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Abstract. Many proposals of lattice-based cryptosystems estimate security levels
by following a recipe introduced in the New Hope proposal. This recipe, given a
lattice dimension n, modulus q, and standard deviation s, outputs a “primal block
size” β and a security level growing linearly with β. This β is minimal such that
some κ satisfies ((n + κ)s2 + 1)1/2 < (d/β)1/2δ2β−d−1qκ/d, where d = n + κ + 1 and
δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).
This paper identifies how β grows with n, with enough precision to show the impact of
adjusting q and s by constant factors. Specifically, this paper shows that if lg q grows as
Q0 lg n+Q1 +o(1) and lg s grows as S0 lg n+S1 +o(1), where 0 ≤ S0 ≤ 1/2 < Q0 −S0,
then β/n grows as z0 + (z1 + o(1))/lg n, where z0 = 2Q0/(Q0 − S0 + 1/2)2 and z1
has a formula given in the paper. The paper provides a traditional-format proof and
a proof verified by the HOL Light proof assistant.

1 Introduction
The order of growth of the running time of an algorithm, defined in Chapter 2, gives
a simple characterization of the algorithm’s efficiency and also allows us to compare
the relative performance of alternative algorithms. Once the input size n becomes large
enough, merge sort, with its Θ(n lgn) worst-case running time, beats insertion sort, whose
worst-case running time is Θ(n2). Although we can sometimes determine the exact running
time of an algorithm, as we did for insertion sort in Chapter 2, the extra precision is
not usually worth the effort of computing it. For large enough inputs, the multiplicative
constants and lower-order terms of an exact running time are dominated by the effects of
the input size itself. —Cormen–Leiserson–Rivest–Stein,

“Introduction to algorithms” [C9LRS09, page 43]

Assessing algorithmic performance makes use of the “Big Oh” notation that proves essential
to compare algorithms, and design better ones.

—Skiena, “The algorithm design manual” [S2.20, page 31]
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2 Asymptotics for the standard block size in primal lattice attacks

This is a paper on the analysis of attacks against post-quantum cryptography, but the
goals of the paper are most easily understood by analogy to various known results on
pre-quantum cryptography, so the paper begins with those results. Beware that many of
the following statements are conjectures relying on heuristics.

The number-field sieve (NFS) factors an integer n in time subexponential in the
number of bits of n, more precisely exp((logn)1/3+o(1)) bit operations. This formula is
communicating important information about scalability. For example:

• RSA needs λ3+o(1) bits in n to reach λ bits of security against NFS. For comparison,
elliptic-curve cryptography (ECC) using appropriately chosen curves over Fp reaches
λ bits of security against known attacks with p having just λ1+o(1) bits, and with
user computations taking just λ2+o(1) bit operations, evidently smaller and faster
than RSA for all sufficiently large λ.

• Before NFS, many factorization algorithms were known that used exp((logn)1/2+o(1))
bit operations—in some cases provably so; see the survey in [L5P92, Section 1].
Initial analyses of NFS indicated that it would be slower than earlier algorithms for
all sizes of n of interest (see, e.g., [A2.91, page 69, “no practical value when the
number to be factored is not of special form”]), but the fact that NFS had improved
1/2 to 1/3 continued to drive research into the details of NFS (see, e.g., [L4L93]),
and eventually NFS was setting factorization records (see, e.g., [C4DLL+00]).

• Coppersmith [C8.84] had achieved cost exp((logn)1/3+o(1)) earlier for a related
problem, namely computing discrete logarithms in F∗

2n . Many years later, Joux in
[J14] achieved cost exp((logn)1/4+o(1)) for that problem, and the change from 1/3
to 1/4 turned out to be the first step towards a quasi-polynomial-time algorithm for
that problem. See generally [B1GJE14] and [G2KZ18].

But most work in cryptography relies on more detailed analyses of attack cost. As an
example of why more detailed analyses are needed, imagine someone taking the statement
that ECC reaches λ bits of security with λ1+o(1) bits in p; incorrectly substituting o(1) = 0;
and then taking p ≈ 2128 for 128 bits of security. Large-scale attackers can easily break
this size of p using known “square-root” attacks; see [OW99]. Even worse, breaking 240

targets costs only 220 times as much as breaking one target; see [K7S01].
Asymptotically, the square-root attacks take p1/2+o(1) bit operations (as the name

would suggest), limiting the security level to (1/2 + o(1)) lg p, where as usual lg p means
log2 p. For this security level to reach λ, one needs lg p to reach (2 + o(1))λ. Keys then
have (4 + o(1))λ bits if a curve point is sent as two coordinates, and have (2 + o(1))λ bits
in compressed form.

A similarly precise statement about RSA key sizes involves longer formulas. Specifically,
NFS uses exp((c+ o(1))(logn)1/3(log logn)2/3) bit operations for a particular constant c.
A short calculation then says that RSA needs lgn to grow as λ3/((9c3 + o(1))(lg λ)2).

Lenstra–Lenstra–Manasse–Pollard [L4LMP93, Section 9] outlined a preliminary
version of NFS with c3 = 9 ≈ 2.0803. Buhler–Lenstra–Pomerance [B6LP93] presented a
better version of NFS (using an idea from [A2.91]) improving c3 to 64/9 ≈ 7.111 ≈ 1.9233.
Coppersmith [C8.93] further improved c3 to (92 + 26

√
13)/27 ≈ 6.879 ≈ 1.9023, and

to (20 + 8
√

6)/9 ≈ 4.400 ≈ 1.6393 in situations where one has a large batch of RSA
keys to factor at once. This level of precision also allows analysis of the impact of
accounting for, and of optimizing, memory-access costs inside attacks on a two-dimensional
or three-dimensional circuit; see, e.g., [B4L14].

Much more of the literature becomes visible when one carries out even more precise
analyses. For example, 0.5 + o(1) bits of security were shaved off ECC by the “negation”
speedup; see [B4LS11] and the references therein. Seeing this speedup requires paying
attention to constant factors in attack cost, unlike the above quote from [C9LRS09].
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For RSA, there are many years of papers such as [C4DLL+00], [K4AFL+10],
and [B5GGH+20] building complete software for more and more advanced versions
of NFS, and relying on a computer to monitor the cost of running each algorithm.
Such experimental monitoring can convincingly produce precise, accurate average-case
observations—certainly much better than incorrectly substituting o(1) = 0 into formulas
such as exp((c+ o(1))(logn)1/3(log logn)2/3). Similar comments apply to various other
attack algorithms.

Experiments are not a substitute for asymptotic analysis; they are complements
to asymptotic analysis. As NFS illustrates, the algorithms that perform best in
experiments—or that are convincingly argued to be the best options for large-scale
attacks and thus to dictate security levels even when they are not the best in small-scale
experiments—often arise from a multi-stage process of (1) pursuing better asymptotics
and then (2) working on lower-order speedups to the asymptotically best algorithms.

1.1 Asymptotics for lattice attacks
Moving from RSA and ECC to lattice-based cryptography makes it much more difficult
to find clear statements of how large key sizes need to be to achieve λ bits of security
against known attacks. Some components of the necessary analysis are available and
are summarized in the following paragraphs; as before, many of these statements are
conjectures relying on heuristics.

One component is asymptotic analysis of the cost of solving n-dimensional
shortest-vector problems. A lattice-sieving algorithm from [N1V08] uses 2(α+o(1))n bit
operations (assuming the input lattice is specified by a matrix of integers having 2o(n)

bits) for a particular constant α, namely lg(4/3) ≈ 0.415. A series of followup papers
[WLTB11], [ZPH14], [B2GJ14], [L1.15], [L1W15], and [B2DGL16] improved α to
lg

√
3/2 ≈ 0.292, or lg

√
13/9 ≈ 0.265 for quantum attacks. It was reported in [K3L21]

that 0.292 and 0.265 were optimal “within a broad class of lattice sieving algorithms
covering almost all approaches to date”; [C5L21] and [H3.21] both reported quantum
attacks with α below 0.265, but there have been no improvements to the 0.292.

It is important to realize that typical cryptosystems using n-dimensional lattices pose
attack problems that are not the n-dimensional shortest-vector problem. The security
levels are only a fraction of (α+ o(1))n; the fraction depends on cryptosystem parameters.

As a specific target for attacks, Section 2.1 reviews the Lyubashevsky–Peikert–Regev
PKE [L7PR13, eprint version, page 4], using the ring (Z/q)[x]/(xn + 1) and sampling
each error position from distribution χ. The standard heuristic analysis cares only about
(n, q, s), where s is the standard deviation of χ.

Section 2.2 reviews the standard “primal” key-recovery attack. A critical parameter in
this attack is a “block size” β. The attack takes time 2(α+o(1))β for a BKZ-β computation,
which internally solves 2o(β) shortest-vector problems, each β-dimensional.

There is a standard recipe to select β given (n, q, s) as input: for each integer β ≥ 60
in turn, try each κ ∈ {1, 2, . . . , n}, and stop as soon as StandardRatio(n, q, s, κ, β) < 1,
where StandardRatio is defined as follows.

Definition 1.1.1 (the standard ratio). Let n, q, s, κ, β be real numbers such that
2 ≤ n; 2 ≤ q; 0 < s; 1 ≤ κ; and 2 ≤ β. Then StandardRatio(n, q, s, κ, β)
is defined as ((n+ κ)s2 + 1)1/2/(d/β)1/2δ2β−d−1qκ/d where d = n + κ + 1 and δ =
(β(πβ)1/β/(2π exp 1))1/2(β−1).

This recipe was introduced by Alkim–Ducas–Pöppelmann–Schwabe [A4DPS16,
Section 6.3] as part of the New Hope proposal. The analysis from [A4DPS16]
says that the standard attack works using attack parameters κ and β if and only if
StandardRatio(n, q, s, κ, β) < 1; see Section 2.3, and see Section 2.4 regarding the 60.
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There have been subsequent speedups and corrections, but the literature generally portrays
these adjustments as minor; see, e.g., [A3D21], starting with the “history of refinements”
title. The same recipe has been applied by many newer cryptosystem proposals; see, e.g.,
[A4BDL+21, Section 5.2.2], [ETWY22, Section 4.3], and [C6CHY24, Table 2].

Note that this recipe outputs only examples of β, not the asymptotics of β. An
asymptotic formula would say how β grows with n, where the coefficients in the growth
rate are functions of variables specifying how q and s grow with n. The next paragraph
gives three examples of questions that one would expect to easily answer by looking at an
asymptotic formula, and that do not seem to be answered in the literature.

As context for the questions, designers of lattice-based encryption systems (outside the
context of homomorphic encryption) typically take q somewhere between n1/2+o(1) and
n1+o(1) and take s to be constant. Decryption relies on q being large by comparison to s,
but cryptosystem details (for example, the amount of “error correction”) influence how
large, and influence the choice of s. Here are the questions: If a cryptosystem modification
replaces s with 2s, what is the asymptotic impact on β? What about replacing q with
q/2? What about moving q from n1+o(1) all the way down to n1/2+o(1)?

1.2 Contributions of this paper
The point of this paper is to calculate how the standard choice of β scales with the
cryptosystem parameters (n, q, s), with enough detail to see the asymptotic impact of
multiplying q or s by a constant factor. The main theorem is as follows.

