
Arctic: Lightweight and Stateless
Threshold Schnorr Signatures

Chelsea Komlo and Ian Goldberg

University of Waterloo
ckomlo@uwaterloo.ca, iang@uwaterloo.ca

Abstract. Threshold Schnorr signatures are seeing increased adoption in practice, and offer practical
defenses against single points of failure. However, one challenge with existing randomized threshold
Schnorr signature schemes is that signers must carefully maintain secret state across signing rounds,
while also ensuring that state is deleted after a signing session is completed. Failure to do so will result
in a fatal key-recovery attack by re-use of nonces.

While deterministic threshold Schnorr signatures that mitigate this issue exist in the literature, all prior
schemes incur high complexity and performance overhead in comparison to their randomized equivalents.
In this work, we seek the best of both worlds; a deterministic and stateless threshold Schnorr signature
scheme that is also simple and efficient.

Towards this goal, we present Arctic, a lightweight two-round threshold Schnorr signature that is
deterministic, and therefore does not require participants to maintain state between signing rounds. As
a building block, we formalize the notion of a Verifiable Pseudorandom Secret Sharing (VPSS) scheme,
and define Shine, an efficient VPSS construction. Shine is secure when the total number of participants
is at least 2t − 1 and the adversary is assumed to corrupt at most t − 1; i.e., in the honest majority
model.

We prove that Arctic is secure under the discrete logarithm assumption in the random oracle model,
similarly assuming at minimum 2t− 1 number of signers and a corruption threshold of at most t− 1. For
moderately sized groups (i.e., when n ≤ 20), Arctic is more than an order of magnitude more efficient
than prior deterministic threshold Schnorr signatures in the literature. For small groups where n ≤ 10,
Arctic is three orders of magnitude more efficient.

Table of Contents

1 Introduction . 3
1.1 Our Results . 4
1.2 Observations of Honest Majority Assumptions in Practice . 6

2 Related Work . 6
3 Preliminaries . 8

3.1 General Notation . 8
3.2 Definitions and Assumptions . 8
3.3 General Forking Lemma . 9

A modified forking lemma. 10
3.4 Deterministic Threshold Signature Schemes . 10

Unforgeability . 12
4 Verifiable Pseudorandom Secret Sharing . 13

4.1 Motivation . 13
4.2 VPSS Definition and Notions of Security . 13

Security. 14
4.3 Shine, A Concrete Verifiable Pseudorandom Secret Sharing Scheme . 17

Security . 19
5 Arctic, A Deterministic and Stateless Two-Round Threshold Schnorr Signature Scheme 21

5.1 The Construction. 21
5.2 Security . 22
5.3 Extending Arctic and Shine to be Robust . 23

6 Performance Analysis of Arctic . 24
7 Conclusion . 25
A Additional Performance Estimates . 29
B Security of Shine . 29
C Security of Arctic . 32
D Details on Extending Shine and Arctic to be Robust . 39

D.1 Communication Model for Robust Arctic . 39

1 Introduction

Threshold signature schemes allow a subset of at least µ out of n possible parties to cooperate to produce a
signature over a single message, while preserving security when up to t− 1 signers may be corrupted, where
µ ≤ n and t ≤ µ. Threshold signatures offer practical security benefits, allowing for dynamic key management
and defense in depth against potential adversarial corruptions. While threshold signatures can be instantiated
by simply concatenating multiple individual signatures into a single joint signature, a practical goal for
threshold signatures is to preserve compatibility with existing single-party signature schemes, to minimize
implementation complexity.

In this work, we focus our attention on threshold Schnorr signatures; i.e, a threshold signature scheme
that is compatible with the (single-party) Schnorr signature verification algorithm [50]. Efficient (two-round)
threshold Schnorr signatures exist in the randomized setting [3,35,49], where each party is assumed to securely
maintain state between signing rounds and have access to good sources of randomness. However, efficient and
deterministic threshold Schnorr signatures has thus far remained an elusive goal.

Why Deterministic Threshold Signatures? Producing threshold signatures in a deterministic manner is
useful for two reasons. First, it is useful as a general defense-in-depth measure, to protect against the event of
temporarily losing access to good sources of randomness [48], such as if a machine randomly rebooted.

Second, threshold Schnorr signature schemes generally require participants to perform multiple rounds of
communication before a joint signature can be issued. As such, participants must keep state between each
round, and carefully delete state once a signing protocol is completed. In the setting where the signer must
produce signatures at increasing scale and in a concurrent setting, managing state can become a significant
performance bottleneck. Further, secure management of secret state can be considered a security risk. In
particular, for threshold Schnorr signatures, participants must generate secret nonces for each signing session.
If a participant’s state is mismanaged in such a way that it is used even twice, a fatal key-recovery attack is
possible. However, in the setting where machines can go offline at any time, and signing is done at scale and
concurrently, such careful management of secret state becomes even more challenging.

The Challenge of Efficient Deterministic Multi-Party Schnorr Signatures. While the goal of
efficient and deterministic multi-party Schnorr signature schemes is desirable, producing such schemes has
proven difficult. The challenge can be summarized as follows. While honest participants can certainly pick
their nonces deterministically (say, by hashing their secret signing share and the message), a malicious party
might deviate from the protocol and pick its nonce at random. Recall that for Schnorr signatures, the output
signature σ = (R, z) is a commitment R and response z, satisfying the relation gz = R · pkc for a challenge
c ← H(R, pk,m). In the setting for threshold Schnorr signatures, where (R, z) are contributed to by all
signing parties, one party deviating from the protocol results in the challenge c likewise changing. If honest
parties cannot verify that other parties followed the protocol, such a deviation would allow an adversary to
perform a key recovery attack with as little as two signing queries.

Prior deterministic multi-party Schnorr signature schemes in the literature [24,37,44] can be broken down
into two general approaches. We give an overview of the approaches that support the general threshold setting
with general (t, µ, n) in Table 1, with more context now.

The first approach requires that signers output zero-knowledge proofs that a Pseudorandom Function
(PRF) was evaluated correctly [24, 44]. However, this approach adds undesirable performance and complexity
overhead. For example, while MuSig-DN [44] requires only two network rounds, proof generation requires
approximately 1 second (regardless of the number of signers) for 256-bit security, and verification requires at
least 10nms. Similarly, the scheme by Garillot et al. [24] requires three rounds of communication between
signers and high complexity and bandwidth overhead.

The second approach by Kondi et al. [37] is to use as a black box a Pseudorandom Correlation Generator
(PCG) [11] to generate nonces in a verifiable manner [37]. However, while the PCG used in their construction
can support 2-of-2 signing, [37, 45], it remains an open problem as to how to extend such a PCG to the
general threshold setting for any t, µ, or n [36]. As such, the scheme by Kondi et al. [37] supports only the
t = µ = n = 2 setting.

3

C
om

p
u
ta
ti
on

B
an
d
w
id
th

N
u
m
.
R
ou
n
d
s

A
ss
u
m
p
ti
on
s

M
in
.
S
ig
n
er
s

MuSig-DN [44] 14210 + 24(n− 1) group 1189 bytes 2 DDH n

GKMN21 [24]
132, 000(t− 1) AES

1.01(t− 1) MB 3 PRF t
256(t− 1) field

Arctic 2t2 − t+ 2 group
97 bytes 2 DL 2t− 1

(this work) 2
(
n−1
t−1

)
field, 2

(
n−1
t−1

)
hash

Table 1: Comparison of multi-party deterministic Schnorr signature schemes in the random oracle model
(ROM) that support general choices of n (i.e., we exclude 2-of-2 schemes). Here, n denotes the number of
total possible signers, t denotes the corruption threshold. Computation is given with respect to the operations
that dominate; estimates for MuSig-DN are given with respect to a 256-bit elliptic curve; more information is
given in Appendix A. Bandwidth similarly is given with respect to a 256-bit elliptic curve [24,44].

Therefore in this work, we address the following question:

Can we design a simple, deterministic, and stateless two-round threshold Schnorr signature scheme,
with similar efficiency to existing randomized schemes, and acceptable security assumptions in practice?

1.1 Our Results

We answer the above question in the affirmative. In particular, we present Arctic, a deterministic and stateless
threshold Schnorr signature scheme. For moderately sized groups (i.e., when n ≤ 20), Arctic is more than an
order of magnitude more efficient than existing deterministic schemes in the literature; it is three orders of
magnitude more efficient when n ≤ 10. For even larger groups, Arctic scales linearly relative to the number of
processing cores available to most machines. Signers in Arctic are required to generate and maintain secret
keys, but otherwise do not need to manage secret state.

To achieve efficient determinism, Arctic requires two tradeoffs. The first tradeoff is in the number of
required signers; Arctic requires µ ≥ 2t − 1 parties to participate in signing. This requirement is because
Arctic assumes the honest majority model. We discuss in Section 1.2 why the assumption of an honest
majority is acceptable for some real-world applications.

The second tradeoff is in the required overhead as the signing set grows large. Under the hood, Arctic
employs a replicated secret sharing scheme [32], and so requires participants to store a secret key of size(
n−1
t−1

)
. As such, Arctic outperforms other schemes in the literature for moderately sized groups, but incurs a

crossover point as the signing set grows large.

Verifiable Pseudorandom Secret Sharing (VPSS). As a building block, we first formalize a cryptographic
primitive that we call a Verifiable Pseudorandom Secret Sharing (VPSS) scheme. While pseudorandom secret
sharing is a standard notion in the literature, and verifiability of such schemes had been employed implicitly
in maliciously secure MPC-based schemes [6], we present a formal definition for a VPSS and give game-based
security notions [5], building on existing notions of verifiable random functions in the literature [19,23,41,42].

Intuitively, a pseudorandom secret sharing scheme allows a coalition of players holding pre-established secret
shares of a random secret to generate shares of additional pseudorandom secrets. A verifiable pseudoradnom
secret sharing scheme is simply an extension to allow for public verifiability by collectively verifying the
outputs for the set of participants. As such, misbehavior of players in a VPSS can be detected assuming

4

some threshold of honest participants. As we will see in the case of Arctic, a VPSS allows for more efficiently
verifying the correctness of the output of a pseudorandom function that is distributed among a set of players,
without requiring each player individually to produce a zero-knowledge proof that it followed the protocol.

We then define a concrete VPSS construction that we call Shine that builds upon the pseudorandom
secret sharing scheme by Cramer et al. [16]. We augment the scheme by Cramer et al. to additionally define a
verification algorithm that is publicly verifiable even when players only publish commitments to their shares;
i.e., it preserves secrecy of players’ shares while allowing players to verify that all other players followed
the protocol honestly. Shine is efficient for moderately sized groups; concretely, evaluation requires

(
n−1
t−1

)
sub-microsecond hash and field operations, and verification requires 2t2 − t group exponentiations, where t is
the corruption threshold. We prove that Shine is secure assuming the existence of a secure hash function in
the honest majority model, i,e., when µ ≥ 2t− 1, where µ is the minimum number of participants required to
participate in the protocol. Additionally, we require that as n grows, t remains O(1) so that

(
n−1
t−1

)
= poly(n).

A New Two-Round, Deterministic, and Stateless Threshold Schnorr Signature. Next, we introduce
Arctic, a new two-round, deterministic, and stateless threshold Schnorr signature. Arctic is an order of
magnitude more efficient than related schemes in the literature for moderately sized groups (n ≤ 20), due to
its use of Shine as a building block. Furthermore, Arctic supports the general threshold setting for any t, µ
and n, so long as µ ≥ 2t− 1 and µ ≤ n. We give an overview of Arctic in Table 1 in comparison to related
schemes in the literature.

At a high level, Arctic uses Shine in the first round of signing to generate participant nonces and
commitments; participants publish their commitments without having to maintain state of their (secret)
nonce. Then, in the second round, participants use Shine to re-derive their nonce and commitment, and verify
all other participants’ commitments, ensuring that other participants followed the protocol correctly. If the
verification check holds, participants derive the group commitment as the aggregation of all participants’
individual commitments, and generate a signature share as a combination of their nonce, challenge, and
secret signing share. The output signature is the aggregated group commitment and an aggregation of all
participants’ signature shares, and can be verified using the single-party Schnorr verification algorithm.,

We prove the unforgeability of Arctic assuming the hardness of the discrete logarithm problem in the
random oracle model, assuming µ ≥ 2t− 1, the adversary corrupts at most t− 1 players, and

(
n−1
t−1

)
= poly(n).

We describe in Section 1.2 why requiring honest majority assumptions can be practical for some real-world
deployments of threshold signatures, at the benefit of improved simplicity and performance.

Performance Analysis of Arctic. To estimate the practicality of Arctic for various choices of n, t, and µ,
we implement the scheme and provide concrete benchmarks.

Arctic is highly efficient for moderately sized groups, and so is a good choice for such settings. As we show
in greater detail in Section 6, for a group where 2t− 1 ≤ µ ≤ n ≤ 20, Arctic signing operations require less
than 100 milliseconds of computation for each signer, and for n ≤ 10, less than 1 millisecond. Signing however
increases in cost relative to the corruption threshold; for signing sets of size n = 25, t = 11, the computational
overhead for each signer on a single core requires one second. However, Arctic is highly parallelizable, showing
almost perfect linear speedups for up to 32 cores for that size of signing set.

For comparison, MuSig-DN requires about 1 second in computational overhead per signer [44], regardless
of the size of the signing set. As such, Arctic is a practical choice for moderately sized groups of n ≤ 25,
whereas MuSig-DN or GKMN21 [24] may be good choices as the set of signers grows large, depending on the
parallelization of each scheme.

Our Contributions. In summary, the contributions of our work are as follows:

– We formalize the definition of a Verifiable Pseudorandom Secret Sharing (VPSS) scheme, and give
game-based security notions.

– We define a concrete VPSS scheme that we call Shine, which extends the pseudorandom scheme by
Cramer et al. [16] to allow for public verifiability, assuming an honest majority of participants.

5

– We then present Arctic, a deterministic and stateless two-round threshold Schnorr signature scheme.
Arctic uses Shine as a building block to generate participant nonces and commitments, and verify that
participants performed this action correctly.

– We prove that Arctic is secure under the discrete logarithm problem in the random oracle model, assuming
Shine is a secure VPSS, the adversary corrupts fewer than t parties, at least µ ≥ 2t− 1 parties participate
in the signing protocol, and

(
n−1
t−1

)
= poly(n).

– We provide performance benchmarks for Arctic for different sizes of signing sets, and show that paral-
lelization enables a linear speedup in signer computation.

