance, in the following code, when executing the command (TMem′

, h, auth) :=
SparseHT.W(TMem, ℓ, b), we provide to SparseHT.W only a reference to TMem, and TMem′ is simply
another reference to the same TMem. Consequently, SparseHT.W effectively modifies the memory
contained within TMem. Note that SparseHT.R, SparseHT.W anticipates a sparse hash tree as input,
not an instance of a memory scheme. Therefore, when SparseHT attempts to read from or write to
the memory in TMem, we implicitly consider it as if the function were attempting to read from or
write to the memory that TMem represents. Thus, we replace the command with TMem.Read(·) or
TMem.Write(·) as appropriate.

Regarding the efficiency parameters of the memory scheme, to simplify the complexity analysis
of all the streaming algorithms later on in the proof, we predefine the efficiency parameter of the
Mem scheme as it will be used that way later in our construction. The size of the memory that Mem
needs to manage is |Tmem|. Therefore, based on the efficiency parameters of SparseHT, the size of
the memory is s = w · poly(λ, Lst). Since this data structure essentially manages the memory of the
RAM machine, where each read/write operation is emulated by SparseHT, the maximum number
of write operations is bounded by w ≤ t · poly(λ, Lst). Later on in the proof, we will observe that
the number of backups required for the scheme at a specific time is constant. Consequently, the
maximum number of backups in the scheme is k = O(1). Overall, by the complexity parameters in
Claim 7.6, we can determine that the efficiency parameters of TMem are as follows:

T init
Mem = w · poly(λ, Lst), TMem = poly(λ, Lst, log t), SMem = w · poly(λ, Lst, log t) ,

Our initial step in constructing our RAM.P involves explaining a single operation of the RAM
machine, which will be useful when constructing the necessary streams.

RAMSingleStep(sti−1,T
Mem,Timp, xexp).

1. Set (typei, ℓ
inp
i ) := StepInputRead(sti−1).

2. If type = imp then set (zinpi , authinpi ) := HT.R(Timp, ℓinpi ).
3. If type = exp then set zinpi := (xexp)

ℓinpi
, authinpi := ⊥.

4. Set ℓmr
i := StepMemRead(sti−1, z

inp
i ).

5. Set (zmr
i , authmr

i ) := SparseHT.R(TMem, ℓmr
i ).

6. Set (zmw
i , ℓmw

i , sti) := StepMemWrite(sti−1, z
inp
i , zmr

i ).
7. Set (TMem, hi, auth

mw
i ) := SparseHT.W(TMem, ℓmw

i , zmw
i ).

8. Output (sti, hi,T
Mem, zmr

i , authmr
i , authmw

i , zinpi , authinpi ).

Complexity: The running time of the function is dominated by HT.R (Item 2) and SparseHT.W
(Item 7). By the efficiency of the HT scheme we get that Item 2 takes time log(|ximp|) ·poly(λ). By
the efficiency of the SparseHT scheme, SparseHT.W has poly(λ, Lst) steps. Since Mem is handling
some of the steps, by Claim 7.6 we can bound the running time of Item 7 by poly(λ, Lst, log t).
Overall, we get that the running and space are bounded by poly(λ, Lst, log t).
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The following stream is a stream for a single step of the RAM machine. Each element in the
stream essentially contains all the information required for validating that a single RAM step was
executed correctly.

Construction 7.8. The construction of the Stmstep scheme is as follows:
Global Parameters:

– backups (dictionary).
– λ,HT.hk,SparseHT.hk.
– xexp (string).
– TMem (instance of Mem).
– Timp (Merkle-tree).
– elem.

Init(x, k):

1. Parse x := (λ,HT.hk, SparseHT.hk, ximp, xexp, s).
2. Compute (Timp, dimp) := HT.H(HT.hk, ximp).
3. Compute (Tmem, h0) := SparseHT.H(SparseHT.hk, 2Lst , ∅).
4. Execute TMem.Init(s,Tmem, k).
5. Execute backups as an empty dictionary.
6. Set st0 to be the initialize state of M .
7. Compute (st1, h1,T

Mem, zmr
1 , authmr

1 , authmw
1 , zinp1 , authinp1 ) :=

RAMSingleStep(sti,T
Mem,Timp, xexp).