Theorem 1.2.1 (asymptotic growth of the standard block size). Let Q0, Q1, S0, S1
be real numbers such that 0 ≤ S0 ≤ 1/2 < Q0 − S0. Let N be an infinite subset of
{2, 3, 4, 5, . . .}. Let n 7→ q and n 7→ s be functions from N to R such that

2 ≤ q, lg q ∈ Q0 lgn+Q1 + o(1),
0 < s, lg s ∈ S0 lgn+ S1 + o(1).

Define x0 = (Q0 + S0 − 1/2)/(Q0 − S0 + 1/2); z0 = 2Q0/(Q0 − S0 + 1/2)2; and

z1 =
(

2S1+ lg z0−
(
S0−Q0+3

2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3 .

(1) There are functions n 7→ κ and n 7→ β from N to Z such that

1 ≤ κ ≤ n for all n, κ/n ∈ x0 + o(1)/ lgn,
2 ≤ β ≤ n+ κ+ 1 for all n, β/n ∈ z0 + (z1 + o(1))/ lgn, and
StandardRatio(n, q, s, κ, β) < 1 for all sufficiently large n.

(2) Let n 7→ κ and n 7→ β be functions from N to R such that

1 ≤ κ ≤ 100n for all n,
60 ≤ β ≤ n+ κ+ 1 for all n, and
StandardRatio(n, q, s, κ, β) ≤ 1 for all sufficiently large n.

Then β ≥ ` for some function n 7→ ` with `/n ∈ z0 + (z1 + o(1))/ lgn.

In short, the standard block size β has β/n growing as z0 + (z1 + o(1))/lgn, where z0
and z1 are given by the formulas in the theorem statement.

This paper includes two proofs of the theorem: a proof in a traditional format,
and a proof verified by the HOL Light [H2.96] proof assistant. Section 3 presents the
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traditional-format proof. Appendix A explains the value of formal verification in this
context, compares the formally verified theorem statement line by line to the statement of
Theorem 1.2.1, and explains how to run HOL Light to re-check the formally verified proof.
The lemmas and proof steps in Section 3 should be viewed as having lower assurance, since
they have not been compared line by line to formally verified statements.

The reader is cautioned that the standard block size could be different from, perhaps
far from, the block size that is actually required by the standard primal attack. This paper
is rigorously analyzing the asymptotics of the standard block size; as context, this paper
reviews the heuristic analysis from [A4DPS16]; this paper should not be interpreted as
endorsing, or providing any evidence for, the analysis from [A4DPS16].

1.3 Examples of using the asymptotics
One immediately sees from Theorem 1.2.1 that z0 is independent of S1, and that z1 is
4S1Q0/(Q0 − S0 + 1/2)3 plus something independent of S1. This answers the question of
what happens if s is replaced by 2s: the change increases S1 by 1, so it increases z1 by
4Q0/(Q0−S0+1/2)3, so it increases β/n by (4Q0/(Q0−S0+1/2)3+o(1))/lgn. For example,
the increase in β/n is (32/27 + o(1))/lgn for (Q0, S0) = (1, 0), or (192/125 + o(1))/lgn
for (Q0, S0) = (3/4, 0).

Similar comments apply to the question of what happens if q is replaced with q/2. This
decreases Q1 by 1, so it increases z1 by 2(Q0 + S0 − 1/2)/(Q0 − S0 + 1/2)3, so it increases
β/n by (2(Q0 +S0 − 1/2)/(Q0 −S0 + 1/2)3 + o(1))/lgn. For example, the increase in β/n
is (8/27 + o(1))/lgn for (Q0, S0) = (1, 0), or (32/125 + o(1))/lgn for (Q0, S0) = (3/4, 0).

There is an indirect effect of replacing q with q/2 if key sizes are held constant. The A
component of an LPR public key (see Section 2.1) has n lg q ∈ n(Q0 lgn+Q1 + o(1)) bits,
so decreasing Q1 by 1 saves (1 + o(1))n bits.1 This in turn allows n to be increased to
n+n/((Q0 +o(1)) lgn) for the same key size, also multiplying β by 1+1/((Q0 +o(1)) lgn),
i.e., increasing β/n by (z0/Q0 + o(1))/lgn = (2/(Q0 − S0 + 1/2)2 + o(1))/lgn. This
indirect increase in β/n is (8/9 + o(1))/lgn for (Q0, S0) = (1, 0), or (32/25 + o(1))/lgn for
(Q0, S0) = (3/4, 0). Note that, at this level of detail, the total of the direct and indirect
effects of replacing q with q/2 matches the effect of doubling s.

As a simpler example, write a for the number of bits in A, and consider the question of
how a scales to first order with the security level λ. Here it suffices to use β ∈ (z0 + o(1))n,
so λ ∈ (αz0 + o(1))n; this also implies lg λ ∈ (1 + o(1)) lgn, so λ lg λ ∈ (αz0 + o(1))n lgn.
Meanwhile a ∈ (Q0 + o(1))n lgn, so a/(λ lg λ) ∈ Q0/αz0 + o(1); i.e.,

a ∈
(

(Q0 − S0 + 1/2)2

2α + o(1)
)
λ lg λ.

For example, if Q0 −S0 = 1, then A has (9/8α+o(1))λ lg λ bits: e.g., (3.846 . . .+o(1))λ lg λ
bits for α = lg

√
3/2 ≈ 0.292. If a cryptosystem reduces Q0 − S0 to 1/2 + ε then the

number of bits in A drops to ((1 + ε)2/2α+ o(1))λ lg λ, reducing asymptotic key sizes by a
factor close to 9/4.

As a different application of the second-order formulas, consider the following question:
if two cryptosystems both have Q0 − S0 = 1 and Q1 = S1 (so lg q − lg s ∈ lgn+ o(1)), but
the first cryptosystem has S0 = 0 while the second has S0 = 1/2, then which cryptosystem
has an asymptotically smaller ratio a/(β lg β), where a is the number of bits in A?

To answer this question, first use β ∈ n(z0+(z1+o(1))/lgn) to obtain lg β ∈ lgn+lg z0+
o(1) and β lg β ∈ (n lgn)(z0 + (z1 + z0 lg z0 + o(1))/lgn). Also a ∈ n(Q0 lgn+Q1 + o(1)),
so the target ratio a/(β lg β) is (Q0 + (Q1 + o(1))/lgn)/(z0 + (z1 + z0 lg z0 + o(1))/lgn).
Substituting Q0 = S0 + 1 and Q1 = S1 gives, after a short calculation, target ratio

1An LPR public key also has a component G, but typically G is either shared across keys or generated
from a Θ(λ)-bit seed in each key; either way, the effect of q on the size of G is not relevant to key size.
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9/8−((3/2) lg z0+(3/8) lg(2π exp 1)+o(1))/lgn, which is asymptotically smaller when z0 =
(8/9)Q0 is larger. In particular, the first cryptosystem has ratio 9/8−(1.280 . . .+o(1))/lgn
while the second cryptosystem has asymptotically smaller ratio 9/8− (2.157 . . .+o(1))/lgn.

This last example should not be taken as suggesting that the common practice of taking
s to be small is suboptimal. Increasing s, while preserving q/s, tends to make legitimate
decryption more difficult; i.e., the second type of cryptosystem tends to be harder to build
than the first.

1.4 Related work
A search did not find any previous literature giving simple first-order asymptotic
descriptions of lattice key sizes and the effect of error correction, never mind the second-order
calculations that are the main work in this paper. The closest related work appears to be
[A3.17, bottom of page 15], which, in the case S0 = 0 and Q0 ∈ Z, carries out a first-order
comparison (in a different model; see below) of two lattice attacks, concluding that the
exponent for one attack is asymptotically Q0/(Q0 + 1/2) times the exponent for the other,
without stating an asymptotic formula for the performance of either attack.

The literature does present asymptotics for sieving cost in terms of β, but only the
first-order asymptotics 2(α+o(1))β mentioned above. Literature presenting second-order
improvements in β (for example, “dimensions for free” from [D3.18] reduce β to β −
(lg(4/3) + o(1))β/lg β; the improved techniques from [D2LW20] improve lg(4/3) ≈ 0.415
to lg(13/9) ≈ 0.531) does not give similarly precise formulas for how β depends on
cryptosystem parameters before or after the improvement, or for the resulting attack
cost. A second-order analysis saying that sieving costs 2(α0+(α1+o(1))/lg β)β would compose
with this paper’s second-order analysis of how β depends on (n, q, s), and would allow
second-order analysis of how key sizes scale with λ.

The standard block size from [A4DPS16] is not the only model in the literature of
the block size that is actually required by the standard attack. For example, the analysis
in [A3.17] used an earlier model of the required block size. As another example, some
cryptosystem proposals, such as [B4CLV18], rely on “simulators” that (1) have more
convincing justifications than the standard model and (2) are experimentally observed
to produce more accurate results than the standard model for small-scale attacks. This
paper’s computation of the second-order asymptotics of the standard block size is a step
towards comparing asymptotics of multiple models.

Beyond the primal attacks covered in this paper, it would be interesting to analyze the
asymptotics of “dual” attacks. The literature on dual attacks is unsettled at the moment.
Older analyses indicated that dual attacks (analyzed in a similar way to primal attacks)
could sometimes outperform primal attacks; this was challenged in [A5BDK+20, page
26, “Primal attack only”]; newer dual attacks were reported in [G3J21] and [M3.22];
those attacks were challenged in [D3P23]; [P1S23] indicates that a modified attack can
work around the issue raised in [D3P23]; it is unclear how that attack compares to primal
attacks.

1.5 Priority dates
This paper’s main theorem and formally verified proof were originally posted in March
2023 as part of a larger paper, “Multi-ciphertext security degradation for lattices” [B4.23].
Some components of the calculations were already posted in November 2022 as part of the
first version of that paper.

I have decided to split this material out of that paper; that paper will be revised
correspondingly to cite this paper for this material.
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2 The standard block size
This section reviews the motivation in the literature for studying the standard block size.
In particular, this section explains the components of Definition 1.1.1.

As noted in Section 1.1, this paper takes the LPR cryptosystem as a concrete target.
Section 2.1 reviews this PKE. Section 2.2 reviews the standard “primal” key-recovery attack
against this PKE. Section 2.3 reviews the standard analysis of the attack. Section 2.4
reviews a known flaw in the analysis for small values of β. Section 2.5 reviews the standard
primal message-recovery attack. Section 2.6 reviews various other attacks, including attacks
not covered by the standard analysis.

As illustrated by the tables in [A3CDD+18], the standard analysis has also been
applied to a wide range of further cryptosystems. All the analysis needs to know about
each cryptosystem is the lattice dimension n, the modulus q, and the standard deviation s.
Complications such as the error-correcting codes in New Hope or the matrices in Kyber
interact with the analysis only in how they end up choosing (n, q, s).

2.1 Review of the LPR cryptosystem
This PKE has three parameters: an integer n ≥ 2; an integer q ≥ 2; and a probability
distribution χ supported on a finite set of integers. Assume for simplicity that the average
of χ is 0. Write R for the ring Z[x]/(xn + 1).

Key generation works as follows. Generate uniform random G ∈ R/q. Generate a, e ∈ R
with coefficients drawn independently at random from χ. Compute A = aG + e ∈ R/q.
The secret key is (a, e). The public key is (G,A) ∈ (R/q)2.

The set of messages is the set of elements of R with coefficients in {0, dq/2e}. Encryption
of a message M to a public key (G,A) works as follows. Generate b, c, d ∈ R with
coefficients drawn independently at random from χ. Compute B = Gb + d ∈ R/q and
C = M +Ab+ c ∈ R/q. The ciphertext is (B,C) ∈ (R/q)2.