1.2 Observations of Honest Majority Assumptions in Practice

While honest minority assumptions may be desirable for some real-world applications, we observe that honest
majority assumptions may be an acceptable tradeoff for other applications in exchange for statelessness,
improved performance, and protocol simplicity.

For applications that can easily support additional signers, moving from an honest minority setting
to honest majority can be relatively straightforward. For example, an application that currently uses a
(t = 2, µ = 2, n = 3) configuration can instead move to a (t = 2, µ = 3, n = 4) configuration.

In settings that require liveness, honest majority requirements are already assumed, to ensure usability
of the shared secret key even when corrupt players refuse to participate. For example, applications such as
cryptocurrency wallets often implicitly require honest majority assumptions, to ensure that corrupt players
cannot prevent use of funds by simply refusing to participate in signing operations.

Finally, some applications may see the requirement for additional signers as an acceptable tradeoff to
mitigate the security risk of protocol complexity, as protocol complexity increases the risk of exploitable
implementation errors [40].

2 Related Work

Randomized (Non-Deterministic) Threshold Schnorr Signatures. We review only threshold Schnorr signatures
in the literature that are secure in a concurrent setting and therefore demonstrated to be secure against ROS
attacks [7, 20,51].

Stinson and Strobl [53] present a five-round threshold Schnorr signature that uses a robust DKG [28] for
generating its nonce. However, the protocol assumes all participants choose their inputs in a randomized
manner.

FROST [35] is a randomized two-round threshold Schnorr signature that is secure even when the first
round is preprocessed; i.e, it is performed in a batched manner resulting in only a single online signing round.
FROST is secure assuming the One-More Discrete Logarithm (OMDL) assumption in the Random Oracle
Model (ROM) [3]. Variants of FROST have been presented to improve its computational and bandwidth
efficiency, including FROST2 [3] and FROST3 [14,49]. Further, an IETF informational draft exists for the
original FROST [15]. However, both FROST and subsequent variants rely on participants selecting their
nonces at random.

Thee-round randomized threshold Schnorr signatures have likewise been proposed. Lindell [38] presents
a three-round threshold Schnorr signature scheme that relies on Fischlin zero-knowledge proofs [22] to
demonstrate its simulatability with respect to Schnorr under aborts. Sparkle [17] is a three-round threshold
Schnorr signature that is secure assuming the Discrete Logarithm (DL) assumption in the ROM. Sparkle
does not rely on heavyweight proofs of knowledge, and instead demonstrates unforgeability via a game-based
definition. Makriyannis [39] similarly presents two separate three-round threshold Schnorr signatures, which
achieve a similar notion of security as to Sparkle. However, each scheme likewise relies upon randomized
nonces.

6

Deterministic Threshold Signatures. The BLS signature scheme [9] is deterministic, because the signature
is of the form z ← H(m)sk. Likewise, threshold BLS signatures are similarly deterministic [8]. However,
such schemes are often not viable in a practical setting that requires backwards compatibility with Schnorr
signature verification, or due to the requirement of pairings.

Deterministic threshold Schnorr signatures have been described in the literature, but rely on heavyweight
zero-knowledge proofs to demonstrate that each participant followed the protocol correctly. The challenge of
deterministic threshold Schnorr signatures is that of verifiability, because if even one participant deviates
from the protocol and chooses its nonce randomly, a complete key-recovery attack is possible.

Nick et al. [44] define a threshold Schnorr n-of-n multisignature that uses SNARKs to demonstrate
in zero-knowledge that a participant generated its nonce using a PRF correctly with respect to a pre-
established keypair. However, the authors report the computational overhead of at least 943ms for a single
execution, independent of the number of signers, due to the overhead of proving the PRF was evaluated
correctly in zero-knowledge. In particular, to instantiate the PRF, a non-algebraic cryptographic hash function
H : {0, 1} → G must be used, along with a regular function f : G→ Zq. The complete PRF Fsk is defined
by Fsk(x) = f(sk · H(x)), where sk is a PRF key. Then, signers generate a Bulletproof [12] to prove in
zero-knowledge that the nonce was derived with respect to F , sk, and some input H(x).

Bronte et al. [10] define an honest majority deterministic threshold Schnorr scheme that relies on generic
MPC techniques. The authors give two approaches for proving that the PRF was performed correctly. The
first approach uses a protocol based on garbled circuits by Hazey et al. [31]; the second uses a replicated
secret-sharing approach over F2, building upon Araki et al. [1].

Garillot et al. [24] similarly rely on parties sampling and committing to a PRF key at the time of key
generation, but instead make use of the Zero-Knowledge from Garbled Circuits (ZKGC) paradigm [34] to
demonstrate that the PRF was derived correctly. The specific function that is garbled is C(x) = ϕ(F (x)),
where F is a boolean circuit such as AES, and ϕ is standard exponentiation (or curve multiplication). The
authors give efficiency estimates for a 256-bit curve and using SHA-512 as the PRF F ; the performance
overhead is dominated by performing 132, 000 AES invocations and 256 additions in Zq per proof generated
and verified. For a signing invocation involving t parties, each party must then perform 256t field operations
and 132, 000t AES invocations, accounting for each proof a signer generates and the t− 1 proof verifications
for all other signers.

Kondi, Orlandi, and Roy [37] take a different approach, and define a two-round stateless and deterministic
two-party Schnorr signature scheme using pseudorandom correlation functions (PCFs) [11] as a building
block. In particular, their scheme employs a Paillier-based PRF [45], but additionally define a verification
mechanism to ensure that parties honestly followed the protocol. However, their scheme is restricted to the
two-party setting, and as written, cannot be extended to the general (t, n) threshold setting. In particular,
the PCF used as a building block by their scheme assumes only two parties. Extending their scheme to any
(t, n) setting requires designing a new n-party PCF [36].

Honest Majority Threshold Signatures. Honest majority threshold schemes have been proposed in the literature
as a means to achieve properties that are either impossible, or require higher performance overhead, in the
honest minority setting. Notably, honest majority schemes have been demonstrated to achieve robustness or
to circumvent requiring the use of heavyweight zero-knowledge proofs [13].

Gennaro et al. [26] use error correcting codes in the honest majority setting to achieve a robust threshold
DSS scheme. Similarly, Ruffing et al. [49] present a wrapper to the FROST threshold signature scheme to
achieve robustness, in the honest majority setting.

In the threshold ECDSA setting, Damg̊ard et al. [18] present a threshold ECDSA scheme in the honest
majority model, that uses multiplication triples and Beaver’s inversion protocol [2].

Distributed VRFs. Galindo et al. [23] give a formalization of distributed VRFs and their security notions.
While our notions for a Verifiable Pseudorandom Secret Sharing (VPSS) scheme are similar, our definition for
a VPSS does not require that players’ outputs are accompanied by a zero-knowledge proof that the protocol
was performed correctly. Instead, the VPSS verification function collectively verifies all parties’ outputs.

7

Pseudorandom Secret Sharing. Our VPSS construction Shine builds on the pseudorandom secret sharing
scheme by Cramer et al. [16]. Note that while Cramer et al. additionally define a Non-Interactive Verifiable
Secret-Sharing (NIVSS) variant, their construction assumes that players output shares in the clear, and
requires an honest supermajority so that the secret can be recovered. In our case, players verify the correctness
of their shares with respect to other players’ public commitments, and requires only honest majority (as
players simply need to determine if any other party deviated from the protocol).

While we are the first to do so in a threshold Schnorr signature setting, pseudorandom secret sharing
has been used as a building block in other other threshold settings. For example, Jarecki, Krawczyk, and
Resch [33] define a threshold Oblivious PRF which likewise builds upon pseudorandom secret sharing.

3 Preliminaries

3.1 General Notation

Let λ ∈ N be a security parameter. We denote the assignment of an element y to the value x as y ← x, and
sampling an element from some set S uniformly at random as x ←$ S. For a randomized algorithm A, we
write x←$ A() to indicate the random variable x that is output from the execution of A.

We use [n] to represent the set {1, . . . , n}. For a set S, we denote
(
S
t

)
to mean the set that consists of all

size-t subsets of S.

Groups and Group Generation. Let G be a cyclic group of prime order q, and Zq be the field of integers
modulo q. Let g be a generator of G, and let IG ∈ G be the identity element of G.

We use GroupGen(1λ) to denote a polynomial-time algorithm that takes as input a security parameter λ
and outputs a group description (G, q, g).

Polynomial Interpolation. A polynomial of degree t− 1 over a field F can be interpolated by t (or more)
points. Let η be the list of t distinct indices η ⊆ [n] corresponding to the x-coordinates xi ∈ F, i ∈ η. Then
the Li(x) (for i ∈ η) are the Lagrange polynomials defined by η, of the form

Li(x) =
∏

j∈η;j ̸=i

x− xj

xi − xj

Later in this work, we denote Li(0) as λi.

Given a set of t points (xi, f(xi)), any point f(xℓ) on the degree t− 1 polynomial f can be determined by
Lagrange interpolation:

f(xℓ) =
∑
j∈η

f(xj) · Lj(xℓ) .

3.2 Definitions and Assumptions

Assumption 1 (Discrete Logarithm Assumption (DL)) The discrete logarithm assumption holds for
GroupGen if for all PPT adversaries A, AdvdlA(λ) is negligible, where

AdvdlA(λ) = Pr

(G, q, g)← GroupGen(1λ)

X ←$ G

x′ ←$ A((G, q, g), X)

: X
?
= gx

′

8

Schnorr Signatures. A Schnorr signature is a Sigma protocol zero-knowledge proof of knowledge of the
discrete logarithm of the public key, made non-interactive and bound to the message m by the Fiat-Shamir
transform [21]. Schnorr signatures are secure under the discrete logarithm assumption in the random oracle
model [47].

Definition 1 (Schnorr Signatures [50]). The Schnorr signature scheme is defined as follows:

- Schnorr.Setup(1λ) → par: On input the security parameter, run (G, q, g) ← GroupGen(1λ) and select a
hash function H : {0, 1}∗ → Zp. Output public parameters par = ((G, q, g),H) (which are given implicitly
as input to all other algorithms).

- Schnorr.KeyGen() → (pk, sk): Sample a secret key sk ←$ Zq and compute a public key pk ← gsk. Output
(pk, sk).

- Schnorr.Sign(sk,m)→ σ: On input secret key sk and message m, the signer samples a nonce r ←$ Zq and
computes a nonce commitment R← gr. The signer then computes the challenge c← H(R, pk,m) and the
response z ← r + cx. Output the signature σ = (R, z).

- Schnorr.Verify(pk,m, σ) → 0/1 : On input the public key pk, a message m, and a purported signature
σ = (R, z), the verifier computes c← H(R, pk,m) and accepts if gz = R · pkc.

Shamir secret sharing. The (t, n) Shamir secret sharing scheme [52] allows a dealer to partition a secret
into n shares, t of which are required to recover the secret. Shamir secret sharing is information-theoretically
secure.

Definition 2 (Shamir secret sharing [52]). Shamir secret sharing Shamir is a threshold secret sharing
scheme that consists of the following algorithms:

– Shamir.Share(s, n, t) → {(1, ϕ1), . . . , (n, ϕn)}: On input a secret s, the number of participants n, and a
threshold t, perform the following. First, define a polynomial f(x) = s+ a1 + a2x

2 + · · ·+ at−1x
t−1 by

sampling t− 1 coefficients at random (a1, . . . , at−1)←$ Zq. Then, set each participant’s share ϕi, i ∈ [n],
to be the evaluation of f(i): ϕi ← s+

∑
j∈[t−1] aji

j. Output {(i, ϕi)}i∈[n].

– Shamir.Recover(t, {(i, ϕi)}i∈η)→ ⊥/sk: On input a threshold t and a set of shares {(i, ϕi)}i∈η, output ⊥

if η ̸⊆ [n] or if |η| < t. Otherwise, compute L(x) =
∑
i∈η

wiLi(x) =
∑
i∈η

wi

∏
j∈η,j ̸=i

x− j

i− j
. If deg(Li) > t− 1,

return ⊥. Otherwise, return s = L(0) =
∑
i∈η

wiLi(0) =
∑
i∈η

wi

∏
j∈η,j ̸=i

j

j − i
.

3.3 General Forking Lemma

We next review the general forking lemma by Bellare and Neven [4], which itself is a formalization of the
forking lemma introduced by Pointcheval and Stern [46]. We show the general forking algorithm in Figure 1.

Lemma 1 (General Forking Lemma [4]). Let H be a finite set and r ≥ 1 be an integer. Let IG be a
randomized instance generator and let X ←$ IG be an instance. Let C be a randomized algorithm that takes as
input X, quantities h1, . . . , hr ∈ H, and a random tape ρ. Let accept(C) be the probability that C outputs an
accepting answer, namely

accept(C) := Pr

j ̸= ⊥ :
X ←$ IG, h1, . . . , hr ←$ H

(j, aux)←$ C
(
X, (h1, . . . , hr); ρ

)
 .

Let ForkC(X) be the general forking algorithm defined in Figure 1 and let

accept(ForkC) := Pr
[
α ̸= ⊥ : X ←$ IG, α←$ ForkC(X)

]
.

9

Algorithm ForkC(X) ForkCm(X)

Sample coins ρ for C at random.

h1, . . . , hr ←$ H

(j, aux)←$ C
(
X, (h1, . . . , hr); ρ

)
return ⊥ if j = ⊥
h′
j , . . . , h

′
r ←$ H

(j′, aux′)←$ C
(
X, (h1, . . . , hj−1, h

′
j , . . . , h

′
r); ρ

)
return ⊥ if j′ = ⊥
return ⊥ if j ̸= j′

// Fail if any outputs sampled from H collide
if (h1, . . . , hr, h

′
j , . . . , h

′
r) contains a repeated element

return ⊥
return (hj , h

′
j , aux, aux

′)

Fig. 1: The general forking algorithm ForkC(X) and the modified general forking algorithm ForkCm(X), defined
with respect to an algorithm C and instance X. The difference between the general forking algorithm and
modified variant is shown in a box, for emphasis. In summary, the modified general forking algorithm aborts
if any of the (h1, . . . , hr, h

′
j , . . . , h

′
r) collide.

Then, accept(ForkC) is bounded by

accept(ForkC) ≥ accept(C) ·
(
accept(C)

r
− 1

|H|

)
.

A modified forking lemma. We will employ a slight modification of the forking experiment, and give a
corollary on how it impacts the accepting probability of its output.