8. Set elem := (1, st0, st1, h0, h1, z
mr
1 , authmr

1 , authmw
1 , zinp1 , authinp1 ).

Next():

1. Parse elem := (i, sti−1, sti, hi−1, hi, z
mr
i , authmr

i , authmw
i , zinpi , authinpi ).

2. Compute (sti+1, hi+1,T
Mem, zmr

i+1, auth
mr
i+1, auth

mw
i+1, z

inp
i+1, auth

inp
i+1) :=

RAMSingleStep(sti,T
Mem,Timp, xexp).

3. Set elem := (i+ 1, sti, sti+1, hi, hi+1, z
mr
i+1, auth

mr
i+1, auth

mw
i+1, z

inp
i+1, auth

inp
i+1).

Backup():

1. Parse elem := (i, sti−1, sti, hi−1, hi, z
mr
i , authmr

i , authmw
i , zinpi , authinpi ).

2. Execute ts := TMem.Backup().
3. Set backups[i] := (elem, ts).
4. Output i.

DeleteBackup(i):

1. Parse backups[i] := (elem′, ts).
2. Execute TMem.DeleteBackup(ts).
3. Delete backups[i].

Jump(i):

1. Parse backups[i] := (elem′, ts).
2. Execute TMem.Restore(ts).
3. Set elem := elem′.
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GetData():

1. Output elem.

To simplify the complexity analysis of all the streaming algorithms, we treat k as a constant, as
it will be used in that way later in our construction.
Complexity: The running time of a single step is dominated by the running time of RAMSingleStep,
and the space is dominated by the global parameters TMem and Timp. Taking into account the
efficiency parameters of the HT.H, Mem schemes, and the efficiency of RAMSingleStep, we can
deduce the following:
• The running time of Init is bounded by |ximp| · poly(λ) + s · poly(λ, Lst, log t).
• The running time of one stream operation is bounded by T step

Stm = poly(λ, Lst, log t).
• The running time of one pass over the entire stream is bounded by

−→
T step

Stm = t · poly(λ, Lst, log t).
• The space used in the stream is bounded by Sstep

Stm = |ximp| · poly(λ) + s · poly(λ, Lst, log t).

Let Stmst be the stream for the list (st1, . . . , stt), and let Stmh be the stream for the list
(h1, . . . , ht). We omit the construction of Stmst,Stmh since it does essentially the same as the
stream Stmstep. The only difference is that Stmst.GetData() will only output the local state st, and
Stmh.GetData() will only output the hash of the memory h (rather than the entire element’s data).

Another challenge we face in constructing our complexity-preserving prover, which arises from
the inability to hold the data (st1, . . . , stt) in memory, is the computation of the hash of (st1, . . . , stt).
We need to compute SEH for the data using only streaming access to the data. Furthermore, due
to the same limitation that prevents us from holding (st1, . . . , stt) in memory, we are also unable to
store the openings (ρst,1, . . . , ρst,t) to the hash. To address these challenges, we need SEH with the
following properties:
1. The hash of the input can be efficiently computed using only streaming access to the input.
2. A stream of openings to the hash can be efficiently computed using only streaming access to the

input.
Fortunately, Okamoto et al. [OPWW15] constructed SEH that satisfies those properties. In more

detail, they demonstrated that given a two-mode hash family, using a Merkle tree with a two-mode
hash function as its gates, we obtain a succinct SEH (Lemma 3.2). The hash function outputs the
root of the Merkle tree, and the openings are represented by the authentication paths in the tree.
Now, we need to show that this construction fulfills the aforementioned requirements.

To meet our requirements, we first need to ensure that the hash function can be computed effi-
ciently. The hash function outputs the root of the Merkle tree, and this can be computed using the
ComputeTreeHash introduced in Section 7.1. In this case, the hash function sent to the function is a
two-mode hash function. Secondly, we need to compute a stream of authentication paths efficiently,
while adhering to the constraint of streaming access to the input. This can be achieved by first gen-
erating the authentication path for the first bit in the input using ComputeAuthPath. Subsequently,
we can emulate ComputeNextAuthPath for all the other authentication paths. For more details on
the complexity of ComputeTreeHash, ComputeAuthPath, and ComputeNextAuthPath, please refer to
Section 7.1.