Decryption of a ciphertext (B,C) works as follows. Compute X = C − aB ∈ R/q.
Round each coefficient of X to the closest element of {0, dq/2e} in Z/q, specifically 0 if
both elements are equally close.2

The above PKE definition skips two requirements from the LPR paper, namely that n
is a power of 2 and that q is a prime congruent to 1 modulo 2n; see [L7PR13, Section
1.1]. Cryptosystems after [L7PR13] loosened the restrictions on q; for example, Kyber’s
current prime 3329 is 1 + 13 · 256. As for n, readers concerned about attacks enabled by
factors of xn + 1 in Z[x] should feel free to substitute the marginally larger polynomial
xn − x− 1, as in [B4CLV18]; this is orthogonal to the topic of this paper.

Correct decryption requires X = C − aB = M + eb + c − ad to round to M , i.e.,
requires each coefficient of eb + c − ad to be smaller than about q/4. If χ is, e.g., the
uniform distribution on {−1, 0, 1} then each coefficient of eb is a sum of n products where
one expects about 4/9 to be nonzero, evenly balanced between 1 and −1, so typically the
coefficient will be on the scale of

√
n, with considerable variation in the exact size. There

are various proposals to reduce q close to this scale, and to avoid frequent decryption
failures by applying an error-correcting code to M . In the opposite direction, sometimes
cryptosystems take larger χ and correspondingly larger q; sometimes cryptosystems pack
more message bits into each coefficient, again taking larger q. To cover many different
cases, this paper considers a spectrum of possibilities for the asymptotic sizes of q and s.

2This rounding detail is not specified in [L7PR13]; also, [L7PR13] says bq/2e without specifying
whether the rounding rounds 0.5 up or rounds to even. These details do not affect the standard analysis;
they are specified here so as to have a complete PKE definition.
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2.2 Review of the standard key-recovery attack
Consider the problem of recovering the private key (a, e) ∈ R2 from the public key
(G,A) ∈ (R/q)2. Recovering a suffices, since e = A − aG by definition. The standard
“primal” attack works as follows.

There is an attack parameter κ ≤ n. Define a function Firstκ : R → Zκ that extracts
the first κ coefficients from its input. This induces a function, also written Firstκ, from
R/q to (Z/q)κ.

Define L as the set of all (α, ε, γ) ∈ R×Zκ ×Z such that Firstκ(γA−αG) is the same
as ε modulo q. This is a lattice of full rank d = n+ κ+ 1 and determinant qκ. Note that
±(a,Firstκ(e), 1) are elements of this lattice.

There is another attack parameter β. The attack writes down a basis for L, applies
BKZ-β to reduce this basis, and hopes that BKZ-β outputs one of the short nonzero
vectors ±(a,Firstκ(e), 1), in particular revealing a.

The problem being attacked here, the problem of finding a, e given a random G
and aG + e, is typically called “Ring-LWE”, specifically “normal-form 1-sample search
Ring-LWE”, where “normal form” refers to the secret a being small. The Ring-LWE problem
is typically credited to [S4STX09] and [L7PR13]. However, this problem was already
attacked in the 1998 Hoffstein–Pipher–Silverman NTRU paper, both for the homogeneous
case A = 0 (see [H4PS1998, Section 3.4.1]) and for general A (see [H4PS1998, Section
3.4.2]). The problem statements in [S4STX09] and [L7PR13] merely generalize to more
“samples”: e.g., finding a, e1, e2 given random G1, G2, aG1 + e1, aG2 + e2, or equivalently
replacing G ∈ R/q and e ∈ R with row vectors (G1 G2) ∈ (R/q)2 and (e1 e2) ∈ R2

respectively.
The attack in [H4PS1998] has κ = n. May–Silverman [M4S01] generalized the attack

to any κ ≤ n. In the original 1996 NTRU handout [H4PS2016], various concrete examples
chose different sizes for a and e, motivating another generalization from Coppersmith and
Shamir [C8S97] to set up a lattice with, e.g., short vector (3.14a, e, 1) rather than (a, e, 1);
this paper focuses on cryptosystems that take a and e of the same size, such as the LPR
system. There can still be a tiny improvement from setting up a lattice with, e.g., short
vector (a, e, 3.14); this paper ignores this improvement for simplicity.

2.3 Review of the standard analysis
Once β is reasonably large, the main bottleneck in the standard attack is the BKZ-β
computation. Part of the standard analysis is an analysis of the cost of BKZ-β. One
complication here is that BKZ-β is a family of algorithms, not a single algorithm. One
reason for improvements in the cost of BKZ-β is that underlying subroutines have been
improved, notably for SVP-β; see Section 1.1. Another reason is that the use of those
subroutines inside BKZ-β has been improved.

The rest of the standard analysis focuses on the question of how large β needs to be for
BKZ-β to succeed at finding the target vector. The standard heuristic conclusion is that
BKZ-β succeeds if and only if the 2-norm of the target vector is below (d/β)1/2δ2β−d−1qκ/d,
where δ = (β(πβ)1/β/(2π exp 1))1/2(β−1). The rationale for this inequality is as follows:

• One heuristic says that, for a “random” lattice L of rank d, BKZ-β finds a nonzero
vector of length close to δd−1(detL)1/d, with δ defined as above.

• Another heuristic says that the Gram–Schmidt lengths of the BKZ-β output are
close to a geometric series. Combining this with the shortest length being close
to δd−1(detL)1/d and the product of the lengths being detL says approximately
how large each length is. In particular, the length at position d− β + 1 is close to
δ2β−d−1(detL)1/d, which for this lattice is δ2β−d−1qκ/d. The rationale treats this
approximation as an equation.
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• Another heuristic says that if the target vector has length t then its projection onto
the space spanned by the last β Gram–Schmidt vectors has length approximately
t
√
β/d. The rationale also treats this approximation as an equation.

• If the latter length t
√
β/d is below the previous length δ2β−d−1qκ/d then the above

heuristics seem to contradict each other, since the last SVP-β call in each “tour”
of BKZ-β guarantees that the projection of the vector at position d − β + 1 is a
minimum-length nonzero vector in the projection of L. Note, however, that the first
heuristic was only for a “random” lattice. Another heuristic says that this seeming
contradiction occurs if and only if BKZ-β detects the non-“randomness” of the lattice
by finding the projection of v.

• A further heuristic says that BKZ-β finds the projection of v if and only if BKZ-β
finds v. A slightly different statement appears in [A3GVW17], which says that if
BKZ-β finds the projection of v then BKZ-β finds v with “high probability” for large
β.

The rest of this paper uses the inequality as a black box without regard to the rationale.
For the LPR PKE, the first n+κ entries in the target vector (a,Firstκ(e), 1) are drawn

independently and uniformly at random from χ. Each entry has square
∑

i χii
2 = s2

on average (since χ has average 0 and standard deviation s), so the squared 2-norm of
(a,Firstκ(e), 1) is (n+κ)s2+1 on average. The standard heuristic analysis treats the squared
2-norm as being exactly its average, concluding for this PKE that BKZ-β works if and only if
((n+κ)s2+1)1/2 < (d/β)1/2δ2β−d−1qκ/d; i.e., if and only if StandardRatio(n, q, s, κ, β) < 1,
with the notation of Definition 1.1.1.

Other PKEs do not necessarily choose (a, e) this way: consider, e.g., a PKE that
chooses a as a fixed-weight ternary vector. To apply the standard analysis to such cases,
the literature calculates s so that (n+ κ)s2 + 1 is a reasonable estimate of the squared
2-norm of (a,Firstκ(e), 1), and concludes heuristically that BKZ-β works if and only if
StandardRatio(n, q, s, κ, β) < 1.

2.4 A known flaw in the standard analysis
Note that δ increases with β until β reaches 36, contrary to ample evidence that, e.g.,
BKZ-20 usually finds shorter vectors than BKZ-10 does. As an extreme case, if one takes
β = 2 (or any β < 13), then δ < 1, so the first heuristic says that BKZ-β finds a nonzero
vector of length exponentially below (detL)1/d. In fact, for most lattices, such vectors do
not even exist, so certainly BKZ-β will not find them.

The standard heuristic conclusion says that, for any particular (q, s), BKZ-2 breaks
LPR for all n above an easily calculated bound. Choosing (q, s), calculating that bound,
and simply trying BKZ-2 shows that, no, BKZ-2 does not in fact do this. The standard
patch for this flaw is to simply disallow small values of β: for example, require β ≥ 60.

For some of this paper’s calculations, it suffices to assume β ≥ 2, ensuring that the
exponent 1/2(β − 1) is defined. At many points in the logic, β/n is known to grow
asymptotically as Y0 + o(1) for some positive real number Y0, implying β ≥ 60 for all
sufficiently large n. However, Theorem 1.2.1(2) does not assume any particular asymptotic
growth of β/n, and the conclusion of Theorem 1.2.1(2) would be incorrect if the hypothesis
β ≥ 60 were weakened to β ≥ 2.

2.5 Asymptotics for the standard message-recovery attack
Consider now the problem of recovering the encryption secrets (b, d) from (G,B) where
B = Gb+ d. The standard analysis handles this exactly the same way as the key-recovery
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attack, except for starting with the distribution of (b, d) rather than the distribution of
(a, e).

In the case of the LPR PKE, the distributions are the same, so the conclusions are the
same. The attacker will then prefer to carry out the key-recovery attack since it breaks
many ciphertexts.

Presumably the use of key-recovery attacks as multi-ciphertext attacks is the motivation
for, e.g., [L6P11, Section 6] saying “arguably, the secret key ought to be better-protected
than any individual ciphertext”. One can easily modify the LPR PKE to take a larger
distribution for (a, e) than for (b, d), i.e., to use a larger error distribution for key generation
than for encryption. This paper’s second-order asymptotics make it easy to see the effect
of, e.g., making errors 1 bit larger; see Section 1.3.

2.6 Further attacks
The standard analysis also considers the problem of recovering (b, c, d) given G, A, B =
Gb + d, and C = Ab + c, i.e., from a public key and an encryption of 0. A successful
recovery attack immediately gives an IND-CPA attack.

Structurally, this problem provides more “samples” to the attacker, allowing κ to be
chosen as large as 2n. This is covered by this paper’s analysis: Theorem 1.2.1(2) ends up
with κ/n ∈ x0 + o(1) with x0 ≤ 1, even if κ/n is initially allowed to be much larger than 1.

The situation would change if this paper allowed S0 to be above 1/2: the same
optimizations would then produce x0 > 1. For essentially the same reason, a close look at
[A3CDD+18] finds, e.g., “Frodo-0640” listed as 2142 on [A3CDD+18, page 29] for “n
LWE samples” but as only 2141 on [A3CDD+18, page 35] for “2n LWE samples”. This
is a counterexample to, e.g., [D4HKLS21, page 3] saying “we believe that in practice the
MLWE problem with k samples is no easier than with 1 sample” (emphasis added).

IND-CCA2 attacks against lattice KEMs can be much easier than the usual lattice
attacks against the underlying PKEs. Examples include the Round2 break in [B3DG20]
and a more recent attack exploiting derandomization in FrodoKEM. However, lattice
attacks against PKEs seem to be the top threat for most lattice proposals.

3 Proof of the main theorem
As noted in Section 1, the paper includes two proofs of Theorem 1.2.1. For readers who
simply want high assurance that the theorem is correct, the computer-verified proof (see
Appendix A) is better. For readers who want to understand how to prove the theorem,
the traditional-format proof in this section is better.