The modification to the forking experiment is natural; intuitively, we add an additional abort condition if
any of the values h1, . . . , hr, h

′
j , . . . , h

′
r collide. Because there are at most 2r values, and they are all sampled

uniformly at random from the set H, the probability that any of them collide is at most 2r2/ |H|. By
considering this case here, we can be sure that such collisions are considered in our proof of security for
Arctic.

Corollary 1. Let ForkCm be the forking experiment in Figure 1. Then using the notation of Lemma 1 we have

accept(ForkCm) ≥ accept(ForkC)− Pr[BadHashEvent]

≥ accept(ForkC)− 2r2/|H|
(1)

Where BadHashEvent denotes the event that ForkCm returns ⊥ due to the boxed lines in Figure 1.

3.4 Deterministic Threshold Signature Schemes

We begin with the definition of a deterministic threshold signature scheme, and then define the notion of
unforgeability. We build upon standard definitions and notions of unforgeability for threshold signatures in
the literature [17,25,27,29].

Intuitively, our definition for deterministic threshold signature schemes is identical to that of randomized
threshold signature schemes, with the exception that in the deterministic setting, the signing algorithms are
deterministic and the signer does not maintain state between rounds. Furthermore, each signing round in the
deterministic setting is given as input the message m, coalition of signers C, and secret signing key share ski.

10

Definition 3 (Deterministic Threshold Signatures). A deterministic threshold signature scheme
DT with an interactive signing protocol consisting of r rounds is a tuple of PPT algorithms TS = (Setup,KeyGen,
(Sign1, . . . ,Signr),Combine,Verify), defined as follows:

– Setup(1λ)→ par: Accepts as input a security parameter λ and outputs public parameters par, which are
then implicitly given as input to all other algorithms.

– KeyGen(n, t, µ)→ (pk, {pki, ski}i∈[n]): A probabilistic algorithm that takes as input the total number of
possible signers n, the corruption threshold t, and the minimum number of participating signers µ. Outputs
the public key pk representing the set of n signers, the set {pki, ski}i∈[n] of public and secret key shares
for each signer.

– (Sign1, . . . ,Signr)→ {ρ
(k)
1 , . . . ρ

(k)
r }i∈C : A set of deterministic algorithms where each algorithm represents

a single stage in an interactive signing protocol performed by signing party k ∈ [n] in a signing set
C ⊆ [n], |C| ≥ µ with respect to a message m, defined as follows:

ρ
(k)
1 ← Sign1(k, skk,m, C)

ρ
(k)
2 ← Sign2(k, skk,m, C, {ρ(i)1 }i∈C)

...

ρ(k)r ← Signr(k, skk,m, C, {ρ(i)r−1}i∈C)

where ρ
(k)
1 , . . . , ρ

(k)
r are protocol messages produced by party k ∈ C.

– Combine(pk,m, C, {(ρ(i)1 , . . . , ρ
(i)
r)}i∈C)→ σ: A deterministic algorithm that takes as input the public key

pk, the message m, the set of signers C, and the set of protocol messages sent by each party during the
Sign1, . . . ,Signr signing stages, and outputs a joint signature σ.

– Verify(pk,m, σ)→ 0/1: A deterministic algorithm that takes as input the public key pk, a message m, and
signature σ and outputs 1 to indicate accept if the signature verifies; otherwise, it outputs 0 to indicate
reject.

Remark 1 (Distributed key generation). Our definition assumes a centralized key generation algorithm
KeyGen to generate the public key pk and public key shares {pki, ski}i∈[n]. However, our scheme and proofs
can be adapted to use a fully decentralized distributed key generation protocol (DKG).

Remark 2 (Deferring the Choice of Coalition to Later Rounds.). Our definition likewise assumes that the
coalition of signers C is provided in the first round of signing Sign1. However, some constructions (as is the
case with Arctic) may defer the choice of C to later rounds.

Correctness. A deterministic threshold signature scheme DT is correct if for all security parameters λ, all
allowable 1 ≤ t ≤ µ ≤ n, all C ⊆ [n] such that µ ≤ |C| ≤ n, and for all messages m ∈ {0, 1}∗, the following
relation holds:

DT.Verify(pk,m, σ) = 1, for

(pk, {pki, ski}i∈[n])←$ DT.KeyGen(n, t, µ), where

ρ
(k)
1 ← DT.Sign1(k, skk,m, C)

...

ρ(k)r ← DT.Signr(k, skk,m, C, {ρ(i)r−1}i∈C), and

σ ← DT.Combine(pk,m, C, {ρ(i)1 , . . . , ρ(i)r }i∈C)

11

ExpufA,DT(λ, n, t, µ)

par← DT.Setup(1λ)

Q← ∅ // set of queried messages

(corrupt, stA)←$ A(par, n, t, µ)
if |corrupt| ≥ t

return ⊥
honest← [n] \ corrupt
(pk, {pki, ski}

n
i=1)←$ DT.KeyGen(n, t, µ)

in← (pk, {pki}
n
i=1, {skj}j∈corrupt, stA)

(m∗, σ∗)←$ AOSigni,i∈[r]

(in)

if m∗ /∈ Q ∧ DT.Verify(pk,m∗, σ∗) = 1

return 1

return 0

OSign1(k,m, C)

// k denotes the participant identifier

ρ
(k)
1 ← DT.Sign1(k, skk,m, C)

return ρ
(k)
1

...

OSignj (k,m, C, {ρ(i)j−1}i∈C)

// for j ∈ {2, . . . , r − 1}

ρ
(k)
j ← DT.Signi(k, skk,m, C, {ρ(i)j−1}i∈C)

return ρ
(k)
j

...

OSignr (k,m, C, {ρ(i)r−1}i∈C)

Q← Q ∪ {m}

ρ(k)r ← DT.Signr(k, skk,m, C, {ρ(i)r−1}i∈C)

return ρ(k)r

Fig. 2: Unforgeability game for a deterministic threshold signature scheme DT with a r-round signing protocol.
The game assumes a static adversary that picks the players it corrupts at the beginning of the game. The

public parameters par are implicitly given as input to all algorithms, and ρ
(k)
1 , . . . , ρ

(k)
r represent protocol

messages sent by participant k throughout the interactive signing protocol.

Unforgeability We present a game-based definition of unforgeability for a deterministic threshold signature
scheme in Figure 2. This notion of unforgeability is analogous to the standard notion of chosen message attack
(EUF-CMA) for standard signature schemes [30]. In this model, we present the adversary as a static adversary,
which is allowed to corrupt at most t− 1 signers. The static unforgeability game for a deterministic threshold
signature scheme is nearly identical to that of a randomized scheme, with the exception that the environment
does not maintain state between invocations of signing oracles by the adversary, and the adversary provides
as input the message m and coalition of signers C (of its choosing) for each call to a signing oracle.

In more detail, in the unforgeability game, the environment generates public parameters par, and then
allows the adversary to sample the corrupt parties corrupt ⊂ [n]. If the set of corrupt parties is less than
the corruption threshold t, it derives the set of honest parties honest ⊆ [n] as the remaining parties in
[n]. The environment then runs KeyGen to derive the joint public key pk representing the set of n signers,
the set of public key shares {pki}i∈[n], and the secret key shares {ski}i∈[n]. The adversary is then run on
input n, t, µ, par, pk, {pki}i∈[n], and the corrupt signing key shares {skj}j∈corrupt. The adversary can then
query any honest signers k ∈ honest of its choosing at each step in the signing protocol, by querying oracles
OSign1 , . . . ,OSignr , and has full power over choosing the set of signers C and the message m. Additionally, the
adversary may query the signing round oracles in arbitrary order. However, unlike in the randomized setting,
the environment for a deterministic threshold signature scheme does not maintain any session identifiers, or
state about ongoing signing sessions. The adversary wins if it can produce a valid forgery σ∗ with respect to
the joint public key pk on a message m∗ that has not been queried to an honest signer that has not been
queried to OSignr (i.e., in the final round of signing). Importantly, this definition allows the adversary to be
rushing, meaning it can wait to produce its outputs after having seen the honest outputs first. The adversary
may also be concurrent, meaning it can open simultaneous signing sessions at once, or choose not to complete
a signing session.

Definition 4 (Unforgeability). Let the advantage of a static adversary A playing the unforgeability game
against a deterministic threshold signature scheme DT as defined in Figure 2 be as follows:

12

AdvufA,DT(λ, n, t, µ) =
∣∣Pr[ExpufA,DT(λ, n, t, µ) = 1]

∣∣
A deterministic threshold signature scheme DT is unforgeable if for all PPT adversaries A, AdvufA,DT(λ, n, t, µ)
is negligible in λ, for all allowable n, t, µ ∈ N.

4 Verifiable Pseudorandom Secret Sharing

We now introduce an extension to pseudorandom secret sharing that we call a Verifiable Pseodurandom Secret
Sharing (VPSS) scheme. We begin by motivating the need for a VPSS, and then formally define VPSS and
its security properties. Finally, in Section 4.3, we give a concrete VPSS construction, Shine, that we later use
as a building block for Arctic.

4.1 Motivation

A verifiable random function (VRF) [41] is a keyed PRF, such that the PRF can be evaluated using only
knowledge of a secret key, but is publicly verifiable given a public key. In particular, in addition to outputting
the evaluation of the VRF, it also outputs a zero-knowledge proof that the VRF was evaluated correctly. A
distributed VRF [19,23, 42] allows the evaluation algorithm to be partitioned among a set of participants, all
whom are equally trusted.

However, the use case of generating deterministic nonces for threshold Schnorr signatures presents a
slightly different challenge. Instead of directly verifying that the nonce ri was correctly generated, we instead
need to verify correctness in zero-knowledge, with respect to a commitment Ri = gri . One approach in
the literature is to employ non-algebraic pseudorandom functions to generate the nonce, and then prove in
zero-knowledge the correctness of the corresponding commitment [24, 44]. Unfortunately, generating such
zero-knowledge proofs requires higher computational and complexity overhead.

We instead take a different approach towards verifying that a distributed pseudorandom function was
correctly performed by a set of parties. Instead of each participant outputting a zero-knowledge proof that
they individually performed the action correctly, we observe that the correctness of the evaluation can
instead be collectively publicly verified, assuming some threshold of honest participants. Such an observation
leads naturally to employing a pseudorandom secret sharing scheme [16], which is categorized by all parties
holding a set of secret key shares, and individually and non-interactively being able to generate secret
shares of additional pseudorandom values. We show that pseudorandom secret sharing schemes has a natural
extension to the publicly verifiability setting. Finally, we give a concrete and efficient VPSS scheme, where all
participants can publish commitments to their generated shares, and perform polynomial interpolation over
elements in the public domain to ensure correctness.

We next build upon these observations by formalizing the notion of a verifiable pseudorandom secret
sharing scheme.

4.2 VPSS Definition and Notions of Security

We now present an extension on pseudorandom secret sharing that we call a Verifiable Pseudorandom Secret
Sharing (VPSS) scheme. In particular, a VPSS defines an additional verify algorithm to ensure that the
pseudorandom function was performed correctly by collectively verifying outputs by all participants.

We now more formally define a VPSS, and its required security properties.

Definition 5. A Verifiable Pseudorandom Secret Sharing scheme is the tuple of algorithms VPSS =
(Setup,KeyGen,Gen,Verify,Agg,Recover), such that:

– Setup(1λ): Accepts as input the security parameter λ, and outputs public parameters par, where par is
given as implicit input to all other algorithms.

13

– KeyGen(n, t, µ) → ⊥/(sk1, . . . , skn): A probabilistic algorithm that accepts as input the total number of
participants n, a corruption threshold t, and the minimum number of parties µ required to participate in
Gen. On failure, output ⊥, otherwise, output n secret keys, one for each of the n participants.

– Gen(k, skk, w)→ (dk, Dk): A deterministic algorithm that accepts as input a participant identifier k, the
secret key for that participant skk, and some input w. Generates the pseudorandom secret share dk ∈ P
from some domain P, using skk as the random seed and w as the corresponding input. Then, generates
its public commitment Dk ∈ O to dk from some domain O. Outputs (dk, Dk).

– Verify(t, µ, C, {Dj}j∈C)→ {0, 1}: A deterministic algorithm that accepts as input the corruption threshold
t, the minimum number of participants µ, a coalition of participants C such that |C| ≥ µ, and a set of
commitments to pseudorandom secret shares (Dj)j∈C for that coalition. Outputs 1 to indicate that the
secret sharing was correctly performed, otherwise, output 0.

– Agg(t, µ, C, {Dj}j∈C)→ D: A deterministic algorithm that accepts as input the corruption threshold t,
the minimum number of participants µ, a coalition of participants C such that |C| ≥ µ, and the set of
commitments to pseudorandom secret shares. Outputs the commitment to the aggregated pseudorandom
secret D.

– Recover(t, µ, C, {dj}j∈C)→ ⊥/(d,D): A deterministic algorithm that accepts a corruption threshold t, the
minimum number of participants µ, a coalition C ⊆ [n], |C| ≥ µ, and a set of shares {dj}j∈C . It outputs
⊥ if C ̸⊆ [n], |C| < µ, or if the shares are inconsistent. Otherwise, it recovers d using the set of shares,
derives the corresponding commitment D, and outputs (d,D).

Correctness. A VPSS is correct if for all λ, possible inputs w and choices of t, µ, n ∈ N where t ≤ µ ≤ n,
when par← VPSS.Setup(1λ) and (sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ), there exists d ∈ P, D ∈ O such that
Equation 2 holds:

for all i ∈ [n] and for all Cℓ ⊆ [n], |Cℓ| ≥ µ, when

VPSS.Gen(i, ski, w)→ (di, Di), then

VPSS.Verify(t, µ, Cℓ, {Dj}j∈C) = 1, and

VPSS.Recover(t, µ, Cℓ, (dj)j∈C)→ (d,D), and

VPSS.Agg(t, µ, Cℓ, (Dj)j∈C)→ D

(2)

Security. Similarly to verifiable random functions [19,23,41,42], we say that a VPSS is secure if it is unique,
verifiable, and pseudorandom. We define these notions next.

Uniqueness. Intuitively, a VPSS is unique if it produces exactly one commitment to a (pseudorandom) value
for each input w, regardless of the choice of coalition. More specifically, picking different coalitions should
always result in the same commitment D, when the input w remains the same. We show the VPSS uniqueness
experiment in Figure 3.

