
One Tree to Rule Them All: Optimizing GGM Trees and OWFs for

Post-Quantum Signatures

Carsten Baum∗1, Ward Beullens†2, Shibam Mukherjee‡3, Emmanuela Orsini§4,
Sebastian Ramacher¶5, Christian Rechberger‖6, Lawrence Roy∗∗7, and Peter Scholl††8

team@faest.info

1,7,8Aarhus University
1Technical University of Denmark

2IBM Research Zurich
3,6TU Graz

4Bocconi University
5AIT Austrian Institute of Technology

Abstract

The use of MPC-in-the-Head (MPCitH)-based zero-
knowledge proofs of knowledge (ZKPoK) to prove
knowledge of a preimage of a one-way function
(OWF) is a popular approach towards constructing
efficient post-quantum digital signatures. Starting
with the Picnic signature scheme, many optimized
MPCitH signatures using a variety of (candidate)
OWFs have been proposed. Recently, Baum et al.
(CRYPTO 2023) showed a fundamental improvement
to MPCitH, called VOLE-in-the-Head (VOLEitH),
which can generically reduce the signature size by
at least a factor of two without decreasing computa-
tional performance or introducing new assumptions.
Based on this, they designed the FAEST signature
which uses AES as the underlying OWF. However,
in comparison to MPCitH, the behavior of VOLEitH
when using other OWFs is still unexplored.

In this work, we improve a crucial building block of
the VOLEitH and MPCitH approaches, the so-called
all-but-one vector commitment, thus decreasing the
signature size of VOLEitH and MPCitH signature
schemes. Moreover, by introducing a small Proof
of Work into the signing procedure, we can improve

∗cabau@dtu.dk
†ward@beullens.com
‡shibam.mukherjee@iaik.tugraz.at
§emmanuela.orsini@unibocconi.it
¶sebastian.ramacher@ait.ac.at
‖christian.rechberger@tugraz.at

∗∗ldr709@gmail.com
††peter.scholl@cs.au.dk

the parameters of VOLEitH (further decreasing sig-
nature size) without compromising the computational
performance of the scheme. Based on these optimiza-
tions, we propose three VOLEitH signature schemes
FAESTER, KuMQuat, and MandaRain based on
AES, MQ, and Rain, respectively. We carefully ex-
plore the parameter space for these schemes and
implement each, showcasing their performance with
benchmarks. Our experiments show that these three
signature schemes outperform MPCitH-based com-
petitors that use comparable OWFs, in terms of both
signature size and signing/verification time.

1 Introduction

The threat of quantum computing has forced cryp-
tographers to develop digital signatures based on
new, supposedly quantum-resistant, hardness as-
sumptions. In order to standardize these new sig-
nature schemes, NIST started its first post-quantum
(PQ) signature standardization process1 in 2017,
where SPHINCS+ [16, 6], Dilithium [33] and FAL-
CON [46] were standardized. With two out of three
standardizations relying on hard lattice problems for
their security, NIST deemed it necessary to seek addi-
tional candidates for standardization whose security
is based on a more diverse set of hardness assump-

1https://csrc.nist.gov/Projects/post-

quantum-cryptography/post-quantum-cryptography-

standardization/Call-for-Proposals.

1

mailto:team@faest.info
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals

tions2.

Signatures from Zero-Knowledge Proofs. A
well-known technique to build a digital signature
scheme is to compile a (public-coin, honest-verifier)
zero-knowledge (ZK) proof of knowledge, used in an
identification protocol, with the Fiat-Shamir trans-
formation (FS). In particular, a zero-knowledge proof
of knowledge (ZKPoK) for an NP relation R is an
interactive protocol that allows the prover to prove
knowledge of a witness w for a statement x such that
(x,w) ∈ R, without revealing any further informa-
tion. In the context of signature (and identification)
schemes, this is a proof of knowledge of a secret key
k such that y = Fk(x), for a given one-way function
(OWF) Fk(·).
A powerful and efficient technique to build such ZK
proofs for arbitrary NP relations is the MPC-in-the-
Head (MPCitH) framework due to Ishai et al. [39].
However, a significant limitation of many MPCitH-
based proofs lies in their proof size which scales lin-
early with the size of the circuit representation of
the statement being proven. Nevertheless, MPCitH
is particularly effective with small to medium-sized
circuits and leads to efficient post-quantum signature
schemes. These schemes are either based solely on
symmetric primitives, such as AES [28, 29, 10, 32, 40]
and other MPC-friendly one-way functions (OWFs)
like LowMC [4], Rain [32], and AIM [42], or well-
studied computational hardness assumptions, includ-
ing syndrome decoding [37, 3, 5], the multivariate
quadratic problem (MQ)[15, 45], the permuted kernel
problem [1], and the Legendre PRF [18]. This second
approach typically results in a more communication-
efficient scheme.

VOLE-ZK and FAEST. In 2018, Boyle et al. [23]
proposed a new class of prover-efficient (linear com-
plexity) and scalable ZK proofs, which use commit-
and-prove protocols instantiated using vector obliv-
ious linear evaluation (VOLE) correlations. Follow-
up works [23, 24, 55, 51, 31, 53, 13, 52, 9] reduced
the constants of the linear proof size, surpassing
MPCitH schemes in terms of efficiency, in particular
when dealing with very large circuits. Compared to
MPCitH schemes, the above VOLE-ZK protocols are
limited to the designated-verifier setting only. How-
ever, recent work by Baum et al. [8] reconciles the
advantages of both worlds, resulting in VOLE-ZK
proofs that are publicly verifiable. To achieve this,
they introduce a technique called VOLE-in-the-Head
(VOLEitH) which bears a surprising resemblance
to MPCitH-based protocols. Based on VOLEitH,

2https://csrc.nist.gov/Projects/pqc-dig-sig/

standardization.

they proposed the FAEST [7] post-quantum signa-
ture scheme.

Similarly to MPCitH signature schemes like Ban-
quet [10], BBQ [28], and Helium [40], FAEST relies on
AES [2] as its OWF. However, FAEST outperforms
MPCitH-based signatures, by having signatures at
least twice as small and with similar or better sign-
ing and verification times. This makes the VOLEitH-
based FAEST as performant as the most optimized
MPCitH-based schemes [40], while relying on a very
conservative OWF. At the same time, VOLEitH is a
relatively new concept, and it remained unexplored
to what extent VOLEitH-based signatures can ben-
efit from selecting different OWFs, such as Rain or
random multivariate quadratic maps.

1.1 Our Contributions

In these work, we present improvements to the core
building blocks used in VOLE-in-the-head proof sys-
tems, as well as alternative one-way function instan-
tiations that optimize prior approaches and lead to
more efficient post-quantum signature candidates.

Improved Batch Vector Commitments.
VOLE-in-the-head signatures such as those based on
MPC-in-the-head, use multiple GGM-based [38] all-
but-one vector commitment schemes to generate cor-
related randomness for the ZK proofs. These vector
commitments are then opened at random challenge
points as part of the proof, incurring a decommit-
ment size of log(N) · λ bits per vector commitment
that must be sent during the opening phase (where
N is the length of the vector and λ is the security
parameter). These openings are a substantial part of
the setup cost of the ZK proof. We provide a new
abstraction, called batch all-but-one vector commit-
ment (BAVC) schemes, which captures how multi-
ple vector commitments are used in VOLEitH and
MPCitH. We observe that, to instantiate the BAVC
abstraction more efficiently, one can interleave mul-
tiple vector commitments which drastically reduces
the opening size. This batching requires the signer to
perform rejection sampling when selecting the points
to open, reducing the entropy of the challenge space
somewhat. While it might seem that this makes the
scheme less secure, one can prove that security is ac-
tually preserved: since each rejection sampling step
requires the prover to perform a hash function call,
we can consider rejection sampling as a proof of work
done during each signing operation. Any attacker
must also perform this proof of work to generate a
valid signature. We believe that this technique is of
independent interest.

2

https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization

(a) Signing time - Signature Size trade-off, L1 security. (b) Verification time - Signature Size trade-off, L1 security.

Figure 1: Signature size and runtime trade-off comparison between the proposed signature schemes with FAEST and
FAEST-EM. The slow and fast versions are denoted with s and f respectively.

FAESTER. This rejection sampling / proof of
work idea can be pushed further, using a technique
known as “grinding” [19, 50]. Proof systems naturally
have a tradeoff between signature size, computation,
and security, and reducing the security can lead to
significant improvements in both signature size and
computational efficiency. We do this by further re-
ducing the entropy of the challenge space so that
some part of the opening process does not even need
to be considered. This makes the VOLEitH proof
itself slightly less secure, but the overall signature
scheme retains the same security level due to the ad-
ditional proof of work caused by increased rejection
probability. It might seem that this trade-off will nat-
urally lead to longer signing times, but the opposite
can actually be the case: reducing the challenge en-
tropy significantly reduces the other signing costs, so
the scheme is optimized by finding a balance between
the costs of the proof of work and those of the rest of
the scheme. We applied BAVC and grinding to the
FAEST signature scheme, leading to a new digital sig-
nature with a signature size of 4KB (an improvement
over all signature schemes using AES OWF) while
maintaining or improving upon the signing and veri-
fication time of FAEST. We name this new improved
signature scheme FAESTER.

MandaRain & KuMQuat. AES-based OWFs
benefit from decades of public scrutiny. However,
AES was not designed for use-cases such as VOLEitH
which leaves open the possibility that other OWFs
may result in faster signing and verification times,
and smaller signature sizes. We survey suitable can-
didate PRFs, ranging from various recent specialized
designs in symmetric cryptography [42, 4, 32, 36, 34,

47] to various instances of the MQ problem [15]. We
select the Rain [32] and MQ [15] PRFs, from which
we construct the new MandaRain and KuMQuat sig-
nature schemes using our new commitment optimiza-
tion. These signature schemes have a signature size
as small as 2.6KB, lowest among all VOLEitH and
MPCitH-based signature schemes. An overview of
our results can be seen in Figure 1.

Allowing Uniform AES Keys in FAEST(ER).
In cases where the conservative choice of AES is
preferred to alternative OWFs, we show how to
tweak the AES proving algorithm so that FAEST and
FAESTER can support secret keys that cover the en-
tirety of the AES keyspace. This avoids sampling
signing keys via rejection sampling, as done in previ-
ous works, so we obtain a simplified key generation
algorithm and improve concrete security by 1–2 bits.
This improvement comes with no cost in signature
size or runtime.

FAEST-d7: Higher-Degree Constraints for
AES. We also present a new method of proving
AES in VOLE-ZK proof systems, using degree-7 con-
straints over F2. Compared with the degree-2 con-
straints over F28 used in the original FAEST (and
above), we halve the witness size in the ZK proof. Al-
though proving higher-degree constraints does come
with some extra costs, we show that signature sizes
can be up to 5% smaller in FAEST-d7. We have
not yet implemented this variant, but expect signing
and verification times to be similar to FAEST. As
a contribution of independent interest, we optimize
the method for proving high-degree constraints in the
QuickSilver proof system [54], greatly improving the

3

efficiency of the prover.

VOLEitH Parameter Exploration. We system-
atically investigate the parameter set within the
VOLEitH paradigm for constructing a signature
scheme, providing insights into the effects of differ-
ent parameters, including those introduced in this
work. These insights contribute to further improve-
ments and trade-offs.

2 Preliminaries

2.1 One-Way Functions

MPCitH and VOLEitH signatures are based on prov-
ing knowledge of the preimage to a OWF.3 In many
recent signature schemes like Picnic and FAEST,
OWFs are built from a block cipher, according to
the following construction.

Construction 1. A one-way-function F(k, x) can be
constructed using a block cipher Ek(x) by setting F(k,
x) := (x,Ek(x)), where Ek(x) denotes the encryption
of x under the key k. The OWF relation is defined
as ((x, y), k) ∈ R⇔ Ek(x) = y.

2.1.1 The Rain OWF

Dobraunig et al. presented a block cipher called
Rain [32] with a small number of non-linear con-
straints, designed to optimize the signature size and
time when used as a OWF in MPCitH based sig-
nature schemes.4 The resulting signature scheme,
Rainier [32], was the first MPCitH signature scheme
with less than 5 KB of signature size.
Below we describe the Rain round function and we
refer to Figure 2 for a graphical overview of Rain with
3 rounds.
The Rain keyed permutation fk(x) : Fλ

2 → Fλ
2 is de-

fined by the concatenation of a small number r of
round functions Ri, i ∈ [r], i.e. fk(x) = Rr ◦ · · · ◦R2 ◦
R1(x). Each Ri, i ∈ [r], is in turn defined as

Ri(x) =

{
Mi · S(x+ k + ci) i ∈ [1..r)

k + S(x+ k + cr) i = r.

Here, S : F2λ → F2λ is the field inversion function
over F2λ (mapping 0 to 0), ci ∈ Fλ

2 is a round con-
stant, k ∈ Fλ

2 the secret key and Mi ∈ Fλ×λ
2 an in-

vertible matrix.
3See Appendix A.1 for definitions.
4Rain is not a typical block cipher like AES, but rather

specifically designed for MPCitH use cases, where it requires
that an adversary has access to only one plaintext-ciphertext
(pt-ct) pair per secret key. When constructing signature
schemes, this condition is easily satisfied as pk contains the
only pt-ct pair known to an adversary.

x x−1 M1

k ⊕ c1

x−1 M2

k ⊕ c2 k ⊕ c3

x−1

k

y

Figure 2: The Rain encryption function with r = 3 rounds.
Mi denotes the multiplication with an unstructured in-
vertible matrix over F2 in the i-th round.

In the VOLEitH setting, similar to MPCitH schemes,
the linear layer has a much smaller impact on the
performance in comparison to the non-linear layer.
Thus to improve diffusion, the authors of Rain de-
cided to use different rounds constants ci and linear
matrices Mi for each round. Rain comes in two set-
tings, namely Rain-3 with 3 rounds and Rain-4 with
(more conservative) 4 rounds. Despite detailed crypt-
analysis carried out by the authors, the best known
attacks [44, 56] extend only to two rounds.

2.1.2 Multivariate Quadratic (MQ) OWF

One can also build a OWF from the well-known Mul-
tivariate Quadratic problem.