3.1 Supporting theorems
Some lemmas are factored out of the main theorem as the following separate theorems.

Theorem 3.1.1 (o(1) lower bounds). Let N be an infinite set of nonnegative integers.
Let ϕ be a function from N to R. Assume that {n ∈ N : ϕ(n) < −ε} is finite for each real
number ε > 0. Then there is a function ψ from N to R such that (1) ϕ(n) ≥ ψ(n) for all
n ∈ N , (2) ψ(n) ≤ 0 for all n ∈ N , and (3) ψ(n) → 0 as n → ∞.

The proof technique is standard. Typically the conclusion would be written as “ϕ(n) ≥
o(1)”, meaning that ϕ(n) is bounded below by some function converging to 0; this is not
to be confused with the false statement that ϕ(n) is bounded below by every function
converging to 0. This paper avoids “≥ o(1)” notation.

Theorem 3.1.1 is used in the proof of Theorem 1.2.1(2).
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Proof. The set {n ∈ N : ϕ(n) < −1} is finite. Write ` for the minimum element of this set,
or for −1 if the set is empty. Then ϕ(n) ≥ ` for all n ∈ N .

Define Sn = {0} ∪ {ϕ(x) : x ∈ N, x ≥ n} for each n ∈ N . Then Sn is nonempty, and
has a lower bound (namely `), so it has a greatest lower bound in R. Define ψ(n) as this
greatest lower bound. (This is the infimum of Sn.)

In particular, ϕ(n) ∈ Sn, so ψ(n) ≤ ϕ(n) as claimed. Also 0 ∈ Sn, so ψ(n) ≤ 0 as
claimed.

If m,n ∈ N have n ≥ m then Sn ⊆ Sm so ψ(n) ≥ ψ(m). Hence ψ is a nondecreasing
function. It has 0 as an upper bound, so it has a limit L ≤ 0.

For each real number ε > 0, the set T = {m ∈ N : ϕ(m) < −ε} is finite. Any n ∈ N
larger than all elements of T has ϕ(x) ≥ −ε for all x ≥ n, so Sn has −ε as a lower bound,
so ψ(n) ≥ −ε, so L ≥ −ε. Hence L = 0 as claimed.

Theorem 3.1.2 (first-order κ optimization). Let Q0, S0 be real numbers with 0 ≤
S0 < 1/2 < Q0 − S0. Then the quantity (1 + x)/(1 − 2S0 + 2Q0x/(1 + x)) for real
numbers x ≥ 0 has minimum value 2Q0/(Q0 − S0 + 1/2)2, achieved uniquely for x =
(Q0 + S0 − 1/2)/(Q0 − S0 + 1/2).

The proof is a calculus exercise. Theorem 3.1.2 is used in the proof of Theorem 1.2.1(2).

Proof. Note first that all denominators appearing here are positive: 1 + x ≥ 1 since x ≥ 0;
Q0 − S0 + 1/2 > 1 since Q0 − S0 > 1/2; Q0 > 1/2 since Q0 − S0 > 1/2 and S0 ≥ 0;
1 − 2S0 + 2Q0x/(1 + x) > 0 since 1 − 2S0 > 0 and 2Q0x ≥ 0.

Define x0 = (Q0 + S0 − 1/2)/(Q0 − S0 + 1/2). Then 1 + x0 = 2Q0/(Q0 − S0 + 1/2),
so 2Q0x0/(1 + x0) = Q0 + S0 − 1/2, so 1 − 2S0 + 2Q0x0/(1 + x0) = Q0 − S0 + 1/2, so
(1 + x0)/(1 − 2S0 + 2Q0x0/(1 + x0)) = 2Q0/(Q0 − S0 + 1/2)2.

Define ϕ(x) = (1 + x)/(1 − 2S0 + 2Q0x/(1 + x)). The derivative ϕ′(x) is

(1 + x)((Q0 − S0 + 1/2)x− (Q0 + S0 − 1/2))
2((1/2 − S0)(1 + x) +Q0x)2 ,

which is 0 for x = x0, negative for x < x0, and positive for x > x0. Hence ϕ(x) achieves its
minimum value uniquely at x = x0. This minimum is ϕ(x0) = 2Q0/(Q0 − S0 + 1/2)2.

Theorem 3.1.3 (main-term κ optimization). Let n, q, κ, β, δ be real numbers with 2 ≤ n,
2 ≤ q, 1 ≤ κ, 2 ≤ β, and 1 < δ. Then

(2β − n− κ− 2) lg δ + κ

n+ κ+ 1 lg q ≤ (2β − 1) lg δ + lg q − 2
√

(n+ 1)(lg δ) lg q.

The proof is another calculus exercise. Theorem 3.1.3 is used in the proof of
Theorem 1.2.1(2).

Proof. Define x0 =
√

(n+ 1)(lg q)/ lg δ − n− 1. Note that (n+ x0 + 1)2 lg δ = (n+ 1) lg q,
and (n+ x0 + 1) lg δ =

√
(n+ 1)(lg δ) lg q = ((n+ 1)/(n+ x0 + 1)) lg q.

Define ϕ(x) = (n+x+1) lg δ+((n+1)/(n+x+1)) lg q for each real number x ≥ 0. The
derivative ϕ′(x) is lg δ− (n+1)(n+x+1)−2 lg q, which is 0 for x = x0, negative for x < x0,
and positive for x > x0. Hence ϕ(x) ≥ ϕ(x0) = (n+x0+1) lg δ+((n+1)/(n+x0+1)) lg q =
2
√

(n+ 1)(lg δ) lg q.
In particular,

(2β − n− κ− 2) lg δ − κ

n+ κ+ 1 lg q

= (2β − 1) lg δ + lg q − (n+ κ+ 1) lg δ − n+ 1
n+ κ+ 1 lg q

= (2β − 1) lg δ + lg q − ϕ(κ)

≤ (2β − 1) lg δ + lg q − 2
√

(n+ 1)(lg δ) lg q
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as claimed.

Theorem 3.1.4 (monotonicity in the block size). Let n, q, s, κ, x be real numbers such that
2 ≤ n; 2 ≤ q; 0 < s; 1 ≤ κ; and 60 ≤ x. Define δ = (x(πx)1/x/(2π exp 1))1/2(x−1). Then
δ > 1, and StandardRatio(n, q, s, κ, x) ≥ StandardRatio(n, q, s, κ, y) for all real numbers
y ≥ x.

The proof is a series of calculus exercises. Theorem 3.1.4 is used in the proof of
Theorem 1.2.1(2).

Proof. First note that 2(x − 1) log δ = log x + (1/x) log πx − log(2π exp 1). Now log x ≥
log 60 > 4 > 1 + log(2π exp 1) so 2(x− 1) log δ > 1 + (1/x) log πx > 1 so 2 log δ > 1/(x− 1).
In particular, log δ > 0, so δ > 1.

Write ρ = StandardRatio(n, q, s, κ, x). The main point of the proof is that the partial
derivative ρ′ of ρ with respect to x (i.e., the derivative of x 7→ ρ for fixed n, q, s, κ) is
negative for all x ≥ 60.

First 2(x− 1)δ′/δ+ 2 log δ = 1/x+ 1/x2 − (1/x2) log πx, where δ′ means the derivative
of δ with respect to x. Also x2 −1 < x2 so 1/x+1/x2 < 1/(x−1) so 2(x−1)δ′/δ+2 log δ <
1/(x− 1) − (1/x2) log πx < 1/(x− 1). Hence 2(x− 1)δ′/δ < 0, implying δ′ < 0.

By definition ρ = ((n+ κ)s2 + 1)1/2/(d/x)1/2δ2x−d−1qκ/d where d = n+ κ+ 1. Hence
log ρ = · · · + (1/2) log x − (2x − d − 1) log δ where · · · is independent of x, so ρ′/ρ =
1/2x−(2x−d−1)δ′/δ−2 log δ. Substitute 2 log δ = 1/x+1/x2−(1/x2) log πx−(2x−2)δ′/δ
to see that ρ′/ρ = (d− 1)δ′/δ − 1/2x− 1/x2 + (1/x2) log πx.

Note that log πx − x/2 < 0 (since log(60π) < 30 and the derivative 1/x − 1/2 is
negative), so −1/2x+(1/x2) log πx < 0, so ρ′/ρ < (d−1)δ′/δ−1/x2. Also, d−1 > 0 since
d = n+ κ+ 1 ≥ 4, so (d− 1)δ′/δ < 0. Hence ρ′ < 0 as claimed. Consequently replacing x
with a larger value decreases ρ as claimed.

Theorem 3.1.5 (first-order asymptotics of the standard ratio). Let Q0, S0, X0, Y0 be real
numbers such that 0 < Q0; −1/2 < S0; 0 ≤ X0; 0 < Y0; and 0 < 1−2S0 +2Q0X0/(1+X0).
Define

Z0 = 1 +X0

1 − 2S0 + 2Q0X0/(1 +X0) .

Let N be an infinite subset of {2, 3, 4, 5, . . .}. Let n 7→ q, n 7→ s, n 7→ κ, n 7→ β be
functions from N to R such that

2 ≤ q, lg q ∈ (Q0 + o(1)) lgn,
0 < s, lg s ∈ (S0 + o(1)) lgn,
1 ≤ κ, κ/n ∈ X0 + o(1),
2 ≤ β, β/n ∈ Y0 + o(1),

(0) One has

2 lg StandardRatio(n, q, s, κ, β)
lgn ∈ 2S0 − 1 + 1 +X0

Y0
− 2Q0X0

1 +X0
+ o(1).

(1) If Y0 > Z0 then StandardRatio(n, q, s, κ, β) < 1 for all sufficiently large n. (2) If
Y0 < Z0 then StandardRatio(n, q, s, κ, β) > 1 for all sufficiently large n.

Parts (1) and (2) follow easily from part (0). The proof of part (0) starts with
the hypothesized asymptotics for q, s, κ, β and computes asymptotics for qκ/d, d/β, etc.,
culminating in StandardRatio(n, q, s, κ, β).

Part (1) is used in the proof of Theorem 1.2.1(2). Part (2) is not used directly but
shows that the cutoff in part (1) is tight. This theorem is also a warmup for Theorem 3.1.6,
which draws more precise conclusions from more precise hypotheses.
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Proof. Write ρ = StandardRatio(n, q, s, κ, β). By definition

ρ = ((n+ κ)s2 + 1)1/2

(d/β)1/2δ2β−d−1qκ/d

where d = n+ κ+ 1 and δ = (β(πβ)1/β/(2π exp 1))1/2(β−1). Now d/n = 1 + κ/n+ 1/n ∈
1 + X0 + o(1), so n/d ∈ 1/(1 + X0) + o(1), so κ/d ∈ X0/(1 + X0) + o(1). Meanwhile
(lg q)/ lgn ∈ Q0 + o(1), so (κ lg q)/(d lgn) ∈ Q0X0/(1 +X0) + o(1).

Also d/β ∈ (1 +X0)/Y0 + o(1) since β/n ∈ Y0 + o(1). What matters for this proof is
the weaker statement d/β ∈ no(1), i.e., (lg(d/β))/ lgn ∈ o(1).

Next s2 ∈ n2S0+o(1) and n + κ ∈ n1+o(1) so (n + κ)s2 ∈ n1+2S0+o(1). The exponent
1 + 2S0 is positive, so also (n+ κ)s2 + 1 ∈ n1+2S0+o(1), so

lg((n+ κ)s2 + 1)
lgn ∈ 1 + 2S0 + o(1).