In the uniqueness experiment, the adversary is allowed to query honest participants for shares and
commitments on inputs of its choosing. The adversary then outputs the evaluation input w, two coalitions
C,C ′, and two sets of commitments (Di)i∈C∩corrupt, (D

′
i)i∈C′∩corrupt.

The environment then derives the honest players’ shares and commitments on w, producing (dj , Dj)j∈honest.
After deriving the sets S1 ← (Di)i∈C∩corrupt ∪ (Di)i∈C∩honest and S2 ← (D′

i)i∈C′∩corrupt ∪ (Di)i∈C′∩honest, the
adversary loses if the verification algorithm outputs 0 on either set. If both sets verify, the adversary wins if
the corresponding commitments for each set are not equal.

We define uniqueness for a VPSS more formally in Definition 6.

Definition 6. Let the advantage of an adversary A playing the uniqueness game as defined in Figure 3 be as
follows:

14

ExpuqA,VPSS(λ, n, t, µ)

par← VPSS.Setup(1λ)

(corrupt, stA)←$ A(par, n, t, µ)
return ⊥ if |corrupt| ≥ t

honest← [n] \ corrupt
(sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ)

(w, out)←$ AOGen

((skj)j∈corrupt, stA)

(C, (Di)i∈C∩corrupt), (C
′, (D′

i)i∈C′∩corrupt)← out

(dj , Dj)← VPSS.Gen(j, skj , w), j ∈ honest

S1 ← (Di)i∈C∩corrupt ∪ (Di)i∈C∩honest

S2 ← (D′
i)i∈C′∩corrupt ∪ (Di)i∈C′∩honest

return 0 if VPSS.Verify(t, µ, C, S1) ̸= 1

return 0 if VPSS.Verify(t, µ, C′, S2) ̸= 1

D ← VPSS.Agg(t, µ, C, S1)

D′ ← VPSS.Agg(t, µ, C′, S2)

if D ̸= D′

return 1

return 0

OGen(k,wi)

// k denotes the participant identifier

(dk, Dk)← VPSS.Gen(k, skk, wi)

return (dk, Dk)

Fig. 3: Uniqueness game for a VPSS.

AdvunqA,VPSS(λ, n, t, µ) =
∣∣Pr[ExpuqA,VPSS(λ, n, t, µ) = 1]

∣∣
A VPSS VPSS is unique if for all PPT adversaries A, AdvunqA,VPSS is a negligible function of λ, for

n, t, µ ∈ N, t ≤ µ ≤ n.

Verifiability. Intuitively, a VPSS is verifiable if given a set of commitments to shares from a coalition of
participants, the verify algorithm will detect if some subset of players deviated from the protocol. We show
the VPSS verifiability experiment in Figure 4.

In the experiment, the adversary is allowed to query honest participants for shares and commitments on
inputs of its choosing. The adversary then outputs a coalition C, a VPSS input w, and a set of commitments
(Di)i∈C∩corrupt. The environment then follows the protocol, deriving both the corrupt and honest players’
commitments on w, and producing (D′

j)j∈C . The adversary loses if its output is identical to the honestly
derived commitments for the corrupted players. Then, the environment checks if the set of commitments
(Di)i∈C∩corrupt ∪ (D′

j)j∈C∩honest are valid with respect to C and w. If so, the adversary wins, otherwise, it
loses.

We define verifiability for a VPSS more formally in Definition 7.

Definition 7. Let the advantage of an adversary A playing the verifiability game as defined in Figure 4 be
as follows:

AdvverfA,VPSS(λ, n, t, µ) =
∣∣Pr[ExpverfA,VPSS(λ, n, t, µ) = 1]

∣∣
A VPSS VPSS is verifiable if for all PPT adversaries A, AdvverfA,VPSS is a negligible function of λ, for

n, t, µ ∈ N, t ≤ µ ≤ n.

15

ExpverfA,VPSS(λ, n, t, µ)

par← VPSS.Setup(1λ)

(corrupt, stA)←$ A(par, n, t, µ)
return ⊥ if |corrupt| ≥ t

honest← [n] \ corrupt
(sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ)

(w,C, (Dj)j∈C∩corrupt)←$ AOGen

((skj)j∈corrupt, stA)

for j ∈ C do

(d′j , D
′
j)← VPSS.Gen(j, skj , w)

if (Dj)j∈C∩corrupt = (D′
j)j∈C∩corrupt

return 0

// A must deviate from the protocol to win

S ← (Dk)k∈C∩corrupt ∪ (D′
j)j∈C∩honest

if VPSS.Verify(t, µ, C, S) = 1

return 1

return 0

OGen(k,wi)

// k denotes the participant id

(dk, Dk)← VPSS.Gen(k, skk, wi)

return (dk, Dk)

Fig. 4: Verifiability game for a VPSS.

Pseudorandom. Intuitively, a VPSS is pseudorandom if the adversary has negligible advantage distinguishing
between a real VPSS output from one that is randomly sampled. We show the VPSS pseudorandomness
experiment in Figure 5.

In the pseudorandomness experiment, the environment begins by picking a random bit b←$ {0, 1}. It then
performs key generation, and initializes the adversary with the public parameters and the corrupted parties
secret key shares.

The adversary is allowed to query OGen on honest participants for shares and commitments on inputs
of the adversary’s choosing. If b = 0, the environment responds by following the VPSS protocol. If b = 1,
the environment first checks to see if it has responded to the query before, replying with the response if
so. Otherwise, it uses a simulating algorithm SimGen to simulate generating honest players’ shares and
commitments. The details of SimGen depend on the specifics of the VPSS construction.

The adversary outputs (b′, w∗, C∗, {Dj}j∈corrupt), where b′ is the adversary’s guess for the value of b, and
(w∗, C∗, {Dj}j∈corrupt) corresponds to one of the sessions the adversary initiated with OGen.

If b = 1, the environment checks if (w∗, C∗, {Dj}j∈corrupt) corresponds to an existing session and is
consistent with the honest parties’ commitments, outputting a random coin if it does not. Otherwise, the
environment next checks that the aggregated commitment VPSS.Agg(t, µ, C∗, {Dk}k∈C∗) is equal to the
simulated commitment D for that session, if the check does not hold, the environment outputs 1.

Otherwise, the environment checks if the adversary’s guess b′ is equal to b; outputting 1 if the check holds,
otherwise, outputting 0.

We define pseudorandomness for a VPSS more formally in Definition 8.

Definition 8. Let the advantage of an adversary A playing the pseudorandomness game as defined in Figure 5
be as follows:

AdvpsdrA,VPSS(λ, n, t, µ) =
∣∣Pr[ExppsdrA,VPSS(λ, n, t, µ) = 1]− 1/2

∣∣
A VPSS VPSS is pseudorandom if for all PPT adversaries A, AdvpsdrA,VPSS is a negligible function of λ,

for n, t, µ ∈ N, t ≤ µ ≤ n.

16

ExppsdrA,VPSS(λ, n, t, µ)

b←$ {0, 1}
z ←$ {0, 1} // random coin for trivial losing conditions

Q← ∅

par← VPSS.Setup(1λ)

(corrupt, stA)←$ A(par, n, t, µ)
return ⊥ if |corrupt| ≥ t

honest← [n] \ corrupt
(sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ)

(b′, w∗, C∗, {Dj}j∈corrupt)←$ AOGen

((skj)j∈corrupt, stA)

if b = 1

return z if Q[w∗] = ⊥
(D, {Di}i∈honest)← Q[w∗]

if VPSS.Verify(t, µ, C∗, {Dk}k∈C∗) ̸= 1

return z

if VPSS.Agg(t, µ, C∗, {Dk}k∈C∗) ̸= D

return 1

return 1 if b
?
= b′

return 0

OGen(k,w)

// k denotes the participant identifier

return ⊥ if k ̸∈ honest

if b = 0

(dk, Dk)← VPSS.Gen(k, skk, w)

return (dk, Dk)

// b = 1 case

if Q[w] ̸= ⊥
(D, {(di, Di)}i∈honest)← Q[w]

else

d′ ←$ P
in← (w, d′, corrupt, n, (skj)j∈corrupt)

(D, {(di, Di)}i∈honest)← SimGen(in)

Q[w] = (D, {(di, Di)}i∈honest)

// SimGen is a simulating algorithm

// defined by the VPSS construction.

return (dk, Dk)

Fig. 5: Pseudorandomness game for a VPSS.

4.3 Shine, A Concrete Verifiable Pseudorandom Secret Sharing Scheme

We now define a concrete VPSS that we call Shine, that builds upon the pseudorandom secret sharing scheme
as defined by Cramer Damg̊ard, and Ishai [16]. However, Shine additionally defines a verify algorithm that is
publicly verifiable (assuming the authenticity of the inputs), as well as an algorithm to combine participant
commitments.

As a reminder, the pseudorandom secret sharing scheme by Cramer, Damg̊ard, and Ishai [16] itself builds
on replicated secret sharing [32]. However, Cramer et al. define a mechanism to non-interactively convert
shares of a replicated secret sharing scheme to shares of a Shamir-secret-shared value. They then show how
this mechanism can be used as a distributed pseudorandom function; i.e., given a replicated secret sharing of
a random value, participants can generate Shamir secret shares of an unbounded number of pseudorandom
values, without interaction.

We extend this pseudorandom secret sharing scheme by Cramer et al. and additionally define a public
verifiability mechanism. More specifically, we define a Verify function that uses the set of participants’
commitments to ensure all participants performed the evaluation step in a consistent manner. Such consistency
checks have been used in prior literature [6], but our check is performed over commitments to secret shares,
as opposed to verifying the shares directly. We prove that Shine is secure assuming a cryptographically secure
hash function, when at minimum 2t− 1 parties participate in evaluation and up to t− 1 participants are
corrupted (honest majority).

We now define Shine in more detail. We show KeyGen for Shine as a centralized operation, but this
operation can easily be decentralized. Shine is additionally defined with respect to a hash function H, where
H : Zq × {0, 1}∗ → Zq is a cryptographically secure hash function.

– Shine.Setup(1λ): Accepts as input the security parameter λ, outputs public parameters par = (G, q, g),
where (G, q, g) is generated by GroupGen. par is given as an implicit input to all other algorithms.

17

– Shine[H].KeyGen(n, t, µ)→ ⊥/(sk1, . . . , skn): On input the total number of participants n, the corruption
threshold t, and minimum number of participants µ, the dealer performs replicated secret sharing of a
random secret sk ∈ Zq [16], following the following steps:
1. First, the dealer checks if µ ≥ 2t− 1; if the check fails, output ⊥.
2. Let A be the set such that A =

(
[n]
t−1

)
, and let γ be the size of A; i.e, γ = |A| =

(
n

t−1

)
.

3. Generate γ secret shares {ϕi}i∈[γ], by sampling ϕi ←$ Zq, i ∈ [γ]. Implicitly, the secret sk is such that
sk =

∑
i∈γ ϕi.

4. Initialize empty sets sk1 = ∅, . . . , skn = ∅.
5. For each set ai ∈ A, i ∈ [γ] and each participant identifier j ∈ [n] \ ai, append skj ← skj ∪ {(ai, ϕi)}.

6. Output (sk1, . . . , skn). Each skj is a set of size δ =
(
n−1
t−1

)
, consisting of the tuples (ai, ϕi). Each ai is

itself a set, such that ai ⊂ [n] and |ai| = t− 1, where if ai ∈ skj , then j ̸∈ ai.

– Shine[H].Gen(k, skk, w)→ (dk, Dk): On input participant identifier k ∈ [n], secret key share skk, and input
w ∈ {0, 1}∗, perform the following steps:
1. Parse {(ai, ϕi)}i∈[δ] ← skk.

2. For each set ai, let L
′
ai
(x) be the degree t− 1 polynomial defined by the set ai, as given in Equation 3:

L′
ai
(x) =

∏
j∈ai

j − x

j
(3)

Note that L′
ai
(j) = 0 for all j ∈ ai and L′

ai
(0) = 1.

3. Obtain the share via Equation 4:

dk ←
∑
i∈[δ]

H(ϕi, w) · L′
ai
(k) (4)

Note that the L′
ai
(k) values can be precomputed by participant k, as they are independent of w, so

this step requires δ evaluations of H and δ multiplications and additions in Zq.

4. Derive the commitment to dk as Dk ← gdk .

5. Output (dk, Dk).

– Shine[H].Verify(t, µ, C, {Dj}j∈C)→ {0, 1}: Perform the following steps:
1. If |C| ̸≥ µ, return 0.

2. Otherwise, define B = (B0, B1, . . . , B|C|−1) to be the tuple of |C| commitments to coefficients of a
polynomial f defined “in the exponent,” where each Di, i ∈ C is a commitment to a point on the
same polynomial f . Each Bi can be derived via Equation 5:

Bi =
∏
j∈C

D
Lj,i

j (5)

where Lj,i is the coefficient of the ith term xi of the jth Lagrange polynomial Lj(x) for the coalition
C, as described in Section 3.1.

3. Let ℓ = |C| − t. The verifier now checks that all participants followed the protocol honestly, by
checking in the exponent that their shares lie on a polynomial of degree t − 1. In particular, the
verifier ensures that B is a commitment to a polynomial of degree at most t− 1,1 by checking the
last ℓ entries in B are equal to the identity of G:2

Bt−1+i = IG,∀ i ∈ [ℓ] (6)
1 When at least t parties follow the protocol honestly, their shares will completely define this polynomial.
2 As an optimization, note that B1, . . . , Bt−1 need not be computed.

18

4. If the check in Equation 6 holds, output 1, otherwise, output 0.

– Shine[H].Agg(t, µ, C, {Dj}j∈C)→ D: Accepts as input the corruption threshold t, minimum participants
µ, the coalition C, and set of (verified) commitments {Dj}j∈C). The commitments can be combined as
in Equation 7, where the coefficients λj are determined by the coalition C.

D ←
∏
j∈C

D
λj

j = B0 (7)

Output D.

– Shine[H].Recover(t, µ, C, {dj}j∈C)→ ⊥/(d,D): Receives as input the corruption threshold t, the minimum
number of participants µ, the coalition C, and the set of pseudorandom secret shares {dj}j∈C . Performs
the following steps:
1. If |C| < µ, or C ̸⊂ [n], output ⊥.
2. For each dj , j ∈ C, derive Dj ← gDj .

