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Abstract. Quantum computers have the potential to solve hard problems that are nearly impossible
to solve by classical computers, this has sparked a surge of research to apply quantum technology and
algorithm against the cryptographic systems to evaluate for its quantum resistance. In the process of
selecting post-quantum standards, NIST categorizes security levels based on the complexity that quantum
computers would require to crack AES encryption (levels 1, 3 and 5) and SHA-2 or SHA-3 (levels 2 and 4).
In assessing the security strength of cryptographic algorithms against quantum threats, accurate predictions
of quantum resources are crucial. Following the work of Jaques et al. in Eurocrypt 2020, NIST estimated
security levels 1, 3, and 5, corresponding to quantum circuit size for finding the key for AES-128, AES-192,
and AES-256, respectively. This work has been recently followed-up by Huang et al. (Asiacrypt’22) and Liu
et al. (Asiacrypt’23) among others; though the most up-to-date results are available in the work by Jang et
al. (ePrint’22). However, for levels 2 and 4, which relate to the collision finding for the SHA-2 and SHA-3
hash functions, quantum attack complexities are probably not well-studied.
In this paper, we present novel techniques for optimizing the quantum circuit implementations for SHA-2
and SHA-3 algorithms in all the categories specified by NIST. After that, we evaluate the quantum circuits
of target cryptographic hash functions for quantum collision search. Finally, we define the quantum attack
complexity for levels 2 and 4, and comment on the security strength of the extended level. We present new
concepts to optimize the quantum circuits at the component level and the architecture level.

Keywords: Quantum Circuit · Quantum Collision Search · SHA-2 · SHA-3 · NIST Post Quantum
Cryptography · Quantum Security Levels

1 Introduction

With the progress in quantum computing, it has become essential to evaluate the vulnerability of
cryptographic algorithms against it. Since quantum computers can efficiently solve certain hard
problems in commonly used cryptographic algorithms, concerns arise about the compromised security
of traditional cryptography. Shor’s algorithm [1] is particularly noteworthy for its ability to compromise
traditional public-key cryptography, such as RSA and ECC. In case of symmetric key, like AES, SHA-2,
and SHA-3, the primary threat is Grover’s search algorithm [2], which offers a quadratic speedup,
significantly reducing the time needed for an exhaustive search.

This changing landscape requires a thorough reassessment of cryptographic protocols and exploration
of quantum-resistant alternatives to ensure enough quantum security strength in the future. As widely
known, the National Institute of Standards and Technology (NIST) is conducting a competition
in Post-Quantum Cryptography (PQC) to standardize algorithms that are secure against potential
quantum attacks. As part of this contest, NIST introduced security strength categories to classify the
post-quantum cryptography candidates [3], as shown in Table 11. These classifications were determined
by considering the intricacies of quantum attacks, measured in terms of quantum circuit size. In addition
to the gate count, MAXDEPTH is another parameter proposed by NIST. It involves the concept of
limiting quantum attacks by setting a maximum runtime or quantum circuit depth. This approach is
motivated by the challenges associated with executing excessively long sequential computations.

⋆ This project is partially supported by the Wallenberg – NTU Presidential Post-doctoral Fellowship.
1 The definition of the quantum security levels as per [3] is somewhat ambiguous, as [3, Page 16] defines up to level 5,
but [3, Page 17] defines up to the extended level.
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Table 1: Security levels defined by NIST (in context of post-quantum cryptography competition) along with our extension.

Category Cipher Quantum gate bound

Level 1 AES-128 2157/MAXDEPTH

Level 2 SHA-2-256/SHA-3-256 Unspecified

Level 3 AES-192 2221/MAXDEPTH

Level 4 SHA-2-384/SHA-3-384 Unspecified

Level 5 AES-256 2285/MAXDEPTH

Level 6 (Extension) SHA-2-512/SHA-3-512 Not available

NIST defines post-quantum security levels [3,4] ranging from 1 to 5. Levels 1, 3, and 5 correspond to
the quantum circuit size of finding a solution key for AES-128, AES-192, and AES-256 using the Grover
algorithm, respectively. However, for levels 2 and 4, which relate to the collision finding (i.e., same
output with different inputs) for the SHA-2 and SHA-3 hash functions, quantum circuit sizes are yet
to be defined (only classical circuit sizes are reported). Inspired by this, we optimize quantum circuits
for representative two cryptographic hash functions, including SHA-2 and SHA-3. The anticipated
outcome from our work is to provide more efficient quantum circuits for cryptographic hash functions
compared to previous works [5,6,7,8,9,10,11], while simultaneously offering the lowest complexity that
can be designated as the quantum post-quantum security level by NIST (discussed in detail in Section
4).

1.1 Contributions

To the best of our knowledge, we integrated all the best techniques for optimizing the quantum circuit
depth of quantum circuit implementations for SHA-2 and SHA-3 algorithms in all categories. And
then, we benchmarked against the-state-of-art quantum circuit implementations for two representative
cryptographic hash functions, SHA-2 and SHA-3. For SHA-2 and SHA-3 algorithms, our implementations
include novel tricks not yet described in the literature. In all quantum circuit implementations, we
achieve the lowest circuit depth and the best performance for Grover’s algorithm. The detailed
contributions can be condensed in the following manner:

⋄ New adder circuit for SHA-2: We present optimized quantum circuits of SHA-2 by using the
Quantum Carry-Save Adder (QCSA) [12] for multi-operand addition, a resource-critical step in
SHA-2. Specifically, we achieve the shortest critical path of approximately 1 for quantum additions
in a single round. This represents a significant improvement compared to the previous best result,
achieved in Lee et al.’s work [5], which was 3. We also introduce efficient implementation techniques;
reusing output qubits, and optimization for a fixed input length, based on the out-of-place approach.

⋄ Interval architecture for SHA-3: We design an efficient out-of-place round circuit that incorpo-
rates techniques for optimizing depth; all-in-one, parallel design with copying, and trick of the X
gate operation. We also introduce a novel architecture called the interval architecture, which can
reuse/reduce many ancilla qubits without increasing circuit depth. This is achieved by operating
a reverse process with a 4-round interval. As a result, our quantum circuits for SHA-3 offer the
lowest depths with a reasonable number of qubits.

⋄ Quantifying quantum attack for NIST defined levels 2 and 4: In a realistic approach
to Grover’s search, the full circuit may be split into reduced sizes and operated in parallel to
address the issue of extreme circuit depth. In this parallelization process, our depth-optimized
implementations of SHA-2 and SHA-3 offer a benefit in achieving the best trade-off performance
compared to qubit-optimized implementations (related discussion is given in Appendix A). Based
on the estimated cost for quantum collision search using the presented SHA-2 and SHA-3 quantum
circuits, we define the quantum complexity for levels 2 and 4, which have not yet been defined.
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Table 2: Security levels defined in this work.

Category Subcategory Hash function Quantum gate bound

Level 2
A SHA-2-256 2188/MAXDEPTH

B SHA-3-256 2183/MAXDEPTH

Level 4
A SHA-2-384 2266/MAXDEPTH

B SHA-3-384 2260/MAXDEPTH

Level 6 (Extension)
A SHA-2-512 2343/MAXDEPTH

B SHA-3-512 2337/MAXDEPTH

⋄ Extending the NIST quantum attack complexity for the extended level: We also optimize
the SHA-2-512 and SHA-3-512 in quantum circuits. Based on that, we propose extension for the
NIST specified quantum security level. We then go further into properly quantifying the quantum
complexity for the extended level.

The security levels depending on the hash functions are mentioned in [3]. Following this, we using
the naming convention for the security levels as shown in Table 2. The source-codes for our project
will be released later.

1.2 Related Works

In the quantum implementations, the evaluation metrics are similar to the hardware based cryptography
implementations but the point of view is a bit different. In order to evaluate the performance of quantum
circuits properly, the following metrics are commonly defined in related research [6, 13,14,15,16]:

• Time Complexity: Quantum circuits can be designed with Clifford + T gates (Section 2). The
time complexity can be measured by the full depth of the quantum circuit, representing the critical
path of target quantum circuits. For fault-tolerant quantum computing, the T -depth, counted by
non-parallelizable T gates; also signifies the time complexity of quantum circuits.

• Space Complexity The required number of qubits of quantum circuits (often denoted as width)
corresponds to the space complexity.

• Time-Space Complexity: The time-space complexity is the product of the depth and width of
the quantum circuit. This metric is often employed to evaluate the trade-off performance of the
quantum circuit.

• Quantum Attack Complexity: The quantum attack complexity is determined by the product
of the total number of gates and the depth of the quantum circuit. This metric was introduced
by NIST [3] to establish boundaries for post-quantum levels 1 to 5 of post-quantum cryptography
candidates (refer to Section 4 and Appendix A for details).

Quantum Circuits for SHA-2 and SHA-3. Quantum circuit implementations of SHA-2 were
initially introduced by Amy et al. in [7]. SHA-2 quantum circuits in [6, 7] have a high circuit depth
due to the sequential execution of major functions, such as Ch, Maj, and addition operations. In [5],
Lee et al. subsequently presented enhanced quantum circuits that achieve a low Toffoli depth with a
reasonable number of qubits.

In [7], the authors introduced a round in-place architecture for the SHA-3 quantum circuit to reduce
the number of qubits. In this approach, each function should be designed to be reversible (an intuitive
view is in Figure 6). Song et al. [10] presented a new circuit for SHA-3 to reduce T -depth by excluding
reversible functions and allocating extra qubits.

Häner et al. [9] and Meuli et al. [8] presented algorithms for optimizing Toffoli-related metrics such
as T gates, Toffoli gates, and T -depth, in quantum implementation. They did not provide specific
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|0⟩ H
1√
2
(|0⟩+ |1⟩)

(a) H gate

|x⟩ X |∼ x⟩
(b) X gate

|x⟩ • |x⟩
|y⟩ |x⊕ y⟩

(c) CNOT gate

|x⟩ • |x⟩
|y⟩ • |y⟩
|z⟩ |z ⊕ (x · y)⟩

(d) Toffoli gate

Figure 1: Quantum gates employed in our quantum circuit implementations.

quantum circuits for SHA-2 and SHA-3; instead, they estimated the required quantum resources using
their algorithms.