By hypothesis β ∈ (Y0 + o(1))n with Y0 > 0, so β ∈ Θ(n), so lg πβ ∈ O(lgn), so
(lg πβ)/β ∈ O(lgn)/n. What matters here is merely that (lg πβ)/β ∈ o(1), so

2(β − 1) lg δ = lg β + lg πβ
β

− lg(2π exp 1) ∈ lgn+ lg Y0 − lg(2π exp 1) + o(1).

In particular, 2(β − 1) lg δ ∈ (1 + o(1)) lg n.
Divide (d− 1)/n ∈ 1 +X0 + o(1) by (β− 1)/n ∈ Y0 + o(1) to see that (d− 1)/(β− 1) ∈

(1+X0)/Y0 +o(1). Consequently (2β−d−1)/2(β−1) ∈ 1− (1+X0)/2Y0 +o(1). Multiply
by 2(β−1) lg δ ∈ (1+o(1)) lgn to see that ((2β−d−1) lg δ)/ lgn ∈ 1− (1+X0)/2Y0 +o(1).

Now add to see that

2 lg ρ
lgn = lg((n+ κ)s2 + 1)

lgn − lg(d/β)
lgn − 2 lg δ2β−d−1

lgn − 2(κ/d) lg q
lgn

∈ 2S0 − 1 + 1 +X0

Y0
− 2Q0X0

1 +X0
+ o(1)

as claimed.
If Y0 > Z0, i.e., Y0 > (1 +X0)/(1 − 2S0 + 2Q0X0/(1 +X0)), then the limit 1 + 2S0 −

2 + (1 +X0)/Y0 − 2Q0X0/(1 +X0) of (2 lg ρ)/ lgn is negative, so (2 lg ρ)/ lgn < 0 for all
sufficiently large n, so ρ < 1 for all sufficiently large n as claimed.

If Y0 < Z0 then the limit is positive, so ρ > 1 for all sufficiently large n as claimed.

Theorem 3.1.6 (second-order asymptotics of the standard ratio). Let
Q0, Q1, S0, S1, X0, X1, Y0, Y1 be real numbers such that 0 < Q0; −1/2 < S0; (0, 0) ≤
(X0, X1) ≤ (1, 0); 0 < Y0; (Y0, Y1) ≤ (1 + X0, X1); and 0 < 1 − 2S0 + 2Q0X0/(1 + X0).
Define

Z0 = 1 +X0

1 − 2S0 + 2Q0X0/(1 +X0) ,

Z1 =
(

2S1+ lgZ0+X1

Z0
−

(
2−1+X0

Z0

)
lg Z0

2π exp 1−2Q1X0

1+X0
− 2Q0X1

(1+X0)2

)
Z2

0
1+X0

.

Let N be an infinite subset of {2, 3, 4, 5, . . .}. Let n 7→ q, n 7→ s, n 7→ κ, n 7→ β be
functions from N to R such that

2 ≤ q, lg q ∈ Q0 lgn+Q1 + o(1),
0 < s, lg s ∈ S0 lgn+ S1 + o(1),
1 ≤ κ ≤ n, κ/n ∈ X0 + (X1 + o(1))/ lgn,
2 ≤ β ≤ n+ κ+ 1, β/n ∈ Y0 + (Y1 + o(1))/ lgn.
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(1) If (Y0, Y1) > (Z0, Z1) then StandardRatio(n, q, s, κ, β) < 1 for all sufficiently large n.
(2) If (Y0, Y1) < (Z0, Z1) then StandardRatio(n, q, s, κ, β) > 1 for all sufficiently large n.

The proof follows the same lines as Theorem 3.1.5 but involves more calculations to
track everything to second order rather than just first order.

Part (1) is used in the proof of Theorem 1.2.1(1). Part (2) is not used directly but
shows that the cutoff in part (1) is tight.

Proof. Write ρ = StandardRatio(n, q, s, κ, β). By definition

ρ = ((n+ κ)s2 + 1)1/2

(d/β)1/2δ2β−d−1qκ/d

where d = n+ κ+ 1 and δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).
Note that arithmetic on quantities of the form A0 +(A1 +o(1))/ lgn, where A0, A1 ∈ R,

matches arithmetic on elements A0 +A1ε of the ring R[ε]/ε2. For example,(
A0 + A1 + o(1)

lgn

) (
B0 + B1 + o(1)

lgn

)
⊆ A0B0 + A0B1 +A1B0 + o(1)

lgn

since A0o(1)/ lgn, A1o(1)/ lgn, and (A1 + o(1))(B1 + o(1))/(lgn)2 are all contained in
o(1)/ lgn. As another example, 1/(A0 + (A1 + o(1))/ lgn) is 1/A0 + (−A1/A

2
0 + o(1))/ lgn

if A0 6= 0.
In particular, d/n = 1 + κ/n+ 1/n ∈ 1 +X0 + (X1 + o(1))/ lgn, so

n

d
∈ 1

1 +X0
+ −X1/(1 +X0)2 + o(1)

lgn ,

so
κ

d
∈ X0

1 +X0
+ X1/(1 +X0) −X0X1/(1 +X0)2 + o(1)

lgn

= X0

1 +X0
+ X1/(1 +X0)2 + o(1)

lgn .

Meanwhile (lg q)/ lgn ∈ Q0 + (Q1 + o(1))/ lgn. Multiply to see that

κ lg q
d lgn ∈ Q0X0

1 +X0
+ Q1X0/(1 +X0) +Q0X1/(1 +X0)2 + o(1)

lgn .

The proof does not need as much precision for d/β: one has n/β ∈ 1/Y0 + o(1) and
d/n ∈ 1 +X0 + o(1), so d/β ∈ (1 +X0)/Y0 + o(1), so

lg(d/β)
lgn ∈ lg(1 +X0) − lg Y0 + o(1)

lgn .

Next s2 ∈ n2S022S1+o(1) = n2S0(22S1 +o(1)) and n+κ ∈ n(1+X0 +o(1)) so (n+κ)s2 ∈
n1+2S0((1 + X0)22S1 + o(1)). The exponent 1 + 2S0 is positive, so also (n + κ)s2 + 1 ∈
n1+2S0((1 +X0)22S1 + o(1)). Hence

lg((n+ κ)s2 + 1)
lgn ∈ 1 + 2S0 + lg(1 +X0) + 2S1 + o(1)

lgn .

By hypothesis β ∈ (Y0 + o(1))n with Y0 > 0, so β ∈ Θ(n), so lg πβ ∈ O(lgn), so
(lg πβ)/β ∈ O(lgn)/n. What matters here is merely that (lg πβ)/β ∈ o(1), so

2(β − 1) lg δ = lg β + lg πβ
β

− lg(2π exp 1) ∈ lgn+ lg Y0 − lg(2π exp 1) + o(1).
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Divide (d− 1)/n ∈ 1 +X0 + (X1 + o(1))/ lgn by (β − 1)/n ∈ Y0 + (Y1 + o(1))/ lgn to see
that

d− 1
β − 1 ∈ 1 +X0

Y0
+ X1/Y0 − (1 +X0)Y1/Y

2
0 + o(1)

lgn .

Consequently

2β − d− 1
2(β − 1) = 1 − d− 1

2(β − 1) ∈ 1 − 1 +X0

2Y0
− X1/2Y0 − (1 +X0)Y1/2Y 2

0 + o(1)
lgn .

Multiply by 2(β − 1)(lg δ)/ lgn ∈ 1 + (lg Y0 − lg(2π exp 1) + o(1))/ lgn to see that

(2β − d− 1) lg δ
lgn ∈ 1 − 1 +X0

2Y0

+ −X1/2Y0 + (1+X0)Y1/2Y 2
0 + (1−(1+X0)/2Y0)(lg Y0− lg(2π exp 1)) + o(1)

lgn .

Now add to see that

2 lg ρ
lgn = lg((n+ κ)s2 + 1)

lgn − lg(d/β)
lgn − 2 lg δ2β−d−1

lgn − 2(κ/d) lg q
lgn

∈ 1 + 2S0 + lg(1+X0) + 2S1

lgn − lg(1+X0) − lg Y0

lgn − 2 + 1+X0

Y0

+ X1/Y0 − (1+X0)Y1/Y
2

0 − (2−(1+X0)/Y0)(lg Y0− lg(2π exp 1))
lgn

− 2Q0X0

1+X0
− 2Q1X0/(1+X0) + 2Q0X1/(1+X0)2

lgn + o(1)
lgn .

If Y0 > Z0, i.e., Y0 > (1 +X0)/(1 − 2S0 + 2Q0X0/(1 +X0)), then the limit 1 + 2S0 −
2 + (1 +X0)/Y0 − 2Q0X0/(1 +X0) of (2 lg ρ)/ lgn is negative, so (2 lg ρ)/ lgn < 0 for all
sufficiently large n, so ρ < 1 for all sufficiently large n as claimed.

If Y0 < Z0 then the limit is positive, so ρ > 1 for all sufficiently large n as claimed.
(The previous two paragraphs are identical to paragraphs in the proof of Theorem 3.1.5,

and can be replaced by an application of Theorem 3.1.5, but the real work in this proof
comes from handling the second-order asymptotics needed for the case Y0 = Z0.)

Assume from now on that Y0 = Z0. Then the limit is 0, and one has (2 lg ρ)/ lgn ∈
(∆ + o(1))/ lgn where

∆ = 2S1 + lgZ0 + X1

Z0
− (1 +X0)Y1

Z2
0

−
(

2 − 1 +X0

Z0

)
lg Z0

2π exp 1 − 2Q1X0

1 +X0
− 2Q0X1

(1 +X0)2

= (1 +X0)(Z1 − Y1)
Z2

0
;

note that the lg(1 +X0) terms cancel.
If Y1 > Z1 then ∆ < 0 so ρ < 1 for all sufficiently large n as claimed. If Y1 < Z1 then

∆ > 0 so ρ > 1 for all sufficiently large n as claimed. The only remaining possibility is
(Y0, Y1) = (Z0, Z1), and the theorem statement makes no claims regarding this case.

3.2 The main theorem
The main proof relies on the theorems from Section 3.1.
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Theorem 1.2.1 (asymptotic growth of the standard block size). Let Q0, Q1, S0, S1
be real numbers such that 0 ≤ S0 ≤ 1/2 < Q0 − S0. Let N be an infinite subset of
{2, 3, 4, 5, . . .}. Let n 7→ q and n 7→ s be functions from N to R such that

2 ≤ q, lg q ∈ Q0 lgn+Q1 + o(1),
0 < s, lg s ∈ S0 lgn+ S1 + o(1).

Define x0 = (Q0 + S0 − 1/2)/(Q0 − S0 + 1/2); z0 = 2Q0/(Q0 − S0 + 1/2)2; and

z1 =
(

2S1+ lg z0−
(
S0−Q0+3

2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3 .

(1) There are functions n 7→ κ and n 7→ β from N to Z such that

1 ≤ κ ≤ n for all n, κ/n ∈ x0 + o(1)/ lgn,
2 ≤ β ≤ n+ κ+ 1 for all n, β/n ∈ z0 + (z1 + o(1))/ lgn, and
StandardRatio(n, q, s, κ, β) < 1 for all sufficiently large n.

(2) Let n 7→ κ and n 7→ β be functions from N to R such that

1 ≤ κ ≤ 100n for all n,
60 ≤ β ≤ n+ κ+ 1 for all n, and
StandardRatio(n, q, s, κ, β) ≤ 1 for all sufficiently large n.