We are now ready to construct a stream of SEH openings with respect to the hashed data
(st1, . . . , stt).
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Construction 7.9. The construction of the Stmρst scheme is as follows:
Global Parameters:

– backups (dictionary).
– stmst (instance of Stmst).
– t.
– H (hash function).
– elem.

Init(x, k):

1. Parse x := (λ,HT.hk, SparseHT.hk, SEH.hk, ximp, xexp, s, t).
2. Set H := SEH.H(SEH.hk, ·).
3. Execute stmst.Init(λ,HT.hk,SparseHT.hk, ximp, xexp, s, k).
4. Compute auth1 := ComputeAuthPath(H, stmst, 1, t) (soft-copy).
5. Set elem := (1, auth1).

Next():

1. Parse elem := (i, authi).
2. Compute authi+1 := ComputeNextAuthPath(H, stmst, i, authi, t) (soft-copy).
3. Compute stmst.Next().
4. Set elem := (i+ 1, authi+1).

Backup():

1. Parse elem := (i, authi).
2. Execute stmst.Backup().
3. Set backups[i] := elem.
4. Output i.

DeleteBackup(i):

1. Execute stmst.DeleteBackup(i).
2. Delete backups[i].

Jump(i):

1. Execute stmst.Jump(i).
2. Set elem := backups[i].

GetData():

1. Parse elem := (i, authi).
2. Output authi.

Complexity: For one pass over the entire stream, we follow the complexity analysis of StreamAllAuthPaths
(see Section 7.1). The rest of the analysis follows directly from the complexity of the algorithms we
use. The complexity we get is:
• The running time of Init is bounded by |ximp| · poly(λ) + t · poly(λ, Lst, log t).
• The running time of one stream operation is bounded by T ρst

Stm = t · poly(λ, Lst, log t).
• The running time of one pass over the entire stream is bounded by

−→
T ρst

Stm = t · poly(λ, Lst, log t).
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• The space used in one stream operation is bounded by Sρst
Stm = |ximp|·poly(λ)+s·poly(λ, Lst, log t).

Let Stmρh denote the stream of SEH openings corresponding to the hashed data (h1, . . . , ht).
We will not provide the detailed construction of Stmρh since it follows the same approach as Stmρst ,
with the only difference being the use of Stmh instead of Stmst in the construction.

We will now proceed to construct a stream of witnesses to be used when generating the seBARG
proof. Each individual witness has the following structure:

wi := (sti−1, sti, hi−1, hi, z
mr
i , authmr

i , authmw
i , zinpi , authinpi , ρst,i−1, ρst,i, ρh,i−1, ρh,i) .

Construction 7.10. The construction of the Stmw scheme is as follows:
Global Parameters:

– stmstep (instance of Stmstep).
– stmρst (instance of Stmρst).
– stmρh (instance of Stmρh).

Init(x, k):

1. Parse x := (λ,HT.hk, SparseHT.hk, SEH.hk1, SEH.hk2, x
imp, xexp, s, t).

2. Execute stmstep.Init(λ,HT.hk,SparseHT.hk, ximp, xexp, s, k).
3. Execute stmρst .Init(λ,HT.hk, SparseHT.hk, SEH.hk1, x

imp, xexp, s, t, k).
4. Execute stmρh .Init(λ,HT.hk,SparseHT.hk, SEH.hk2, x

imp, xexp, s, t, k).
5. Set (i, st1, h1, z

mr
1 , authmr

1 , authmw
1 , zinp1 , authinp1 ) := stmstep.GetData().

6. Set ρst,0, ρh,0 := ⊥.
7. Set elem := (1, st0, st1, h0, h1, z

mr
1 , authmr

1 , authmw
1 , zinp1 , authinp1 , ρst,0, ρh,0).