Definition 1. (Multivariate Quadratic Problem).
Let Fq be a finite field and MQn,m,q be the set of mul-
tivariate maps over Fq with n variables and m com-
ponents of the form {xT ·Ai ·x+bT

i ·x}i∈[m], where
Ai ∈ Fn×n

q , are randomly sampled upper triangular
matrices and bi ∈ Fn

q are uniformly sampled vectors.
Given F ∈ MQn,m,q and y = (y1, . . . , ym) ∈ Fm

q , the
MQ problem asks to find x such that F (x) = y, i.e.(
yi := xT ·Ai · x+ bT

i · x
)
i∈[m]

.

The MQ problem has been extensively used in cryp-
tography and used to build both trapdoor [43, 17]
and one-way signature schemes [49, 15]. We con-
struct the one-way function Ex(seed) = y from the
MQ problem, where seed is the input to a pseudo-
random generator G such that A1, . . . ,Am,b1, . . . ,
bm ← G(seed). Therefore, when constructing a
one-way signature scheme from the MQ problem, (x,
seed) becomes the sk and (y,seed) becomes the pk
(similar to MQOM [15]).

2.2 VOLEitH Signatures

We now give an overview of the VOLEitH framework
as the ZK-proof system underlying FAEST.
A vector oblivious linear evaluation (VOLE) correla-
tion of length m is a two-party correlation between a
prover P and a verifier V defined by a random global
key ∆ ∈ F2k , a set of random bits ui ∈ F2, a ran-
dom VOLE tag vi ∈ F2k and VOLE keys qi ∈ F2k

4

such that qi = ui · ∆ − vi, i = 0, . . . ,m − 1. P ob-
tains ui, vi while V obtains ∆, qi. The correlations
commit P to the ui’s as linearly homomorphic com-
mitments, allowing efficient proof systems (see [12]
for an overview). One of the main drawbacks of such
VOLE-based ZK schemes is that of being inherently
designated verifier since the verifier V needs to know
its part of the VOLE correlation to verify the proof,
which has to remain secret from the prover for the
proof to be sound.
Using VOLEitH, Baum et al. realized a delayed
VOLE functionality that allows the prover to gener-
ate values ui, vi of VOLE correlations independently
of ∆, qi and to generate them later instead. This
delayed VOLE functionality can in turn be realized
from vector commitments (VCs). The main steps of
the interactive ZK proof can be computed as before,
and only after these, in the last stage of the proto-
col, the verifier will choose and send to the prover the
random value ∆ of the correlation. At this point, P
will open the homomorphic commitments and send
to V information which allows it to reconstruct the
qis in the VOLE correlations, check the openings and
thus the proof. This guarantees public verifiability,
as the final VOLE correlation is defined by the ran-
dom value ∆ chosen as the last step of the proof by
the verifier, after all other proof messages have been
fixed. Concretely, to obtain the desired soundness, it
is necessary to run τ instances of VOLEitH such that
τ · k = λ. The main steps of the resulting ZK proof
using the VOLEitH technique are depicted in Figure
3.
We give a more detailed introduction to the VOLE-
in-the-Head approach in Appendix A.

3 Improving Batch Vector
Commitments

In this section, we present our result on batch vec-
tor commitments (VCs) in the random oracle (RO)
model. We start by providing a formal definition
of a batch all-but-one vector commitment scheme
(BAVC) with abort in the opening phase. This can
used in FAEST, and more generally in VOLEitH-
based protocols, as well as in most of the known
MPC-in-the-head schemes. By making the proper-
ties of the used GGM-based instantiation explicit, we
manage to achieve an optimized construction that re-
sults in shorter signatures.
Informally, a batch all-but-one vector commitment
scheme (BAVC) is a two-phase protocol between two
PPT machines, a sender and a receiver . In the first
phase, called the commitment phase, the sender com-
mits to multiple vectors of messages while keeping

them secret; in the second phase, the decommitment
phase, all but one of the entries of each vector are
opened. The vectors may have different lengths. We
require the binding and hiding properties of regular
commitments, and additionally also that the mes-
sages at the unopened indices remain hidden, even
after opening all other indices of each committed vec-
tor. In addition, we do not allow the sender to choose
the messages, which instead are just random elements
from the message spaceM. This definition captures
how vector commitments are used in MPC-in-the-
head or VOLE-in-the-head constructions.
Let τ be the number of vectors, and let the α-th vec-
tor have length Nα for α ∈ [τ]. We will denote by
iτ the index of vector τ that remains unopened and
by I the vector (i1, . . . , iτ) comprising all the indices
that remain unopened.

Definition 2 (BAVC). Let H be a random oracle.
A (non-interactive) batch all-but-one vector commit-
ment scheme BAVC (with message space M) in the
RO model is defined by the following PPT algo-
rithms, where all of them have access to a RO, and
obtain the security parameter 1λ as well as τ,N1, . . . ,
Nτ as input:

Commit()→ (com, decom, (m
(α)
1 , . . . ,m

(α)
Nα

)α∈[τ]):
output a commitment com with opening infor-

mation decom for messages (m
(α)
1 , . . . ,m

(α)
N)α∈[τ]

∈ MN1+···+Nτ .

Open(decom, I)→ decomI ∨ ⊥: On input an opening
decom and the index vector I ⊂ [N1]×· · ·× [Nτ],
output ⊥ or an opening decomI for I.

Verify(com, decomI , I)→((m
(α)
j)j∈[Nα]\{iα})α∈[τ] ∨ ⊥:

Given a commitment com, an opening decomI ,
for an index vector I, as well as the index vector

I, either output all messages (m
(α)
j)j∈[Nα]\{iα}

(accept the opening) or ⊥ (reject the opening).

We now define correctness for the commitment
scheme. We allow the sender to potentially abort for
certain choices of I during Open. Note that this does
not pose any problem if the abort probability is low,
as aborts only happen during signature generation.

Definition 3 (Correctness with aborts). BAVC is
correct with aborts if for all I ⊂ [N1] × · · · × [Nτ],
the following outputs True

(com, decom,M)← Commit()

∀ decomI ← Open(decom, I)

output decomI = ⊥ ∨ Verify(com, decomI , I) = M

with all but a negligible probability, where M =

(m
(α)
1 , . . . ,m

(α)
N)α∈[τ].

5

Prover P Verifier V

Verify:

• VC openings

• VOLE consistency check

• QuickSilver ZK proof

(1) Create random VCs; (2) Expand to small
VOLEs; (3) Combine to big VOLE

Random challenge

VOLE Consistency proof

Random challenge

QuickSilver amortized proof

∆

Open VCs

Figure 3: Main steps of the VOLEitH-based Zero-Knowledge proof in FAEST

Informally, we say that a commitment scheme is
extractable-binding if there exists an extractor Ext
such that for any commitment opening, the extracted
message is equal to the opened message. More for-
mally, we have the following definition.

Definition 4 (Extractable-Binding). Let BAVC be
defined as above in the RO-model with RO H. Let
Ext be a PPT algorithm such that

- Ext(Q, com) → ((m
(α)
j)j∈[Nα])α∈[τ], i.e., given a

set Q of query-response pairs of random ora-
cle queries, and a commitment com, Ext out-
puts the committed messages. (Ext may output

m
(α)
j = ⊥, e.g. if committed value at this index

is invalid.)

For any τ,Nα = poly(λ), define the straightline
extractable-binding game for BAVC and stateful ad-
versary AH with oracle access to the random oracle
H as follows:

1. com← AH(1λ)

2. ((m
(α)
1 , . . . ,m

(α)
N)α∈[τ])← Ext(Q, com), where Q

is the set {(xi, H(xi))} of query-response pairs
of queries A made to H.

3. (((m
(α)
j)j∈[Nα]\{iα})α∈[τ], decomI , I)←AH(com).

4. Output 1 (success) if:
Verify(com, decomI , I) =

((m
(α)
j)j∈[Nα]\{iα})α∈[τ],

butm
(α)
j ̸= m

(α)
j for some α ∈ [τ], j ∈ [Nα]\{iα}.

Else output 0 (failure).

We say BAVC is straightline extractable w.r.t. Ext if
any PPT adversary A has a negligible probability of
winning the extractable binding game. We denote
the advantage, i.e. probability to win, by AdvEBBAVC

A .

We define the n-hiding real-or-random game where
0 < n ≤ τ . Here, the attacker has to guess if claimed

committed values for the first n commitments at the
hidden index are correct or not. We allow for a pa-
rameter n to permit hybrids in security proofs.

Definition 5 (Hiding (real-or-random)). Let BAVC
be a vector commitment scheme in the RO-model
with random oracle H. The selective hiding exper-
iment for BAVC with τ,Nα = poly(λ), parameter n
and stateful A is defined as follows.

1. b← {0, 1}

2. (com, decom, (m
(α)
1 , . . . ,m

(α)
N)α∈[τ])← Commit()

3. I ← AH(1λ, com), where I ∈ [N1]× · · · × [Nτ].

4. decomI ← Open(decom, I)

5. m
(α)
j ← m

(α)
j for j ∈ [Nα] \ {iα}, α ∈ [τ].

6. Setm
(α)
iα
←

{
random fromM if b = 0 ∧ α ≤ n

m
(α)
iα

otherwise

7. b← A((m(α)
j)j∈[Nα], decomi).

8. Output 1 (success) if: b = b, else 0 (failure).

The advantage AdvSelHideBAVCA,i of an adversary A is

defined by Pr [A wins and n = i] − 1
2 in the hiding

experiment. We say BAVC is selectively hiding if ev-
ery PPT adversary A has a negligible advantage of
winning AdvSelHideBAVCA,i

Note that the GGM-based VC scheme of [8] can be
defined using our definitions as well. We show this in
Appendix B.

3.1 Using BAVC in FAEST

We now describe how to integrate the previous BAVC
definition in FAEST in a black-box way, using rejec-
tion sampling to handle aborts and a proof-of-work
optimization to reduce the number and length of the

6

vectors.

FAEST, as described in [8], uses a GGM-based VC
scheme to replace a specified number τ of oblivious
transfers (OTs) in OT-based zero-knowledge proofs.
This is achieved through a compilation step that
transforms these proofs into publicly verifiable ones.

To be more specific, the compiler treats all OTs
as a single functionality, where the sender and the
receiver simultaneously query all τ OT instances.
Consequently, by syntactically substituting their VC
scheme with Definition 2, the compiled protocol will
still correctly sign whenever Open does not output ⊥.
We will now address this and demonstrate how our
modifications to Open, as well as our security defini-
tions, fit into their framework.

Handling aborts. During the FAEST signing al-
gorithm, the sequence of indices I ∈ [N1]× · · ·× [Nτ]
for opening the batch all-but-one vector commitment
are derived from a λ-bit challenge chal3 using an
injective decoding function DecodeChallenge, where
the challenge chal3 is the output of a hash function
H3

2. To handle aborts in the Open algorithm, we
add a counter value ctr to the input of H3

2. If the
challenge chal3 decodes to a sequence of indices I
for which Open fails, then the signing algorithm
repeatedly increases ctr and hashes again until it
reaches a challenge for which Open succeeds. The
counter ctr is included in the signature to allow for
efficient verification.

We now argue why this change does not affect the
security of FAEST. The proof of [8, Lemma 4] says
that for every query to the H3

2 there are at most 2 out
of 2λ challenge responses that can lead to a forgery,
because challenges correspond one-to-one with field
elements ∆ ∈ F2λ , and to cheat, the adversary needs
∆ to be a root of a nonzero quadratic polynomial
in the Quicksilver check. The proof then considers a
union bound over all Q queries to H3

2 to obtain the
term Q/2λ−1 in the bound on the forgery probability
of the adversary. The same proof strategy still works
for the signing algorithm with counter, because for
every query to H3

2 there are still at most two chal-
lenges that map to the roots of the Quicksilver poly-
nomial.

Using fewer and shorter vector commitments.
In the original FAEST scheme we need to have∏τ

α=1 Nα ≥ 2λ, because the λ-bit challenges need
to map injectively to index sequences I ∈ [N1]×· · ·×
[Nτ]. In the setting with aborts, we only need the
non-aborting challenges to map injectively to index
sequences I. Therefore, as an additional optimiza-
tion, we can choose to reduce the number and/or

the length of some of the vectors (reducing the sig-
nature size or the signing and verification time re-
spectively), at the cost of increasing the probability
of a restart (which slows down signing). Concretely,
we set parameters such that

∑τ
α=1 logNα = λ − w,

and let I ← DecodeChallenge(chal3) injectively de-
code the first λ − w bits of chal3. If some of the
remaining w bits of chal3 are nonzero, or if Open(I)
aborts, then the signing algorithm tries again with
the next counter. The verifier rejects the signature if
the last w bits of chal3 are not all zero. Since there
are still at most two challenges that map to the roots
of the Quicksilver polynomial, this optimization does
not affect the security proof. The relevant part of
the original FAEST and the optimized FAEST sign-
ing algorithm are given in Algorithm 1 and Algorithm
2 (Figure 4). Another way to look at this optimiza-
tion is that we increase efficiency by giving up w bits
of security and that we regain security by making
the prover solve a proof of 2w work for each forgery
attempt.

New binding and hiding definitions. The se-
curity proof of the compilation from OTs to GGM-
based VCs is established in [8, Lemma 3]. This
proof shows a reduction of special honest-verifier
zero-knowledge (SHVZK) of the compiled protocol to
SHVZK of the compiled protocol itself and security
against the selective hiding game. It uses a hybrid
argument to iteratively replace the unopened index
value with random values. The same proof technique
is applicable using our n-hiding real-or-random se-
curity requirement from Definition 5 and showing a
hybrid argument progressively selecting 1 ≤ n ≤ τ .
Note that, in [8] an adaptive version of the hiding
security game is defined, but only selective hiding is
employed in the proof.
Furthermore, [8] reduces knowledge soundness to the
knowledge soundness of the compiled protocol and
the extractable binding security definition. The proof
again uses a hybrid argument with abort if the ma-
licious prover successfully opens one of the τ VC in-
stances to a vector of messages differing from those
extracted previously. The proof can be seamlessly
adapted by replacing the FAEST VC scheme with
Definition 2, resulting in essentially the same secu-
rity proof and bounds.