Very recently, Lee et al. presented Toffoli-depth-reduced SHA-3 quantum circuits while preserving
an in-place architecture [11]. Though not their primary objective, they also implemented an out-of-place
SHA-3 quantum circuit with a reduced number of qubits compared to [8, 9].

2 Basic Quantum Gates

Before describing our quantum circuits for cryptographic hash functions, the quantum gates (i.e.,
at the bottom level) employed for our implementation are briefly outlined in this section. Figure 1
shows the diagrams of the quantum gates utilized in this paper to design the quantum circuits (the
notations ’∼’, ’⊕’ and ’·’ represent the NOT, XOR, and AND operations; respectively):

The H (Hadamard) gate is a fundamental quantum gate in quantum computing that creates
superposition by equally weighting the |0⟩ and |1⟩ states. The X gate (Figure 1(b)) inverts the state of
the qubit from 0 to 1 or from 1 to 0 (similar to the classical NOT operation (∼)). The CNOT gate
(Figure 1(c)) inverts the state of the target qubit (y) if the control qubit (x) is 1. Thus, this quantum
gate can replace the classical XOR operation (⊕). Figure 1(d), the Toffoli gate, inverts the state of the
target qubit (z) if both control qubits (x and y) are 1. This is the most important quantum gate in
this paper (and the same holds true for other papers [13,14,17,18]) for optimizing quantum circuits.
There are two reasons why this quantum gate is major for optimization.

Actually, the Toffoli gate is implemented by combining multiple quantum gates, such as X, CNOT,
T and H gates. Figure 1(d) is an intuitive diagram for understanding. There are many proposals to
efficiently design the Toffoli gate (which consumes more quantum resources) [19, 20, 21, 22]. In this
work, we decompose a single Toffoli gate using 6 CNOT gates + 2 H gates + 7 T gates, with a total
depth of 8 (T -depth is 4), following one of the methods described in [19].

3 Grover’s Algorithm

The steps of the Grover’s search can be divided into three stages, namely input setting, oracle, and
diffusion operator. We describe the Grover’s algorithm by applying it to the pre-image search for hash
functions.

1. Input setting : Hadamard gates are applied to an n-qubit input to prepare a superposition state |ψ⟩,
resulting in equal probabilities for all 2n inputs:

H⊗n |0⟩⊗n = |ψ⟩ =
( |0⟩+ |1⟩√

2

)
=

1

2n/2

2n−1∑

x=0

|x⟩ (1)
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2. In the Oracle, the hash function is implemented as a quantum circuit that generates the hash output
using the previous input in a superposition state. The generated hash output (in a superposition
state) is then compared with the known hash output (this part is usually ignored in resource
estimation [13, 14, 23]), and if a match is found (i.e., if f(x) = 1) and the sign of the solution input
(i.e., pre-image) is negated (i.e., if f(x) = −1):

f(x) =

{
1 if Hash(x) = target output

0 if Hash(x) ̸= target output
(2)

Uf (|ψ⟩ |−⟩) = 1

2n/2

2n−1∑

x=0

(−1)f(x) |x⟩ |−⟩ (3)

3. The diffusion operator is designed to amplify the amplitude of the pre-image marked by the
oracle. Due to its minimal complexity in comparison to the oracle, the diffusion operator is usually
disregarded in the Grover’s algorithm [13,23].

Application of Grover’s Algorithm to Collision Search

For applying the Grover algorithm to the collision finding of hash functions, we investigate three
approaches in this section:

Second pre-image attack. In the second pre-image attack, a collision search is performed by finding a
second pre-image for a given first pre-image. Grover’s algorithm searches for the second pre-image that
satisfies the output of the first pre-image by excluding the first pre-image from the input set. This
method is similar to a quantum key search with the same complexity of O(2n/2).

The second pre-image attack has the advantage of not requiring quantum memory, but it may not
align with NIST’s considerations. NIST defines the post-quantum strength of SHA-2-256/SHA-3-256
as level 2, assuming that a quantum collision attack on SHA-2-256/SHA-3-256 is more feasible than a
quantum key search on AES-192 (i.e., level 3). If we estimate the complexity of the collision search on
SHA-2-256/SHA-3-256 using the second pre-image attack it is higher than the key search on AES-192.

Brassard, Hoyer and Tapp (BHT) algorithm. The Brassard, Hoyer and Tapp (BHT) algorithm [24]
combines the classical speedup from the birthday paradox with the quantum speedup from Grover’s
algorithm, as described in Algorithm 1.

Algorithm 1: BHT algorithm for collision search.

Input: Exhaustive search space (of size 2n)
Output: Collision
1: Select a subset K (size of 2n/3) ∈ 2n at random and query the hash function
2: if there are x0, x1 ∈ K which result in collision then
3: return (x0, x1)
4: else
5: Construct a subset L (size of 22n/3) ∈ 2n that does not include K

6: end if
7: Grover’s algorithm finds x1 ∈ L that collides with x0 ∈ K
8: return (x0, x1)

In the BHT algorithm, a subset K of size O(2n/3) is randomly selected from the set of all possible
inputs (2n represents the input size). According to the birthday paradox, the likelihood of collisions
within this subset increases, allowing for a faster classical search for collisions. After selecting subset K
and checking for collisions classically, a subset L of size O(22n/3) is constructed, excluding the elements
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in K. The Grover’s algorithm is then applied to find a collision between an element x0 ∈ K and an
element x1 ∈ L. Classical search could find a collision with O(2n/3) queries, and Grover’s algorithm

can find a collision with O
(√

2n

2n/3

)
= O(2n/3) extra queries to the hash function.

However, this algorithm requires a significantly large amount of quantum memory, O(2n/3). Addi-
tionally, in [25], Bernstein discussed the impracticality of the BHT algorithm for collision search. For
these reasons, we do not adopt the BHT algorithm for estimating the complexity of quantum attacks.

CNS algorithm. In Asiacrypt’17, Chailloux, Naya-Plasencia, and Schrottenloher proposed a new
quantum algorithm for collision search [26], known as the CNS algorithm, with a query complexity of
O(22n/5) using O(2n/5) classical memory . Although the complexity of the CNS algorithm is higher
than that of the BHT algorithm, it does not require quantum memory, making it practical. Thus, we
adopt the CNS algorithm for estimating the cost of quantum attacks on SHA-2 and SHA-3.

The CNS algorithm employs the Quantum Amplitude Amplification (QAA) algorithm [27], which is
a generalized version of Grover’s algorithm and consists of two phases: constructing the list and finding
collisions using the QAA algorithm. We provide a brief description related to the complexity analysis
as follows (for further details, refer to [26]).

Sd
H denotes the set comprising pairs of input/output (x, H(x)), where H(x) starts with d zeros. In

the first phase, a list L of size 2t−d is constructed from Sd
H using Grover’s algorithm with complexity

2d/2 (i.e., square root). Thus, the entire list L can be constructed with complexity 2t−d/2. The optimized
parameters for t and d are t = 3n

5 and d = 2n
5 according to [26]. In the next phase, the QAA algorithm

performs 2d/2 Grover iterations and 2t−d operations to access the list L. By executing the QAA
algorithm 2(n−t−1)/2 times, the total complexity is given by 2(n−t−1)/2(2d/2 + 2t−d) + 2t−2/d. Finally,
with optimized parameters (t = 3n

5 and d = 2n
5 ), a collision can be found in O(22n/5) with O(2n/5)

classical memory. The authors of the CNS algorithm also presented a parallelization method that can
reduce the search complexity. For parallelization with 2s quantum instances, the search complexity
exponent of the CNS algorithm for collision search is reduced to 2n

5 − 3s
5 , (s ≤

n
4 ).

In this paper, to establish appropriate boundaries for NIST post-quantum security levels, we assume
s = n/6 and a large size of classical memory. For SHA-2-n and SHA-3-n (where n = 256, 384 and 512;
respectively), the search complexities can be (approximately) computed as 276 (level 2), 2115 (level
4) and 2153 (extended level); respectively. This is obtained using the formula 2n

5 − 3s
5 . These search

complexities are appropriate, considering that the required search complexities for levels 1, 3 and 5
(Grover’s key search on AES-128, -192 and -256) are approximately 264, 296 and 2128; respectively.
More discussion can be found in Section 9.1.

It is important to note that operating 2n/6 instances in parallel requires a significant number of
qubits. The parallelization with 2(n/6) instances is intended to provide suitable boundaries for levels 2,
4 and the extended level; and therefore can be adjusted.

4 NIST Post-Quantum Security Strength

NIST proposed the following approach in [3,4] to address uncertainties in estimating the post-quantum
security strengths of post-quantum cryptography candidates:

– Any attack that breaks the relevant security definition must require computational resources
comparable to or greater than those required for key search on AES and collision search on
SHA-2/3.

Each category is defined by a relatively easy-to-analyze reference primitive, serving as a baseline for
various metrics that NIST considers potentially relevant to practical security. Specifically, NIST defined
a separate category for each of the following security requirements as shown in Table 1. Estimated
quantum resources for each category are the result of considering the quantum gate count, full depth
and MAXDEPTH. We present the related discussion in Appendix A.
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Levels 1, 3 and 5 correspond to key search on AES; while levels 2, 4 and the extended level
correspond to collision search on SHA-2/3. In a previous NIST document [4], the estimated resources
for Grover’s key search on AES by Grassl et al. [23] were defined for levels 1, 3 and 5. Recently, NIST
adjusted levels 1, 3 and 5 based on Jaques et al. [13], which reduced the required quantum resources
by improving the quantum circuits of AES. Note that, the research in [16] presents the state-of-the-art
results in quantum analysis of the three AES variants in the literature, to the best of our knowledge.

However, it appears that the quantum resources for levels 2, 4 (and the extended level) have not
been properly studied so far. In our view, this is due to the lack of a clear estimation for collision search
on SHA-2/3, unlike what the authors did in [13, 14, 16, 23]. Furthermore, there is not an optimized
quantum circuit that satisfies the estimation method for quantum attacks (adopted by NIST). Generally,
previous works have focused on reducing the qubit count, which is not a recommended approach for
Grover’s algorithm (strictly speaking, for parallelization).