Next():

1. Execute stmstep.Next().
2. Execute stmρst .Next().
3. Execute stmρh .Next().

Backup():

1. Execute i := stmstep.Backup().
2. Execute stmρst .Backup().
3. Execute stmρh .Backup().
4. Output i.

DeleteBackup(i):

1. Execute stmstep.DeleteBackup(i).
2. Execute stmρst .DeleteBackup(i).
3. Execute stmρh .DeleteBackup(i).

Jump(i):

1. Execute stmstep.Jump(i).
2. Execute stmρst .Jump(i).
3. Execute stmρh .Jump(i).
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GetData():

1. Output (stmstep.GetData(), stmρst .GetData(), stmρh .GetData()).

Complexity: The complexity of the stream is dominated by the complexity of the streams Stmρst ,
Stmρh . Therefore, by the complexity of the streams Stmρst ,Stmρh , we get that:
• The running time of Init is bounded by |ximp| · poly(λ) + t · poly(λ, Lst, log t).
• The running time of one stream operation is bounded by TwStm = t · poly(λ, Lst, log t).
• The running time of one pass over the entire stream is bounded by

−→
T wStm = t · poly(λ, Lst, log t).

• The space used in one stream operation is bounded by SwStm = |ximp|·poly(λ)+s·poly(λ, Lst, log t).
Note that the efficiency parameter

−→
T ρst

Stm implies that, if we bound the number of accesses to a
single stream element to be polylog(t), the average time required for a Next operation is bounded
by poly(λ, Lst, log t). This is a significant improvement compared to the original estimate, where
the time for a single stream operation is t · poly(λ, Lst, log t).

7.3.2 Constructing complexity-preserving prover.

In this subsection, we construct our RAM Delegation prover and use the rewindable streams from
Appendix 7.3.1 to achieve complexity-preserving.

In our alternative RAM.P, we use a special seBARG with an efficient prover that receives the
witness list as a stream. While [KLVW22] constructed a succinct seBARG, their primary focus was
not on the efficiency of the prover. We use the seBARG constructed by [KLVW22] but provide an
alternative prover implementation that achieves the same output.

Claim 7.11. Assume there exists a poly(λ, log k)-succinct somewhere extractable batch argument
for BatchCSAT, then there exists a poly(λ, log k)-succinct somewhere extractable batch argument
for BatchCSAT with a prover that has streaming access to the witness list (rather than explicit
access), and has the following properties:

1. The prover’s time complexity is
−→
T Stm · poly(λ, |C|, log k).

2. The prover’s space complexity is SStm · poly(λ, |C|, log k).

3. The maximum number of stream backups that the prover requires the stream to hold at any
time is at most 3.

Where
−→
T Stm and SStm are the efficiency parameters of the stream, and m is the size of the witness.

We only provide an intuition for the new prover implementation since it uses the same streaming
tools and algorithms we already discussed in the construction of our alternative RAM prover.

The initial step of the [KLVW22] prover involves computing k distinct RAM proofs. For each
j ∈ [k], the RAM prover, denoted as RAM.P, generates a proof π0

j demonstrating that C(j,wj) = 1.
In order to maintain our space complexity, we construct a stream of proofs, rather than holding
the proofs explicitly in the memory. Next, the prover hashes the proofs (π0

1, . . . , π
0
k) into v0, and

computes a small number of openings in the hash. This we can do using similar ideas to what we
demonstrated in ComputeTreeHash and ComputeAuthPath algorithms. Then, for every ℓ ∈ [log k],
they define a circuit Cℓ such that Cℓ(πℓ−1

2j−1, π
ℓ−1
2j ) = 1 if and only if the RAM.V accepts both of

the proofs, relative to the hashed input vℓ−1. Next, RAM.P generates a proof πℓ
j demonstrating
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that Cℓ(πℓ−1
2j−1, π

ℓ−1
2j ) = 1. The prover hashes the proofs (πℓ

1, . . . , π
ℓ
k/2ℓ

). Here, again, we construct
a stream of proofs (πℓ

1, . . . , π
ℓ
k/2ℓ

) rather than holding the proofs in memory, and compute the hash

of the proofs efficiently using the stream. The BARG proof is then π = (v1, ρ1 . . . , vlog k, ρlog k, π
log k
1 ).