3.2 Optimizing BAVCs for Signatures

The GGM-based [38] VC construction has been
extensively used both in MPCitH based signature
schemes like Picnic [25], BBQ [28], Banquet [10], He-
lium [40] and also VOLEitH-based FAEST to con-
struct the commitment scheme. It expands a ran-

7

Algorithm 1 FAEST Signing

. . .
chal3 ← H3

2(chal2||ã||b̃ ; λ)
I ← DecodeChallenge(chal3)
decomI ← BAVC.Open(I)
σ ← σ||decomI

return σ

Algorithm 2 FAESTER Signing

. . .
ctr← 0
retry:

chal3 ← H3
2(chal2||ã||b̃||ctr ; λ)

I ← DecodeChallenge(chal3[0 : λ− w − 1])
decomI ← BAVC.Open(I)
if decomI = ⊥ or chal3[λ− w : λ] ̸= 0w then

ctr← ctr + 1
go to retry

end if
σ ← σ||decomI ||ctr
return σ

Figure 4: Signing with FAEST vs signing with FAESTER.

dom seed into a tree of Pseudorandom values by re-
cursively applying a length-doubling Pseudo Random
Generator (PRG) to each seed. To obtain a VC, the
prover commits to the tree leaves to represent one
vector commitment towards the verifier. Then, at a
later stage, it can reveal parts of the leaves by open-
ing intermediate seeds (i.e. inner nodes of the tree),
allowing the verifier to check the opening against the
VC. MPCitH-based signatures usually generate a for-
est of τ such trees in parallel, whose roots are gen-
erated from a single seed. This approach (which we
recap in Appendix B) allows expressing τ VCs as one
BAVC.

One big tree instead of τ small ones. We now
describe an optimization of this construction, where
instead of generating a forest of τ trees with N1, . . . ,
Nτ leaves each, we generate a single GGM tree with
L =

∑τ
i=1 Ni leaves. Opening all but τ leaves of the

big tree is more efficient than opening all but one leaf
in each of the τ smaller trees, because with high prob-
ability some of the active paths in the tree will merge
relatively close to the leaves, which reduces the num-
ber of internal nodes that need to be revealed. Impor-
tantly, we map entries of the individual vector com-
mitments to the leaves of the tree in an interleaved
fashion. The first τ leaves of the tree correspond to
the first entry of the τ vector commitments, the next
leaves correspond to the second entries, and so on.
The other way around would force the τ unopened
leaves to be spaced far apart, which is detrimental to
the number of nodes that need to be revealed. The
number of internal nodes that need to be revealed
depends on I, which would cause some variability in
the size of the signature. To prevent this, we fix a
threshold Topen for the number of internal nodes in
an opening, and we let the Open algorithm abort if

the number of nodes exceeds Topen. The value of Topen

controls a trade-off between the opening size of BAVC
and the success probability of BAVC.Open.
Towards formalizing our optimized BAVC scheme
BAVCopt, let PRG : {0, 1}λ → {0, 1}2λ be a PRG,
H : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash
function (CRHF) and G : {0, 1}λ → {0, 1}λ×{0, 1}2λ
be a PRG and CRHF. We define the scheme BAVCopt,
which is parameterized by the number of vectors τ ,
the lengths of the vectors N1, . . . , Nτ , and the open-
ing size threshold Topen. Let π : [L−1, 2L−2]→ {(α,
i)}1≤i≤Nα

be a bijective mapping from roots of the
GGM tree to positions in the vector commitment.

Commit():

1. Set k ← {0, 1}λ and let k0 ← k.

2. For i ∈ [0, L − 2], compute (k2i+1, k2i+2) ←
PRG(ki) to create a tree with L leaves kL−1, . . . ,
k2L−2.

3. Deinterleave the leaves:
{sd(α)1 , . . . , sd

(α)
Nα
}α∈[τ]

π← {kL−1, · · · , k2L−2}.

4. Compute (m
(α)
i , com

(α)
i) ← G(sd

(α)
i), for α ∈ [τ]

and i ∈ [Nα].

5. Compute h(α) ← H(com
(α)
1 , . . . , com

(α)
Nα

) for α ∈
[τ] and h← H(h(1), . . . , h(τ)).

6. Output the commitment com = h, the open-

ing decom = k and the messages (m
(α)
1 , . . . ,

m
(α)
Nα

)α∈[τ].

Open(decom = k, I = (i(1), . . . , i(τ))):

1. Recompute kj for and j ∈ [0, . . . , 2L− 2] from k
as in Commit.

8

2. Let S = {kL−1, . . . , k2L−2}.

3. For each α ∈ [τ], remove kπ−1(α,i(α)) from S.

4. For i from i = L− 2 to 0:

If k2i+1 ∈ S and k2i+2 ∈ S then replace
both with ki.

5. If |S| ≤ Topen output the opening information

decomI = ((com
(α)

i(α))α∈[τ], S), otherwise output
⊥.

Verify(com = h, decomI = ({comi(α)}(α)α∈[τ], S), I =

(i(1), . . . , i(τ))):

1. Recompute sd
(α)
i from decomI , for each α ∈ [τ]

and i ̸= i(α) using the available keys in S, and

compute (m
(α)
i , com

(α)
i)← G(sd

(α)
i).

2. Compute h(α) = H(com
(α)
1 , . . . , com

(α)
Nα

) for each
α ∈ [τ].

3. If h ̸= H(h(1), . . . , h(τ)) output ⊥.

4. Output ((m
(α)
i)i∈[Nα]\{i(α)})α∈[τ].

Lemma 6 (Extractable Binding). Decompose G :
{0, 1}λ → {0, 1}2λ into G(x) := (G1(x),G2(x)) and
suppose G2,H are straight-line extractable. Then
BAVCGGM is straight-line extractable-binding accord-
ing to Definition 4: Given any adversary A breaking
the extractable-binding of BAVCopt with advantage
AdvEB we can construct a PPT adversary breaking
extractability on G2,H with advantage

AdvEB ≤ L · AdvG2
+ (τ + 1) · AdvH.

Proof. The proof is similar to [8, Lemma 1]. We ex-
tract Ext after obtaining com = h using the straight-
line extractability of G2,H. For this, we first find h(1),

. . . , h(τ) which hash to h, and then com
(α)
i for each

i ∈ [Nα], α ∈ [τ], in both cases using extractability

of H. Then, we extract sd
(α)
i from com

(α)
i using the

extractability of G2, and compute m
(α)
i using G1.

Assume A breaks extractable binding, i.e. provides
values during Open which differ from the extracted

h(α), com
(α)
i , sd

(α)
i . Then, our constructed adversary

will simply guess in advance at which index A will
break extractability of G2,H and play the extractabil-
ity game at that index. This guess leads to the loss
outlined in the statement.

Lemma 7 (Selectively Hiding). Given any adversary
A breaking the selective hiding of BAVCGGM for pa-
rameter n with advantage AdvSelHiden we can con-

struct a PPT adversary breaking the pseudorandom-
ness of G,PRG with advantage

AdvSelHiden ≤ ⌈log2(L)⌉ · AdvPRG + AdvG.

Proof. The proof is similar to [8, Lemma 2]. By us-
ing that the GGM construction is a puncturable PRF
according to [20] and since we know the unopened in-
dex I for each commitment vector, and in particular
for vector n, in advance, one can iteratively replace
the unopened PRG seeds ki on the path from the

root to sd
(n)

i(n) which are not seeds on paths to sd
(1)

i(1)
,

. . . , sd
(n−1)

i(n−1) as well as the output of G(sd
(n)

i(n)) with
uniformly random values. For this to be possible, we

fully randomize the seeds on the paths to sd
(1)

i(1)
, . . . ,

sd
(n−1)

i(n−1) first, to allow for any hybrids distinguishing
at indices n to n + 1 to be meaningful. The bound
then follows from the maximal number of hybrids
possible.

3.3 Optimized FAEST and
FAEST-EM

This section discusses our optimized FAEST and
FAEST-EM signature schemes, namely FAESTER
and FAESTER-EM respectively, which benefit from
the improved BAVC constructions discussed in Sec-
tion 3.1 and 3.2. When considering the non-
optimized BAVC, the previous VOLEitH signatures
FAEST and the recently proposed ReSolved [26] are
limited to the signature size and signing/verification
runtime trade-off only with respect to τ , the num-
ber of “small” VOLEs. Even though flexible, such a
trade-off provides an exponential correlation between
the signature size and signing time as shown in Fig-
ure 5.
With the optimized BAVC, our proposed signature
schemes, including FAESTER, enjoy both improved
performance and an improved signature size-runtime
trade-off. Our experiments show an improvement in
the signature size of around 10% for FAESTER when
compared to FAEST, in the L1 setting, while main-
taining a similar runtime, as shown in the trade-off
plot in Figure 5. As a direct consequence of this im-
provement, FAESTER is the first signature scheme
using standard AES with a signature size of 4.5KB.
Similarly, FAESTER-EM enjoys a signature size of
less than 4KB, with similar signing times. We refer
to Appendix D for FAESTER performance for the L3
and L5 security levels.
Figure 8 shows the benefits of our new optimized
BAVC for different signature schemes. Table 2
presents our recommended parameter choices for dif-
ferent signature schemes. In the FAEST NIST sub-
mission [7], the slow and the fast versions represented

9

(a) FAEST-128. (b) FAEST-EM-128.

Figure 5: FAEST(-EM) τ -signature size and signing time trade-off.

by (s) and (f) respectively were only determined by
τ as shown in the first 4 rows. However, for the opti-
mized FAESTER and FAESTER-EM, along with the
proposed new signature schemes, we also consider the
optimal w and Topen parameter as described in Sec-
tion 3.1. We refer to Table 5 for the FAESTER opti-
mized implementation benchmarks.

4 New VOLEitH Signature
Schemes

We present three new signature schemes constructed
following the footsteps of FAESTER using the op-
timized BAVC, however, instantiated with different
OWFs. The first two variants take advantage of
the Rain and MQ OWFs, discussed in Section 2.1.1
and 2.1.2 respectively, to achieve the lowest sig-
nature sizes (less than 3 KB) among all MPCitH
and VOLEitH signature schemes. The third variant
uses AES but with a different approach to proving
the S-box, which reduces signature sizes by up to
around 5%. We also show how to tweak the orig-
inal AES proof in FAEST, to allow use of the full
AES keyspace, instead of restricting to a subset of all
keys.

4.1 MandaRain: VOLEitH + Rain

The MandaRain signature scheme uses two instanti-
ations of the Rain OWF, namely Rain-3 and Rain-4
which use 3 and 4 rounds respectively. Rain has the
same block size as its security parameter λ, thus un-
like FAEST and FAESTER, Rain can circumvent the
need for multiple evaluations of the OWF. The pa-
rameters of Rain that we use for MandaRain can be

found in Table 3.
We prove Rain using the VOLEitH NIZK proof as
described in Section 2.2, with the optimized BAVC
(Section 3.2). The prover uses as a witness the se-
cret key k together with the internal state after each
round, except for the last round which can be derived
from the public key. This gives a total witness length
of l = rλ bits for r rounds, and proving consistency
requires r multiplication checks in F2λ . See Table 1
for a summary of the non-linear complexity of the
Rain-3 and Rain-4 OWFs. Compared to the other
OWFs, Rain has the smallest number of non-linear
constraints that must be checked in ZK resulting in
not only a very small signature size but also a compet-
itive signing and verification time. Refer to Table 2
for details on the MandaRain parameters. Similarly
to FAEST, Figure 6 presents the parameter set ex-
ploration to find the most suitable parameter sets for
signature size/runtime trade-offs with and without
the BAVC optimization. We see that the signature
size can be as small as around 2.8KB for the same or
better signing runtime. Refer to Table 5 for the Man-
daRain optimized implementation benchmarks at the
L1 security level. For L3 and L5 benchmarks, refer
to Appendix D.

4.2 KuMQuat: VOLEitH + MQ

Using a OWF relying on the MQ problem (Sec-
tion 2.1.2), we obtain the smallest witness size, and
hence the smallest signature size among all VOLEitH
and MPCitH signature schemes.
Proving an MQ evaluation in VOLEitH is concep-
tually straightforward: the witness is the solution
x ∈ Fn

q to the system of equations, and there are
m quadratic constraints to verify. One challenge is

10

Table 1: Non-linear complexity of VOLEitH signature schemes using different OWFs.

Description FAEST FAEST-EM
λ AES-128 AES-192 AES-256 AES-EM-128 AES-EM-192 AES-EM-256
No. of S-Boxes in key expansion 40 32 52 0 0 0
No. of S-Boxes in encryption 160 192 224 160 288 448
Total no. of F28 constraints 200 416 500 160 288 448

FAESTER FAESTER-EM
λ AES-128 AES-192 AES-256 AES-EM-128 AES-EM-192 AES-EM-256
No. of S-Boxes in key expansion 40 32 52 0 0 0
No. of S-Boxes in encryption 160 192 224 160 288 448
Total no. of F28 constraints 200 416 500 160 288 488

MandaRain-3 MandaRain-4
λ Rain-3-128 Rain-3-192 Rain-3-256 Rain-4-128 Rain-4-192 Rain-4-256
No. of S-Boxes in encryption 3 3 3 4 4 4
Total no. of F2λ constraints 3 3 3 4 4 4

KuMQuat-21 KuMQuat-28

λ MQ-F21-L1 MQ-F21 -L3 MQ-F21 -L5 MQ-F28 -L1 MQ-F28 -L3 MQ-F28-L5
Total no. of F2n constraints 152 224 320 48 72 96

Table 2: VOLEitH signature schemes and their parameters. We denote the signature schemes as SCHEME-λs/f. l is
the number of VOLE correlations required for the NIZK proof. w and Topen are the values for the optimized BAVC
as described in Section 3.1. τ is the number of VOLE repetitions determining the choice between s (slow) and f (fast)
versions. k0 and k1 are bit lengths of small VOLEs. B is the padding parameter affecting the security of the VOLE
check. Secret key (sk), public key (pk) and signature sizes are in bytes.