Inspired by this, we present optimized quantum circuits for cryptographic hash functions SHA-2
and SHA-3 and the clear estimation of collision search (refer to Section 3). Based on the quantum
circuits of SHA-2 and SHA-3, new boundaries for levels 2, 4, and the extended level are suggested in
this work.

5 Depth Optimization for Quantum Implementation

The design philosophy for our quantum circuit implementation focuses on minimizing quantum circuit
depth rather than reducing the qubit count. However, it is essential to note that qubit count remains
one of the most critical resources in quantum computers. In this context, we prioritize circuit depth
reduction but carefully also consider the trade-off between qubit count and quantum circuit depth. We
adhere to the following principles for our quantum circuit implementations:

1. If the quantum circuit depth can be effectively reduced by allocating additional ancilla qubits, it is
permitted.

2. We reverse the quantum operations to reuse the ancilla qubits, if it is possible and there is no depth
overhead for the reverse process.

Keeping these two principles in mind, we design depth-optimized quantum implementations for
cryptographic hash functions with a reasonable number of qubits. Our quantum circuits of SHA-2 and
SHA-3 offer the least quantum circuit depth compared to the previous work [5, 6, 7, 8, 9, 10].

In the application of Grover’s algorithm to cryptographic hash functions, it is more effective to
reduce depth rather than the number of qubits (related discussion is in Appendix A). Demonstrating
this, our results showcase the best performance in all trade-off metrics for SHA-2 and SHA-3 under
Grover’s algorithm (strictly speaking, for parallel search). Finally, we prove that the quantum circuits
for cryptographic hash functions outlined in this paper are effective under Grover’s algorithm, offering
the lowest attack complexity, minimal depth, and the best trade-off metrics.

Applying AND gate. In recent quantum implementations, the use of AND gates (AND + AND†) is
recommended to reduce T -depth, full depth, and gate count. We also provide the AND gate version of
quantum circuits for three cryptographic hash functions. The AND gate operates the same as Toffoli
gate, except that the target qubit must be in a clean state (i.e., |0⟩). We adopt the recently updated
AND gate implementation introduced in Jaques et al. [28]. The AND gate requires an ancilla qubit
and consists of 11 Clifford + 4 T gates, with a T -depth of 1 and full depth of 8. The AND† gate is the
reverse of the AND gate based on the Measurement gate. It consists of 5 Clifford + 1 Measurement
gates, with a full depth of 4 (T -depth is 0). Due to the nature of the AND gate, where the target
qubit must be in a clean state and the requirement of one ancilla qubit, additional considerations are
included in the AND gate version of quantum circuits.
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6 Quantum Circuit Implementation of SHA-2

In this section, we describe depth-optimized quantum circuits for the SHA-2 by solely focusing on SHA-
2-256 algorithm. Both SHA-2-384 and SHA-2-512 share a similar internal structure with SHA-2-256,
making our method equally effective for them.

6.1 Implementation of Σ0, Σ1, σ0 and σ1

Four operations of linear layer are used in SHA-2 as follows (the notations ‘≫’ and ‘≫’ respectively
represent the right rotation and right shift operations):

Σ0(a) = (a≫ 2)⊕ (a≫ 13)⊕ (a≫ 22).

Σ1(e) = (e≫ 6)⊕ (e≫ 11)⊕ (e≫ 25).

σ0(Wt−15) = (Wt−15 ≫ 7)⊕ (Wt−15 ≫ 18)⊕ (Wt−15 ≫ 3).

σ1(Wt−2) = (Wt−2 ≫ 17)⊕ (Wt−2 ≫ 19)⊕ (Wt−2 ≫ 10).

(4)

These operations consist of XOR operations, and each linear layer can be represented as a binary
matrix. By applying PLU factorization to the binary matrix, we can obtain three factor matrices (namely,
permutation, lower triangular and upper triangular). With those matrices, an in-place implementation
of the linear layer can be achieved, as described in [29]. The 32× 32 binary matrices associated with
the SHA-2 linear layer are shown in Figure 2.

In [5], the authors presented in-place implementations of Σ0, Σ1, σ0, and σ1 (i.e., without using any
ancilla/output qubit), by employing PLU factorization2. However, this approach leads to an increase
in quantum circuit depth due to the operations of CNOT gates in limited space (i.e., within the input
qubits). In [5], a maximum of 193 CNOT gates are operated within 32 qubits, resulting in a sequential
flow between them (with a maximum depth of 55).

(a) Σ0 (b) Σ1 (c) σ0 (d) σ1

: 0 : 1

Figure 2: 32× 32 binary matrices used in SHA-2 linear layer.

Out-of-place implementation. In contrast, we present out-of-place implementations of Σ0, Σ1, σ0, and
σ1. We allocate 32 qubits for the output (our first principle in Section 5) and compute the result by
XOR-ing the input qubits to the output qubits using CNOT gates. For example, for Σ0, we perform the
following operations: CNOT (a≫ 2, output), CNOT (a≫ 13, output), CNOT (a≫ 22, output). As
a result, our out-of-place implementations of Σ0, Σ1, σ0, and σ1, only have a depth of 3, respectively,
and require a maximum of 96 CNOT gates3. Since shift operations are included in for σ0 and σ1 (≫ 3

2 This method has been used in other works too, see, e.g., [30].
3 In general, operations involving the swapping of qubits, such as shift, rotation, and rearrangement, are implemented
logically without using quantum Swap gates.
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Table 3: Quantum resources required for implementations of Σ0, Σ1, σ0 and σ1.

Linear layer Source #CNOT #Qubit (reuse) Depth

Σ0
Lee et al. (PLU) [5] 166 32 55

Ours (Out-of-place) 96 64 (32) 3

Σ1
Lee et al. (PLU) [5] 166 32 44

Ours (Out-of-place) 96 64 (32) 3

σ0
Lee et al. (PLU) [5] 193 32 50

Ours (Out-of-place) 93 64 (32) 3

σ1
Lee et al. (PLU) [5] 142 32 40

Ours (Out-of-place) 86 64 (32) 3

and ≫ 10), the required number of CNOT gates is reduced by 3 and 10, respectively, excluding CNOT
operations for zero-padded parts.

Reusing output qubits. The results of operations Σ0, Σ1, σ0, and σ1 are used as operands for additions
(refer to Expressions (6) and (7)). After the additions are completed, these results are no longer required.
Thus, we initialize the results of these operations to the clean state (i.e., |0⟩) by performing the previous
operations in reverse. Thanks to this approach, by incurring the initial allocation burden, subsequent
linear layers are implemented with low depth by reusing the initialized output qubits (our second
design methodology). Quantum resources required for implementation of Σ0, Σ1, σ0 and σ1 are shown
in Table 34.

6.2 Implementation of Ch and Maj

The operations of Choose (Ch) and Majority (Maj) are used in SHA-2 as follows:

Ch(e, f, g) = (e · f)⊕ (∼ e · g).
Maj(a, b, c) = (a · b)⊕ (a · c)⊕ (b · c).

(5)

We adopt the optimized circuits from [5,31], which use only one Toffoli gate as shown in Figure 3.
As in Section 6.1 (the reuse method), the results of Ch and Maj operations are no longer required
after the additions of Expression (7) are completed, and input qubits (a, b, c, e, f, and g) are needed in
the subsequent round. Thus, we perform the reverse operation of Ch and Maj to initialize and then
reuse them in the subsequent round. Quantum resources required for the implementation of Ch and
Maj are shown in Table 4.

|e⟩ /
32 • |e⟩

|f⟩ /
32 • |f ⊕ g⟩

|g⟩ /
32 • |Ch(e, f, g)⟩

(a) Ch (from Lee et al.)

|a⟩ /
32 • |a⊕ c⟩

|b⟩ /
32 • |b⊕ c⟩

|c⟩ /
32 • • |Maj(a, b, c)⟩

(b) Maj (from Cuccaro et el.)

Figure 3: Quantum circuits for the operations Ch and Maj.

4 The required quantum resources are not provided in [6,7]. In [7], the description of the implementation technique is
not specific, and in [6], single output qubits are shared for all linear layer operations, which increases the depth and
gate count.
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Table 4: Quantum resources required for implementations of Ch and Maj.

Operation #CNOT #1qCliff #T Toffoli depth #Qubit Full depth

Ch 224 64 224 1 96 9

Maj 256 64 224 1 96 10

6.3 Implementation of Multi-operands Addition

In the SHA-2 quantum circuit, the most resource-intensive operation is addition operations. The
addition operations are performed in both the round function and the message scheduling algorithm
(Expressions (6) and (7), respectively):

h′ = Σ0(a) +Maj(a, b, c) +Σ1(e) + Ch(e, f, g) + h+Ki +Wi.

d′ = d+Σ1(e) + Ch(e, f, g) + h+Ki +Wi.
(6)

Wt =Mt (0 ≤ t ≤ 15)

= σ1(Wt−2) +Wt−7 + σ0(Wt−15) +Wt−16 (16 ≤ t ≤ 63).
(7)

In [5], the authors introduced a quantum circuit with a critical path consisting of three consecutive
quantum adders. In their approach, they employed Draper’s adder (in-place version) [32] and Takahashi’s
adder [33]. These quantum adders designed to operate on two operands cannot handle operations with
overlapping operands (more than two) in parallel.

Utilizing a multi-operand adder. Our approach utilizes a multi-operand adder circuit known as the
quantum carry-save adder (QCSA) [12] to parallelize the additions. In [34]5, the authors proposed
a Wallace tree-based QCSA with significantly reduced circuit depth for multiple additions, and we
adopt this in our work. Although the QCSA requires a relatively large number of ancilla qubits for
parallelization, we reuse most of these qubits by performing the reverse operation. Thanks to the
effective use of the QCSA [34], we achieve a critical path of approximately 1 and provide a low circuit
depth. Figure 4 illustrates how the QCSA is employed and optimized for the SHA-2 quantum circuit.