The main steps are as follows:
Generating RAM proofs: Initially, the prover computes k distinct RAM proofs. For each j ∈ [k],

the RAM prover, denoted as RAM.P, generates a proof π1
j to demonstrate that C(j,wj) = 1.

To maintain our space complexity, these proofs are not held explicitly in memory but are
instead managed as a stream.

Hashing proofs: The prover hashes the proofs (π1
1, . . . , π

1
k) into v1 and computes a small number

of openings in the hash ρ1. This step uses similar ideas to what we demonstrated in the
ComputeTreeHash and ComputeAuthPath algorithms.

Iterative stream generation: For each ℓ ∈ [log k], the prover defines a circuit Cℓ+1 such that
Cℓ+1(πℓ

2j−1, π
ℓ
2j) = 1 if and only if the RAM.V accepts both of the proofs concerning the

hashed input vℓ. Then, RAM.P generates a proof πℓ
j demonstrating that Cℓ+1(πℓ

2j−1, π
ℓ
2j) = 1.

Similar to the previous step, these proofs are managed as a stream, and their hash is computed
efficiently using the stream.

Final BARG Proof: The BARG proof is π = (v1, ρ1 . . . , vlog k, ρlog k, π
log k
1 ).

It is important to clarify that at each level ℓ ∈ [log k], RAM.P conceptually considers all the
proofs (πℓ

1, . . . , π
ℓ
k/2ℓ

) as implicit inputs and an index j as an explicit input. However, in practice,
the prover only requires two proofs, specifically πℓ

2j−1 and πℓ
2j , along with the openings to these

proofs relative to the hash vℓ of the implicit input. Therefore, for simplicity, we assume that RAM.P
takes only the relevant proofs as input, along with the corresponding openings, and this is sufficient
for emulating the original RAM.P used in the [KLVW22] construction. Back to constructing RAM.P,
in the prover’s construction, we use the seBARG from Claim 7.11.

RAM.P(crs, ximp, xexp).

1. Parse crs := (λ,BARG.crs,HT.hk,SparseHT.hk,SEH.hk1,SEH.hk2, t).
2. Set H1 := SEH.H(SEH.hk1, ·).
3. Set H2 := SEH.H(SEH.hk2, ·).
4. Set s = w · poly(λ, Lst), the size of Tmem. 11

5. Set k = 3. 12

6. Compute the following:
6.1. stmst := Stmst.Init(λ,HT.hk,SparseHT.hk, ximp, xexp, s, k).
6.2. stmh := Stmh.Init(λ,HT.hk, SparseHT.hk, ximp, xexp, s, k).
6.3. stmw :=

Stmw.Init(λ,HT.hk,SparseHT.hk,SEH.hk1,SEH.hk2, x
imp, xexp, s, t, k).

6.4. rtst := ComputeTreeHash(H1, stm
st, t).

6.5. rth := ComputeTreeHash(H2, stm
h, t).

11Recall that s represents the memory size required for emulating the machine’s large read-write memory using a
sparse hash tree. In fact, s can be computed by emulating the RAM machine using a sparse hash tree and required
space w · poly(λ, Lst).

12Note that the maximum number of stored backups is determined by the backup operations performed in the
Merkle tree procedures from Section 7.1. As mentioned in Remark 7.4, this results in at most 3 backups stored at
any time.
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6.6. BARG.π := BARG.P(BARG.crs, C, stmw, t).
7. Output (out, π = (BARG.π, rtst, rth)).

Complexity: The running time and space complexity are dominated by the initiation running
time of the stream stmw, and the complexity of the BARG prover relative to the stream of witnesses
stmw. Given the complexity of the BARG and stmw, and considering that |C| ≤ poly(λ, Lst, log t),
we get that:
• The running time of the RAM prover is bounded by |ximp| · poly(λ) + t · poly(λ, Lst, log t).
• The space used by the RAM prover is bounded by |ximp| · poly(λ) + w · poly(λ, Lst, log t).
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