Signature Scheme OWF Esk(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size

FAEST-128s AES128sk(x) 1600 – – 11 7 4 12 11 16 32 5006
FAEST-128f AES128sk(x) 1600 – – 16 0 16 8 8 16 32 6336

FAEST-EM-128s AES128x(sk)⊕ sk 1280 – – 11 7 4 12 11 16 32 4566
FAEST-EM-128f AES128x(sk)⊕ sk 1280 – – 16 0 16 8 8 16 32 5696

FAEST-d7-128s AES128sk(x) 800 – – 11 7 4 12 11 16 32 4790
FAEST-d7-128f AES128sk(x) 800 – – 16 0 16 8 8 16 32 6020

FAESTER-128s AES128sk(x) 1600 7 102 11 0 11 11 11 16 32 4594
FAESTER-128f AES128sk(x) 1600 8 110 16 8 8 8 7 16 32 6052

FAESTER-EM-128s AES128x(sk)⊕ sk 1280 7 103 11 0 11 11 11 16 32 4170
FAESTER-EM-128f AES128x(sk)⊕ sk 1280 8 112 16 8 8 8 7 16 32 5444

FAESTER-d7-128s AES128sk(x) 800 5 102 11 0 11 11 11 16 32 4374
FAESTER-d7-128f AES128sk(x) 800 6 110 16 8 8 8 7 16 32 5732

MandaRain-3-128s Rain-3-128sk(x) 384 7 100 11 7 4 12 11 16 32 2890
MandaRain-3-128f Rain-3-128sk(x) 384 8 108 16 0 16 8 8 16 32 3588
MandaRain-4-128s Rain-4-128sk(x) 512 7 101 11 7 4 12 11 16 32 3082
MandaRain-4-128f Rain-4-128sk(x) 512 8 110 16 0 16 8 8 16 32 3876

KuMQuat-21-L1s MQ-21-L1sk(x) 152 7 99 11 7 4 12 11 19 35 2555
KuMQuat-21-L1f MQ-21-L1sk(x) 152 4 102 16 0 16 8 8 19 35 3028
KuMQuat-28-L1s MQ-28-L1sk(x) 384 7 100 11 7 4 12 11 48 64 2890
KuMQuat-28-L1f MQ-28-L1sk(x) 384 4 108 16 0 16 8 8 48 64 3588

(a) MandaRain-3-128. (b) MandaRain-4-128.

Figure 6: MandaRain τ -signature size and signing runtime trade-off.

11

Table 3: Rain Parameters

Instance Seclvl State Rounds

Rain-3-128 L1 F128
2 3

Rain-3-192 L3 F192
2 3

Rain-3-256 L5 F256
2 3

Rain-4-128 L1 F128
2 4

Rain-4-192 L3 F192
2 4

Rain-4-256 L5 F256
2 4

Table 4: MQ Parameters

Instance Seclvl Field m = n

MQ-21-L1 L1 F21 152
MQ-28-L1 L1 F28 48

MQ-21-L3 L3 F21 224
MQ-28-L3 L3 F28 72

MQ-21-L5 L5 F21 320
MQ-28-L5 L5 F28 96

that a naive approach using QuickSilver would re-
quireO(mn2) multiplications in F2λ . In Section 2.1.2,
we describe some optimizations that reduce this to
just O(mn2q/λ) multiplications.
Although the runtime of KuMQuat is not as fast
as MandaRain, it still has signing and verification
speeds comparable to those of FAEST, for signatures
of around half the size. Table 4 shows the MQ param-
eter choices for our experiments chosen according to
the security estimation from [35, 14]. We set m = n
(as in MQOM) and choose a field F2k for a power k.
The field size of the MQ problem and security level
determines the choice of n (see Section 2.1.2), which
in turn influences the key and signature sizes and the
runtime as shown in Table 5. We refer to Table 2
for the recommended parameter choice for the L1 se-
curity level. For L3 and L5, parameter choices, we
refer to Appendix D. Note that the signature size of
KuMQuat depends only mildly on the MQ parame-
ters m,n. One could therefore choose to increase n,
m to massively increase the margin of safety against
MQ-solving attacks without growing the signature
size much.

4.2.1 Optimizations

One implementation difficulty with KuMQuat is the
computational cost of the OWF. The MQ function
itself has mn(n+3)/2 terms5 (see Definition 1), each
with coefficients in Fq, and evaluating the constraints
with QuickSilver requires calculating the same num-
ber of terms over F2λ . While this seems to require
Θ̃(mn2λ) work, we used an optimization to reduce

5Or mn(n+1)/2 in F2, since then x2 = x which makes the
diagonal of Ai redundant.

this back to just Θ̃(mn2 log2 q).
Instead of these m constraints (for i ∈ [m]) over Fq:

0 =
∑
jk

Aijk xjxk +
∑
j

bij xj − yi,

we require that F2λ is a degree r = λ
log2(q)

field ex-

tension of Fq, and group the constraints into blocks
of r:

0 =

ri′+r−1∑
i=ri′

αi−ri′

∑
jk

Aijk xjxk +
∑
j

bij xj − yi

 ,

where α is a generator of F2λ over Fq. These
constraints are equivalent to the original ones, be-
cause α0, α1, . . . , αr−1 are linearly independent over
Fq since F2λ is a degree r vector space over Fq. Now,
we can precompute this linear combination of con-
straints

A′
i′jk =

r−1∑
i=0

αiA(ri′+i)jk

b′i′j =

r−1∑
i=0

αib(ri′+i)j

y′i′ =

r−1∑
i=0

αiyri′+i

to get ⌈m/r⌉ constraints over F2λ :

0 =
∑
jk

A′
i′jk xjxk +

∑
j

b′i′j xj − y′i′ .

Note that evaluating these constraints for QuickSilver
now requires only Θ(mn2/r) operations over F2λ . As-
suming F2λ multiplication can be done in Θ̃(λ) time,
this is Θ̃(mn2 log2 q) time.
As a final optimization, note that if r ≤ m/r then
there are exactly r Aijk elements that get mapped
into a single A′

i′jk, and that the transformation be-
tween them is bijective (and similarly for b and y).
Therefore, sampling allA′

i′ uniformly at random from
the subset of upper triangular matrices in Fn×n

2λ
is

equivalent to sampling the original Ai elements uni-
formly from the upper triangular matrices in Fn×n

q ,
for all except very last i′. To save computing this
transformation, other than for the last i′ we sam-
ple the A′

i′ and b′
i′ directly, instead of going through

Ari′ , . . . ,Ari′+r−1. Similarly, for i′ ≤ m/r we also
use y′i′ directly in the public key, rather than con-
verting between them and the yis.

4.3 Uniform AES Keys in FAEST

When using one-way functions based on AES or Ri-
jndael, as in FAEST(ER) and FAEST(ER)-EM, the

12

(a) KuMQuat-21-L1. (b) KuMQuat-28-L1.

Figure 7: KuMQuat τ -signature size and runtime trade-off.

main challenge is proving consistency of the non-
linear part of the S-box. We denote this by the func-
tion

S : x 7→ x254 ∈ F28

When proving AES in zero-knowledge, the committed
witness is typically used to derive an input/output
pair (x, y) ∈ F2

28 for each S-box, and the prover shows
that y = S(x) by proving the degree-2 constraint
xy = 1. However, this only works when x, y are non-
zero; this meant that prior works [30, 11, 8] had to
restrict the set of AES keys to those where the input
to every S-box is non-zero. This requires adding a re-
jection sampling step to key generation, and slightly
reduces entropy of the signing key, effectively reduc-
ing security by 1–2 bits [7, Sec. 10.3.4].
We observe that instead, y = S(x) can be proven for
all values of x, y ∈ F28 , by the pair of constraints:

xy2 = y ∧ x2y = x (1)

where the first constraint guarantees that we cannot
have x = 0 ∧ y ̸= 0, and the second ensures against
y = 0 ∧ x ̸= 0.
While these constraints have degree-3 over F28 , when
viewed over F2, their degree is 2 (since squaring is
F2-linear). In FAEST, the witness is initially com-
mitted to over F2, and only lifted to F28 for proving
the S-box. So, we can easily modify it to prove (1)
by linearly computing commitments to the bits of x2

and y2 over F2, before lifting and proving the pair
of degree-2 constraints over F28 . This doubles the
number of constraints that are proven, however, in
the end, only a random linear combination of all con-
straints is checked. This means that we can support
uniform AES keys with no impact on proof size.

We implemented this tweaked AES proof by mod-
ifying the FAEST implementation, and noticed no
change in performance when running benchmarks.
This is because the main cost of FAEST is the PRG
and hashing operations in the BAVC, so merely dou-
bling the number of constraints does not noticeably
affect performance.

4.4 FAEST-d7: Proving AES via
Degree-7 Constraints

We have also investigated an alternative approach
to proving knowledge of a preimage for the AES-
based OWFs, using higher degree constraints over F2,
rather than quadratic constraints over F28 . This al-
lows us to use an AES witness of half the size, which
in some cases reduces signature size.

FAEST-d7 is based on the variant of the QuickSil-
ver proof system [54] that allows for proving arbi-
trary degree-d constraints on the committed witness.
In particular, we use degree-7 constraints, since the
AES S-box and its inverse can both be expressed as
degree-7 circuits over F2.

6 We combine this with a
meet-in-the-middle idea: instead of committing to
the AES state after every round, the prover only com-
mits to the state of every other round. Given com-
mitted states si, si+2, we can now prove consistency
by verifying that Ri(si) = R−1

i+1(si+2), where Ri is
the i-th round function. Each pair of neighbouring
AES states can thus be verified with a single degree-
7 QuickSilver check. The same idea can be applied
to the S-boxes in the key schedule.

6The non-linear part of the S-box maps x 7→ x254 in F28 .
Since 254 has Hamming weight 7, and squaring in F28 is F2-
linear, we get degree 7 overall.

13

Computational Efficiency. In QuickSilver, prov-
ing a degree-d circuit C(x1, . . . , xn) requires express-

ing C as a sum of polynomials
∑d

i=0 fi(x1, . . . , xn),
where each fi contains monomials only of degree i.
While the fi’s need not be computed explicitly, the
prover is required to evaluate each fi. It’s not clear
how efficiently this can be done for a complex func-
tion like the AES S-box.
We observe that it’s not necessary to compute the
fi’s at all. Instead, to prove the degree-d circuit C,
it suffices for the prover to compute the coefficients
of a degree-d univariate polynomial, given by g(y) =
C(a1+b1y, . . . , an+bny), for values ai, bi ∈ F2λ known
to the prover. Meanwhile, the verifier only needs to
evaluate C at a single point. When C is the AES S-
box, we estimate the cost for the prover is around 150
multiplications in F2λ . While this is a lot more than
the cost of proving 1 multiplication in F28 , it is still
insignificant when compared with all of the PRG and
hash calls used in the other components of FAEST.
We will include further details of this method in the
full version of this paper.

Signature Size. The main advantage of this ap-
proach is that the total witness size is halved, from
e.g. l = 1600 to l = 800 at the 128-bit security level.
However, this does not come for free, since proving
degree-d relations with QuickSilver incurs a cost of
dτλ bits in the signature size. Overall, when applied
to FAEST variants with an l-bit witness, we reduce
the signature size by τ l/2 − 5τλ bits. For the Even-
Mansour 128-bit variants, we have l/2 = 5λ, so there
is no change in size. However, for the standard AES
variants and the higher security Even-Mansour vari-
ants, we see a reduction of up to around 5%.
We have not implemented FAEST-d7, but show in
Table 2 the signature sizes it obtains, as well as those
of the FAESTER-d7 variant incorporating our GGM
tree optimizations.

5 Broader Discussion

This section compares the existing VOLEitH and
MPCitH signature schemes, including the candidates
of NIST’s call for Additional Signatures, with our
proposed optimized signature schemes.

Benchmark platform. To benchmark and com-
pare all the implementations fairly, we run only
the most optimized implementation of the signature
schemes that is openly available. For the NIST candi-
dates, we refer to the submitted optimized implemen-
tations. We measure all the run times on a system
with an AMD Ryzen 9 7900X 12-Core CPU, 128 GB
memory and running Ubuntu 22.04.

Table 5: Signing Time (ms), Verification Time (ms), and
Signature Size (bytes) of different VOLEitH-based signa-
ture schemes (optimized implementations). Slow and fast
versions are denoted with s and f respectively.

Scheme Runtime in ms Size in bytes
Keygen Sign Verify sk pk Signature

FAEST-128s 0.0006 4.381 4.102 16 32 5006
FAEST-128f 0.0005 0.404 0.395 16 32 6336
FAEST-EM-128s 0.0005 4.151 4.415 16 32 4566
FAEST-EM-128f 0.0005 0.446 0.474 16 32 5696

FAESTER-128s 0.0006 3.282 4.467 16 32 4594
FAESTER-128f 0.0005 0.433 0.610 16 32 6052
FAESTER-EM-128s 0.0005 3.005 4.386 16 32 4170
FAESTER-EM-128f 0.0005 0.422 0.609 16 32 5444

MandaRain-3-128s 0.0018 2.800 5.895 16 32 2890
MandaRain-3-128f 0.0018 0.346 0.807 16 32 3588
MandaRain-4-128s 0.0026 2.876 6.298 16 32 3052
MandaRain-4-128f 0.0026 0.371 0.817 16 32 3876

KuMQuat-21-L1s 0.173 4.305 4.107 19 35 2555
KuMQuat-21-L1f 0.172 0.539 0.736 19 35 3028
KuMQuat-28-L1s 0.174 3.599 4.053 48 64 2890
KuMQuat-28-L1f 0.172 0.400 0.623 48 64 3588

Security assumption. The choice of different
OWFs allows for a wide variety of security as-
sumptions one can choose from when constructing a
VOLEitH signature scheme. For example, using an
AES-based OWF results in a highly conservative se-
curity guarantee at the cost of a performance penalty
in terms of signature size and runtime. This trade-
off is similar to the previous state-of-the-art MPCitH
signature schemes like BBQ, Banquet, Helium which
relied on the standard AES OWF and naturally pos-
sessed larger signature size and runtime than their
competing schemes which relied on optimized but
non-standard OWFs like Rainier [32] or Picnic [25].
Switching to AES-EM construction for VOLEitH sig-
nature does not give us the most conservative security
guarantees like standard AES, however, the general
EM construction is already more than two decades
old, thus guaranteeing security in a similar ballpark
as of AES while still improving both the signature
size and runtime considerably. On the other side,
optimized OWFs like Rain and AIM [42] are rather
new and not that well studied. For example, in 2023,
AIM already witnessed two full round attacks [44, 56]
which were later fixed in AIM2 [41]. Due to the
mitigation, as per the authors, the signature scheme
AIMER using AIM OWF suffers around 10% runtime
penalty. This work does not consider using the AIM
OWF for constructing a VOLEitH signature scheme
as we conjecture that it will lead to worse runtime
due large number of Mersenne exponentiation while
still giving a signature size similar to Rain. On the
other hand, when considering the KuMQuat signa-
ture scheme, we benefit from the MQ problem which
relies on a different hardness problem, giving us more
choices, when compared to the symmetric primitives

14

(a) L1 Signing. (b) L1 Verify.