The three instances of QCSA aligned vertically in Figure 4 operate in parallel, with a critical path
of approximately 1. From left to right, the operations corresponding to Expressions (6) (h, d) and (7)
are performed on 7, 6, and 4 operands of 32 bits, respectively. The detailed process is as follows:

① Partial sums: The QCSA consists of Quantum Full Adder (QFA, the black dashed rectangles for
three operands, refer to Figure 4) and Quantum Half Adder (QHA, the blue dashed rectangles
for two operands). The diagonally connected dots placed on the higher bits represent the carry
bits generated from the QFA/QHA additions. It computes the partial sums of the operands until
only the two operands remain (the yellow dashed rectangles). In our implementation, at most four
operations of the partial sum are performed sequentially (from ①-1 to ①-4). Remember that the
three instances aligned in Figure 4 operate in parallel.

①-1 : The additions for calculating h′ of Expression (6) are performed. Note that the five operands
Σ1, Ch, h,Ki andWi in this step overlap with the operands for calculating d′ (refer to Expression
(6)). For optimization, we carefully adjust the operands as follows. The result of h+Σ1 + Ch
(QFA) in ①-1 is stored in Ch (marked in red). Later, the updated Ch are used for updating d
in ①-3. For the QFA of Wi +Ki +Σ0 in ①-1, the result is stored in Σ0 (marked in red), since
the operands Wi and Ki are required for calculating d′ in ①-2 (recall Expression (6).

①-2 : The updated Ch and Σ0 are used in the QFA of Ch + Σ0 +Maj and the result is stored
except for Ch (required in ①-3). Simultaneously, the QFA of Wi +Ki + d is performed, and the
result is stored in d.

5 Later, we can replace with the actual information after the paper will appear online
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Figure 4: Optimized and modified structure of the QCSA with a critical path of around 1, ①: Partial sums; ②: Total
sum; ③: Reverse.

①-3 : The addition of d+Ch is performed by using the updated Ch in ①-1. For the least significant
qubits, the QHA (the blue dashed rectangle) is applied since only two operands are used.
Unsurprisingly, the QFA of Wi + σ0 +Wi+9 and the remaining part for QFA of Ch+Σ0 +Maj
are performed in parallel.

①-4 : The partial sum operations are performed until only two operands remain.

② Total sum: Finally, the two operands, each containing the sum of multiple operands, are added
using Draper’s out-of-place adder.

③ Reverse: The reverse operation of ① is performed. This process restores the updated operands for
subsequent rounds and initializes ancilla qubits for reuse.

Table 56 reports the quantum resources required for the additions in one (typical) round compared
to the previous works [5,6]. Our circuit depth is determined by the leftmost QCSA in Figure 4, and we
achieve the lowest Toffoli depth and full depth.

Table 5: Quantum resources required for the additions in SHA-2 (one round).

Source #CNOT #1qCliff #T Toffoli depth #Qubit (reuse) Full depth

Kim et al. [6] 18,367 3,362 19,124 224 501 (85) 1,777

Lee et al. [5] - - - 66 546 (162) -

Ours 9,220 1,487 6,546 19 819 (371) 180

6 We could not extrapolate the results from [7,8, 9] since the implementation technique is unspecified.
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Optimizing for a fixed input length. In the SHA-2-256 quantum circuit, the length of the input is fixed
at 256 bits (W0 ∼W7). The words of W8 and W15 are padded with constant values, and the words of
W9 ∼W14 are set to 0. Thus, we can initialize the words W8 and W15 after their use (using X gates)
and reuse them (256 = 32× 8 qubits), instead of allocating qubits for the output of Wt. Also, we omit
the additions involving W9 ∼W14 since they are zero values. This method is applied from round-10 to
round-15, reducing the Toffoli depth by 2 for each round, resulting in a total reduction of 12.

(Conditional) Borrowing technique. Even after generating all the Wi in the message scheduling, the
round function continues to proceed. Thus, we search idle qubits from the round function (Expressions
(6)) and then borrow it for the message scheduling (Expressions (7)). We conditionally borrow the
idle output qubits from the last round in reverse order, and return them before the round function
begins, resulting in a total reduction of 896 (= 32 × 28) qubits. Algorithm 2 describes our method
more precisely.

Algorithm 2: Conditional borrowing in SHA-2-256

Input: Output qubit set outputround in round function
Output: The output qubit set outputround borrowed during message scheduling
1: Check for idle output qubits in outputround

2: for the round i from 0 to 39 do
3: if i < 28 then
4: if i < 19 then
5: Put output

(63−i)
round function into ancilla

[2i:2i+1]
borrow

6: end if
7: Use ancillai

borrow for the i-th message scheduling
8: else Allocate outputinew for the i-th message scheduling

9: end if
10: end for
11: for each i ∈ ancilla

[0:27]
borrow in reverse order do ▷ ancilla

[28:37]
borrow are employed in other operations

12: Reverse the ith message scheduling ▷ Initialize ancillai
borrow

13: end for
14: return ancillaborrow

Consideration for AND gate. The target qubit of an AND gate must be in a clean state due to the
nature of the AND gate. In a Toffoli gate, the state of the target qubit does not matter; but in an AND
gate, the target qubit must be in |0⟩ (i.e., clean state). Thus, we modify the quantum circuit for Ch in
Figure 3 as shown in Figure 5. The same modification is applied to the circuits for Maj and similarly
to Draper’s adder. To construct quantum circuits for Ch, Maj, and partial sums (① in the QCSA)
using AND gates, additional ancilla qubits are required. However, we borrow idle qubits (in a clean
state, |0⟩) from the Draper’s adders in the QCSA (③ in Figure 4). Thanks to this, additional ancilla
qubits are only allocated for the AND gates in Draper’s adders. The borrowed qubits are initialized
after the operation of AND gates. 1

|e⟩ /
32

AND

|e⟩
|f ⊕ g⟩ /

32 |f ⊕ g⟩
|0⟩ /

32 • |Ch(e, f, g)⟩
|0⟩ /

32 |0⟩
|g⟩ /

32 |Ch(e, f, g)⟩

AND†
|e⟩
|f ⊕ g⟩

• |0⟩

|g⟩

Fig. 1: Method of applying the AND gate in the Ch and Maj functions.

1 Qcircuit

References

Figure 5: Quantum circuit for the AND-based Ch.
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7 Results

Tables 6 and 7 present the required quantum resources for the quantum circuits and Grover’s oracle of
SHA-2 in comparison to the previous works [5, 6, 7, 8, 9]7 Our quantum circuits for SHA-2 provide the
best results in terms of Toffoli and full depths. While the full depth was not reported in [5], the T -depth
optimization technique presented therein increases the full depth as a trade-off. Although the trade-off
performance of our TD-M is slightly lower than that reported in [5], our quantum circuit achieves
improvement in the key metrics for Grover’s algorithm (TD2-M , Td2-M and FD2-M , see Appendix
A) through depth optimization. Furthermore, the previous works implemented only the quantum
circuit for SHA-2-256 or SHA-2-512, but we extended our quantum circuits to include SHA-2-384 and
SHA-2-512.

Table 6: Quantum resources required for implementations of SHA-2.

Hash Source #CNOT #1qCliff #T
Toffoli depth #Qubit Full depth

TD-M FD-M TD2-M FD2-M
(TD) (M) (FD)

SHA-2-256

Amy et al. [7] 534,272 515,952 401,584 57,184 2,402 528,768 1.02 · 227 1.18 · 230 1.79 · 242 1.19 · 249
Amy et al. [7] (Opt.) 4,209,072 173,264 228,992 57,184 2,402 830,720 1.02 · 227 1.86 · 230 1.79 · 242 1.47 · 250

Kim et al. [6] - - - 10,112 938 - 1.13 · 223 - 1.40 · 236 -

Lee et al. [5] - - - 4,418 962 - 1.01 · 222 - 1.09 · 234 -

Häner et al. [9] - - 90,292 1,607 23,684 - 1.13 · 225 - 1.78 · 235 -

Meuli et al. [8] - - 90,292 1,607 23,957 - 1.15 · 225 - 1.80 · 235 -

Ours 693,832 84,086 495,089 1,332 5,715 12,791 1.81 · 222 1.09 · 226 1.18 · 233 1.70 · 239

SHA-2-384 Ours 1,847,124 225,008 1,335,511 1,824 13,773 17,257 1.50 · 224 1.77 · 227 1.33 · 235 1.87 · 241

SHA-2-512

Häner et al. [9] - - 231,788 3,303 60,448 - 1.49 · 227 - 1.20 · 239 -

Meuli et al. [8] - - 231,788 3,304 59,995 - 1.48 · 227 - 1.19 · 239 -

Ours 1,864,872 226,533 1,346,011 1,828 13,901 17,303 1.51 · 224 1.79 · 227 1.35 · 235 1.89 · 241

Table 7: Required decomposed quantum resources for Grover’s oracle on SHA-2.