Then β ≥ ` for some function n 7→ ` with `/n ∈ z0 + (z1 + o(1))/ lgn.

Conceptually, seeing the formulas for x0, z0, z1 is a calculus exercise starting from
Theorem 3.1.6. Choosing X0 to minimize Z0 produces X0 = x0 and Z0 = z0; it also
produces Z1 = z1, independently of X1, since the X1 terms in Z1 cancel when X0 = x0.

Proving Theorem 1.2.1(1) takes more work to glue together choices of β where (Y0, Y1)
is larger than (z0, z1) into a choice of β where (Y0, Y1) is equal to (z0, z1).

Proving Theorem 1.2.1(2) takes more work to deal with the fact that κ and β are
not assumed to have any particular asymptotic growth rate. Hypothesizing growth rates
as in Theorem 3.1.6 would allow a simpler proof using Theorem 3.1.6(2) in place of
Theorems 3.1.1, 3.1.2, 3.1.3, and 3.1.4; but this would not logically rule out the possibility
that a different growth rate allows smaller β.

Proof. Note first the following equations and inequalities:

• Q0 − S0 + 1/2 > 1;

• 0 < x0 since 1 < 2Q0 + 2S0;

• x0 ≤ 1 since 1 − x0 = 2(1/2 − S0)/(Q0 − S0 + 1/2) ≥ 0;

• 1 + x0 = 2Q0/(Q0 − S0 + 1/2) so 2Q0x0/(1 + x0) = Q0 + S0 − 1/2 so 1 − 2S0 +
2Q0x0/(1 + x0) = Q0 − S0 + 1/2 > 1;

• 0 < z0 since 0 < Q0; and

• z0 = (1 + x0)/(Q0 − S0 + 1/2) so z0 < 1 + x0.

Proof of part (1). Define a function n 7→ κ from N to Z by the formula κ = dx0ne.
Note that 0 < x0n ≤ n since 0 < x0 ≤ 1, so 1 ≤ κ ≤ n. Also x0n ≤ κ < x0n + 1 so

x0 ≤ κ/n < x0 + 1/n so κ/n ∈ x0 + o(1)/ lgn.
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Next, for each integer j ≥ 1, define a function n 7→ βj from N to Z by the formula βj =
min

{
n+ κ+ 1,max

{
2,

⌈
(z0 + (z1 + 2−j)/ lgn)n

⌉}}
. By construction 2 ≤ βj ≤ n+ κ+ 1

since n+ κ+ 1 > 2. Also note for future reference that β1 ≥ β2 ≥ β3 ≥ · · · .
Abbreviate (z1 + 2−j)/ lgn as ε. One has ε ∈ o(1). In particular, −z0/2 < ε for all

sufficiently large n, since −z0/2 < 0. Hence z0/2 < z0 + ε for all sufficiently large n, so
2 ≤ (z0/2)n < (z0 + ε)n ≤ d(z0 + ε)ne for all sufficiently large n, so max {2, d(z0 + ε)ne} =
d(z0 + ε)ne for all sufficiently large n.

Similarly, ε ≤ 1 + x0 − z0 for all sufficiently large n, since 1 + x0 − z0 > 0. Hence
z0 + ε ≤ 1 + x0 for all sufficiently large n, so (z0 + ε)n ≤ (1 + x0)n = n + x0n ≤ n + κ
for all sufficiently large n, so d(z0 + ε)ne ≤ n + κ + 1 for all sufficiently large n, so
min {n+ κ+ 1, d(z0 + ε)ne} = d(z0 + ε)ne for all sufficiently large n.

Consequently βj =
⌈
(z0 + (z1 + 2−j)/ lgn)n

⌉
for all sufficiently large n; so βj/n ∈

z0 + (z1 + 2−j + o(1))/ lgn.
Check the hypotheses of Theorem 3.1.6(1), with X0 = x0, X1 = 0, Y0 = z0, Y1 =

z1 + 2−j , Z0 = z0, and Z1 = z1, and βj in place of β:

• 0 < Q0: indeed, Q0 = Q0 − S0 + S0 > 1/2.

• −1/2 < S0: indeed, 0 ≤ S0.

• (0, 0) ≤ (X0, X1): indeed, 0 < x0.

• 0 < Y0: indeed, 0 < z0.

• (Y0, Y1) ≤ (1 +X0, X1): indeed, z0 < 1 + x0.

• 0 < 1 − 2S0 + 2Q0X0/(1 +X0): indeed, 1 < 1 − 2S0 + 2Q0x0/(1 + x0).

• Z0 = (1 +X0)/(1 − 2S0 + 2Q0X0/(1 +X0)): indeed, 1 − 2S0 + 2Q0x0/(1 + x0) =
Q0 −S0 + 1/2, so (1 + x0)/(1 − 2S0 + 2Q0x0/(1 + x0)) = (1 + x0)/(Q0 −S0 + 1/2) =
2Q0/(Q0 − S0 + 1/2)2 = z0 = Z0.

• Z1 formula: see below.

• N is an infinite subset of {2, 3, 4, 5 . . .}: by hypothesis.

• n 7→ q, n 7→ s, n 7→ κ, n 7→ βj are functions from N to R: indeed, they are functions
from N to Z.

• 2 ≤ q: by hypothesis.

• lg q ∈ Q0 lgn+Q1 + o(1): by hypothesis.

• 0 < s: by hypothesis.

• lg s ∈ S0 lgn+ S1 + o(1): by hypothesis.

• 1 ≤ κ ≤ n: proven above.

• κ/n ∈ X0 + (X1 + o(1))/ lgn: indeed, κ/n ∈ x0 + o(1)/ lgn.

• 2 ≤ βj ≤ n+ κ+ 1: by construction.

• β/n ∈ Y0 + (Y1 + o(1))/ lgn: indeed, β/n ∈ z0 + (z1 + 2−j)/ lgn.

• (Y0, Y1) > (Z0, Z1): indeed, Y0 = z0 = Z0 and Y1 = z1 + 2−j > z1 = Z1.
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To check the formula

Z1 =
(

2S1+ lgZ0+X1

Z0
−

(
2−1+X0

Z0

)
lg Z0

2π exp 1−2Q1X0

1+X0
− 2Q0X1

(1+X0)2

)
Z2

0
1+X0

,

observe first that the terms X1/Z0 and 2Q0X1/(1 +X0)2 disappear since X1 = 0. The
coefficient 2 − (1 + X0)/Z0 is 2 − (1 + x0)/z0 = 2 − (Q0 − S0 + 1/2) = S0 − Q0 + 3/2;
the term 2Q1X0/(1 +X0) is 2Q1x0/(1 + x0) = (Q1/Q0)(Q0 + S0 − 1/2); and the factor
Z2

0/(1 +X0) is z2
0/(1 + x0) = (1 + x0)/(Q0 − S0 + 1/2)2 = 2Q0/(Q0 − S0 + 1/2)3.

Consequently StandardRatio(n, q, s, κ, βj) < 1 for all sufficiently large n by
Theorem 3.1.6.

Define elements m1,m2, . . . of N as follows: mj is the minimum element of N such
that

• mj > mi for all i < j and

• StandardRatio(n, q, s, κ, βj) < 1 for all n ≥ mj .

Then m1 < m2 < · · · .
Define a function n 7→ β from N to Z as follows: β = β1 if n < m2; β = β2 if

m2 ≤ n < m3; β = β3 if m3 ≤ n < m4; etc.
The point of this construction is that StandardRatio(n, q, s, κ, β) < 1 for all

n ≥ m1. Indeed, there is some j for which mj ≤ n < mj+1, so β = βj , but
StandardRatio(n, q, s, κ, βj) < 1 for n ≥ mj by definition of mj .

All that remains is to see that β has the desired sizes: first, 2 ≤ β ≤ n+ κ+ 1; second,
β/n ∈ z0 + (z1 + o(1))/ lgn.

The first part is easy: one has 2 ≤ βj ≤ n+ κ+ 1 for each j, so 2 ≤ β ≤ n+ κ+ 1.
For the second part, start with

⌈
(z0 + (z1 + 2−j)/ lgn)n

⌉
≥ (z0 + z1/ lgn)n,

implying βj ≥ min {n+ κ+ 1,max {2, (z0 + z1/ lgn)n}} for all j, implying β ≥
min {n+ κ+ 1,max {2, (z0 + z1/ lgn)n}}, implying β ≥ (z0 + z1/ lgn)n for all sufficiently
large n.

For an upper bound, note that β ∈ {βj , βj+1, . . .} for all n ≥ mj . One has β1 ≥ β2 ≥
β3 ≥ · · · , so β ≤ βj for all n ≥ mj . One has βj ≤ 1 + (z0 + (z1 + 2−j)/ lgn)n for all
sufficiently large n, so β ≤ 1 + (z0 + (z1 + 2−j)/ lgn)n for all sufficiently large n.

In other words, (β/n − z0) lgn is at least z1 for all sufficiently large n, and is at
most z1 + 2−j + (lgn)/n for all sufficiently large n. Hence it converges to 0; i.e., β/n ∈
z0 + (z1 + o(1))/ lgn.

Proof of part (2). This part shows that z0 + (z1 + o(1))/ lgn is minimal: at this level
of detail of the asymptotics, no choice of functions n 7→ κ, n 7→ β can do better than the
functions constructed in part (1).

Suppose that the set N ′ = {n ∈ N : β/n ≤ z0 + (z1 − ε)/ lgn} is infinite for some real
number ε > 0.

Write B = (z0 + (z1 − ε)/ lgn)n. Then β ≤ B for all n ∈ N ′, so
StandardRatio(n, q, s, κ,B) ≤ StandardRatio(n, q, s, κ, β) for all n ∈ N ′ by Theorem 3.1.4.

Define N ′′ = {n ∈ N ′ : StandardRatio(n, q, s, κ, β) ≤ 1}. Then N ′′ is infinite, since by
assumption StandardRatio(n, q, s, κ, β) ≤ 1 for all sufficiently large n ∈ N .

Now StandardRatio(n, q, s, κ,B) ≤ StandardRatio(n, q, s, κ, β) ≤ 1 for all n ∈ N ′′. In
other words, ((n+κ)s2 +1)1/2 ≤ (d/B)1/2D2B−d−1qκ/d for all n ∈ N ′′, where d = n+κ+1
and D = (B(πB)1/B/(2π exp 1))1/2(B−1). Note that D > 1 by Theorem 3.1.4.

All values κ/n are in the compact interval [0, 100]. By Bolzano’s theorem, there is some
X0 ∈ [0, 100] and some infinite subset N ′′′ ⊆ N ′′ such that κ/n for n ∈ N ′′′ converges to
X0, i.e., κ/n ∈ X0 + o(1).
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Now apply Theorem 3.1.5(0), with (β, Y0, δ,N) replaced by (B, z0, D,N
′′′), to see that

2 lg StandardRatio(n, q, s, κ,B)
lgn = 2S0 − 1 + 1 +X0

z0
− 2Q0X0

1 +X0
+ o(1).

The left side is ≤0, so 2S0 − 1 + (1 +X0)/z0 − 2Q0X0/(1 +X0) ≤ 0, i.e., (1 +X0)/z0 ≤
1 − 2S0 + 2Q0X0/(1 +X0).