3. If Shine.Verify(t, µ, C, {Dj}j∈C) ̸= 1, then output ⊥.
4. Otherwise, the shares can be combined as in Equation 8, where the λj are determined by the coalition

C.
d←

∑
j∈C

dj · λj (8)

5. Derive the commitment to d as D ← gd.

6. Output (d,D).

Correctness. By correctness of pseudorandom secret sharing as defined by Cramer et al. [16], when key
generation is honestly performed, the Gen algorithm produces secret shares di = f(i) that are points on a
degree t − 1 Shamir secret sharing polynomial f(x) =

∑
i∈[γ] H(ϕi, w)L

′
ai
(x). The combined commitment

d =
∑

i∈C diλi for C ⊆ [n], |C| ≥ 2t − 1 is a commitment to a pseudorandom secret value d = f(0) =∑
i∈[γ] H(ϕi, w). Agg and Recover simply perform polynomial interpolation of these values with respect to

the set of participants, and so are likewise correct.
Verify is correct because honest parties output commitments Di = gf(i) for the degree t− 1 polynomial f

defined above. Therefore, if all parties are honest, the coefficients of xt, . . . , x|C|−1 of f(x) will be 0, so the
commitments Bt, . . . , B|C|−1 to those coefficients will be IG (the identity element of G), and so Verify will
output 1.

Security Shine is verifiable, unique, and pseudorandom. We give the corresponding proofs in Appendix B.

Theorem 1. Shine is information-theoretically verifiable, assuming the adversary controls at most t − 1
participants, at least t participants are honest, and participants exchange messages over an authenticated
channel.

Theorem 2. Shine is information-theoretically unique, assuming the adversary controls at most t − 1
participants, at least t participants are honest, and participants exchange messages over an authenticated
channel.

Theorem 3. Shine is pseudorandom in the Random Oracle Model, assuming the adversary controls at most
t− 1 participants, at least t participants are honest, Shine is verifiable, and where (n, t) ∈ N are such that(
n−1
t−1

)
= poly(n). Concretely,

AdvpsdrA,Shine(λ, n, t, µ) ≤ qh/q (9)

where qh is the number of times A is allowed to query H.

19

Setup(1λ)

1 : (G, q, g)← GroupGen(1λ)

2 : par← ((G, q, g),H1,H2,H3)

3 : return par

4 : // par is given implicitly

5 : // to all other algorithms

KeyGen(n, t, µ)

1 : // Performed by a trusted

2 : // dealer, or DKG

3 : if µ < 2t− 1 or µ > n

4 : return ⊥
5 : // Require ≥ 2t− 1 signers

6 : sk←$ Zq; pk← gsk

7 : {(i, sk(2)i)}ni=1 ←$ Shamir.Share(sk, n, t)

8 : (sk
(1)
i)ni=1 ←$ Shine[H1].KeyGen(n, t, µ)

9 : for i ∈ {1, . . . , n} do

10 : pk
(2)
i ← gsk

(2)
i

11 : ski ← (sk
(1)
i , sk

(2)
i , pk)

12 : pki ← (pk
(2)
i)

13 : return (pk, {(pki, ski)}i∈[n])

Sign1(k, skk,m)

1 : (sk
(1)
k , sk

(2)
k , pk)← skk

2 : yk ← H2(pk,m)

3 : (rk, Rk)← Shine[H1].Gen(k, sk
(1)
k , yk)

4 : return (yk, Rk)

Sign2(k, skk,m, C, {(yj , Rj)}j∈C)

1 : return ⊥ if |C| < 2t− 1

2 : (sk
(1)
k , sk

(2)
k , pk)← skk

3 : y′ ← H2(pk,m)

4 : for j ∈ C do

5 : if yj ̸= y′

6 : return ⊥
7 : (rk, R

′
k)

8 : ← Shine[H1].Gen(k, sk
(1)
k , y′)

9 : // Re-derive state from Sign1

10 : if k ̸∈ C or R′
k ̸∈ {Rj}j∈C

11 : return ⊥
12 : input← (t, µ, C, {Rj}j∈C)

13 : if Shine[H1].Verify(input) ̸= 1

14 : return ⊥
15 : R← Shine[H1].Agg(input)

16 : c← H3(R, pk,m)

17 : zk ← rk + c · sk(2)k

18 : return zk

Combine(pk,m, C, {(yj , Rj), zj}j∈C))

1 : input← (t, µ, C, {Rj}j∈C)

2 : R← Shine[H1].Agg(input)

3 : c← H3(R, pk,m)

4 : // λj are Lagrange

5 : // coefficients for C

6 : z ←
∑
j∈C

zjλj

7 : if gz ̸= R · pkc

8 : return ⊥
9 : return σ = (R, z)

Fig. 6: Arctic, a deterministic threshold Schnorr signature scheme. For security, Arctic requires that the
minimum number of signing parties µ ≤ n be at minimum µ ≥ 2t− 1, where t is the tolerated corruption
threshold. We further require that messages exchanged between participants are sent over an authenticated
channel. Arctic builds upon the verifiable pseudorandom secret sharing scheme Shine defined in Section 4.3,
as well as Shamir’s secret sharing. Verification of signatures is identical to the single-party Schnorr verification
algorithm.

20

5 Arctic, A Deterministic and Stateless Two-Round Threshold Schnorr
Signature Scheme

We now introduce Arctic, an efficient, two-round, deterministic threshold Schnorr signature scheme for
moderately sized groups of participants that does not require participants to keep state between rounds of
the signing protocol. As a building block, Arctic uses Shine to generate nonces deterministically, and to verify
that all other participants followed the protocol honestly. Arctic is secure assuming fewer than t participants
are corrupted, and at least µ participated in the signing protocol, where µ ≤ n but µ ≥ 2t− 1.

Remark 3 (Distributed Key Generation). The Arctic construction given in Figure 6 assumes a centralized key
generation procedure; however, using a distributed key generation (DKG) scheme is equally possible.

Remark 4 (Requirement of Authenticated Channels). We require that the messages exchanged between
participants in the Arctic construction shown in Figure 6 be sent over authenticated channels; i.e., messages
must be authenticated and verifiable as having come from their purported senders. Otherwise, an adversary
can simply pick contributions that are consistent with a single honest party’s Ri, which would result in a valid
input for Shine.Verify. Note that we do not assume the authenticated channel maintains any session identifiers
or state about messages; Arctic remains secure even if the adversary were to replay old authenticated messages.
However, if a participant receives an unauthenticated message, we require that the participant aborts.

5.1 The Construction.

We now give more detail for each stage in Arctic; see Figure 6 for a high-level overview.

Key Generation. All participants with identifiers i ∈ [n] begin by receiving a secret signing share sk
(2)
i

and a public signing share pk
(2)
i = gsk

(2)
i . In Figure 6, we show key generation as a centralized procedure, but

a DKG can likewise be used. Each sk
(2)
i is a t-of-n Shamir secret sharing of the group’s joint secret key sk;

participants use these keys for signing messages. Participants also receive the public signing keys {pk(2)i }i∈[n]

for all other participants.

In addition, each participant receives a secret Shine key sk
(1)
i generated by performing Shine.KeyGen.

Participants use these keys to generate nonces and commitments for each signing session.

Each participant’s public key share pki is just one public key, where pki = pk
(2)
i . Each participant’s secret

key share is the tuple ski = (sk
(1)
i , sk

(2)
i , pk).

Signing. In the first round of signing, each participant k receive as input a message m. First, each
party derives yk ← H2(pk,m). To generate their nonce rk and commitment Rk, each participant performs

(rk, Rk)←$ Shine.Gen(k, sk
(1)
k , yk). Each participant then outputs (yk, Rk); they do not need to keep any state.

In the second round of signing, all participants again receive as input a message m, as well as a set C
representing the indices of at least µ signers, where C ⊆ [n], |C| ≥ µ. Additionally, participants receive the list
of tuples {(yj , Rj)}j∈C . First, each party re-derives y′ ← H2(pk,m). Then, each party checks the consistency
of all other parties’ views of m by checking that for each i ∈ C, yi = y′. Because we require that each protocol
message is authenticated by its respective party, then this check guarantees that an adversarial player cannot
split the view of honest players by sending different messages or choices of coalitions. If any check fails, the
party aborts.

Otherwise, if all consistency checks succeed, each participant re-derives their nonce and commitment using

Shine, again performing (rk, R
′
k)←

$ Shine.Gen(k, sk
(1)
k , y′). Then, the participant checks its identifier is in the

coalition C and that R′
k is in the set of commitments (Rj)j∈C , aborting if either check does not hold. Then,

each participant verifies that all other participants followed the protocol to derive their commitment, by
checking Shine.Verify(t, µ, C, (Rj)j∈C). If the check fails, they abort the protocol.

Finally, if all of the above checks pass, each participant k ∈ C will then derive the group commitment
R← Shine.Agg(t, µ, C, {Rj}j∈C), and the challenge c← H3(R, pk,m). Finally, each participant derives their

signature share zk ← rk + c · sk(2)k . Each participant outputs zk as its output for Sign2.

21

Combination and Verification. To perform the Combine algorithm, the group commitment R is first derived
using values output by participants from Sign1. Then, the response z is derived by finding z ←

∑
j∈C zjλj ,

where the λj are the Lagrange coefficients for the set C. The output from Combine is the Schnorr signature
σ = (R, z), which can be verified using the single-party Schnorr verification algorithm given in Definition 1.

5.2 Security

Correctness. In the first round of signing, participants will output nonces and commitments (ri, Ri) ←
Shine.Gen(i, sk

(1)
i , yi), for i ∈ C, where yi ← H2(pk,m), and Ri = gri .

In the second round of signing, each participant receives the set of tuples {(yj , Rj)}j∈C . Because H2 is
correct, then after deriving y′ ← H2(pk,m), then the check that yj = y′ for each j ∈ C will succeed.

Because Shine is correct, then Shine.Verify(t, µ, C, {Rj}j∈C) will output 1 and the same group commitment

R =
∏

j∈C R
λj

j will be computed regardless of the choice of C. Because Shine.Gen is deterministic, then after

deriving y ← H2(pk,m), Shine.Gen(k, sk
(1)
k , y) will output the same (rk, Rk) as derived in the first round of

signing.
After deriving (rk, Rk), all signers in a coalition C output valid signature shares zk with respect to R

and challenge c = H3(pk, R,m), where zk = rk + c · sk(2)k . The aggregated signature is then σ = (R, z), where

z =
∑

j∈C zj · λj . Because sk =
∑

j∈C sk
(2)
j λj , pk = gsk = g

∑
j∈C sk

(2)
j λj , and R =

∏
j∈C R

λj

j = g
∑

j∈C rj ·λj , we
have that gz = R · pkc, as required.

Unforgeability. We next demonstrate the unforgeability of Arctic.

Theorem 4. Arctic is unforgeable against a PPT adversary A playing the static unforgeability game as
shown in Figure 2 against Arctic, assuming A can make up to t− 1 corruptions, the number of honest parties
is at least t, the discrete logarithm assumption holds in the ROM, participants exchange messages over an
authenticated channel, Shine is a secure VPSS, and where (n, t) ∈ N are such that

(
n−1
t−1

)
= poly(n).

Concretely, let AdvdlD(λ) be the advantage of an adversary D against the discrete logarithm assumption.
The advantage of A is bounded by

AdvufA,Arctic(λ, n, t, µ) ≤

√
qrAdv

dl
D(λ) +

2(q1 + q3)

q
+

3q2r
q

where µ ≥ 2t− 1 and n ≥ µ, and where qr = q2 + q3 + 2qs + 1, such that qs is the number of times A is
allowed to query the signing oracles, q1 is the number of times A is allowed to query H1, q2 is the number of
times that A is allowed to query H2, and q3 is the number of times A is allowed to query H3.

To prove Theorem 4, we rely on two lemmas.

Lemma 2. There exists an algorithm SIM which can simulate Arctic with respect to a discrete logarithm
challenge to an adversary A playing against the unforgeability game as in Figure 2. In other words, A has
negligible additional advantage in winning the unforgeability game when interacting with SIM that it does
when playing against Arctic directly.

Concretely, in the honest majority setting with authenticated channels, then

AdvufArctic,A(λ, n, t, µ) ≤ AdvufSIM,A(λ, n, t, µ) +
(q1 + q3)

q
+

q2r
2q

(10)

where µ ≥ 2t− 1 and n ≥ µ, and where (n, t) are such that
(
n−1
t−1

)
= poly(n).

Lemma 3. Given any PPT adversary A that wins the unforgeability game against Arctic and a simulating
algorithm SIM which can simulate Arctic, then there exists a PPT DL adversary D that can use A as a
subroutine to solve for its DL challenge.

22

Concretely, in the honest majority setting with authenticated channels,

AdvdlD(λ) ≥
AdvufA,Arctic(λ, n, t, µ)

2

qr
− 2(q1 + q3)

q
− 3q2r

q
(11)

where µ ≥ 2t− 1 and n ≥ µ, and qr = q2 + q3 + 2qs + 1, and where (n, t) ∈ N are such that
(
n−1
t−1

)
= poly(n).

We give the corresponding proofs for Theorem 4, Lemma 2, and Lemma 3 in Appendix C. We however
next give a high-level proof intuition.

Proof Intuition. We give the proof in two parts. First, Lemma 2 shows that a simulating PPT algorithm
SIM exists which can simulate Arctic to an unforgeability PPT adversary A with respect to a public key pk
for which SIM does not know the corresponding secret key. Recall that we give the unforgeability game in
Figure 2. We show that the advantage of A with respect to SIM is negligibly different than its advantage
against Arctic.

We prove Lemma 2 using a series of game hops, showing that because Shine is verifiable, unique, and
pseudorandom, then SIM can simulate a signing session for a message m chosen by A with respect to
pk. in a way that is indistinguishable to A from a real execution of the signing protocol. SIM does this
by sampling (z, c) uniformly at random in OSign1 , deriving R as R = gz · pk−c, and then programming
H3(R, pk,m) on c. Then, to simulate each honest party’s commitment Ri, i ∈ honest, SIM uses its knowledge

of corrupt parties’ Shine keys sk
(1)
j , j ∈ corrupt to derive corrupt parties’ nonces and commitments, by

performing (rj , Rj)← Shine.Gen(j, sk
(1)
j , y). SIM can then correctly derive each honest party’s commitment

Rk, k ∈ honest by performing polynomial interpolation in the exponent, with respect to R and the set
(Rj)j∈corrupt.