Figure 8: Signature size and runtime comparison between state-of-the-art MPCitH and VOLEitH signature schemes.
The slow and fast versions are denoted with s and f respectively. Other special versions are denoted by their short
names as per their publicly available specification.

like AES, Rain, or AIM. Similarly, in the recently pro-
posed VOLitH signature scheme ReSolveD [26], their
OWF relies on the syndrome decoding problem.

Symmetric Key Primitives. FAEST’s zero-
knowledge proofs are built out of pseudorandom gen-
erators and hash functions, and their instantiation is
important for efficiency and security. For consistency
with with the FAEST and FAEST-EM proposal [7],
we use AES-CTR everywhere a PRG is required, and
the SHAKE hash function for all random oracle calls,
including those at the leaves of the GGM tree.

Parameters. A careful choice of parameters, in-
cluding the choice of OWF, is crucial for achieving the
best performance of the signature scheme. In the pre-
vious sections, we extensively demonstrated the im-
pact of w, Topen, and τ on the signature size and run-
time. Additionally, when considering the MQ OWF,
the operational field (Fn) is also a crucial factor de-
termining the performance. For example, KuMQuat-
21-λ operating in F2 leads to the smallest signature
size, however, has the largest number of non-linear
constraints among the other proposed VOLEitH sig-
nature schemes leading to a long signing and verifi-
cation runtime. Alternatively, KuMQuat-28-λ leads
to a larger signature size, due to more witness bits,
however, the number of constraints is roughly 70%
smaller, leading to a faster runtime than KuMQuat-
21-λ.

Key Sizes. The key sizes only depend on the un-
derlying OWF and are not affected by the VOLEitH
parameters. With the MQ OWF, for example, the
operational field Fn

2 and λ determine the size of sk
and pk. The key sizes of MandaRain are determined
only by λ.

Signature Size and Runtime. FAEST-EM com-
pared to FAEST requires 20-30% less non-linear con-
straints, which directly influences both the signature
size and the runtime, especially for the slow signa-
ture variant with a smaller signature size as shown in
Table 5. This holds also true for MandaRain which
has the smallest number of non-linear constraints
enabling it to enjoy the smallest signature runtime
along with the smallest signature size after our pro-
posed KuMQuat signature scheme. Looking at the
signature size runtime trade-off, in terms of perfor-
mance we conclude that MandaRain provides a better
signature size runtime trade-off, as it has a slightly
larger signature size than KuMQuat, however, to the
best of our knowledge, it has the smallest runtime
among all VOLEitH and MPCitH based signature
schemes. We also looked into the possibility of using
NIST standardised Ascon7 as a OWF for construct-
ing VOLEitH signature scheme. However, due to the
design structure of Ascon, our estimates showed us

7https://csrc.nist.gov/news/2023/lightweight-
cryptography-nist-selects-ascon

15

that the signature size will be much worse than that
of standard AES even if we can design an Ascon-
style permutation for the OWF.8 One may also ques-
tion the fitness of other symmetric primitives which
are especially used (friendly optimal design) in MPC,
Homomorphic Encryption (HE) and ZKP use-cases.
Even though several of these primitives focus on re-
ducing the number of multiplications and their mul-
tiplicative depth, such primitives are designed while
considering adversaries with higher adversary data
complexity. The higher the number of rounds re-
quired to guarantee security from a key recovery at-
tack increases the number of witness bits that must
be communicated to the verifier. For MPCitH or
VOLEitH signature schemes, an adversary knows
only the public key or one plaintext-ciphertext pair,
though. Hence, VOLEitH- or MPCitH-friendly sym-
metric primitives like Rain and AIM assume that an
adversary knows only the public key, requiring them
to have as low as only 3 rounds to guarantee security
against key recovery attacks.

For fairness, we compare only the optimized im-
plementations of the signature schemes and thus
could not include the recent VOLEitH signature Re-
Solved [26], as to the best of our knowledge, there
exists no optimized implementation for it at the time
of writing. However, when comparing the refer-
ence implementations of ReSolved with FAEST and
FAEST-EM, we conjecture that the optimized imple-
mentation of ReSolved should be slower than Rain
and FAESTER-EM atleast, if not also FAESTER.
In Figure 8, we compare our proposed VOLEitH
signature schemes with other competitive MPCitH
and VOLEitH (FAEST) signature schemes. Here,
KuMQuat provides the smallest signature size at a
high runtime cost. Whereas, MandaRain provides
the best signature size runtime trade-off, where it en-
joys the best runtime and gives a signature size only
second to KuMQuat. Notably, both MandaRain and
KuMQuat are the first VOLEitH signature schemes
with signature sizes less than 3 KB. This is also
the lowest among all the MPCitH signature schemes.
FAESTER, using the optimized BAVC, for the first
time achieves a signature size of 4.5 KB while still
relying on standard AES. Similarly, FAESTER-EM
also enjoys a considerably smaller signature size of
just 4.1 KB while relying on AES combined with the
EM construction.

8It might be also interesting to have an analysis on the
minimum number of rounds required for security guarantees
with Ascon given only one plaintext-ciphertext pair, similar to
the security assumptions of Rain or AIM. For AES, this should
be conservatively at least 6 rounds as the attack [32, 21] costs
2120 time and 2120 memory for 4.5 AES rounds, which is still
worse than Rain-4 non-linear complexity.

Acknowledgements

This work has been supported by: the Defense
Advanced Research Projects Agency (DARPA) un-
der Contract No. HR001120C0085, research grant
VIL53029 from VILLUM FONDEN, the Independent
Research Fund Denmark under project number 0165-
00107B (C3PO), the Digital Europe Program under
project number 101091642 (”QCI-CAT”), the Hori-
zon Europe Program under grant agreement number
101096435 (“CONFIDENTIAL6G”), the ”DDAI”
COMETModule managed by Austrian Research Pro-
motion Agency (FFG).

Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views of
DARPA. Distribution Statement “A” (Approved for
Public Release, Distribution Unlimited).

References

[1] Najwa Aaraj, Slim Bettaieb, Löıc Bidoux,
Alessandro Budroni, Victor Dyseryn, Andre
Esser, Philippe Gaborit, Mukul Kulkarni, Vic-
tor Mateu, Marco Palumbi, et al. Perk. 2023.

[2] Advanced Encryption Standard (AES). National
Institute of Standards and Technology, NIST
FIPS PUB 197, U.S. Department of Commerce,
November 2001.

[3] Carlos Aguilar Melchor, Nicolas Gama, James
Howe, Andreas Hülsing, David Joseph, and
Dongze Yue. The return of the SDitH. In Car-
mit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part V, volume 14008 of LNCS,
pages 564–596. Springer, Heidelberg, April 2023.

[4] Martin R. Albrecht, Christian Rechberger,
Thomas Schneider, Tyge Tiessen, and Michael
Zohner. Ciphers for MPC and FHE. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Sci-
ence, pages 430–454. Springer, 2015.

[5] Nicolas Aragon, Magali Bardet, Löıc Bidoux,
Jesús-Javier Chi-Domı́nguez, Victor Dyseryn,
Thibauld Feneuil, Philippe Gaborit, Antoine
Joux, Matthieu Rivain, Jean-Pierre Tillich, et al.
Ryde specifications. 2023.

16

[6] Jean-Philippe Aumasson, Daniel J. Bernstein,
Ward Beullens, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag,
Andreas Hülsing, Panos Kampanakis, Stefan
Kölbl, Tanja Lange, Martin M. Lauridsen, Flo-
rian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe,
and Bas Westerbaan. Sphincs+ – submission to
the 3rd round of the nist post-quantum project,
2022.

[7] Carsten Baum, Lennart Braun, Cyprien Delpech
de Saint Guilhem, Michael Klooß, Chris-
tian Majenz, Shibam Mukherjee, Sebastian
Ramacher, Christian Rechberger, Emmanuela
Orsini, Lawrence Roy, et al. FAEST: Algo-
rithm specifications (version 1.1). 2023. https:
//faest.info/faest-spec-v1.1.pdf.

[8] Carsten Baum, Lennart Braun, Cyprien Delpech
de Saint Guilhem, Michael Klooß, Emmanuela
Orsini, Lawrence Roy, and Peter Scholl. Publicly
verifiable zero-knowledge and post-quantum sig-
natures from VOLE-in-the-head. In Helena
Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS,
pages 581–615. Springer, Heidelberg, August
2023.

[9] Carsten Baum, Lennart Braun, Alexander
Munch-Hansen, and Peter Scholl. Moz$\mathbb
{Z} {2ˆk}$arella: Efficient vector-ole and zero-
knowledge proofs over $\mathbb {Z} {2ˆk}$. In
Yevgeniy Dodis and Thomas Shrimpton, edi-
tors, Advances in Cryptology - CRYPTO 2022
- 42nd Annual International Cryptology Confer-
ence, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part IV, vol-
ume 13510 of Lecture Notes in Computer Sci-
ence, pages 329–358. Springer, 2022.

[10] Carsten Baum, Cyprien Delpech de Saint Guil-
hem, Daniel Kales, Emmanuela Orsini, Peter
Scholl, and Greg Zaverucha. Banquet: Short and
fast signatures from AES. In Juan A. Garay,
editor, Public-Key Cryptography - PKC 2021 -
24th IACR International Conference on Practice
and Theory of Public Key Cryptography, Vir-
tual Event, May 10-13, 2021, Proceedings, Part
I, volume 12710 of Lecture Notes in Computer
Science, pages 266–297. Springer, 2021.

[11] Carsten Baum, Cyprien Delpech de Saint Guil-
hem, Daniel Kales, Emmanuela Orsini, Peter
Scholl, and Greg Zaverucha. Banquet: Short and

fast signatures from AES. In Juan Garay, edi-
tor, PKC 2021, Part I, volume 12710 of LNCS,
pages 266–297. Springer, Heidelberg, May 2021.

[12] Carsten Baum, Samuel Dittmer, Peter Scholl,
and Xiao Wang. Sok: Vector ole-based zero-
knowledge protocols. Cryptology ePrint Archive,
Paper 2023/857, 2023. https://eprint.iacr.

org/2023/857.

[13] Carsten Baum, Alex J. Malozemoff, Marc B.
Rosen, and Peter Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic cir-
cuits with nested disjunctions. In Tal Malkin
and Chris Peikert, editors, Advances in Cryp-
tology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings,
Part IV, volume 12828 of Lecture Notes in Com-
puter Science, pages 92–122. Springer, 2021.

[14] Emanuele Bellini, Rusydi H. Makarim, Carlo
Sanna, and Javier A. Verbel. An estimator
for the hardness of the MQ problem. In Lejla
Batina and Joan Daemen, editors, Progress in
Cryptology - AFRICACRYPT 2022: 13th In-
ternational Conference on Cryptology in Africa,
AFRICACRYPT 2022, Fes, Morocco, July 18-
20, 2022, Proceedings, Lecture Notes in Com-
puter Science, pages 323–347. Springer Nature
Switzerland, 2022.

[15] Ryad Benadjila, Thibauld Feneuil, and Matthieu
Rivain. Mq on my mind: Post-quantum sig-
natures from the non-structured multivariate
quadratic problem. Cryptology ePrint Archive,
2023.

[16] Daniel J. Bernstein, Andreas Hülsing, Stefan
Kölbl, Ruben Niederhagen, Joost Rijneveld, and
Peter Schwabe. The sphincs+ signature frame-
work. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors,
Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Secu-
rity, CCS 2019, London, UK, November 11-15,
2019, pages 2129–2146. ACM, 2019.

[17] Ward Beullens. MAYO: practical post-quantum
signatures from oil-and-vinegar maps. In Riham
AlTawy and Andreas Hülsing, editors, Selected
Areas in Cryptography - 28th International Con-
ference, SAC 2021, Virtual Event, September 29
- October 1, 2021, Revised Selected Papers, vol-
ume 13203 of Lecture Notes in Computer Sci-
ence, pages 355–376. Springer, 2021.

17

https://faest.info/faest-spec-v1.1.pdf
https://faest.info/faest-spec-v1.1.pdf
https://eprint.iacr.org/2023/857
https://eprint.iacr.org/2023/857

[18] Ward Beullens and Cyprien Delpech de
Saint Guilhem. Legroast: Efficient post-
quantum signatures from the legendre prf. In
International Conference on Post-Quantum
Cryptography, pages 130–150. Springer, 2020.

[19] Ward Beullens, Thorsten Kleinjung, and Fred-
erik Vercauteren. Csi-fish: Efficient isogeny
based signatures through class group computa-
tions. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the
Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8-12,
2019, Proceedings, Part I, volume 11921 of Lec-
ture Notes in Computer Science, pages 227–247.
Springer, 2019.

[20] Dan Boneh and Brent Waters. Constrained
pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Heidelberg, December
2013.

[21] Charles Bouillaguet, Patrick Derbez, and Pierre-
Alain Fouque. Automatic search of attacks
on round-reduced AES and applications. In
Phillip Rogaway, editor, Advances in Cryptol-
ogy - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings, volume 6841 of Lec-
ture Notes in Computer Science, pages 169–187.
Springer, 2011.

[22] Joan Boyar and René Peralta. A new combina-
tional logic minimization technique with applica-
tions to cryptology. In Experimental Algorithms:
9th International Symposium, SEA 2010, Ischia
Island, Naples, Italy, May 20-22, 2010. Proceed-
ings 9, pages 178–189. Springer, 2010.

[23] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and
Yuval Ishai. Compressing vector OLE. In David
Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, Proceedings of the 2018
ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 896–
912. ACM, 2018.

[24] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yu-
val Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and
silent non-interactive secure computation. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng

Wang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 291–
308. ACM, 2019.

[25] Melissa Chase, David Derler, Steven Goldfeder,
Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Za-
verucha. Post-quantum zero-knowledge and sig-
natures from symmetric-key primitives. In Bha-
vani Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, Proceedings of the
2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dal-
las, TX, USA, October 30 - November 03, 2017,
pages 1825–1842. ACM, 2017.

[26] Hongrui Cui, Hanlin Liu, Di Yan, Kang Yang,
Yu Yu, and Kaiyi Zhang. Resolved: Shorter
signatures from regular syndrome decoding and
vole-in-the-head. Cryptology ePrint Archive, Pa-
per 2024/040, 2024. https://eprint.iacr.

org/2024/040.