The next step is to show that X0 = x0. There are two cases here:

• S0 < 1/2. Then 1 − 2S0 + 2Q0X0/(1 + X0) > 0, so z0 ≥ (1 + X0)/(1 − 2S0 +
2Q0X0/(1 +X0)). But (1 +X0)/(1 − 2S0 + 2Q0X0/(1 +X0)) ≥ z0 by Theorem 3.1.2,
and equality is achieved only if X0 = x0.

• S0 = 1/2. Then (1 + X0)/z0 ≤ 2Q0X0/(1 + X0); but z0 = 2Q0/Q
2
0 = 2/Q0 by

definition of z0, so (1 +X0)2 ≤ 2Q0X0z0 = 4X0, so (1 −X0)2 ≤ 0, so (1 −X0)2 = 0,
so X0 = 1. Also x0 = Q0/Q0 = 1 by definition of x0.

These are all possible cases, since S0 ≤ 1/2 by hypothesis.
To recap so far, κ/n ∈ x0 + o(1) for n ∈ N ′′′.
A cautionary note is required at this point. If κ/n were known to have the form

x0 +O(1)/ lgn then another compactness argument would extract a subsequence where
κ/n has the form x0+(X1+o(1))/ lgn, and then finishing the proof would be a simple matter
of applying Theorem 3.1.6(2). However, if one has, e.g., κ/n ∈ x0 + (lg lgn+ o(1))/ lgn
then there is no subsequence of the form x0 + (X1 + o(1))/ lgn. The rest of the proof here
uses a different strategy.

Define ρ = StandardRatio(n, q, s, κ,B). The following calculations will put a lower
bound on lg ρ for n ∈ N ′′′ of the form c + o(1) for a positive real number c. First, by
definition of StandardRatio,

2 lg ρ = lg((n+ κ)s2 + 1) − lg d

B
− 2(2B − d− 1) lgD − 2κ

d
lg q.

To put a lower bound on the third and fourth terms on the right side, observe that

(2B − d− 1) lgD + κ

d
lg q = (2B − n− κ− 2) lgD + κ

n+ κ+ 1 lg q

≤ (2B − 1) lgD + lg q − 2
√

(n+ 1)(lgD) lg q

by Theorem 3.1.3, since 2 ≤ n, 2 ≤ q, 1 ≤ κ, 2 ≤ B, and 1 < D. Define

L = lg((n+ κ)s2 + 1) − lg d

B
− 2(2B − 1) lgD − 2 lg q + 4

√
(n+ 1)(lgD) lg q;

then 2 lg ρ ≥ L. The rest of the proof calculates the asymptotics of L for n ∈ N ′′′.
For the first and second terms, use κ/n ∈ x0 + o(1), B/n ∈ z0 + o(1), and s ∈

S0 lgn+ S1 + o(1) to see that

lg((n+ κ)s2 + 1) ∈ (1 + 2S0) lgn+ lg(1 + x0) + 2S1 + o(1)

and
lg d

B
∈ lg(1 + x0) − lg z0 + o(1)

exactly as in the proof of Theorem 3.1.6, so lg((n+ κ)s2 + 1) − lg(d/B) ∈ (1 + 2S0) lgn+
lg z0 + 2S1 + o(1).

For the 2(2B − 1) lgD term, note that (2B − 1)/(B − 1) ∈ 2 + o(1)/ lgn and that

2(B − 1) lgD = lgB + lg πB
B

− lg(2π exp 1) ∈ lgn+ lg z0 − lg(2π exp 1) + o(1)
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so 2(2B − 1) lgD ∈ 2 lg n+ 2(lg z0 − lg(2π exp 1)) + o(1).
For the

√
(n+ 1)(lgD) lg q term, first use

B − 1
n+ 1 ∈ z0 + z1 − ε+ o(1)

lgn

to see that (n+ 1)/(B − 1) ∈ 1/z0 + ((ε− z1)/z2
0 + o(1))/ lgn. Multiply by z0 and by

2(B − 1) lgD ∈ lgn+ lg z0

2π exp 1 + o(1)

to see that
2z0(n+ 1) lgD ∈ lgn+ ε

z0
− z1

z0
+ lg z0

2π exp 1 + o(1).

By definition z0 = 2Q0/(Q0 − S0 + 1/2)2 and

z1 =
(

2S1+ lg z0−
(
S0−Q0+3

2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3

=
(

2S1+ lg z0−
(
S0−Q0+3

2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
z0

Q0−S0+ 1
2

so
z1

z0
− lg z0

2π exp 1 =
(

2S1+ lg z0−2 lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
1

Q0−S0+ 1
2

=
(

2S1+ lg z0−2 lg z0

2π exp 1

)
1

Q0−S0+ 1
2

−Q1x0

Q0

=
(

2S1+ lg z0−2 lg z0

2π exp 1

)
1 + x0

2Q0
−Q1x0

Q0
.

Hence

2z0(n+ 1) lgD ∈ lgn+ ε

z0
−

(
2S1+ lg z0−2 lg z0

2π exp 1

)
1 + x0

2Q0
+Q1x0

Q0
+ o(1).

Multiply by (lg q)/Q0 ∈ lgn+Q1/Q0 + o(1):

2z0

Q0
(n+ 1)(lgD) lg q ∈ (lgn)2

+
(
Q1

Q0
+ ε

z0
−

(
2S1+ lg z0−2 lg z0

2π exp 1

)
1 + x0

2Q0
+Q1x0

Q0
+ o(1)

)
lgn

Rewrite 2z0/Q0 as (1 + x0)2/Q2
0, merge the Q1 terms, and take square roots:

1 + x0

Q0

√
(n+ 1)(lgD) lg q

∈ lgn+ (1 + x0)Q1

2Q0
+ ε

2z0
−

(
2S1+ lg z0−2 lg z0

2π exp 1

)
1 + x0

4Q0
+ o(1).

Multiply by 4Q0/(1 + x0):

4
√

(n+ 1)(lgD) lg q

∈ 4Q0

1 + x0
lgn+ 2Q1 + 2Q0ε

z0(1 + x0) − 2S1− lg z0+2 lg z0

2π exp 1 + o(1).
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Now add everything:

L ∈ (1 + 2S0) lgn+ lg z0 + 2S1 + o(1)

− 2 lg n− 2 lg z0

2π exp 1 + o(1)

− 2Q0 lgn− 2Q1 + o(1)

+ 4Q0

1 + x0
lgn+ 2Q1 + 2Q0ε

z0(1 + x0) − 2S1− lg z0+2 lg z0

2π exp 1 + o(1).

The coefficients of lgn cancel, since 1+2S0 −2−2Q0 = −2(Q0 −S0 +1/2) = −4Q0/(1+x0).
Almost all of the remaining terms also cancel, leaving just

L ∈ 2Q0ε

z0(1 + x0) + o(1).

All of Q0, ε, z0, 1 + x0 are positive, so L > 0 for all sufficiently large n, so ρ > 1 for all
sufficiently large n; but by assumption ρ ≤ 1 for all sufficiently large n. Contradiction.

Consequently, for each ε > 0, there are only finitely many n ∈ N for which β/n ≤
z0 + (z1 − ε)/ lgn. By Theorem 3.1.1, there is a function n 7→ ` with β ≥ ` and
`/n ∈ z0 + (z1 + o(1))/ lgn as claimed.
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A.1 Proof development
This paper is an outgrowth of the following material posted in November 2022: 2.5
pages with a theorem and proof—at a normal mathematical level of formality, not
computer-verified—determining the second-order asymptotics of StandardRatio for any
particular growth of (n, q, s, κ, β); and 1.5 pages informally optimizing (κ, β) and sketching
how this optimization could be proven.

That initial theorem, proof, informal optimization, and optimization-proof sketch were
then upgraded to a main theorem stating the asymptotics of the optimal (κ, β), and a
proof of those asymptotics. The main theorem statement is Theorem 1.2.1; the proof is
Section 3.

The theorem and proof were then upgraded to computer-verified proofs in the HOL
Light language—along with proofs of many necessary lemmas. Here is an example
of how this expanded the proofs. The proof in Section 3 includes a comment that
“1/(A0 + (A1 + o(1))/ lgn) is 1/A0 + (−A1/A

2
0 + o(1))/ lgn if A0 6= 0”, where the o(1) is

as n → ∞. Inside lprrr-20230317.ml, the computer-verified proof of this comment

• starts from the mean-value theorem (which is already proven in the HOL Light
library);

• spends 25 lines stating and proving a more suitable two-sided version of the mean-value
theorem;

• spends 74 lines stating and proving that if f is continuously differentiable at A0 then
anything in f(A0 + (A1 + o(1))/X) is in f(A0) + (A1f

′(A0) + o(1))/X where the
o(1) is as X → ∞;

• spends 39 lines specializing the statement and proof to inversion; and

• spends 17 lines specializing the statement and proof to X = lg n.

Overall lprrr-20230317.ml occupies 345KB, nearly 10000 lines. Some of the proofs
were generated by ad-hoc scripts. There are a few comments, partly for tracking the
internal organization of lprrr-20230317.ml and partly about proofs of one of the lemmas
(Bolzano’s theorem). The time for writing lprrr-20230317.ml was an unrecorded fraction
of a 3.5-week period. No claims of optimality are made for the numbers 345, 10000, and
3.5. The main theorem statement and lprrr-20230317.ml were posted in March 2023.

A.2 The value of computer verification
Given that the literature presents merely heuristic arguments that the standard block size
is close to the actual block size required for attacks, the reader might be wondering why
this paper puts so much effort into eliminating risks of error in this paper’s statements
about the asymptotics of the standard block size.

One answer is that the literature often describes the standard block size as an accurate
approximation to the actual block size. Consider, e.g., [A3D21] saying that the existing
heuristics were “empirically investigated and confirmed” and that various discrepancies
disappear as problem sizes increase. Readers who trust the existing heuristics, on the basis
of current evidence or evidence collected in the future, can—thanks to the computer-verified
proofs—place the same trust in conclusions obtained by combining the heuristics with
Theorem 1.2.1.

Another answer is that, even if the standard block size is somewhat inaccurate, an error
buried somewhere in the asymptotic calculations in Section 3 could easily create much
larger inaccuracies. The formally verified proof guarantees that Theorem 1.2.1 is correct.
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A.3 The statement of the computer-verified theorem
There are two main theorems in lprrr-20230317.ml: forward_main is a generalization
of Theorem 1.2.1(1), and converse_main is a generalization of Theorem 1.2.1(2).

A reader checking that Theorem 1.2.1 has been computer-verified must check the
statements of forward_main and converse_main, along with the underlying definitions.
The following paragraphs review the definitions and the theorem statements, without
assuming familiarity with HOL Light.

let log2 = new_definition `
  log2 x = (ln x) / (ln (&2))
`;;

The HOL Light library already defines a function ln; these lines define a function log2. In
the HOL Light language, natural numbers such as 2 are distinguished from real numbers
such as &2. Parentheses can often be omitted but are included here for clarity.

let ceil = new_definition `
  ceil x = -- floor(--x)
`;;

This defines ceil on top of the function floor defined in the HOL Light library: dxe =
−b−xc. In the HOL Light language, -- is negation.

let o1_seq = new_definition `
  o1_seq (f:num->real) <=>
    !e:real. &0 < e ==>
      ?m:num.
        !i:num. m <= i ==> abs(f(i)) <= e
`;;

Let f be a function from {0, 1, 2, . . .} to R. This definition says that o1_seq f is the
following statement: for every e ∈ R with 0 < e, there exists m ∈ {0, 1, 2, . . .} such that
every i ∈ {0, 1, 2, . . .} with m ≤ i has |f(i)| ≤ e. This is one of the traditional ways to say
that f converges to 0, i.e., that f ∈ o(1).