Hash Source #CNOT #1qCliff #T #Measure
T -depth #Qubit Full depth

Td-M FD-M Td2-M FD2-M
(Td) (M) (FD)

SHA-2-256

Amy et al. [7] 1,068,544 1,031,904 803,168 0 343,104 2,403 1,057,536 1.54 · 229 1.18 · 231 1.00 · 248 1.19 · 251

Amy et al. [7] (Opt.) 8,418,144 346,528 457,984 0 140,800 2,403 1,661,440 1.26 · 228 1.86 · 231 1.35 · 245 1.47 · 252

Kim et al. [6] - - - 0 80,896✳ 939 - 1.13 · 226 - 1.40 · 242 -

Lee et al. [5] - - - 0 9,872 963 - 1.13 · 223 - 1.37 · 236

Häner et al. [9] - - 180,584 0 3,214 23,685 - 1.13 · 226 - 1.78 · 237 -

Meuli et al. [8] - - 180,584 0 3,214 23,958 - 1.15 · 226 - 1.80 · 237 -

Ours 1,387,664 168,172 990,178 0 10,656 5,716 25,582 1.82 · 225 1.09 · 227 1.18 · 239 1.70 · 241

Ours-AND 1,334,920 535,632 340,976 76,620 1,780 5,880 19,034 1.25 · 223 1.67 · 226 1.08 · 234 1.94 · 240

SHA-2-384
Ours 3,694,248 450,016 2,671,022 0 14,592 13,774 34,514 1.50 · 227 1.77 · 228 1.33 · 241 1.87 · 243

Ours-AND 3,566,072 1,449,800 926,208 208,808 2,544 14,127 26,338 1.07 · 225 1.39 · 228 1.33 · 236 1.11 · 243

SHA-2-512

Häner et al. [9] - - 463,576 0 6,606 60,449 - 1.49 · 228 - 1.20 · 241 -

Meuli et al. [8] - - 463,576 0 6,608 59,996 - 1.48 · 228 - 1.19 · 241 -

Ours 3,729,744 453,066 2,692,022 0 14,624 13,902 34,606 1.51 · 227 1.79 · 228 1.35 · 241 1.89 · 243

Ours-AND 3,597,016 1,460,202 932,192 210,304 2,548 14,255 26,394 1.08 · 225 1.40 · 228 1.35 · 236 1.13 · 243

8 Quantum Circuit Implementation of SHA-3

SHA-3 performs 24 round operations, and each round consists of θ, ρ, π, χ and ι. The input of the
SHA-3 quantum circuit consists of a 1,600-qubit state, denoted as state S[x][y][z]. The state S is the
three-dimensional array and the sizes of the x, y, and z are 5, 5, and 64, respectively.

7 Amy et al. [7] (Opt.) refers to the T -depth-optimized version presented by the author. In [5, 6], only the qubit count,
Toffoli depth, and T -depth were reported, and the T count was additionally reported in [8, 9].
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Figure 6: In-place round architecture (from Amy et al.) for SHA-3.

With a novel architecture, our SHA-3 quantum circuit achieves the lowest Toffoli depth and requires
fewer qubits, specifically 24 and 22400, respectively. In comparison, the previous best results reported
in [8] were 24 and 44,798, respectively.

8.1 Improved out-of-place implementation

Amy et al. [7] proposed a round in-place architecture as depicted in Figure 6. In order to implement
this, reversed components of θ and χ (i.e., θ−1 and χ−1) were used. In contrast, Haner et al. [9] and
Meuli et al. [8] presented an out-of-place architecture to optimize Toffoli depth, specifically targeting
the operation of χ in SHA-3, which is the only Toffoli-demanding operation in SHA-3. Recently, Song
et al. [10] also employed an out-of-place architecture to reduce Toffoli depth and full depth. However,
the SHA-3 quantum circuits in [8, 35] still provide better performance (fewer qubits and lower Toffoli
depth) compared to [10].

We present an improved out-of-place implementation, as depicted in Figure 7, that optimizes Toffoli
and full depths, and further reduces qubit count. In the following, we offer an in-depth explanation of
our components.

1600

320

1600

1600

4

=0

Figure 7: Out-of-place round implementation for SHA-3 (Ours).

8.2 Implementation of θ

In the operation of θ, the XOR result of the S(x − 1, z) column and the S(x + 1, z − 1) column is
XORed with S(x, y, z). The linear operation on state S is given by:

S[x][y][z] = S[x][y][z])⊕

(
4⊕

i=0

S[x− 1][i][z]⊕ S[x+ 1][i][z − 1]

)
. (8)

In [7], the authors implemented θ (Expression (8)) using 17,600 CNOT gates, and this is derived as
follows:

◦ S[x][y][z]) ⊕ → + 1 CNOT gate.

◦
(⊕4

i=0 S[x− 1][i][z])⊕ S[x+ 1][i][z − 1]
)
→ + 10 CNOT gates.
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◦ [x][y][z] range → × 5× 5× 64 = 1600.

The quantum circuit for θ, with a total of 17,600 CNOT gates (11 CNOT gates × 1,600), was
presented in [7]. In [7], the authors also implemented the reverse operation of θ (i.e., θ−1) to initialize
ancilla qubits to the zero state. This approach has a benefit as it can reduce the number of qubits
by continuously reusing the initialized ancilla qubits. However, the implementation of θ−1 requires
1,360,000 CNOT gates, which is significantly larger than what is required for θ (17,600 CNOT gates).
This is because assigning a formula for the reverse of θ is more challenging, as it depends on specific
pre-computed constants. In [7], a total of 1,377,600 CNOT gates are used, including both θ and θ−1,
with a depth of 300.

Our implementation does not involve the reverse operation (θ−1), reflecting our design philosophy.
We do not aim to keep the qubit count low. Instead, our goal is to minimize depth, even if it means
slightly increasing the number of qubits. We present an optimized quantum circuit for θ using only a total
of 4,800 CNOT gates, with a depth of 15. Algorithm 3 describes our quantum circuit implementation
of θ.

Algorithm 3: Quantum circuit implementation of θ.

Input: State S[x][y][z]
Output: θ(S)
1: textitPrepare XOR results of S[x][z] columns
2: Allocate 320 qubits → Sancilla[x][z]
3: for each column ∈ S[x][z] and each qubit ∈ Sancilla[x][z] do
4: for i = 0 to 4 do
5: Sancilla[x][z]← CNOT (S[x][i][z], Sancilla[x][z])

6: Update S[x][y][z] using Sancilla[x][z]
7: for each qubit ∈ S[x][y][z] do
8: S[x][y][z]← CNOT (Sancilla[x− 1][z], S[x][y][z])
9: S[x][y][z]← CNOT (Sancilla[x+ 1][z − 1], S[x][y][z])

10: Discard Sancilla[x][z]
11: return S[x][y][z]

All-in-One. In our implementation for θ, 320 ancilla qubits are allocated in advance to prepare the
XOR result of the S[x − 1][z] column and the S[x + 1][z − 1] column (i.e.,

⊕4
i=0 S[x − 1][i][z] and⊕4

i=0 S[x + 1][i][z − 1]). It is the same as preparing the XOR results of all columns of S[x][z] (i.e.,⊕4
i=0 S[x][i][z]). For this, 5 CNOT gates are employed to store the XOR result for each ancilla qubit,

resulting in a total of 1,600 (= 5 × 320) CNOT gates and a circuit depth of 5. As a result, the XOR
results of all columns of S[x][z] are stored in the 320 ancilla qubits.

Then, we can efficiently update S[x][y][z] by repeatedly utilizing the pre-computed results stored
in the 320 ancilla qubits, thereby avoiding the need to compute the XOR result each time. In this
update, the XOR results of two columns (i.e., S[x− 1][z] and S[x+ 1][z − 1]), stored in ancilla qubits,
are XORed with each state of S[x][y][z]. Thus, 1, 600× 2 CNOT gates are used, resulting in a circuit
depth of 10. Thanks to this pre-computation method, our quantum implementation of θ requires only
4,800 (= 1, 600 + 3, 200) CNOT gates and has a depth of 15 (= 5 + 10).

In [10], Song et al. implemented only the quantum circuit of θ. However, they allocated 1,600
ancilla qubits for θ and did not reuse these ancilla qubits (i.e., no θ−1). Although a similar approach
is adopted, their implementation requires 24,000 CNOT gates, and the depth is 79, both of which
are higher than the costs of our implementation. In [8,9], optimized quantum circuits for θ were not
presented as the focus was on developing algorithms for Toffoli metrics in quantum implementation,
specifically targeting the χ operation, which requires Toffoli gates in SHA-3. Similarly, in [11], the
authors focused on the optimization of χ, and a specific implementation method for θ was not provided.
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Table 8: Quantum resources required for implementations of θ.

Source #CNOT #Qubit (reuse) Depth

Amy et al. [7]✲ 1,377,600 3,200 (1,600) 300

Song et al. [10] 24,000 3,200 79

Ours 4,800 1,920 (320)✳ 15

✲: Include both θ and θ−1.

✳: Partially reused.

Table 8 shows the required quantum resources for the implementation of θ in comparison to previous
implementations of θ. The reported quantum resources for [7] include both θ and θ−1, and 1,600 out of
the 3,200 qubits are reused. Note that we also reuse 320 ancilla qubits, allocated to prepare the XOR
result, with our new architecture. This will be described in detail in Section 8.4.

8.3 Implementation of χ

The component of the SHA-3 quantum circuit implementation that requires the most quantum resources
is χ, as Toffoli gates are exclusively necessary here. The operation of χ is the sole non-linear operation
in SHA-3, and its operation on the state S is defined by:

S[x][y][z] = S[x][y][z]⊕ (∼ S[x+ 1][y][z] · S[x+ 2][y][z]). (9)

In other words, χ represents the following 3-bit S-box: 05234167.

We present a depth-optimized quantum circuit for χ by following our two principles (allocate ancilla
qubits and reverse them). Figure 8 shows our quantum circuit implementation of χ.

1

1 Qcircuit

Once in the beginning Reverse

|0⟩ • |1⟩
|0⟩ • |1⟩
|0⟩ • |1⟩
|0⟩ • |1⟩
|0⟩ • |1⟩

S[x][y][z] • S[x][y][z]
S[x+ 1][y][z] • S[x+ 1][y][z]
S[x+ 2][y][z] • S[x+ 2][y][z]
S[x+ 3][y][z] • S[x+ 3][y][z]
S[x+ 4][y][z] • S[x+ 4][y][z]

|0⟩ • • /
|0⟩ • • /
|0⟩ • • /
|0⟩ • • /
|0⟩ • • /

Fig. 1: Quantum circuit implementation of χ (Toffoli depth 1).

References

Figure 8: Quantum circuit of χ in SHA-3

Parallel design with copying. The operation of ∼ S[x+ 1][y][z] · S[x+ 2][y][z] is implemented using
Toffoli gates, and our quantum circuit for χ is designed with Toffoli depth one (i.e., all Toffoli gates are
operated in parallel). According to our first principle, we allocate 3,200 (= 1,600 × 2) ancilla qubits to
generate two copies of the state S. The state S is copied using 3,200 CNOT gates. One of the two
copies is inverted using 1,600 X gates (used as ∼ S[x+ 1][y][z]). In this way, we independently prepare
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all operands of Expression (9), allowing us to implement χ with Toffoli depth one using 1,600 Toffoli
gates.