[27] Joan Daemen and Vincent Rijmen. The block
cipher rijndael. In Jean-Jacques Quisquater and
Bruce Schneier, editors, Smart Card Research
and Applications, This International Confer-
ence, CARDIS ’98, Louvain-la-Neuve, Belgium,
September 14-16, 1998, Proceedings, volume
1820 of Lecture Notes in Computer Science,
pages 277–284. Springer, 1998.

[28] Cyprien Delpech de Saint Guilhem, Lauren De
Meyer, Emmanuela Orsini, and Nigel P. Smart.
BBQ: using AES in picnic signatures. IACR
Cryptol. ePrint Arch., page 781, 2019.

[29] Cyprien Delpech de Saint Guilhem, Emmanuela
Orsini, and Titouan Tanguy. Limbo: Effi-
cient zero-knowledge mpcith-based arguments.
In Yongdae Kim, Jong Kim, Giovanni Vigna,
and Elaine Shi, editors, CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Commu-
nications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pages 3022–
3036. ACM, 2021.

[30] Cyprien Delpech de Saint Guilhem, Lauren De
Meyer, Emmanuela Orsini, and Nigel P. Smart.
BBQ: Using AES in picnic signatures. In Ken-
neth G. Paterson and Douglas Stebila, editors,
SAC 2019, volume 11959 of LNCS, pages 669–
692. Springer, Heidelberg, August 2019.

18

https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040

[31] Samuel Dittmer, Yuval Ishai, and Rafail Ostro-
vsky. Line-point zero knowledge and its appli-
cations. In Stefano Tessaro, editor, 2nd Con-
ference on Information-Theoretic Cryptography,
ITC 2021, July 23-26, 2021, Virtual Confer-
ence, volume 199 of LIPIcs, pages 5:1–5:24.
Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021.

[32] Christoph Dobraunig, Daniel Kales, Christian
Rechberger, Markus Schofnegger, and Greg Za-
verucha. Shorter signatures based on tailor-made
minimalist symmetric-key crypto. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 843–857. ACM,
2022.

[33] Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. Crystals-
dilithium: A lattice-based digital signature
scheme. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(1):238–268, 2018.

[34] Orr Dunkelman, Nathan Keller, and Adi Shamir.
Minimalism in cryptography: The even-mansour
scheme revisited. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryp-
tology - EUROCRYPT 2012 - 31st Annual In-
ternational Conference on the Theory and Ap-
plications of Cryptographic Techniques, Cam-
bridge, UK, April 15-19, 2012. Proceedings, vol-
ume 7237 of Lecture Notes in Computer Science,
pages 336–354. Springer, 2012.

[35] Andre Esser, Javier A. Verbel, Floyd Zwey-
dinger, and Emanuele Bellini. Cryptographic
estimators: a software library for cryptographic
hardness estimation. {IACR} Cryptol. ePrint
Arch., page 589, 2023.

[36] Shimon Even and Yishay Mansour. A construc-
tion of a cipher from a single pseudorandom per-
mutation. J. Cryptol., 10(3):151–162, 1997.

[37] Thibauld Feneuil, Antoine Joux, and Matthieu
Rivain. Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In Yev-
geniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS,
pages 541–572. Springer, Heidelberg, August
2022.

[38] Oded Goldreich, Shafi Goldwasser, and Silvio
Micali. How to construct random functions (ex-
tended abstract). In 25th Annual Symposium on
Foundations of Computer Science, West Palm
Beach, Florida, USA, 24-26 October 1984, pages
464–479. IEEE Computer Society, 1984.

[39] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky,
and Amit Sahai. Zero-knowledge proofs from se-
cure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

[40] Daniel Kales and Greg Zaverucha. Efficient
lifting for shorter zero-knowledge proofs and
post-quantum signatures. IACR Cryptol. ePrint
Arch., page 588, 2022.

[41] Seongkwang Kim, Jincheol Ha, Mincheol Son,
and ByeongHak Lee. Mitigation on the AIM
cryptanalysis. IACR Cryptol. ePrint Arch., page
1474, 2023.

[42] Seongkwang Kim, Jincheol Ha, Mincheol Son,
ByeongHak Lee, Dukjae Moon, Joohee Lee,
Sangyup Lee, Jihoon Kwon, Jihoon Cho, Hy-
ojin Yoon, and Jooyoung Lee. AIM: symmetric
primitive for shorter signatures with stronger se-
curity. IACR Cryptol. ePrint Arch., page 1387,
2022.

[43] Aviad Kipnis, Jacques Patarin, and Louis
Goubin. Unbalanced Oil and Vinegar signa-
ture schemes. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 206–
222. Springer, Heidelberg, May 1999.

[44] Fukang Liu and Mohammad Mahzoun. Alge-
braic attacks on RAIN and AIM using equivalent
representations. IACR Cryptol. ePrint Arch.,
page 1133, 2023.

[45] Ludovic Perret. Biscuit: Shorter mpc-based sig-
nature from posso.

[46] Thomas Prest, Pierre-Alain Fouque, Jeffrey
Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon.
Post-Quantum Cryptography Project of NIST,
2020.

[47] Ron Rivest. Desx. Unpublished, 1984.

[48] Lawrence Roy. SoftSpokenOT: Quieter OT ex-
tension from small-field silent VOLE in the
minicrypt model. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022,
Part I, volume 13507 of LNCS, pages 657–687.
Springer, Heidelberg, August 2022.

19

[49] Simona Samardjiska, Ming-Shing Chen, Andreas
Hulsing, Joost Rijneveld, and Peter Schwabe.
MQDSS. Technical report, National Institute
of Standards and Technology, 2019. available
at https://csrc.nist.gov/projects/post-

quantum-cryptography/post-quantum-

cryptography-standardization/round-2-

submissions.

[50] StarkWare. ethSTARK documentation. Cryp-
tology ePrint Archive, Report 2021/582, 2021.
https://eprint.iacr.org/2021/582.

[51] Chenkai Weng, Kang Yang, Jonathan Katz, and
Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs
for boolean and arithmetic circuits. In 42nd
IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24-27 May
2021, pages 1074–1091. IEEE, 2021.

[52] Chenkai Weng, Kang Yang, Zhaomin Yang, Xi-
ang Xie, and Xiao Wang. Antman: Interactive
zero-knowledge proofs with sublinear communi-
cation. In Heng Yin, Angelos Stavrou, Cas Cre-
mers, and Elaine Shi, editors, Proceedings of the
2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022, pages
2901–2914. ACM, 2022.

[53] Kang Yang, Pratik Sarkar, Chenkai Weng, and
Xiao Wang. Quicksilver: Efficient and afford-
able zero-knowledge proofs for circuits and poly-
nomials over any field. In Yongdae Kim, Jong
Kim, Giovanni Vigna, and Elaine Shi, editors,
CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Vir-
tual Event, Republic of Korea, November 15 -
19, 2021, pages 2986–3001. ACM, 2021.

[54] Kang Yang, Pratik Sarkar, Chenkai Weng, and
XiaoWang. QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomi-
als over any field. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 2986–3001.
ACM Press, November 2021.

[55] Kang Yang, Chenkai Weng, Xiao Lan, Jiang
Zhang, and Xiao Wang. Ferret: Fast extension
for correlated OT with small communication. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Commu-
nications Security, Virtual Event, USA, Novem-
ber 9-13, 2020, pages 1607–1626. ACM, 2020.

[56] Kaiyi Zhang, Qingju Wang, Yu Yu, Chun Guo,
and Hongrui Cui. Algebraic attacks on round-
reduced RAIN and full AIM-III. IACR Cryptol.
ePrint Arch., page 1397, 2023.

A A detailed description of
the VOLE-in-the-Head
approach

A.1 Definitions

Signature Schemes. We first recall the standard
definition of a signature scheme.

Definition 8 (Signature Scheme). A signature scheme
Sig is a tuple of algorithms (Gen,Sign,Verify) such
that:

1. The key-generation algorithm Gen(1λ) takes as
input a security parameter λ in unary represen-
tation and outputs a key pair (sk, pk).

2. The (randomized) signature algorithm Sign(sk,
µ) takes as input a secret key sk and a message µ
and outputs a signature σ.

3. The (deterministic) verification algorithm Verify(
pk, µ, σ) takes as input a public key pk, a mes-
sage µ and a signature σ and outputs 1 (or accept)
or 0.

For correctness, it is required that, for any message
µ, the following probability is negligible:

Pr
Gen,Sign

[
Verify(pk, µ, σ) = 0

∣∣∣∣ (sk, pk)← Gen
σ ← Sign(sk, µ)

]
.

The standard security notion for digital signature
schemes is that of existential unforgeability under
adaptive chosen-message attacks (EUF-CMA): an
adversary A given pk and oracle access to Sign(sk, ·)
should not be able to produce a pair (σ, µ) satisfying
Verify(pk, µ, σ) = 1 (for a message µ which was not
queried to the signing oracle).

One-Way Functions. VOLE-in-the-head signa-
tures are based on proving knowledge of the preimage
to a OWF. We quickly recap their definition.

Definition 9 (One-way function). A polynomial-
time function F : Kλ → Cλ is called one-way , if for
every PPT algorithm A the advantage

AdvOWFF
A := Pr

F(k∗) = y

∣∣∣∣∣∣
k ← Kλ

y := Fk(k)

k∗ ← A(1λ, y)

is negligible in λ.

20

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://eprint.iacr.org/2021/582

A.2 VOLE-in-the-Head Proof System

We now explain the VOLE-in-the-head proof system
and FAEST signature scheme [8, 7] in more detail.

Generating GGM-based Vector Commit-
ments. VOLE-in-the-Head, like MPC-in-the-Head,
uses all-but-one Vector Commitments (VCs) as a
starting point. Informally, an all-but-one vector com-
mitment scheme is a two-phase protocol between a
sender and a receiver . In the first phase, also called
commitment phase, it enables the sender to generate
a vector of N random messages r0, . . . , rN−1, while
keeping them secret; in the second phase, called de-
commitment phase, all but one of the rj vectors are
opened to the receiver. We require two properties
of the scheme: the whole vector must be hidden be-
fore the decommitment phase, and the message at the
unopened index j remains hidden, even after decom-
mitting all other indices of the vector. In addition,
the scheme must be binding, meaning that after the
commitment phase none of the rj in the vector can
be changed anymore.

The starting point of the GGM-based [38] all-but-one
VC scheme used in FAEST is a binary tree with
N = 2k leaves, which is built from a random seed
r as root node and then recursively applying a
length-doubling PRG at any node with input the
corresponding seed to obtain the two children seeds.
The resulting tree has N leaves, each of which are
now hashed to obtain 2 values: a message rj as well
as comj , j ∈ {0, . . . , N − 1}. To generate the VC,
one hashes all comj using a collision-resistant hash
function whose output is the commitment h. To
open all messages except rj , consider the path from r
to rj through the tree. The sender reveals the seeds
corresponding to all siblings of nodes that are on
the path (including comj). Given all these revealed
values, the receiver can apply the same PRG and
reconstruct all rj , comj for j ̸= j. By hashing all
comj as well as the additional comj and comparing
the output with h, correctness of the opening can
be checked. Moreover, since comj is an output of a
PRG, it reveals no information about the unopened
rj . The full algorithm is described in Appendix B.

From GGM-based VC to VOLE correlations.
To obtain a VOLE correlation u,v,q,∆ of length m,
the prover first generates a VC as described above.
Then, following [48], the vector commitment is trans-
formed into a length-m, small-field VOLE correlation
in F2k in the following way: First, denote the N mes-
sages committed in the VC as r0, . . . , rN−1 ∈ Fm

2k .
We can write

u =

N−1∑
i=0

ri, v =

N−1∑
i=0

i · ri.

Note that when the verifier asks to open the commit-
ments later, it will learn messages rj for all j ̸= j̄,
for some index j̄ ∈ {0, . . . , N − 1} viewed as an F2k

element. In this way, V can compute

q =

N−1∑
j=0

(j̄ − j) · rj

= j̄ ·
N−1∑
j=0

rj −
N−1∑
j=0

j · rj

= j̄ · u− v

(2)

giving the desired VOLE correlation over F2k . By
performing this for τ independent VC instances, the
prover has τ independent VOLE correlation vectors
for challenges from [0..N−1]. Denote these VOLEs as
(u(α),V(α)), where nowV(α) is a matrix in {0, 1}m×k

instead of a vector in Fm
2k for α ∈ [τ]. The prover

commits to its input by forcing all the VOLEs to use
the same value u. Towards this, the prover sends the
correction value d(α) = u(α) − u, for each α ∈ [τ]
to the verifier, which can then use it later to adjust
the small VOLEs. By concatenating the τ VOLE
instances created in this way, P obtains V ∈ Fm×λ

2 ,
where each row can be seen as an element of F2λ ,
obtaining the desired VOLE values over F2λ .
In order to ensure that the prover does not cheat
during this phase by committing to different secrets
in each VOLE instance, the protocol then runs a
consistency check. We refer to [7, 8] for further
details.

VOLE commitments. As described above,
VOLE correlations are lists of tuples (ui, vi, qi) such
that the VOLE relation holds for the global key ∆.
One such tuple is referred to as an information-
theoretic message authentication code (MAC) on the
value ui under the global key ∆, since ui cannot be
modified (for a fixed qi) without knowledge of ∆,
and can thus be considered as a designated-verifier
commitment to ui. Since the VOLE relation is linear
in ∆, such commitments are trivially additive, and
any public linear function can be applied by both
parties on the committed value by performing local
computation on their respective values.

QuickSilver proof. We now describe how the input
of a proof will be committed and how P and V ex-
ecute the information-theoretic VOLE-based Quick-
Silver proof on the secret input, as applied to VOLE-

21

in-the-head [8].
Let C denote an arithmetic circuit over F2, containing
t multiplication gates, for which the prover knows an
input (i.e. the witness) w ∈ Fn

2 of length n, such that
C(w) = 1. To prove its knowledge of the witness,
the prover will interact with the verifier to evaluate
C. Note that all of this will happen before the verifier
even learns his outputs of the VOLE correlation. We
nevertheless additionally mention the steps that the
verifier later takes to “finish” his part of the circuit
evaluation in the following.