Because Shine is verifiable, if A submits commitments (R′
j)j∈C∩corrupt ̸= (Rj)j∈C∩corrupt to OSign2 , SIM

will output ⊥ with the same probability as in the real scheme. Because Shine is unique, then R is fixed with
respect to y ← H2(pk,m), regardless of A’s choice of coalition in the second round. Finally, because Shine

is pseudorandom, then unless A can guess ϕ̂, where ϕ̂ is an honest party’s portion of the replicated secret
defined in Shine.KeyGen, then SIM can simulate each honest party’s Ri, i ∈ honest with negligible advantage
to A. We show that in order for A to break the pseudorandomness of Shine, it must guess a preimage of H1,
which it can do with negligible advantage less than q1/q, where q1 is the number of queries A is allowed to
make to H1.

If A wins the unforgeability experiment against Arctic, A will output a forgery σ∗ = (R∗, z∗) corresponding
to a message m∗ that is valid under a challenge public key pk. Lemma 3 shows that given a successful PPT
adversary A, a PPT reduction D exists against the Discrete Logarithm assumption. In particular, we show
that D can use A and SIM to solve for its discrete logarithm challenge. D accepts a group element Y ∈ G
from its discrete logarithm challenger, and its goal is to output y such that Y = gy. It uses the modified
forking algorithm ForkSIMm (X) shown in Figure 1 on the instance X = (par, Y, n, t, µ), where n, t, µ are chosen
by D. Forkm runs SIM twice, the first time on X and the set {h1, . . . , hqr}, which is the set of random oracle
outputs that SIM will use to program its random oracle. On the second execution of SIM, SIM is again given
X and the set {h1, . . . , hj−1, h

′
j , . . . , h

′
qr}, where hj corresponds to the challenge c∗ = H(R∗, pk,m∗) for the

forgery σ∗ output by A in its first execution. Corollary 1 lower-bounds the probability that A will output a
second forgery σ∗∗ = (R∗, z∗∗) on the same random oracle query c∗∗ = H(R∗, pk,m∗) as in its first iteration,
where the programmed outputs c∗ = hj , c

∗∗ = h′
j are such that c∗ ̸= c∗∗. D can use the two forgeries output

by A in its first and second execution to then solve for the discrete logarithm solution y = z∗−z∗∗

c∗−c∗∗ .

5.3 Extending Arctic and Shine to be Robust

Arctic as currently defined is not robust; if any party submits invalid commitments, then the output from
Shine.Agg cannot be used. However, it is possible to extend Shine to be robust, therefore also ensuring that
Arctic can likewise be extended. To do so in a secure manner, the robust extension would require additional
players, along with a protocol to come to consensus about which players misbehaved.

23

5 10 15 20 25

100

101

102

103

t = 3

t = 5

t = 6

t = 7

t = 8

t = 9

t = 11

MuSig-DN

Number of parties (|C| = n)

W
al
l
cl
o
ck

ti
m
e
(m

s)

(a) Single-core wall clock time for various parameter combinations
for Arctic. The times shown are the sum of the computation times
for Sign1, Sign2, and Combine. The computation time for MuSig-
DN is shown for comparison.

1 2 4 8 16 32

102

103

40-core 2.3 GHz

4-core 3.7 GHz

Number of cores

W
al
l
cl
o
ck

ti
m
e
(m

s)

(b) Scaling experiment, showing the wall clock
time for the largest configuration (n, |C|, t) =
(25, 25, 11) shown in Figure 7a as we increase
the number of CPU cores.

Fig. 7: Experimental results for Arctic

In particular, by requiring that the minimum number of participants µ be of size at least µ ≥ 3t − 2,
Shine and Arctic can be securely used in a robust manner. The requirement that µ ≥ 3t − 2 is referred
to as the honest supermajority setting. In this setting, Shine.Verify can both detect any inconsistencies as
well as identify the misbehaving players. This property could likewise allow for extending Arctic to support
robustness, under the same assumption that µ ≥ 3t− 2.

We present more details on how robustness could be achieved in Appendix D.

6 Performance Analysis of Arctic

In this section, we analyze the performance of Arctic. In terms of the number of rounds of communication,
Arctic matches the state of the art, with two, and it sends significantly less bandwidth per signature, at 65
bytes per participant. Therefore, we focus on the computational complexity.

There are two sources of potentially expensive computation: the two calls to Shine.Gen (one in each of
Sign1 and Sign2), and the call to Shine.Verify in Sign2. Which one dominates depends on the parameters n, t,
and the number of participants in the signing protocol. Recall that C is a set representing the identifiers
of participants in a particular signing session. Although the minimum number of participants required for
signing is |C| ≥ µ ≥ 2t− 1, we assume |C| = n for this analysis, to give an upper performance bound. As
such, performance will be even better when µ ≤ |C| < n.

Shine.Gen primarily performs δ =
(
n−1
t−1

)
hash computations, field multiplications, and field additions, as

seen in Equation 4 (recalling that the L′
ai
(k) values can be precomputed). Shine.Verify computes ℓ = |C| − t,

|C|-way multiexponentiations. When t is small, we expect the Shine.Verify cost to dominate, and for larger t,
the Shine.Gen cost should dominate.

To concretely evaluate the performance of Arctic, we implemented it in Rust.3 We ran our implementation
over all allowable combinations of parameters t ≥ 2, 2t − 1 ≤ |C| ≤ n ≤ 25, using a 4-core 3.7GHz Intel
E-2374G CPU. We measured the computation time for each of Sign1, Sign2, and Combine, averaged over
10 signatures, for each parameter combination. In Figure 7a, we show the (single-core) total runtime of
Sign1, Sign2, and Combine for various combinations of parameters. We concretely measure Shine.Gen to take

3 Our code is available at https://git-crysp.uwaterloo.ca/iang/arctic/.

24

https://git-crysp.uwaterloo.ca/iang/arctic/

around 0.24δ microseconds for each of its two invocations, and Shine.Verify to take around 7ℓ|C| microseconds.
For t ≤ 4, the latter dominates, for t = 5, they are roughly comparable, and for t ≥ 6, the former quickly
dominates.

For comparison, we also show the computational time for MuSig-DN, but only the zero-knowledge proof
and verification components of their algorithm. We ran their code [43] on our same machine to obtain these
figures. We can see that for n ≤ 20, Arctic is more than an order of magnitude faster than MuSig-DN, and
for n ≤ 10, it is three orders of magnitude faster.

As seen in Figure 7a, the computation time for the (n, |C|, t) = (25, 25, 11) parameter combination, where
δ =

(
24
10

)
= 1961256 is around 940ms, almost all of which is spent in Shine.Gen computing Equation 4.

However, we observe that Equation 4 computes the sum of δ independent terms, and so is highly amenable
to parallelization, which we also implemented and measured. We ran this scaling experiment both on the
above machine, and also on a 40-core 2.3GHz Intel 8380 CPU. The results are shown in Figure 7b. Although
the slower clock speed of the 40-core CPU puts it at a disadvantage for smaller numbers of cores, we can see
almost linear scaling for both CPUs. Using all 4 cores, the 4-core CPU sees a speedup of 3.69× for Shine.Gen
and 3.65× in total time, while using 32 cores, the 40-core CPU sees a speedup of 27.9× for Shine.Gen and
25.7× in total time. Beyond 32 cores, we observed diminishing returns.

7 Conclusion

In this work, we presented Arctic, a deterministic and stateless threshold Schnorr signature scheme for the
honest majority setting. By not requiring zero-knowledge proofs of verifiable random functions, Arctic is
simpler than previous deterministic threshold Schnorr schemes, and for small to moderate sized groups of
signers, Arctic is one to three orders of magnitude faster.

References

1. T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Weinstein.
Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 843–862.
IEEE Computer Society, 2017. doi:10.1109/SP.2017.15.

2. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, Advances in
Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.
doi:10.1007/3-540-46766-1_34.

3. M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better than advertised security for
non-interactive threshold signatures. In Y. Dodis and T. Shrimpton, editors, CRYPTO 2022, volume 13510 of
LNCS, pages 517–550. Springer, 2022.

4. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In A. Juels,
R. N. Wright, and S. D. C. di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pages 390–399.
ACM, 2006.

5. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, volume 4004 of Lecture
Notes in Computer Science, pages 409–426. Springer, 2006. doi:10.1007/11761679_25.

6. F. Benhamouda, E. Boyle, N. Gilboa, S. Halevi, Y. Ishai, and A. Nof. Generalized pseudorandom secret sharing
and efficient straggler-resilient secure computation. In K. Nissim and B. Waters, editors, Theory of Cryptography
- 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, volume 13043 of LNCS,
pages 129–161. Springer, 2021. doi:10.1007/978-3-030-90453-1_5.

7. F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security of ROS. In A. Canteaut and
F. Standaert, editors, EUROCRYPT 2021, Zagreb, Croatia, October 17-21, 2021, volume 12696 of LNCS, pages
33–53. Springer, 2021.

25

https://doi.org/10.1109/SP.2017.15
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-90453-1_5

8. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group
signature scheme. In Y. Desmedt, editor, PKC 2003, Miami, FL, USA, January 6-8, 2003, volume 2567 of LNCS,
pages 31–46. Springer, 2003.

9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptol., 17(4):297–319, 2004.
10. C. Bonte, N. P. Smart, and T. Tanguy. Thresholdizing HashEdDSA: MPC to the Rescue. Int. J. Inf. Sec.,

20(6):879–894, 2021. doi:10.1007/s10207-021-00539-6.
11. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom correlation generators

from ring-lpn. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, volume 12171 of Lecture Notes in
Computer Science, pages 387–416. Springer, 2020. doi:10.1007/978-3-030-56880-1_14.

12. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 315–334. IEEE Computer Society, 2018. doi:10.1109/SP.2018.00020.

13. R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-interactive, proactive, threshold
ECDSA with identifiable aborts. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, November 9-13, 2020,
pages 1769–1787. ACM, 2020.

14. H. Chu, P. Gerhart, T. Ruffing, and D. Schröder. Practical schnorr threshold signatures without the algebraic group
model. In H. Handschuh and A. Lysyanskaya, editors, CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, volume 14081 of LNCS, pages 743–773.
Springer, 2023. doi:10.1007/978-3-031-38557-5_24.

15. D. Connolly, C. Komlo, I. Goldberg, and C. Wood. Two-round threshold Schnorr signatures with FROST, 2022.
URL: https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/.

16. R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-sharing and applications to secure
computation. In J. Kilian, editor, Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Computer Science,
pages 342–362. Springer, 2005. doi:10.1007/978-3-540-30576-7_19.

17. E. C. Crites, C. Komlo, and M. Maller. Fully adaptive schnorr threshold signatures. In H. Handschuh and
A. Lysyanskaya, editors, CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20-24, 2023, volume 14081 of LNCS, pages 678–709. Springer, 2023. doi:

10.1007/978-3-031-38557-5_22.
18. I. Damg̊ard, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergaard. Fast threshold ECDSA with honest

majority. J. Comput. Secur., 30(1):167–196, 2022. doi:10.3233/JCS-200112.
19. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Y. Desmedt, editor, Public Key

Cryptography - PKC 2003, 6th International Workshop on Theory and Practice in Public Key Cryptography,
Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2003. doi:10.1007/3-540-36288-6_1.

20. M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the security of two-round
multi-signatures. In SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1084–1101. IEEE, 2019.

21. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In A. M. Odlyzko, editor, CRYPTO 1986, Santa Barbara, California, USA, 1986, volume 263 of LNCS, pages
186–194. Springer, 1986.

22. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, 2005.

23. D. Galindo, J. Liu, M. Ordean, and J. Wong. Fully distributed verifiable random functions and their application
to decentralised random beacons. In IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna,
Austria, September 6-10, 2021, pages 88–102. IEEE, 2021. URL: https://doi.org/10.1109/EuroSP51992.2021.00017,
doi:10.1109/EUROSP51992.2021.00017.

24. F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko. Threshold schnorr with stateless deterministic signing
from standard assumptions. In T. Malkin and C. Peikert, editors, CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, volume 12825 of LNCS, pages 127–156.
Springer, 2021. doi:10.1007/978-3-030-84242-0_6.

25. R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1179–1194. ACM,
2018.

26. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In U. M. Maurer,
editor, Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory and Application

26

https://doi.org/10.1007/s10207-021-00539-6
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-031-38557-5_24
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.3233/JCS-200112
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1109/EUROSP51992.2021.00017
https://doi.org/10.1007/978-3-030-84242-0_6

of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in
Computer Science, pages 354–371. Springer, 1996. doi:10.1007/3-540-68339-9_31.

27. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. Inf. Comput., 164(1):54–84,
2001.

28. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log based
cryptosystems. J. Cryptol., 20(1):51–83, 2007.

29. R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing of RSA functions. J. Cryptol.,
20(3):393, 2007.

30. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2):281–308, 1988.

31. C. Hazay, P. Scholl, and E. Soria-Vazquez. Low cost constant round MPC combining BMR and oblivious transfer.
In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, volume 10624 of
LNCS, pages 598–628. Springer, 2017. doi:10.1007/978-3-319-70694-8_21.

32. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure. Electronics
and Communications in Japan (Part III: Fundamental Electronic Science), 72(9):56–64, 1989. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906, arXiv:https://onlinelibrary.wiley.com/doi/pdf/
10.1002/ecjc.4430720906, doi:https://doi.org/10.1002/ecjc.4430720906.

33. S. Jarecki, H. Krawczyk, and J. Resch. Threshold partially-oblivious PRFs with applications to key management.
2018. URL: https://eprint.iacr.org/2018/733.

34. M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In A. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 955–966. ACM, 2013.
doi:10.1145/2508859.2516662.

35. C. Komlo and I. Goldberg. FROST: flexible round-optimized Schnorr threshold signatures. In O. Dunkelman,
M. J. J. Jr., and C. O’Flynn, editors, Selected Areas in Cryptography - SAC 2020, volume 12804 of LNCS, pages
34–65. Springer, 2020. doi:10.1007/978-3-030-81652-0_2.

36. Y. Kondi. Personal communication, 2024.
37. Y. Kondi, C. Orlandi, and L. Roy. Two-round stateless deterministic two-party schnorr signatures from pseu-

dorandom correlation functions. In H. Handschuh and A. Lysyanskaya, editors, CRYPTO 2023 - 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, volume 14081
of Lecture Notes in Computer Science, pages 646–677. Springer, 2023. doi:10.1007/978-3-031-38557-5_21.

38. Y. Lindell. Simple three-round multiparty Schnorr signing with full simulatability. Cryptology ePrint Archive,
Report 2022/374, 2022. https://ia.cr/2022/374.