We present a quantum circuit implementation of χ with minimal depth, achieved by allocating
additional ancilla qubits. However, as previously mentioned, our design philosophy prioritizes minimizing
depth while also aiming to reduce the overall number of qubits through the reuse of ancilla qubits (as
per our second design principle).

Reusing ancilla qubits. We allocated ancilla qubits for two copies of the state S. One copy serves as the
output, while the other serves as an operand for the χ operation. Notably, the copy designated for the
operand only plays a crucial role in enabling parallel execution during the χ operation. Consequently,
we can initialize these ancilla qubits after the operation by applying the reverse operation of the copy
process (i.e., utilizing 1,600 CNOT gates once again, see Figure 8). This initialization ensures that the
ancilla qubits are in a clean state, ready for use in the subsequent χ operation without the need for
reallocation. Note that the other ancilla qubits for the other copy (the bottom lines in Figure 8) will
be initialized/reused with our new architecture and will be further discussed in Section 9.

Trick of X gate operation. We omit the X gate operation from the reverse operation. Instead of
initializing the ancilla qubits to |0⟩, we leave the ancilla qubits in the flipped state (i.e., |1⟩) by skipping
the X gate operation. This approach avoids the need for an X gate operation in the next round,
resulting in reduced depth and fewer gates. As illustrated in Figure 8, the X gate operation is applied
only once in the initial round, and subsequent rounds no longer require an X gate.

The quantum implementation of χ is a well-demonstrated case for reducing depth while considering
the number of qubits (our design philosophy). Table 9 shows the quantum resources required for
implementations of χ (including χ−1), in comparison to previous implementations [7, 10, 11]. Although
specific implementation methods are not described in [8,9], we anticipate that parallel concepts similar
to our quantum circuit for χ may have been incorporated.

Table 9: Quantum resources required for implementations of χ.

Source #CNOT #1qCliff #T Toffoli depth #Qubit (reuse) Full depth

Amy et al. [7] 33,280 14,400 24,640 11 3,200 (1,600) 121

Song et al. [10] 10,240 6,400 11,200 5 2,240 47

Lee et al. [11]✳ 15,680 4,480 11,840 7 1,600 62

Ours 14,400 6,400 11,200 1 4,800 (3,200)✲ 10

✲: Partially reused.

✳: Extrapolated results using the same Toffoli gate decomposition as in this work.

8.4 Interval Architecture

We introduce a novel interval architecture that can reuse many ancilla qubits used in the round process
of the SHA-3 quantum circuit. The interval architecture performs reverse operations with intervals
while operating a quantum circuit. Note that the developed method is generic, and in our case, the
optimal interval is 4 rounds. Thanks to the interval architecture, we reduce the number of qubits for
the SHA-3 implementation by 26,800 without increasing the circuit depth.

Recall that the out-of-place round implementation in Figure 7. We allocated two copies for the
parallel operation of χ. Among them, only one copy could be initialized, and then the other copy was
discarded (i.e., garbage qubits). We denote this garbage qubits generated in the r-th round as Gbgr.

However, as shown in Figure 9(a), if we view the out-of-place implementation over two rounds
(i.e., not in a single round), we can initialize the Gbg1 used in the 1st round using the Gbg2 used in
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the 2nd round. Let us perform the reverse operation of the operations π ◦ ρ ◦ θ (the red rectangle in
Figure 9(a)) from the 2nd round on the state Gbg2. Keep in mind that Gbg2 is a copy of the input of
χ, thus we can successfully initialize ancilla qubits for θ (i.e., |0⟩⊗320) used in the 2nd round using the
Gbg2. Also, since the state of Gbg2 changes to R1(S) after the reverse operation, we can perform the
reverse operation (the blue rectangle in Figure 9(a)) of the 1st round using Gbg2. As a result, all the
ancilla qubits used in the 1st round (3, 520 = 1, 600 + 1, 600 + 320) are initialized and can be reused in
the subsequent rounds.

From this 2-round interval process, we identify the following two aspects to determine the optimal
interval for the SHA-3 implementation:

• In the first reverse operation, we can initialize only 320 ancilla qubits used in the operation of θ.
• In the last reverse operation, we can initialize all 3, 520 (= 1, 600 + 1, 600 + 320) ancilla qubits.

Let the interval be 3 rounds, as depicted in Figure 9(b). The first and last reverse operations are
almost the same as those in the 2-round interval process. The only difference is that we use Gbg3
instead of Gbg2. Similarly, for the middle round (i.e., 2nd round, the yellow rectangle in Figure 9(b)),
all ancilla qubits are initialized. However, it should be noted that the initialized copy (on the top lane,
not the Gbg2 on the bottom lane) of the input of χ in the 2nd round should be used until the last
reverse operation. Thus, strictly speaking, only Gbg2 and the ancilla qubits for the operation of θ are
initialized. From this, we can specify the following:

– In the middle reverse operation, we can initialize 1, 920 (= 1, 600 + 320) ancilla qubits.

In the SHA-3 implementation, the optimal interval for the reverse process is 4 rounds. Details
regarding this decision will be provided in the next section.
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Shallow technique. In [7, 13,15,23], the presented quantum circuits wait for the reverse operation to
reuse the initialized qubits in the subsequent operations. This approach can reduce the number of
qubits but increases the circuit depth. In contrast, we continue the subsequent rounds without waiting
for the reverse operations. To achieve this, we allocate a sufficient number of ancilla qubits only in the
initial stage to perform the subsequent rounds and reverse operations in parallel. This concept was
first introduced in [16] for the quantum implementation of AES, referred to as the shallow architecture.
We incorporate this concept into our interval architecture.
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Figure 9: Interval architecture in SHA-3 quantum circuit (reverse process).

The main idea of the shallow technique (see Figure 10) is to create a new instance when the reverse
operations begin. It corresponds to Round 4 and Round 5 in Figures 10(a) and 10(b), respectively. After
the initial stage, we can continuously reuse the initialized ancilla qubits from the reverse operations
without increasing the circuit depth.

Let the interval round be n. The reverse process is performed from the end of round n, and at the
same time, round (n+ 1) begins. Recall that for the out-of-place round implementation in Figure 7,
320 ancilla qubits are required for the operation of θ, and 3,200 qubits are required for the operation of
χ. Thus, we allocate 3, 520 (= 320 + 3, 200) ancilla qubits for round (n+ 1) at this initial stage, as
the reverse operation of round-n has just begun and there are no ancilla qubits available for round
(n+ 1). However, starting from round (n+ 2), we can reuse initialized ancilla qubits from the reverse
operations.

Figure 10(a) illustrates the interval architecture for n = 3 using the shallow technique. As we just
mentioned, round 4 (= n+ 1) requires 3, 520 (= 320 + 3, 200) ancilla qubits (denote this as A). On the
other hand, rounds 5 and 6 can reuse initialized ancilla qubits from the reverse operations of rounds
3 and 2, respectively (i.e., Round 3† and Round 2† in Figure 10(a)). Recall the following two points:
Rounds 5 and 6 require only 1, 920 (= 320 + 1, 600) ancilla qubits each (denote this as B), since one
copy of the operation χ (1,600 ancilla qubits) is initialized and reused (see Figure 8). The reverse
operations of rounds 3 and 2 initialize 320 and 1,920 ancilla qubits (denote these as C and B for the
first and middle reverse operations), respectively (see Figure 9). Thus, round-5 requires only 1, 600
ancilla qubits (= B − C) by reusing initialized ancilla qubits from the reverse operation of round-3
(Round 3†, C), and round 6 does not require any ancilla qubits (= B −B) by reusing initialized ancilla
qubits from the reverse operation of round 2 (Round 2†, B).
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Figure 10: Shallow technique process.

We iterate the reverse process and reuse technique with the interval. Except for the initial two
rounds (e.g., Rounds 1 and 4 in Figure 10(a)), the subsequent rounds which require A ancilla qubits
(e.g., Round 7 in Figure 10(a)) fully reuse initialized A ancilla qubits from the last reverse operation
(e.g., Round 1† in Figure 10(a)), without additional ancilla qubits.

For the interval of n, we derive the following calculation of required ancilla qubits for the quantum
implementation of SHA-3 (24 rounds, n ̸= 1):

◦ Ancilla qubits: A = 3, 520, B = 1, 920 and C = 320.
◦ Total ancilla qubits: 2A+B · (n− 1) + (B − C) · ⌈24/(n− 1)⌉.

Finally, we determine the optimal interval bound is n = 4, depicted in Figure 10(b), with the
number of required ancilla qubits being 20,800.

Consideration of AND gate. For an AND gate, an additional ancilla qubit is required. Therefore, we
allocate 1,600 ancilla qubits to perform 1,600 AND gates in the operation of χ. It is important to note
that these ancilla qubits are initialized after the AND gates, and we reuse them subsequently.

The target qubit of the AND gate must be in a clean state (i.e., |0⟩) due to the nature of the AND
gate. However, as shown in Figure 8, the target qubits of the AND operations are not in a clean state.
To address this, we slightly modify the circuits (with no degradation in performance) presented in
Figure 8 as follows8.

– The copying of the bottom lines is postponed.
– The target qubits of AND operations are changed from the middle to the bottom lines.
– The copying of the bottom lines (which is postponed) is performed.
– The bottom lines represent the result, and the reverse operations is performed using the middle

lines.

8.5 Implementation of ρ, π and ι

In SHA-3, the operations of ρ and π correspond to rotation and rearrangement operations. Thus,
similar to SHA-2, we implement ρ and π using the logical swap method without requiring quantum
resources.
8 The circuit can be loosely thought as composed of three parts (top, middle and bottom).
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The operation of ι, which involves XORing the round constant with the state S, is categorized in
classical-quantum implementation. As the round constants are predefined, X gates are applied based on
the bits of the constant, where the value is 1. The implementation of ι is simplified using only X gates,
and this is a conventional and generally adopted approach in quantum implementations [7,10,16,36,37].