This is equivalent to a special case of a concept tends_num_real in the HOL Light
library. There is only a small overlap between o1_seq theorems in lprrr-20230317.ml
and tends_num_real theorems already in the library.

As this definition illustrates, in the HOL Light language, “!x.” means “for every x
we have”; “?x.” means “there exists x such that”; “:num”, “:real”, and “:num->real”
specify types. Often HOL Light can deduce types automatically, but including the types
can still add clarity.

parse_as_infix("powreal",(24,"left"));;
let powreal = new_definition `
  x powreal y = exp(y * ln x)
`;;

This defines x powreal y as exp(y ln x), i.e., xy.

let bkzdelta = new_definition `
  bkzdelta x =
    (x * ((pi*x) powreal (&1 / x))/(&2 * pi * exp(&1)))
    powreal (&1 / (&2 * (x - &1)))
`;;



32 Asymptotics for the standard block size in primal lattice attacks

For comparison, δ = (β(πβ)1/β/(2π exp 1))1/2(β−1) inside Definition 1.1.1.

let standardratio = new_definition `
  standardratio n q s k x =
     ( ((n + k)*(s pow 2) + &1) powreal (&1 / &2)
     ) / ( (((n + k + &1)/x) powreal (&1 / &2))
           * ((bkzdelta x) powreal (&2 * x - (n + k + &1) - &1))
           * (q powreal (k/(n + k + &1)))
         )
`;;

Compare this to StandardRatio(n, q, s, κ, β) = ((n+ κ)s2 + 1)1/2/(d/β)1/2δ2β−d−1qκ/d in
Definition 1.1.1, with d = n+ κ+ 1 and δ as above. In the HOL Light language, pow is
exponentiation with a natural-number exponent; there is also a sqrt(...) that could be
used in place of (...) powreal (&1 / &2).

let forward_main = prove(`
  !n:num->real q:num->real s:num->real
   Q0:real Q1:real S0:real S1:real
   x0:real z0:real z1:real.

This is the start of the first main theorem statement. At a high level, the statement
looks like “!X. A /\ B ==> ?Y. C /\ D”, meaning that, for every X where the hypotheses
A and B hold, there exists Y where the conclusions C and D hold. In the HOL Light language,
==> is implication, and /\ is conjunction.

In Theorem 1.2.1, n runs through a specified infinite subset N of {2, 3, . . .}. To match
this up to the more general n:num->real allowed in forward_main, define n0 as the
smallest element of N , define n1 as the next element of N , etc.

In Theorem 1.2.1, q and s are determined by n. The setting of forward_main is more
general, allowing ni = nj with qi 6= qj or si 6= sj .

  (!i. &1 < n(i))
  /\ (!i. &1 < q(i))
  /\ (!i. &0 < s(i))
  /\ o1_seq (\i. &1 / n(i))
  /\ o1_seq (\i. (log2(q(i))/log2(n(i)) - Q0) * log2(n(i)) - Q1)
  /\ o1_seq (\i. (log2(s(i))/log2(n(i)) - S0) * log2(n(i)) - S1)

These hypotheses say that each ni is larger than 1; each qi is larger than 1; each
si is larger than 0; 1/ni ∈ o(1) as i → ∞; ((lg qi)/ lgni − Q0) lgni − Q1 ∈ o(1), i.e.,
lg qi ∈ Q0 lgni +Q1 + o(1); and lg si ∈ S0 lgni + S1 + o(1).

If ni runs through the elements of N in order, with N as in Theorem 1.2.1, then ni → ∞
as i → ∞, and 1/ni ∈ o(1). Also, Theorem 1.2.1 assumes lg q ∈ Q0 lgn+Q1 + o(1) and
lg s ∈ S0 lgn+ S1 + o(1).

  /\ -- &1 / &2 < S0
  /\ S0 <= &1 / &2
  /\ &1 / &2 < Q0 - S0
  /\ &1 / &2 < Q0 + S0

These hypotheses say −1/2 < S0 ≤ 1/2, 1/2 < Q0 − S0, and 1/2 < Q0 + S0. All of these
are satisfied in Theorem 1.2.1, which requires 0 ≤ S0 ≤ 1/2 < Q0 − S0.
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  /\ x0 = (Q0 + S0 - &1 / &2)/(Q0 - S0 + &1 / &2)
  /\ z0 = &2 * Q0/((Q0 - S0 + &1 / &2) pow 2)
  /\ z1 = (&2 * S1 + log2(z0)
             - (S0 - Q0 + &3 / &2) * (log2(z0) - log2(&2 * pi * exp(&1)))
             - Q1 * (Q0 + S0 - &1 / &2)/Q0
            )
          * (&2 * Q0) / ((Q0 - S0 + &1 / &2) pow 3)

For comparison, Theorem 1.2.1 says x0 = (Q0 + S0 − 1/2)/(Q0 − S0 + 1/2); z0 =
2Q0/(Q0 − S0 + 1/2)2; and

z1 =
(

2S1+ lg z0−
(
S0−Q0+3

2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3 .

The constant pi is provided by the HOL Light library.

  ==> ?k:num->real b:num->real.

This says that, if the above hypotheses are satisfied, then there exist functions k, b from
{0, 1, 2, . . .} to R satisfying the conclusions that follow.

If n is an injective function on {0, 1, 2, . . .} then the functions i 7→ ki and i 7→ bi are
determined by functions n 7→ k and n 7→ b; Theorem 1.2.1 is phrased in terms of the latter
functions.

    (!i. integer(k(i)))
    /\ (!i. &0 < k(i))
    /\ (!i. k(i) <= ceil(n(i)))
    /\ o1_seq (\i. (k(i)/n(i) - x0) * log2(n(i)) - &0)

This says that each ki is an integer, that 0 < ki ≤ dnie, and that ki/ni ∈ x0 + o(1)/ lgni.
In particular, 1 ≤ ki, and ki ≤ ni if ni is an integer, the situation of Theorem 1.2.1.

    /\ (!i. integer(b(i)))
    /\ (!i. &1 < b(i))
    /\ (!i. b(i) <= ceil(n(i) + k(i) + &1))
    /\ o1_seq (\i. (b(i)/n(i) - z0) * log2(n(i)) - z1)

This says that each bi is an integer, that 1 < bi ≤ dni + ki + 1e, and that bi/ni ∈
z0 + (z1 + o(1))/ lgni. In particular, 2 ≤ bi, and bi ≤ ni + ki + 1 if ni is an integer (since
ki is also an integer).

    /\ ?m. !i. m <= i ==>
       standardratio (n(i)) (q(i)) (s(i)) (k(i)) (b(i)) < &1
  `,
  ...

This covers the last conclusion of Theorem 1.2.1(1): there is some m such that every i ≥ m
has StandardRatio(ni, qi, si, ki, bi) < 1.

A proof in lprrr-20230317.ml has been replaced with ... here. The main point of
computer verification is that the reader does not need to check the proof.

let converse_main = prove(`
  !n:num->real q:num->real s:num->real
   k:num->real b:num->real
   Q0:real Q1:real S0:real S1:real
   x0:real z0:real z1:real.
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This starts the other main theorem statement, generalizing Theorem 1.2.1(2). Note
the extra k and b here.

  (!i. &1 < n(i))
  /\ (!i. &1 < q(i))
  /\ (!i. &0 < s(i))
  /\ o1_seq (\i. &1 / n(i))
  /\ o1_seq (\i. (log2(q(i))/log2(n(i)) - Q0) * log2(n(i)) - Q1)
  /\ o1_seq (\i. (log2(s(i))/log2(n(i)) - S0) * log2(n(i)) - S1)

This is exactly the same as in the first main theorem statement.

  /\ -- &1 / &2 < S0
  /\ S0 <= &1 / &2
  /\ -- &1 / &2 < Q0 - S0
  /\ &1 / &2 < Q0 + S0

This is more generous than in the first main theorem statement: this requires merely
−1/2 < Q0 − S0, not 1/2 < Q0 − S0.

  /\ x0 = (Q0 + S0 - &1 / &2)/(Q0 - S0 + &1 / &2)
  /\ z0 = &2 * Q0/((Q0 - S0 + &1 / &2) pow 2)
  /\ z1 = (&2 * S1 + log2(z0)
             - (S0 - Q0 + &3 / &2) * (log2(z0) - log2(&2 * pi * exp(&1)))
             - Q1 * (Q0 + S0 - &1 / &2)/Q0
            )
          * (&2 * Q0) / ((Q0 - S0 + &1 / &2) pow 3)

This is again exactly the same as in the first main theorem statement.

  /\ (!i. &0 < k(i))
  /\ (!i. k(i) <= &100 * n(i))
  /\ (!i. &60 <= b(i))
  /\ (!i. b(i) <= ceil(n(i) + k(i) + &1))
  /\ (?m. !i. m <= i ==>
      standardratio (n(i)) (q(i)) (s(i)) (k(i)) (b(i)) <= &1)

This says 0 < ki ≤ 100ni and 60 ≤ bi ≤ dni + ki + 1e. These inequalities are satisfied
if 1 ≤ ki ≤ 100ni and 60 ≤ bi ≤ ni + ki + 1, as in Theorem 1.2.1(2).

This also says that, for all suficiently large i, StandardRatio(ni, qi, si, ki, bi) ≤ 1. This
is assumed by Theorem 1.2.1(2).

  ==>
  ?L. (!i. L(i) <= b(i))
  /\ o1_seq (\i. (L(i)/n(i) - z0) * log2(n(i)) - z1)
  `,
  ...

For comparison, the conclusion of Theorem 1.2.1(2) is that β ≥ ` for some function n 7→ `
with `/n ∈ z0 + (z1 + o(1))/ lgn.
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A.4 Redoing the computer verification
Readers are cautioned that, beyond the portion of HOL Light responsible for verifying
theorems, there are many more lines of code in the HOL Light library providing proof
tools and specific proofs—and perhaps doing something else, since all of this is written
in a general-purpose programming language. Malicious code in HOL Light or in this
paper’s lprrr-20230317.ml could exfiltrate secret files, install ransomware, or, perhaps
most terrifyingly, output a “thm” that has not, in fact, been proven.

The following commands have been tested on an Ubuntu 22.04 system (which requires
the --disable-sandboxing) and on a Debian Bookworm system. These commands
download the HOL Light development package (rather than using the HOL Light package
built into Bookworm), and should work on a wider range of Linux distributions, as long as
the apt line is adapted appropriately.

sudo apt install opam wget -y

time opam init -a --disable-sandboxing
time opam switch create 4.05.0
eval `opam env`
time opam pin add camlp5 7.10 -y
time opam install num camlp-streams ocamlfind -y

git clone https://github.com/jrh13/hol-light
cd hol-light
git checkout 1a1de6ce7a6e9f60bec8bc501c426836d0e6b231
make

wget https://cr.yp.to/2023/lprrr-20230317.ml
time ocaml -I `camlp5 -where` camlp5o.cma -init hol.ml \
< lprrr-20230317.ml > lprrr-20230317.out

On the Ubuntu 22.04 system (with an AMD FX-8350 CPU), the timed commands
were observed to take 39 seconds, 314 seconds, 72 seconds, 187 seconds, and 365 seconds
respectively. The reader can check that the resulting lprrr-20230317.out file includes
the definitions and theorems shown above, each certified by HOL Light to be a thm.
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