39. N. Makriyannis. On the classic protocol for mpc schnorr signatures. Cryptology ePrint Archive, Paper 2022/1332,
2022. https://eprint.iacr.org/2022/1332. URL: https://eprint.iacr.org/2022/1332.

40. N. Makriyannis, O. Yomtov, and A. Galansky. Practical Key-Extraction Attacks in Leading MPC Wallets.
Cryptology ePrint Archive, Paper 2023/1234, 2023. URL: https://eprint.iacr.org/2023/1234.

41. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th Annual Symposium on Foundations
of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 120–130. IEEE Computer
Society, 1999. doi:10.1109/SFFCS.1999.814584.

42. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and kdcs. In J. Stern, editor,
EUROCRYPT ’99, volume 1592 of LNCS, pages 327–346. Springer, 1999.

43. J. Nick. Switch bulletproof example to purify. https://github.com/jonasnick/secp256k1-zkp/blob/bulletproof-
musig-dn-benches/examples/bulletproof.c, 2020.

44. J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr Multi-Signatures with Verifiably Deterministic
Nonces. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November 9-13, 2020, pages 1717–1731. ACM,
2020. doi:10.1145/3372297.3417236.

45. C. Orlandi, P. Scholl, and S. Yakoubov. The rise of paillier: Homomorphic secret sharing and public-key silent OT.
In A. Canteaut and F. Standaert, editors, EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, volume
12696 of LNCS, pages 678–708. Springer, 2021. doi:10.1007/978-3-030-77870-5_24.

46. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. M. Maurer, editor, Advances in
Cryptology - EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer Science,
pages 387–398. Springer, 1996. doi:10.1007/3-540-68339-9_33.

27

https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/978-3-319-70694-8_21
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecjc.4430720906
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecjc.4430720906
https://doi.org/https://doi.org/10.1002/ecjc.4430720906
https://eprint.iacr.org/2018/733
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-031-38557-5_21
https://ia.cr/2022/374
https://eprint.iacr.org/2022/1332
https://eprint.iacr.org/2022/1332
https://eprint.iacr.org/2023/1234
https://doi.org/10.1109/SFFCS.1999.814584
https://github.com/jonasnick/secp256k1-zkp/blob/bulletproof-musig-dn-benches/examples/bulletproof.c
https://github.com/jonasnick/secp256k1-zkp/blob/bulletproof-musig-dn-benches/examples/bulletproof.c
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/3-540-68339-9_33

47. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J. Cryptol.,
13(3):361–396, 2000.

48. T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine reset vulnerabilities and
hedging deployed cryptography. In Proceedings of the Network and Distributed System Security Sympo-
sium, NDSS 2010, San Diego, California, USA, 28th February - 3rd March 2010. The Internet Society,
2010. URL: https://www.ndss-symposium.org/ndss2010/when-good-randomness-goes-bad-virtual-machine-reset-
vulnerabilities-and-hedging-deployed.

49. T. Ruffing, V. Ronge, E. Jin, J. Schneider-Bensch, and D. Schröder. ROAST: robust asynchronous schnorr
threshold signatures. In H. Yin, A. Stavrou, C. Cremers, and E. Shi, editors, Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November
7-11, 2022, pages 2551–2564. ACM, 2022. doi:10.1145/3548606.3560583.

50. C. Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174, 1991.
51. C. Schnorr. Enhancing the security of perfect blind dl-signatures. Inf. Sci., 176(10):1305–1320, 2006. URL:

https://doi.org/10.1016/j.ins.2005.04.007, doi:10.1016/J.INS.2005.04.007.
52. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
53. D. R. Stinson and R. Strobl. Provably secure distributed schnorr signatures and a (t, n) threshold scheme for

implicit certificates. In V. Varadharajan and Y. Mu, editors, ACISP 2001, Sydney, Australia, July 11-13, 2001,
volume 2119 of LNCS, pages 417–434. Springer, 2001.

28

https://www.ndss-symposium.org/ndss2010/when-good-randomness-goes-bad-virtual-machine-reset-vulnerabilities-and-hedging-deployed
https://www.ndss-symposium.org/ndss2010/when-good-randomness-goes-bad-virtual-machine-reset-vulnerabilities-and-hedging-deployed
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1016/j.ins.2005.04.007
https://doi.org/10.1016/J.INS.2005.04.007

A Additional Performance Estimates

Here, we expand on our performance estimates given in Table 1. We do not give exact computation estimates,
but instead give estimates for computation that dominate. For bandwidth, we estimate for a 256-bit elliptic
curve, and so estimate scalers as 32 bytes and group elements as 33 bytes.

MuSig-DN [44]. Nick et al. [44] present the proof size as 1124 bytes, which agrees with our measurements.
Further, each participant sends one group element in round one, and outputs one field element in round three,
yielding the total of 1189 bytes we report in Table 1.

While Nick et al. give total computational overhead for MuSig-DN for a 256-bit curve, we give more detail
as to computation that dominates when performing signing operations.

The computational overhead of MuSig-DN is dominated by the cost of generating and verifying Bullet-
proof [12] proofs. For each signing operation, each participant must generate one proof and verify (n− 1)
other proofs. While the computational overhead of Bulletproofs scales linearly relative to the size of the
circuit, batch verification and multi-scalar multiplication allow for improved performance.

Proofs in MuSig-DN require a circuit of 2030 multiplication gates [44], and estimates are given with
respect to a 256-bit elliptic curve group. Naively, this overhead would translate into roughly 2030n operations
for each signer, due to the requirement that each signer generates a proof and verifies n− 1 other proofs.

However, when considering speedups offered by multi-scalar multiplications and batch verification, the
overhead for a signer becomes roughly 2030 operations, plus additional (small) terms linear in n. When
generating a MuSig-DN proof using Bulletproofs, we estimate that the dominant computational overhead is
roughly 6 · 2030 multi-scalar multiplications, to commit to the circuit constraints and additional factors. For
batch verifying n− 1 MuSig-DN proofs, we estimate the dominant computational overhead to the verifier is
2030 + 24(n− 1) scalar multiplications.

GKMN21 [24]. Garillot et al. [24] give computational and bandwidth estimates for a single sender and
receiver, but each player will be involved in t− 1 concurrent sending and receiving sessions with all other
players. As such, the estimate we give in Table 1 is for the total sending and receiving overhead for each
signer in a signing session with t participants.

Arctic. For bandwidth, each party sends one group element and one field element as the output to the first
signing query, and then outputs a single field element in the second signing round.

For computation, each party performs Shine.Gen once for each signing round, resulting in
(
n−1
t−1

)
field and

hash operations, and one group multiplication, for each execution. In the second round of signing, each party
performs Shine.Gen again, for another

(
n−1
t−1

)
field and hash operations, and one group multiplication, and

also Shine.Verify and Shine.Agg, which require 2t2 − t group multiplications.

B Security of Shine

We define the security of Shine in Section 4.3; we give the corresponding proofs here.

Proof (Of Theorem 1). Recall that in the verifiability game, the adversary is required to provide an input w,
a coalition C ⊆ [n], and a set (Di)i∈C∩corrupt, such that (Di)i∈C∩corrupt does not equal the set (D′

i)i∈C∩corrupt,
where (d′i, D

′
i) ← Shine.Gen(i, ski, w) is obtained honestly. The environment derives the values (dj , Dj) ←

Shine.Gen(j, skj , w), j ∈ C ∩ honest for honest participants, reflecting the requirement that participants’
messages are received over authenticated channels. The adversary wins when Shine.Verify(t, µ, C, S) outputs
1, where S = (Dj)j∈C .

For Shine.Verify(t, µ, C, S) to output 1, then Equation 6 must hold. But for Equation 6 to hold, then
(Dj)j∈C must define a degree t − 1 polynomial in the exponent. However, this polynomial is information-
theoretically defined by the set of honest participant commitments (Dj)j∈C∩honest, because we assume
|honest| ≥ t, and a degree t− 1 polynomial is uniquely defined by t points.

Hence, when corrupted participants do not honestly follow the protocol, then the resulting polynomial
committed to in S will be of higher degree than t−1. As such, Shine is information-theoretically verifiable. ⊓⊔

29

SimGen(w, d, corrupt, n, {skj}j∈corrupt)

D ← gd

(dj , Dj)← Shine.Gen(j, skj , w), for j ∈ corrupt

// This step is possible because Shine is verifiable,

// and so it is guaranteed that the correct (dj , Dj), j ∈ corrupt are derived

Define f(x) = d · L0(x) +
∑

j∈corrupt

dj · Lj(x)

// Li(x) is the Lagrange polynomial defined by corrupt ∪ {0}
honest = [n] \ corrupt
for i ∈ honest do

Derive di ← f(i)

Di ← gdi

return (D, {(di, Di)}i∈honest)

Fig. 8: Simulating algorithm SimGen for Shine.

Proof (Of Theorem 2). In the uniqueness game given in Figure 3, the adversary is required to provide an
input w and the tuples (C, (Di)i∈C∩corrupt), (C

′, (D′
i)i∈C′∩corrupt). The environment then derives honest parties’

contributions (Dj)← Shine.Gen(j, skj , w), again reflecting the authenticated channel, and the environment
derives the commitment sets S1 = (Dj)j∈C∩honest ∪ (Di)i∈C∩corrupt and S2 = (Dj)j∈C′∩honest ∪ (D′

i)i∈C′∩corrupt.
The adversary wins if both sets are valid for their respective coalitions, and yet the output of Shine.Agg
outputs different combined commitments.

However, for Shine.Verify(C, S1) and Shine.Verify(C ′, S2) to both output 1, then Equation 6 must hold.
But for Equation 6 to hold, then S1 and S2 must each define a degree t− 1 polynomial. Further, because we
assume at least t honest participants, then S1 and S2 must agree on at minimum t points.

As such, when both Shine.Verify(C, S1) and Shine.Verify(C, S2) both output 1, then the sets S1 and S2 must
define the same degree t− 1 polynomial. Because Shine.Agg simply performs polynomial interpolation in the
exponent to output the commitment to the constant term of the polynomial, then information-theoretically,
it must be the case that Shine.Agg(S1) = Shine.Agg(S2). Therefore, uniqueness likewise holds information-
theoretically for Shine. ⊓⊔

Proof (Of Theorem 3). We prove Theorem 3 by a sequence of games.

Game 0. This is the peudorandomness game as defined in Figure 5 instantiated with Shine, when b = 0. Let
W0 be the event that A outputs b′ = 1 in Game 0.

Game 1. Let skcorrupt = ∪i∈corruptski, and let skhonest = ∪j∈honestskj . Then skhonest \ skcorrupt is necessarily

non-empty, so let ϕ̂ be such that (·, ϕ̂) ∈ skhonest \ skcorrupt.
Note that this ϕ̂ will be random in Zq and unknown to A. Then the only difference between Game 0 and

Game 1 is that if A queries H on any input (ϕ̂, ·), the environment aborts.

Difference between Game 1 and Game 0. When A is allowed to make up to qh queries to H, then the
probability the environment aborts is at most qh/q. Let W1 be the event that A outputs b′ = 1 in Game 1.
Then

|Pr[W1]− Pr[W0]| ≤
qh
q

(12)

30

Game 2. This is the pseudorandomness game as in Figure 5, when b = 1, and where SimGen is as shown in
Figure 8, along with the abort condition of Game 1.

On start, the environment initializes a table Q← ∅. Then, when A queries OGen on input (k,w), instead
of performing Shine.Gen honestly, the environment first checks if Q[w] ̸= ⊥; if the check holds, it parses
(D, {(di, Di)}i∈honest)← Q[w] and returns (dk, Dk).

Otherwise, the environment samples d←$ P , and then obtains (D, {(di, Di)}i∈honest)← SimGen(w, d, corrupt, n,
{skj}j∈corrupt), where SimGen is defined as in Figure 8. Note that SimGen requires that Shine to be verifiable,
and hence that |honest| ≥ t. The environment updates Q[w] = (D, {(di, Di)}i∈honest), and then returns
(dk, Dk).

Analysis of SimGen Because Game 1 aborts on the condition that the adversary guesses the honest
participants’ secret key, in Game 2, the adversary must win with knowledge of only t− 1 secret keys. However,
because we assume that the number of honest parties is at least t, then the honest parties will completely
determine the combined d.

Furthermore, because Shine is verifiable, then SimGen can derive the corrupt parties’ contributions
(dj , Dj), j ∈ corrupt before it determines honest parties’ contributions. As such, corrupt parties cannot adap-
tively choose their contributions after the fact to influence the resulting D ← Shine.Combine(t, µ, {Di}i∈C∗).
Hence, the simulation by SimGen is perfect.

Difference between Game 2 and Game 1. In Game 1, OGen(k,C,w) returns (f(k), gf(k)) where f(x) =∑
i∈[δ] H(ϕi, w) · L′

ai
(x) defined as in Equation 4. Since H(ϕ̂, w) is unknown to A, f(x) is a random degree-

(t− 1) polynomial that passes through (j, yj)j∈corrupt.

In Game 2, OGen(k,C,w) returns (f(k), gf(k)), where f(x) = d · L0(x) +
∑

j∈corrupt dj · Lj(x). Since d is
random, this is also a random degree-(t− 1) polynomial that passes through (j, yj)j∈corrupt.

There is no difference between the distributions of these outputs. Let W2 be the event that A outputs
b′ = 1 in Game 2. Then

|Pr[W2]− Pr[W1]| = 0 (13)

Game 3. Game 3 is identical to Figure 5 instantiated with Shine, when b = 1.

Difference between Game 3 and Game 2. The only difference between Game 3 and Game 2 is that Game 2
has the abort condition, but Game 3 does not. Let W3 be the event that A outputs b′ = 1 in Game 3. Then
as above,

|Pr[W3]− Pr[W2]| ≤
qh
q

(14)

Finishing the Proof. Combining Equations 12–14 yields

AdvpsdrA,Shine(λ, n, t, µ) =
∣∣Pr[ExppsdrA,Shine(λ, n, t, µ) = 1]− 1/2

∣∣
=

∣∣Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]− 1/2
∣∣

=

∣∣∣∣12(1− Pr[W0]) +
1

2
Pr[W3]−

1

2

∣∣∣∣
=

∣∣∣∣12(Pr[W3]− Pr[W0])

∣∣∣∣ ≤ qh
q
,

which gives Equation 9. This completes the proof. ⊓⊔

31

C Security of Arctic

In Section 5.2, we present Theorem 4 to demonstrate the unforgeability of Arctic, and Lemma 2 and Lemma 3
to support the result. We give the corresponding proofs now.