8.6 Results

Tables 10 and 11 present the required quantum resources for the quantum circuits and Grover’s Oracle
of SHA-3 in comparison to the previous works [7,8, 9, 10,11]9. Our quantum circuits for SHA-3 provide
the best results in terms of depth and trade-off performance, except for the Toffoli depth-qubit and
T -depth-qubit products (TD-M and Td-M), which are reported as the lowest in [11]. However, for
major metrics considering the parallelization of Grover’s search (see Appendix A), such as TD2-M ,
Td2-M and FD2-M , ours still provides the best performance.

In [11], their objective was to optimize for qubit count (apart from their objective, they also
presented the Z0 version for out-of-place implementation), whereas our objective is to optimize circuit
depth. We chose the Z1 version for the comparison as it has the lowest qubit count and TD-M among
their in-place implementations (Z1∼Z5). As a result, the qubit requirement is lower in their work, but
both Toffoli and full depths are lower in ours. Note that although full depth was not reported in [11],
we speculate that our full depth-qubit (FD-M) requirement may be lower than theirs, since the Toffoli
depth reduction technique used in their work increases the CNOT gate count and full depth.

Table 10: Quantum resources required for implementations of SHA-3.

Source #CNOT #1qCliff #T
Toffoli depth #Qubit Full depth

TD-M FD-M TD2-M FD2-M
(TD) (M) (FD)

Amy et al. [7] 33,269,760 169,045 591,360 264 3,200 10,128 1.61 · 219 1.93 · 224 1.66 · 227 1.19 · 238

Amy et al. (Opt) [7] 34,260,480 215,125 499,200 264 3,200 11,040 1.61 · 219 1.05 · 225 1.66 · 227 1.42 · 238

Häner et al. [9] · · 153,600 24 46,400 · 1.06 · 220 · 1.59 · 224 ·
Meuli et al. [8] · · 153,600 24 44,798 · 1.03 · 220 · 1.54 · 224 ·
Song et al. [10] 821,760 153,688 268,800 120 55,360 2,860 1.58 · 222 1.18 · 227 1.48 · 229 1.65 · 238

Lee et al. (Z0) [11] · · 153,600 24 43,200 · 1.98 · 219 · 1.48 · 224 ·
Lee et al. (Z1) [11] · · 284,160 168 1,600 · 1.03 · 218 · 1.35 · 225 ·

Ours 752,000 124,937 425,600 24 22,400 578 1.03 · 219 1.54 · 223 1.54 · 223 1.74 · 232

Table 11: Required decomposed quantum resources for Grover’s oracle on SHA-3.

Source #CNOT #1qCliff #T #Measure
T -depth #Qubit Full depth

Td-M FD-M Td2-M FD2-M
(Td) (M) (FD)

Amy et al. [7] 66,539,520 338,090 1,182,720 0 1,584 3,201 20,256 1.21 · 222 1.93 · 225 1.87 · 232 1.19 · 240

Amy et al. (Opt) [7] 68,520,960 430,250 998,400 0 864 3,201 22,080 1.32 · 221 1.05 · 226 1.11 · 231 1.42 · 240

Häner et al. [9] · · 307,200 0 48 46,411 · 1.06 · 221 · 1.59 · 226 ·
Meuli et al. [8] · · 307,200 0 48 44,799 · 1.03 · 221 · 1.54 · 226 ·
Song et al. [10] 1,643,520 307,376 537,600 0 960 55,361 5,720 1.58 · 225 1.18 · 228 1.48 · 235 1.65 · 240

Lee et al. (Z0) [11] · · 307,200 0 48 43,201 · 1.98 · 220 · 1.48 · 226 ·
Lee et al. (Z1) [11] · · 568,320 0 528 1,601 · 1.16 · 219 · 1.66 · 228 ·

Ours 1,504,000 249,874 851,200 0 192 22,401 1,156 1.03 · 222 1.54 · 224 1.54 · 229 1.74 · 234

Ours-AND 1,321,600 387,474 243,200 60,800 43 24,001 1,049 1.97 · 219 1.5 · 224 1.32 · 225 1.54 · 234

9 The SHA-3 quantum circuit requires the same quantum resources for input lengths of 256, 384 and 512; due to the
equal number of permutation.
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9 Quantum Collision Search on Hash Functions

Based on the quantum circuits for SHA-2 and SHA-3 presented in this work, we estimate the required
quantum resources for quantum collision search using the CNS algorithm (refer to Section 3). To
find a collision for the n-bit output of SHA-2 or SHA-3, n-bit input within the search space 2n is
explored. According to the CNS algorithm [26], Grover’s circuit finds a collision with the search
complexity (iteration) of 22n/5− 3s/5 using a parallelization method with s = n/6 (as we determined
in Section 3). As described in Section 3, the cost of the diffusion operator is ignored in resource
estimations [13,14,16,23,36], and we also exclude this cost from our estimation. Finally, the complexity
of the quantum collision search for cryptographic hash functions SHA-2 and SHA-3 is approximately
the cost of the Grover’s oracle × 22n/5− 3s/5, where n is the output size and s = n/6.

As shown in Tables 12 and 13, we report quantum resources required for quantum collision search
on SHA-2 and SHA-3. This includes major metrics for estimation/evaluation (see Appendix A), such
as the product of gate count and full depth (G-FD), representing quantum attack cost, and trade-off
performances (FD-M , Td-M , FD2-M , and Td2-M). We use Toffoli and AND-based decompositions
to estimate the quantum resources for quantum collision search.

In Table 12, the results use the Toffoli-based decomposition:

◦ 8 Clifford + 7 T gates, T -depth 4, and full depth 8.

The quantum circuits constructed using AND-based decomposition have the lowest gate count and
circuit depth. In Table 13, the results use the AND-based decomposition:

◦ AND gate: 11 Clifford + 4 T gates, T -depth 1, and full depth 8.

◦ AND† gate: 5 Clifford + 1 Measurement gates, T -depth 0, and full depth 4.

Table 12: Toffoli-based quantum resources for quantum collision search on SHA-2 and SHA-3.

Hash
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M FD2-M Td2-M
(G) (FD) (Td) (M)

SHA-2-256 1.49 · 297 1.06 · 291 1.77 · 289 1.1 · 255 1.77 · 2188 1.18 · 2146 1.97 · 2144 1.26 · 2237 1.75 · 2234

SHA-2-384 1.47 · 2137 1.9 · 2129 1.6 · 2128 1.68 · 277 1.39 · 2267 1.59 · 2207 1.35 · 2206 1.51 · 2337 1.08 · 2335

SHA-2-512 1.95 · 2175 1.25 · 2168 1.06 · 2167 1.06 · 299 1.22 · 2344 1.34 · 2267 1.13 · 2266 1.68 · 2435 1.20 · 2433

SHA-3-256 1.70 · 297 1.54 · 286 1.02 · 284 1.08 · 257 1.30 · 2184 1.67 · 2143 1.1 · 2141 1.29 · 2230 1.12 · 2225

SHA-3-384 1.12 · 2136 1.01 · 2125 1.34 · 2122 1.36 · 278 1.14 · 2261 1.39 · 2203 1.84 · 2200 1.41 · 2328 1.23 · 2323

SHA-3-512 1.48 · 2174 1.34 · 2163 1.77 · 2160 1.72 · 299 1.98 · 2337 1.15 · 2263 1.52 · 2260 1.55 · 2426 1.35 · 2421

The quantum circuits, constructed using AND-based decomposition, have the lowest gate count
and circuit depth. In Table 13, the results use the AND-based decomposition:

◦ AND gate: 11 Clifford + 4 T gates, T -depth 1, and full depth 8.

◦ AND† gate: 5 Clifford + 1 Measurement gates, T -depth 0, and full depth 4.

9.1 Update on NIST Post-Quantum Security Strength

We present the updated post-quantum security levels in Table 2 by selecting the lowest quantum attack
complexity for the cryptographic hash functions SHA-2 and SHA-3 from Table 13. This section provide
a brief discussion on this matter.

In the initial stages (in 2016) [4], NIST designated AES-128, 192, and 256 at levels 1, 3, and 5,
respectively, based on the implementation by Grassl et al. [23], and its quantum attack complexity
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Table 13: AND-based quantum resources for quantum collision search on SHA-2 and SHA-3.

Hash
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M Fd2-M Td2-M
(G) (FD) (Td) (M)

SHA-2-256 1.49 · 297 1.58 · 290 1.18 · 287 1.13 · 255 1.18 · 2188 1.81 · 2145 1.35 · 2142 1.43 · 2236 1.60 · 2229

SHA-2-384 1.32 · 2137 1.45 · 2129 1.12 · 2126 1.72 · 277 1.91 · 2266 1.25 · 2207 1.93 · 2203 1.81 · 2336 1.08 · 2330

SHA-2-512 1.76 · 2175 1.91 · 2167 1.48 · 2164 1.09 · 299 1.68 · 2343 1.05 · 2267 1.62 · 2263 1.00 · 2435 1.20 · 2428

SHA-3-256 1.31 · 297 1.39 · 286 1.79 · 281 1.16 · 257 1.83 · 2183 1.62 · 2143 1.04 · 2139 1.13 · 2230 1.87 · 2220

SHA-3-384 1.73 · 2135 1.84 · 2124 1.18 · 2120 1.46 · 278 1.59 · 2260 1.35 · 2203 1.73 · 2198 1.24 · 2328 1.02 · 2319

SHA-3-512 1.14 · 2174 1.21 · 2163 1.56 · 2158 1.84 · 299 1.39 · 2337 1.12 · 2263 1.44 · 2258 1.36 · 2426 1.12 · 2417

was high. Recent research has significantly reduced the quantum attack complexity of AES [13,14,16]
and NIST updated the quantum attack complexities accordingly primarily based on the results from
Jaques et al’s work [13].

NIST designated SHA-2/3-256 at level 2 and SHA-2/3-384 at level 4 by judging that in real-world
cryptanalysis, success tends to be highest when attackers can exploit highly parallel implementations.
Consequently, they consider finding collisions in a hash function to be easier than searching for the key
of a block cipher (does not parallelize well).