1. The prover requests n + t MACs from the
VOLE protocol. This provides the prover with
(ui, vi)i∈[n+t]. The verifier will later compute
(qi)i∈[n+t] and ∆ when performing this step.
This has been outlined above.

2. For every input element wi, for i ∈ [n], the prover
computes di := wi−ui and sends (di)i∈[n] to the
verifier. This allows the verifier later to update
the commitments of ui to wi locally using the
linearity of the commitment scheme.

3. For every gate in the circuit C, with input values
wα, wβ , the prover proceeds as follows:

• Linear gate: the prover uses the linear prop-
erty of the commitment scheme to com-
pute his shares of the output commitment
locally. This does not require any com-
munication towards the verifier, which will
later use the linear property to compute his
shares of the output commitment.

• i-th multiplication gate, for i ∈ [t]: the
prover computes wγ := wα · wβ and sends
dn+i := wγ−un+1 ∈ F2 to the verifier. The
verifier can later, when holding his shares of
the VOLE correlation as well as dn+i, up-
date his shares of the commitment (turning
it from a commitment of un+i to wγ).

4. Finally, the prover opens the commitment to the
output wire of the evaluated circuit by sending
vi to the verifier. It can then later check that
qi = ∆− vi, i.e. that the opening is correct.

For each multiplication, the prover has generated
three valid VOLE MACs (wα, vα, qα), (wβ , vβ , qβ)
and (wγ , vγ , qγ) for the t multiplication gates (α,
β, γ)i contained in the execution of C(w). But the
prover may be malicious, meaning that one has to
check that wα ·wβ = wγ . Therefore, the verifier must
check that the prover did not behave maliciously
when it sent the t values dn+i.

Checking multiplications. The QuickSilver protocol
performs a check of the multiplication values based
on the observation that the verifier can compute a
value bi ∈ F2λ for each multiplication gate (α, β, γ)i,
for i ∈ [t], as follows:

bi := qα · qβ − qγ ·∆
= vα · vβ + (wα · vβ + wβ · vα − vγ) ·∆
+ (wα · wβ − wγ) ·∆2 (3)

If the prover was honest in the computation of di,
then the ∆2 coefficient wα ·wβ −wγ disappears, and
the verifier needs only to check that

bi
?
= a0,i + a1,i ·∆ (4)

for a0,i := vα · vβ
and a1,i := wα · vβ + wβ · vα − vγ .

To perform this check, the verifier requires the a0,i
and a1,i values which the prover can compute, since
they only depend on the w and v values for the multi-
plication gate (α, β, γ)i. The prover sends these val-
ues (appropriately masked) to the verifier as part of
the proof.
After receiving the (a0,i, a1,i)-pairs from the prover,
the verifier evaluates C(w) by first locally generating
his VOLE shares and applying d to them to commit
to the witness and multiplication outputs. It then
performs the linear operations and checks if (1)
eq. (4) holds for all i ∈ [t]; and (2) if the opened
output commitment of C(w) is a commitment to 1
as outlined above. It rejects if any of the tests fail.
It is in these checks that the secrecy of the global
key ∆, or in other words the binding property of
the VOLE MACs, guarantees the soundness of the
proof: to cheat in the proof, the prover would need
to modify values u and tags v such that the test of
eq. (4) still passes; this requires guessing ∆.

Batch checking multiplications. Since the rela-
tion tested in eq. (4) is linear, the QuickSilver proto-
col optimises the checking procedure by only reveal-
ing and thus checking a random linear combination of
all the a0,i, a1,i. It also modifies the check slightly so
that no information about w is leaked in the process.
Both of these modifications are described in [8, 7] in
detail.

Checking extension field multiplications.
FAEST generates VOLE correlations for values
u ∈ F2, but correctness of multiplications will be
checked in F28 since this is the field over which the
AES S-box is defined. Since F2 is a subfield of F28 ,
which is itself a subfield of F2λ , one can combine

22

VOLE MACS for 8 values in F2 into a VOLE MAC
for a single value in F28 , with the corresponding tag
and key still satisfying the VOLE relation for the
original global key ∆.
The advantage of the QuickSilver protocol is that one
can still commit to the witness bits using di ∈ F2,
which costs only 1 bit of proof size (and therefore
signature size) per bit of the witness, and then prove
F28 -multiplications at no extra cost, since (a0,i, a1,i)
are already in F2λ .

Putting things together. We finally note that
the only interactions in the aforementioned proto-
col now happen when V sends uniformly random val-
ues, such as ∆, to P. This can be made fully non-
interactive using the Fiat-Shamir transform.

A.3 Optimizing QuickSilver for
Higher Degree Constraints

We now present an optimized method of proving gen-
eral, degree-d constraints in QuickSilver, which im-
proves upon [54], and which we use for the FAEST-d7
construction from Section 4.4. We show how to prove
constraints represented as arithmetic circuits over Fq,
where in FAEST-d7 we will use q = 2.
We start with some additional notation that gener-
alizes the MACs used in the standard QuickSilver
approach defined previously.

Notation. We write JxK(d) to mean that a value x ∈
Fq held by the prover is committed through VOLE,
as follows:

• P holds coefficients (a0, . . . , ad−1, x) ∈ Fd
qr × Fq,

representing the polynomial px(γ) = a0 + a1γ +
· · ·+ adγ

d, where ad equals x lifted into Fqr .

• V holds qx = px(∆) ∈ F2λ .

Notice that a degree-1 commitment, JxK(1), is
exactly a standard VOLE commitment, which is
how the prover’s witness is initially committed. The
prover and verifier can then perform the following
homomorphic operations on commitments.

Add: JzK(d) = JxK(d1) + JyK(d2), where d = d2 and
d1 ≤ d2:

• P: Let pz(γ) = px(γ)γ
d2−d1 + py(γ)

• V: Let qz = qx∆
d2−d1 + qy

Multiply: JzK(d) = JxK(d1)JyK(d2), where d = d1 + d2

• P: Output the coefficients of pz(γ) = px(γ)py(γ)

• V: Output qz = qxqy

It’s straightforward to these that these operations
preserve that invariant that the message is stored
in the degree-d − 1 coefficient and the verifier holds
qz = pz(∆).
Proving a general constraint that is represented by an
arithmetic circuit C : Fn

q → Fq can then be done by
performing the appropriate additions and multiplica-
tions on the commitments. If the circuit has degree d
(when viewed as a polynomial) then the final commit-
ment to the output wire will be degree d. It remains
to check that the output is a commitment to zero,
which can be done as follows.

CheckZero(JxK(d)):

1. Let px(γ) = a0+ · · ·+ad−1γ
d−1, for ai ∈ Fqr (re-

call that the degree-d coefficient should be zero).
V holds qx = px(∆).

2. Sample r(d − 1) additional random VOLEs, to

obtain masks Js0K
(1)

, . . . , Jsd−2K
(1)

, each repre-
sented by a polynomial psi(γ) = ri + siγ, where
ri, si are both uniform in Fqr .

3. P computes the degree-(d− 1) mask polynomial

ps′(γ) =
∑d−2

i=0 γi · psi(γ)

4. P sends px(γ) + ps′(γ) to the verifier

5. V computes the corresponding MAC q′ = qx +∑d−2
i=0 ∆i · qsi and check that (px + ps′)(∆) = q′

Overall, this protocol is essentially the same check as
in the high-degree variant of QuickSilver [54], except
with an optimized method of computing the com-
mitment to the circuit output, since we no longer
need to express the circuit as a multi-variate polyno-
mial. One other difference is that the mask in step 2
above only needs r(d − 1) additional VOLEs, while
the method from QuickSilver uses r(2d− 1). This is
because QuickSilver protects against the case where a
malicious verifier may choose its own VOLE outputs
or ∆, but this is not possible in VOLE-in-the-head.
Indeed, if ri, si are all chosen uniformly and ∆ ̸= 0,
then the coefficients of the mask ps′ are uniform, even
to a verifier who learns ri + si∆.
As in QuickSilver, note that when checking a large
batch of t constraints, each of degree up to d, it suf-
fices to check that a random linear combination of
the t outputs gives a commitment to zero.

Efficiency for AES in FAEST-d7 . Using
higher-degree constraints saves communication by al-
lowing for a smaller witness, compared with using
only degree-2 constraints and committing to the out-
put of every multiplication gate. However, it comes
with some computational overhead due to working

23

with polynomials of higher degree, and also more
communication in the final zero check. When adapt-
ing this to VOLE-in-the-head, CheckZero requires
sending (τ − 1)rd Fq elements to generate the ran-
dom masks, and a further rd elements to perform the
check. If r log q = λ (as in FAEST), then moving
from degree-2 to degree-d checks incurs an additional
τ(d−2)λ bits of communication. It turns out that for
AES in FAEST-d7, this extra cost is either matched,
or more than compensated for, by the saving from
halving the witness size.
The computational cost of this approach depends on
the circuit representation of the constraint. For the
non-linear component of the AES S-box, using the
degree-7 circuit from [22], the prover would need to do
the following univariate polynomial multiplications
over F2λ :

• 9 of degree-1 × degree-1

• 3 of degree-2 × degree-2

• 4 of degree-2 × degree-4

• 18 of degree-6 × degree-1

If we ignore the cost of additions in F2λ , and take
into account the fact that the highest-degree term of
each polynomial is always 0/1, these multiplications
can be done with 9 ·12+3 ·22+4 ·2 ·4+18 ·6 ·1 = 161
multiplications in F2λ . This can be reduced slightly
further, down to 150, using Karatsuba multiplication.
Although this is still much higher than the cost of ver-
ifying the S-box with one F28 multiplication, the total
cost for all S-boxes should still be fairly small, com-
pared with the PRGs and hashing in the remainder
of FAEST.

B The GGM-based BAVC
scheme

In this appendix, we describe the classical GGM-
based VC scheme as an BAVC. Security can be shown
identically to our proofs for BAVCopt.
As before, let PRG : {0, 1}λ → {0, 1}2λ be a PRG,
H : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash
function (CRHF), G : {0, 1}λ → {0, 1}λ × {0, 1}2λ be
a PRG and CRHF. There are τ VCs of length N1, . . . ,
Nτ which we wish to generate, where L =

∑
α Nα.

Let π : [L − 1, 2L − 2] → {(α, i)}1≤i≤Nα
be a bijec-

tive mapping from roots of the GGM tree to positions
in the vector commitment. We set π so that it maps
L−2+i+

∑α−1
j=1 Nj to (α, i) for each α ∈ [τ], i ∈ [Nα].

We define the scheme BAVCGGM as follows:

Commit():

1. Set k ← {0, 1}λ and let k0 ← k

2. For i ∈ [0, L − 2], compute (k2i+1, k2i+2) ←
PRG(ki) to create a tree with L leaves kL−1, . . . ,
k2L−2.

3. Assign the leaves:

{sd(α)1 , . . . , sd
(α)
Nα
}α∈[τ]

π← {kL−1, · · · , k2L−2}.

4. Compute (m
(α)
i , com

(α)
i) ← G(sd

(α)
i), for α ∈ [τ]

and i ∈ [Nα].

5. Compute h(α) ← H(com
(α)
1 , . . . , com

(α)
Nα

) for α ∈
[τ] and h← H(h(1), . . . , h(τ)).

6. Output the commitment com = h, the open-

ing decom = k and the messages (m
(α)
1 , . . . ,

m
(α)
Nα

)α∈[τ].

Open(decom = k, I = (i(1), . . . , i(τ))):

1. Recompute kj for and j ∈ [0, . . . , 2L− 2] from k
as in Commit.

2. Let S = {kL−1, . . . , k2L−2}.

3. For each α ∈ [τ], remove kπ−1(α,i(α)) from S.

4. For i from i = L− 2 to 0:

If k2i+1 ∈ S and k2i+2 ∈ S then replace
both with ki.

5. Output the opening information decomI =

((com
(α)

i(α))α∈[τ], S).

Verify(com = h, decomI = ((com
(α)

i(α))α∈[τ], S), I =

(i(1), . . . , i(τ)))):

1. Recompute sd
(α)
i from decomI , for each α ∈ [τ]

and i ̸= i(α) using the available keys in S, and
compute

(m
(α)
i , com

(α)
i)← G(sd

(α)
i).

2. Compute h(α) = H(com
(α)
1 , . . . , com

(α)
Nα

) for each
α ∈ [τ].

3. If h ̸= H(h(1), . . . , h(τ)) output ⊥.

4. Output ((m
(α)
i))i∈[Nα]\{i(α)})α∈[τ].

For the given parameters, it is easy to see that
BAVCGGM has decommitments of size≈ τ ·(logL+2)·λ
bits, while a commitment has exactly 2λ bits.

24

Table 6: AES and AES-EM OWFs and parameters for FAEST and FAEST-EM as described in [7]. We denote the
signature schemes as FAEST-λs/f or FAEST-EM-λs/f. l is the number of VOLE correlations required for the NIZK
proof. τ is the number of repetition determining the choice between s and f. k0 and k1 are bit lengths of small
VOLEs. B is the padding parameter affecting the security of the VOLE check. Secret key, public key and signature
sizes are in bytes.

Signature Scheme OWF Esk(x) l τ τ0 τ1 k0 k1 sk size pk size sig. size

FAEST-128s AES128sk(x) 1600 11 7 4 12 11 16 32 5006
FAEST-128f AES128sk(x) 1600 16 0 16 8 8 16 32 6336
FAEST-192s AES192sk(x0)∥AES192sk(x1) 3264 16 0 16 12 12 24 64 12744
FAEST-192f AES192sk(x0)∥AES192sk(x1) 3264 24 0 24 8 8 24 64 16792
FAEST-256s AES256sk(x0)∥AES256sk(x1) 4000 22 14 8 12 11 32 64 22100
FAEST-256f AES256sk(x0)∥AES256sk(x1) 4000 32 0 32 8 8 32 64 28400

FAEST-EM-128s AES128x(sk)⊕ sk 1280 11 7 4 12 11 16 32 4566
FAEST-EM-128f AES128x(sk)⊕ sk 1280 16 0 16 8 8 16 32 5696
FAEST-EM-192s Rijndael192x(sk)⊕ sk 2304 16 0 16 12 12 24 64 10824
FAEST-EM-192f Rijndael192x(sk)⊕ sk 2304 24 0 24 8 8 24 64 13912
FAEST-EM-256s Rijndael256x(sk)⊕ sk 3584 22 14 8 12 11 32 64 20956
FAEST-EM-256f Rijndael256x(sk)⊕ sk 3584 32 0 32 8 8 32 64 26736

C Faest design and parameters

Here we recall the main design choices of [7].