Currently, the quantum attack complexity for levels 2 and 4, corresponding to collision search on
hash functions SHA-2 and SHA-3, has not been defined yet. In this work, in defining the quantum
attack complexity for levels 2 and 4, we fully incorporate NIST’s judgment and considerations [38, Page
7]. We assumed the highly parallelized quantum collision search (see Section 3, the CNS algorithm) for
levels 2 and 4 to be positioned between levels 1 and 3, and levels 3 and 5, respectively. Indeed, Tables 1
and 2 demonstrate that appropriate quantum attack complexities for the post-quantum security levels
are defined as follows: level 1: 2157, level 2: 2188/183, level 3: 2221, level 4: 2266/260, and level 5: 2285. Along
with this, we also define the quantum complexity of collision search for SHA-2-512 and SHA-3-512 for
the extended level as 2343/337, which provides the highest post-quantum security strength.

10 Conclusion

In this work, we focused on optimizing the depth of quantum circuits for the cryptographic hash
functions SHA-2 and SHA-3. We detailed the implementation of target cryptographic hash algorithms
in terms of core components (e.g., linear layer and additions in the round function) and architectural
level (e.g., interval and shallow). We integrated all the novel and best implementation techniques for
optimizing the depth of quantum circuit implementations for SHA-2 and SHA-3 across in categories
and evaluated the necessary quantum resources using architectures employing gate decomposition.
After that, we obtained the lowest quantum resources for quantum collision search on SHA-2 and
SHA-3. Finally, we defined the NIST quantum attack complexity for levels 2 and 4. Along with this, we
suggested one more option that provides the highest post-quantum security level, the extended level.

A Time-Space Complexity Trade-off under MAXDEPTH

The quantum gate count for levels in Table 1 is derived as the product of the gate count and the
full depth (e.g., level 1 for AES-128: 2157 = 282 × 275, [13, Table 11]). Additionally, NIST introduced
a parameter, MAXDEPTH, to account for the extreme depth of Grover’s algorithm when applied
to cryptographic algorithms. If the quantum attack circuit exceeds these specified boundaries for
the MAXDEPTH, it is recommended to consider parallelizing Grover’s algorithm. However, Grover’s
algorithm has poor performance for parallelization, as analyzed in [6, 13, 39]. Summarizing the analysis
from [6, 13, 39], reducing the circuit depth by S requires increasing the number of Grover instances by
S2 (i.e., unbalanced).
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If the total circuit depth D exceeds MAXDEPTH, a depth reduction using a parallel approach
must be applied to satisfy MAXDEPTH. The reduction factor, S, is calculated as D

MAXDEPTH (since
D/S = MAXDEPTH). For the gate count, G, the count for each instance is reduced by S, and
the number of instances increases by S2. Thus, the estimation formula for Table 1 is derived as
G · D

MAXDEPTH by G
S · S2. This formulation illustrates that NIST takes into account gate count, depth,

and MAXDEPTH when estimating the complexity of quantum attacks.
In terms of the trade-off metrics, TD-M and FD-M (where M is the qubit count, TD and FD

represent Toffoli and Full depths, respectively), the qubit countM is increased by S2 (i.e., FD2·M
MAXDEPTH2 ).

Thus, in parallelization, the FD-M cost changes to FD2·M
MAXDEPTH (with FD replaced by MAXDEPTH).

In other words, the metrics of FD-M and TD-M transform into minimizing the FD2-M and TD2-M
metrics under the constraint of MAXDEPTH.

B Description of Ciphers

B.1 SHA-2

A hash algorithm maps a string (key) into a another string (hash). A hash algorithm find its application
to cryptography, like securing passwords, digital signatures, MAC (message authentication codes), etc.
A cryptographic hash algorithm generates a hash (message digest) of fixed size from a binary string of
random length. The cryptographic hash algorithms are specified by Federal Information Processing
Standards (FIPS) of National Institute of Standards and Technology (NIST), United States. The FIPS
180-4 (Secure Hash Standard)10 specifies seven hash algorithms, viz., Secure Hash Algorithm-1 (SHA-1)
and SHA-2 family of six hash algorithms. Each of the seven algorithms has two phases – preprocessing
followed by hash computation. SHA-1 was designed by the National Security Agency (NSA) of United
States in 1995. SHA-1 generates 20 bytes message digest from an input message (< 264bits). In SHA-1
each message block has 512 bits and each block is represented as a sequence of 16 words, each of size
32 bits. SHA-1 has been proved to be insecure against several attacks since 2005. Several organizations
have replaced SHA-1 with SHA-2. SHA-2 was designed by NSA in 2001. The six hash algorithms
of SHA-2 are SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256. The trailing
numbers of SHA-2 signify the message digest size in bits, e.g., the message digest size of SHA-224 is
224 bits. For SHA-224 and SHA-256 each message block has 512 bits and each block is represented as a
sequence of 16 words, each of size 32 bits and for SHA-384, SHA-512, SHA-512/224 and SHA-512/256
each message block has 1024 bits and each block is represented as a sequence of 16 words, each of size
64 bits. SHA-2 algorithms use some logical functions and some sequences of words11. Below the two
phases of SHA-2 family of hash algorithms have been illustrated,

B.2 Preprocessing

The preprocessing phase has following three steps.

1. First, the input message of length ml bits is padded to make the length of the padded message
as a multiple of 512 (for SHA-224 and SHA-256) or 1024 (for SHA-384, SHA-512, SHA-512/224
and SHA-512/256). This is done by writing the input message followed by ‘1’, then followed by p
number of ‘0’ bits and finally appending the block of b bits. Here, p is the smallest and non-negative
value as obtained from ml + 1+ p ≡ 448 mod 512 (for SHA-224 and SHA-256) or ml + 1+ p ≡ 896
mod 1024 (for SHA-384, SHA-512, SHA-512/224 and SHA-512/256), b-bit block represents the
b-bit binary equivalent of the value ml where the size of b is 64 bits (for SHA-224 and SHA-256)
or 128 bits (for SHA-384, SHA-512, SHA-512/224 and SHA-512/256). The step is illustrated in
Figure 11.

10 https://csrc.nist.gov/pubs/fips/180-4/upd1/final
11 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, page 15-17

https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
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2. Second, the padded message is parsed into a certain number of blocks of size 512 bits (for SHA-224
and SHA-256) or 1024 bits (for SHA-384, SHA-512, SHA-512/224 and SHA-512/256).

3. Finally, the initial hash value (Hn(0)) to be used during the hash computation, is set. The Hn(0)
values (n = 8) are initialized with x-bit words where x = 32 for SHA-224 and SHA-256 and x = 64
for SHA-384, SHA-512, SHA-512/224 and SHA-512/256.

01110011011010000110000100110010100 000 100000

bit "1" appended

8-bit ASCII

of "s"

8-bit ASCII

of "h"

8-bit ASCII

of "a"

8-bit ASCII

of "2"

415 0's 64-bit binary

representation of = 32

Calculation of :

+1+ =448mod512

i.e., =448-(32+1)=415

Figure 11: Demonstration of message padding for an input message (“sha2”) for SHA-256 with the message length
(ml)=32 bits in 8-bit ASCII

B.3 Hash Computation

For SHA-256 the hash algorithm takes three inputs – a message schedule containing 64 words having
size 32 bits, 8 working variables a, b, ... , h having size 32 bits and Hn(0) values (n = 8). Total four
steps are iterated for i number of times (i = 64) to produce a message digest of 256 bits. SHA-224 is
specified in the same manner, except Hn(0) values, and the message digest is the first 224 bits of the
final hash value from the left side.

For SHA-512 the hash algorithm takes three inputs – a message schedule containing 80 words
having size 64 bits, 8 working variables a, b, ... , h having size 64 bits and Hn(0) values (n = 8). Total
four steps are iterated for i number of times (i = 80) to produce a message digest of 512 bits. SHA-384,
SHA-512/224 and SHA-512/256 are specified in the same manner, except Hn(0) values, and the
respective message digests are the first 384 bits, 224 bits and 256 bits of the final hash value from
the left side. The process for SHA-2 hash computation is illustrated in Figure 6. For details of each
component, refer to Expressions (4), (5), (6) and (7).

B.4 SHA-3

As SHA-1 has been under serious threats since 2005, NIST has organized a public competition, ‘SHA-3
Cryptographic Hash Algorithm Competition’ (2007 – 2012) from 2006 to 2012 to develop a new hash
standard to be known as SHA-3 which can be an alternative (not a replacement) to SHA-2 and the
Keccak algorithm12 has been the winner of the competition. As specified by FIPS 20213, there are four
hash algorithms, viz., SHA3-224, SHA3-256, SHA3-384 and SHA3-512 and two Extendable-Output
Functions (XOFs)14, viz., SHAKE128 and SHAKE256.

Keccak-p permutations are specified with two parameters – width and round. SHA-3 uses the sponge
construction. As the name suggests, a sponge function absorbs the input of arbitrary length and it
squeezes out the output of arbitrary length. The sponge function has been illustrated in Figure 13. The
Keccak family of sponge functions uses pad10∗1 as the padding rule. Keccak[c] has width of 1600 and

12 https://keccak.team/index.html
13 https://csrc.nist.gov/pubs/fips/202/final
14 An XOF is a function which extends a binary input up to any length.

https://keccak.team/index.html
https://csrc.nist.gov/pubs/fips/202/final
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Figure 12: SHA-2 hash computation

24 rounds. Keccak[c] function is used to define the four SHA-3 hash functions, along with appending a
2-bit suffix (01) to the input message and specifying the output length. Similarly, Keccak[c] function is
also used to define the two SHA-3 XOFs along with only appending a 4-bit suffix (1111) to the input
message, provided that the output length can be arbitrary. The round of Keccak[c] function consists of
θ, ρ, π, χ and ι operations, and will be described in detail in Section 8.

M0 M1 H0 H1

F F F F F

0

0

Sc

Sr

Mn-1

Absorption Phase Squeezing Phase
0

0

0

0

0

0

Figure 13: Schematic for sponge construction.
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