VOLEitH Parameters. To efficiently construct
VOLE correlations over F2λ , [7] executes parallel in-
stances of the VOLEitH protocol on smaller fields.
The resulting tags and keys are then concatenated to
yield a correlation in a larger field. Concretely, for
each repetition parameter τ ∈ N and security param-
eter λ, we can fix integers k0, k1 and τ0, τ1 such that
λ = k0τ0 + k1τ1, where

k0 := ⌈λ/τ⌉ k1 := ⌊λ/τ⌋, and

τ0 := (λ mod τ) τ1 := τ − τ0.

In this way, the protocol produces τ0 (resp. τ1)
VOLEs in F2k0 (resp. F2k1), that concatenated pro-
duce a correlation in Fλ

2 . In table 6, we report the set
of parameters used in [7].

OWF. FAEST signature follows the same construc-
tion as described in Section 2.2, where the OWF F is
the circuit description of AES and AES-EM proved
with publicly verifiable non-interactive honest veri-
fier ZKPoK using FS transformation using VOLEitH
described in Section 2.2. When constructing OWF
with AES or AES-EM, it is required that the input
block size is equal to the security parameter λ. How-
ever, in case of the standard AES, the block size is
fixed to 128 bits which requires two separate instan-
tiations when λ = 192, 256. More concretely, similar
to the FAEST NIST submission, we also use sim-
ilar constructions AES192sk(x0)∥AES192sk(x1) and
AES256sk(x0)∥AES256sk(x1) respectively, where x0

and x1 are two separate plaintexts. When λ = 192,
the additional bits are truncated.
The single key Even-Mansour scheme [36, 34, 47] is

a way to constructs a block cipher f from a cryp-
tographic permutation π by adding a key sk to the
plaintext and then adding sk again to the output of
the permutation function, fsk(x) := sk + π(x + sk).
Rainier [32] proposed a tweaked version of the stan-
dard AES, namely AES-EM, which uses the single
key EM construction as a OWF where AES and Ri-
jndael are the permutations. By leveraging this par-
ticular construction, the authors successfully removed
the AES key schedule and made the round keys pub-
lic to the verifier, reducing the number of constraints
that needs to be proven in MPCitH NIZK. Such a op-
timization is also applicable to the VOLEitH NIZK.
In contrast to AES, when using AES-EM as OWF
for λ = 192, 256, one requires using Rijndael block ci-
pher [27], where the state size is equal to λ bits, thus
not requiring multiple instantiations. Refer to Ta-
ble 6 for more details on the OWF instantiation and
the FAEST parameters. In AES and AES-EM, SBox
inverse is the only non-linear operation operating in
F28 . Refer to Table 1 for details on the non-linear
complexity of AES and AES-EM OWFs.

D Additional Benchmarks

Here we put the additional benchmark numbers for
the signature schemes and the OWFs used for all se-
curity levels. Table 7 describes the benchmark re-
sults of FAEST as in the NIST submission and Ta-
ble 6 describes the parameters used for the same. Ta-
ble 8 and Table 7 describe the parameter set and the
benchmark results of FAESTER for all security lev-
els. Similarly in Table 10,11,12,13, we describe the
parameter sets and the performance numbers for our
new signature schemes MandaRain and KuMQuat.

25

Table 7: Signing Time (ms), Verification Time (ms) and Signature Size (bytes) of the FAEST and FAEST-EM
optimized implementation.

Scheme Runtime in ms Size in Bytes
Keygen Sign Verify sk pk Signature

FAEST-128s 0.0006 4.381 4.102 16 32 5006
FAEST-128f 0.0005 0.404 0.395 16 32 6336
FAEST-192s 0.0021 10.855 10.85 24 64 12744
FAEST-192f 0.0022 1.185 1.177 24 64 16792
FAEST-256s 0.003 14.373 14.365 32 64 22100
FAEST-256f 0.0035 1.639 1.583 32 64 28400

FAEST-EM-128s 0.0005 4.151 4.415 16 32 4566
FAEST-EM-128f 0.0005 0.446 0.474 16 32 5696
FAEST-EM-192s 0.0012 10.577 10.882 24 48 10824
FAEST-EM-192f 0.0012 1.081 1.083 24 48 13912
FAEST-EM-256s 0.0024 14.046 14.089 32 64 20956
FAEST-EM-256f 0.0025 1.568 1.583 32 64 26736

Table 8: AES and AES-EM OWFs and parameters for FAESTER and FAESTER-EM. We denote the signature
schemes as FAESTER-λs/f or FAESTER-EM-λs/f. l is the number of VOLE correlations required for the NIZK
proof. τ is the number of repetition determining the choice between slow (s) and fast (f). k0 and k1 are bit lengths
of small VOLEs. Secret key, public key and signature sizes are in bytes.

Signature Scheme OWF Esk(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size

FAESTER-128s AES128sk(x) 1600 7 102 11 0 11 11 11 16 32 4594
FAESTER-128f AES128sk(x) 1600 8 110 16 8 8 8 7 16 32 6052
FAESTER-192s AES192sk(x0)∥AES192sk(x1) 3264 12 162 16 4 12 12 11 24 64 12028
FAESTER-192f AES192sk(x0)∥AES192sk(x1) 3264 8 163 24 16 8 8 7 24 64 16100
FAESTER-256s AES256sk(x0)∥AES256sk(x1) 4000 6 245 22 8 14 12 11 32 64 21752
FAESTER-256f AES256sk(x0)∥AES256sk(x1) 4000 8 246 32 24 8 8 7 32 64 28084

FAESTER-EM-128s AES128x(sk)⊕ sk 1280 7 103 11 0 11 11 11 16 32 4170
FAESTER-EM-128f AES128x(sk)⊕ sk 1280 8 112 16 8 8 8 7 16 32 5444
FAESTER-EM-192s Rijndael192x(sk)⊕ sk 2304 8 162 16 8 8 12 11 24 48 10108
FAESTER-EM-192f Rijndael192x(sk)⊕ sk 2304 8 176 24 16 8 8 7 24 48 13532
FAESTER-EM-256s Rijndael256x(sk)⊕ sk 3584 6 218 22 8 14 12 11 32 64 19744
FAESTER-EM-256f Rijndael256x(sk)⊕ sk 3584 8 234 32 24 8 8 7 32 64 26036

Table 9: Signinig Time (ms), Verification Time (ms) and Signature Size (bytes) of the FAESTER and FAESTER-EM
optimized implementation.

Scheme Runtime in ms Size in Bytes
Keygen Sign Verify sk pk Signature

FAESTER-128s 0.0006 3.282 4.467 16 32 4594
FAESTER-128f 0.0005 0.433 0.610 16 32 6052
FAESTER-192s 0.0021 8.930 16.783 24 64 12028
FAESTER-192f 0.0022 1.093 2.177 24 64 16100
FAESTER-256s 0.003 11.708 24.512 32 64 21752
FAESTER-256f 0.0035 1.453 2.801 32 64 27899

FAESTER-EM-128s 0.0005 3.005 4.386 16 32 4170
FAESTER-EM-128f 0.0005 0.422 0.609 16 32 5444
FAESTER-EM-192s 0.0012 7.845 18.509 24 48 10108
FAESTER-EM-192f 0.0012 0.969 2.134 24 48 13532
FAESTER-EM-256s 0.0024 11.676 22.811 32 64 19744
FAESTER-EM-256f 0.0025 1.542 2.946 32 64 26036

26

Table 10: Rain OWF and parameters for MandaRain. We denote the signature scheme as MandaRain-N-λs/f, where
N is the number of Rain rounds. l is the number of VOLE correlations (length of extended witnesses in bits) required
for the NIZK proof. τ is the number of repetition determining the choice between slow (s) and fast (f). k0 and k1
are bit lengths of small VOLEs. Secret key, public key and signature sizes are in bytes.

Scheme OWF Ek(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size

MandaRain-3-128s Rain-3-128sk(x) 384 7 100 11 7 4 12 11 16 32 2890
MandaRain-3-128f Rain-3-128sk(x) 384 8 108 16 0 16 8 8 16 32 3588
MandaRain-4-128s Rain-4-128sk(x) 512 7 101 11 7 4 12 11 16 32 3082
MandaRain-4-128f Rain-4-128sk(x) 512 8 110 16 0 16 8 8 16 32 3876

MandaRain-3-192s Rain-3-192sk(x) 576 8 183 16 16 0 12 0 24 48 7132
MandaRain-3-192f Rain-3-192sk(x) 576 8 184 24 24 0 8 0 24 48 8540
MandaRain-4-192s Rain-4-192sk(x) 768 8 181 16 16 0 12 0 24 48 7492
MandaRain-4-192f Rain-4-192sk(x) 768 7 184 24 24 0 8 0 24 48 9116

MandaRain-3-256s Rain-3-256sk(x) 768 6 246 22 14 8 12 11 32 64 12896
MandaRain-3-256f Rain-3-256sk(x) 768 7 248 32 32 0 8 0 32 64 15220
MandaRain-4-256s Rain-4-256sk(x) 1024 6 240 22 14 8 12 11 32 64 13408
MandaRain-4-256f Rain-4-256sk(x) 1024 7 248 32 32 0 8 0 32 64 16244

Table 11: Signing Time (ms), Verification Time (ms) and Signature Size (bytes) of MandaRain-3 and MandaRain-4
optimized implementation.

Scheme Runtime in ms Size in Bytes
Keygen Sign Verify sk pk Signature

MandaRain-3-128s 0.0018 2.800 5.895 16 32 2890
MandaRain-3-128f 0.0018 0.346 0.807 16 32 3588
MandaRain-4-128s 0.0026 2.876 6.298 16 32 3052
MandaRain-4-128f 0.0026 0.371 0.817 16 32 3876

MandaRain-3-192s 0.0047 7.275 19.043 24 48 7132
MandaRain-3-192f 0.0047 0.879 1.968 24 48 8540
MandaRain-4-192s 0.0061 7.025 18.006 24 48 7492
MandaRain-4-192f 0.0061 1.012 2.142 24 48 9116

MandaRain-3-256s 0.0064 9.016 21.217 32 64 12896
MandaRain-3-256f 0.0064 1.357 2.751 32 64 15220
MandaRain-4-256s 0.0084 9.438 21.412 32 64 13408
MandaRain-4-256f 0.0084 1.630 3.088 32 64 16244

Table 12: MQ OWF and parameters for KuMQuat. We denote the signature scheme as KuMQuat-P-λs/f, where
P defines the 2 prime power field (F2n). l is the number of VOLE correlations required for the ZK proof. τ is the
number of repetition determining the choice between slow (s) and fast (f). k0 and k1 are bit lengths of small VOLEs.
Secret key, public key and signature sizes are in bytes.

Scheme OWF Ek(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size

KuMQuat-21-L1s MQ-21-L1sk(x) 152 7 99 11 7 4 12 11 19 35 2555
KuMQuat-21-L1f MQ-21-L1sk(x) 152 4 102 16 0 16 8 8 19 35 3028
KuMQuat-28-L1s MQ-28-L1sk(x) 384 7 100 11 7 4 12 11 48 64 2890
KuMQuat-28-L1f MQ-28-L1sk(x) 384 4 108 16 0 16 8 8 48 64 3588

KuMQuat-21-L3s MQ-21-L3sk(x) 224 8 181 16 16 0 12 0 28 52 6404
KuMQuat-21-L3f MQ-21-L3sk(x) 224 8 182 24 0 16 8 8 28 52 7436
KuMQuat-28-L3s MQ-28-L3sk(x) 576 8 184 16 16 0 12 0 72 96 7180
KuMQuat-28-L3f MQ-28-L3sk(x) 576 8 164 24 0 16 8 8 72 96 8060

KuMQuat-21-L5s MQ-21-L5sk(x) 320 6 248 22 14 8 12 11 40 72 11728
KuMQuat-21-L5f MQ-21-L5sk(x) 320 8 247 32 0 32 8 8 40 72 13396
KuMQuat-28-L5s MQ-28-L5sk(x) 768 6 244 22 14 8 12 11 96 128 12823
KuMQuat-28-L5f MQ-28-L5sk(x) 768 8 247 32 0 32 8 8 96 128 15092

27

Table 13: Signinig Time (ms), Verification Time (ms) and Signature Size (bytes) of the KuMQuat optimized imple-
mentation.

Scheme Runtime in ms Size in Bytes
Keygen Sign Verify sk pk Signature

KuMQuat-21-L1s 0.172 4.305 4.107 19 35 2555
KuMQuat-21-L1f 0.173 0.539 0.736 19 35 3028
KuMQuat-28-L1s 0.174 3.599 4.053 48 64 2890
KuMQuat-28-L1f 0.172 0.400 0.623 48 64 3588

KuMQuat-21-L3s 0.545 15.601 26.076 28 52 6404
KuMQuat-21-L3f 0.545 2.316 4.724 28 52 7436
KuMQuat-28-L3s 0.163 14.986 25.366 72 96 7180
KuMQuat-28-L3f 0.163 1.963 2.801 72 96 8060

KuMQuat-21-L5s 1.606 24.541 31.564 40 72 11728
KuMQuat-21-L5f 1.606 4.934 6.336 40 72 13396
KuMQuat-28-L5s 0.424 21.062 26.440 96 128 12823
KuMQuat-28-L5f 0.424 2.529 3.443 96 128 15092

28

	Introduction
	Our Contributions

	Preliminaries
	One-Way Functions
	The Rain OWF
	Multivariate Quadratic (MQ) OWF

	VOLEitH Signatures

	Improving Batch Vector Commitments
	Using BAVC in FAEST
	Optimizing BAVCs for Signatures
	Optimized FAEST and FAEST-EM

	New VOLEitH Signature Schemes
	MandaRain: VOLEitH + Rain
	KuMQuat: VOLEitH + MQ
	Optimizations

	Uniform AES Keys in FAEST
	FAEST-d7: Proving AES via Degree-7 Constraints

	Broader Discussion
	A detailed description of the VOLE-in-the-Head approach
	Definitions
	VOLE-in-the-Head Proof System
	Optimizing QuickSilver for Higher Degree Constraints

	The GGM-based BAVC scheme
	Faest design and parameters
	Additional Benchmarks