Proof (Of Lemma 2). We prove Lemma 2 by a sequence of games.

Game 0. This is the unforgeability game as defined in Figure 2, instantiated with Arctic. Let A be an
adversary playing against the unforgeability game.

Let W0 be the event that A wins Game 0. Then, the advantage of A is simply

AdvufArctic,A(λ) = Pr[W0] (15)

Game 1. The only difference between Game 0 and Game 1 is as follows. If A queries H2 or H3 on any input
that produces a colliding output with another query, then the environment aborts.

Difference between Game 1 and Game 0. Let W1 be the event that A wins Game 1. Because we model H2

and H3 as random oracles, then

|Pr[W1]− Pr[W0]| ≤
q2r
2q

(16)

Game 2. The only difference between Game 2 and Game 1 is as follows. If A queries OSign2 on an input
(k,m, C, S1) where S1 = (yi, Ri)i∈C , such that the following relation holds:

y ← H2(pk,m); y = yi, i ∈ C, and

|C ∩ honest| ≥ t,

Shine.Gen(i, sk
(1)
i , y) = (r′i, R

′
i) ∀i ∈ C and

Shine.Verify(t, µ, C, (Rj)j∈C) = 1, but

S1 ̸=(yi, R
′
i)i∈C

(17)

then the environment aborts.

Reduction to Verifiability of Shine. We now define a reduction B2 that uses A as a subroutine when it plays
against the verifiability game of Shine.

To begin, B2 receives as input from the VPSS verifiability game as shown in Figure 4 the set of Shine

secret keys (sk
(1)
i)i∈corrupt. It honestly follows the protocol to generate signing key material, and then sets

ski ← (sk
(1)
i , sk

(2)
i , pk) for all i ∈ corrupt. It then outputs to the adversary A the key material (pk, (pkj)j∈[n],

(ski)i∈corrupt).
To simulate signing, when A queries OSign1 on input (k,m), B2 derives y ← H2(pk,m) honestly. B2 then

queries its own VPSS verifiability oracle OGen on (k, y) receiving (dk, Dk) as the output. It sets Rk = Dk,
and outputs (y,Rk).

When A queries OSign2 on input (k,m, C, (yj , R
′
j)j∈C), B2 first performs Shine.Verify on the inputs,

outputting ⊥ if the input is invalid. Otherwise, B2 then derives y ← H2(pk,m) honestly.
B2 then derives each corrupted party’s nonce and commitment honestly, by performing (r′i, R

′
i) ←

Shine.Gen(i, sk
(1)
i , y), for i ∈ corrupt ∩ C. If any (Ri ̸= R′

i), for i ∈ corrupt ∩ C, then B2 terminates the
execution of A. B2 then submits (y, C, (Ri)i∈corrupt∩C) as its own output to the VPSS verifiability experiment.

Otherwise, B2 simply simulates by querying OGen for each honest party honest∩C on input y, to re-derive
(rj , Rj) for j ∈ honest ∩ C . B2 then follows the remainder of the protocol honestly, outputting its signature
share zk.

The simulation by B2 is perfect because the simulation by the VPSS oracle OGen is perfect. Further, the
early termination of A has no consequence on the indistinguishability of the simulation.

32

Difference between Game 2 and Game 1. The additional advantage to A in Game 2 is upper-bounded by the
advantage that B2 wins its VPSS verifiability game against Shine. Let W2 be the event that A wins in Game 2,
and let AdvverfB2,Shine be the advantage that B2 has in the verifiability experiment against Shine. Because Shine
is information-theoretically verifiable in the honest majority setting, and Arctic likewise assumes an honest
majority then

|Pr[W2]− Pr[W1]| ≤ AdvverfB2,Shine = 0 (18)

Game 3. The only difference between Game 2 and Game 3 is as follows. If A queries OSign2 on the inputs
(m, C, S) and (m, C ′, S′) such that S = (y,Ri)i∈C and S′ = (y,R′

i)i∈C′ and (C, S) ̸= (C ′, S′), but the following
relation holds:

y ← H2(pk,m)

(rj , Rj)← Shine.Gen(j, sk
(1)
j , y), j ∈ honest ∩ (C ∪ C ′)

|C ∩ honest| ≥ t, |C ′ ∩ honest| ≥ t

Shine.Verify(t, µ, C, (Ri)i∈C) = 1,Shine.Verify(t, µ, C ′, (R′
i)i∈C) = 1, but

Shine.Agg(t, µ, C, (Ri)i∈C) ̸= Shine.Agg(t, µ, C ′, (R′
i)i∈C′)

(19)

then the environment aborts.

Reduction to Uniqueness of Shine. We now define a reduction B3 that uses A as a subroutine when it plays
against the uniqueness game of Shine.

To begin, B3 receives as input from the VPSS uniqueness experiment the set of Shine secret keys

(sk
(1)
i)i∈corrupt. B3 then generates a table Q to maintain queries by A to OSign2 . It honestly follows the protocol

to generate signing key material, and then sets ski ← (sk
(1)
i , sk

(2)
i , pk) for all i ∈ corrupt. It then outputs to

the adversary A the key material (pk, (pkj)j∈[n], (ski)i∈corrupt).

To simulate signing, when A queries OSign1 on input (k,m), B3 first derives y ← H2(pk,m) honestly. It
then queries its own VPSS uniqueness oracle OGen on the input (k, y), receiving (dk, Dk) as the output. It
sets Rk = Dk, and then outputs (y,Rk).

When A queries OSign2 on input (k,m, C, (yj , Rj)j∈C), B3 again derives y ← H2(pk,m) honestly. After
checking that y = yi for each i and that k ∈ C, it then updates Q to be Q← Q ∪ {(m, C, y, {Rj}j∈C)}. B3
then checks Q to see if any two entries (m, C, y, {Rj}j∈C), (m, C ′, y, {R′

j}j∈C′) exist such that Equation 19
holds.

If the check succeeds, then B3 terminates the execution of A. B3 then outputs (y, (C, (Rj)j∈C∩corrupt),
(C ′, (R′

j)j∈C′∩corrupt)) as its own output to the VPSS uniqueness game.

If the check fails, then B3 again queries its own VPSS uniqueness oracle OGen on the input (k, y), receiving
(dk, Dk) as the output. B3 then sets rk = dk and Rk = Dk. It follows the rest of the protocol honestly.

The simulation by B3 is perfect because the simulation by the VPSS oracle OGen is perfect. Further, the
early termination of A has no consequence on the indistinguishability of the simulation.

Difference between Game 3 and Game 2. The additional advantage to A in Game 2 is upper-bounded by the
advantage that B3 wins its VPSS uniqueness game against Shine. Let W3 be the event that A wins in Game 3,
and let AdvunqB3,Shine

be the advantage that B3 has in the verifiability experiment against Shine. Because Shine
is information-theoretically unique in the honest majority setting with authenticated channels, then

|Pr[W3]− Pr[W2]| ≤ AdvunqB3,Shine
= 0 (20)

33

Game 4. The only differences between Game 4 and Game 3 are as follows. On initialization, the environment
initializes a table Q← ∅.

Let sk
(1)
corrupt = ∪i∈corruptsk

(1)
i , and let sk

(1)
honest = ∪j∈honestsk

(1)
j . Let ϕ̂ be such that (·, ϕ̂) ∈ sk

(1)
honest \ sk

(1)
corrupt.

If A queries H1 on ϕ̂, then the environment aborts.

Otherwise, when A queries OSign1 on party k ∈ honest and message m, instead of producing each party’s
nonce using Shine, the environment first derives y ← H2(pk,m) honestly. It then checks if Q[y] ̸= ⊥ ; if so, it
parses (ri, Ri)i∈honest ← Q[y], and returns (y,Rk). Otherwise, it does the following:

1. Sample r ←$ Zq.

2. Use the algorithm SimGen as defined by Shine in Figure 8 to generate (R, {(ri, Ri)}i∈honest)← SimGen(y, r,

corrupt, n, {sk(1)i }i∈corrupt).

3. Set Q[y] = (ri, Ri)i∈honest.

4. Return (y,Rk).

When A queries OSign2 on party k ∈ honest, message m, coalition C, and set of commitments (Ri)i∈C , the
environment first derives y ← H2(pk,m) honestly. It then checks if Q[y] = ⊥ ; if so, it returns ⊥. Otherwise,
it parses (ri, Ri)i∈honest ← Q[y]. It follows the protocol honestly to derive zk, and outputs zk.

Reduction to Pseudorandomness of Shine. We now define a reduction B4 that uses A as a subroutine when it
plays against the pseudorandomness game of Shine. We assume without loss of generality that |corrupt| = t−1.

On initialization, B4 receives as input from the VPSS pseudorandomness experiment the set of Shine

secret keys (sk
(1)
i)i∈corrupt. It honestly follows the protocol to generate signing key material, and then sets

ski ← (sk
(1)
i , sk

(2)
i , pk) for all i ∈ corrupt. It then outputs to the adversary A the key material (pk, (pkj)j∈[n],

(ski)i∈corrupt).

When A queries H1 on inputs (ϕi, y), B4 does the following:

1. Sets k be the identifier of an honest party. Note that all of sk
(1)
k is known to B4 except the entry (ai, ϕ̂)

where ai = corrupt.

2. Queries OGen on input (k, y), receiving in return (dk, Dk).

3. Checks if the following relation holds:

H1(ϕi, y)
?
= dk −

∑
(aℓ,ϕℓ)∈sk

(1)
k ,ℓ̸=i

H1(ϕℓ, y) · L′
aℓ
(k)

L′
ai
(k)

(21)

where L′
aℓ
(x) and L′

ai
(x) are defined in Equation 3.

4. If the relation holds, then B4 outputs 0.

Otherwise, when A queries OSign1 on input (k,m), B4 first derives y ← H2(pk,m) honestly. It then queries
its VPSS pseudorandomness oracle OGen on input (k, y), receiving in return (dk, Dk). It sets rk = dk and
Rk = Dk. B4 then outputs (y,Rk).

When A queries OSign2 on input (k,m, C, {(yi, Ri)}i∈C), B4 does the following:

1. Checks if |C ∩ corrupt| < t, if the check does not hold, B4 aborts.

2. Otherwise, B4 derives y ← H2(pk,m) honestly.

3. It then checks that y = yi for all i ∈ C, and that k ∈ C. If any check fails, B4 outputs ⊥.
4. It then queries its VPSS pseudorandomness oracle OGen again on input (k, y), re-obtaining (dk, Dk).

5. It then follows the remainder of the protocol honestly, deriving zk = rk + c · sk(2)k .

6. B4 then outputs zk as its output.

Finally, when A terminates, B4 outputs 1.

34

Difference between Game 4 and Game 3. Because we assume |corrupt| < t, B4 will abort with zero probability.
The additional advantage to A in Game 4 is thus upper-bounded by the advantage that B4 wins its VPSS
pseudorandomness game against Shine. In particular, when the pseudorandomness game bit b = 0, then B4’s
simulation is identical to that of Game 3. and if b = 1, then it is identical to Game 4.

Let W4 be the event that A wins in Game 4, and let AdvpsdrB4,Shine
be the advantage that B4 wins the

pseudorandomness experiment against Shine. Then

|Pr[W4]− Pr[W3]| ≤ AdvpsdrB4,Shine
≤ q1

q
(22)

where q1 is the number of times A is allowed to query H1.

Game 5. We now describe a simulating algorithm SIM that simulates Arctic to A, with respect to a challenge
group element Y ∈ G for which SIM does not know the corresponding discrete logarithm.

Setup. SIM accepts as input an instance X, which is a tuple consisting of public parameters (G, q, p), a
discrete logarithm (DL) challenge Y ∈ G, and the total number of parties n, the corruption threshold t, and
the minimum number of signing parties µ. In addition, SIM accepts as input a set of qr = q2 + q3 + 2qs + 1
hash values {h1, . . . , hqr}.

Next, SIM initializes the following values:

– Initializes the table Qq ← ∅ to maintain signatures it issued for honest participants during its simulation,
and the table Qm ← ∅ to maintain the set of messages queried by A to OSign2 .

– Initializes the tables Q1,Q2,Q3 ← ∅3 to manage random oracle queries and responses.

– Initializes the table Qy ← ∅ to manage state between signing queries.

– Initializes the counter kr ← 1 to track issued random oracle outputs.

SIM then runs A(par, n, t, µ). A outputs the set of corrupted parties corrupt such that |corrupt| ≤ t− 1,
as well as its internal state stateA. SIM sets honest ← [n] \ corrupt and must reveal the secret keys of the
corrupted parties to A, which it does in the next step.

Simulating KeyGen. To simulate key generation where SIM is the trusted dealer, SIM does the following:

1. It sets pk = Y .

2. To simulate key generation for the signing keys, SIM first picks t− 1 secret key shares for the corrupt

parties (sk
(2)
i)i∈corrupt ←$ Zq, and defines their corresponding public keys pk

(2)
i ← gsk

(2)
i for all i ∈ corrupt.

3. SIM then derives the public key shares pk
(2)
j , j ∈ honest for the remaining honest parties in the exponent,

as follows:

pk
(2)
j = (pk(2))L0(j) ·

∏
i∈corrupt

gsk
(2)
i Li(j) (23)

where Li(x) is the ith Lagrange polynomial defined by corrupt ∪ {0}.
4. To simulate key generation for the randomness keys, SIM simply performs key generation honestly,

deriving (sk
(1)
1 , . . . , sk(1)n)←$ Shine.KeyGen(n, t).

5. SIM then sets skj = (sk
(1)
j , sk

(2)
j , pk), for j ∈ corrupt, and pki = (pk

(2)
i), for i ∈ [n].

Then, SIM runs AOSign1,Sign2
(stateA, pk, {pkj}j∈[n], {ski}i∈corrupt), and responds to its oracle queries, as we

describe next.

35

Simulating Random Oracles. To simulate A’s random oracle queries, SIM simply performs lazy sampling. It
programs H1 with values sampled from its own random tape; however, it programs H2,H3 with values from
its input {h1, . . . , hqr}, as follows.

– H1 : When A queries H1 on inputs (ϕi, y), SIM does the following:

1. Checks if ϕi = ϕ̂, where ϕ̂ is such that (·, ϕ̂) ∈ sk
(1)
honest \ sk

(1)
corrupt, and where sk

(1)
corrupt = ∪i∈corruptsk

(1)
i ,

and sk
(1)
honest = ∪j∈honestsk

(1)
j .

2. If this check holds, SIM aborts. We refer to this bad event as BadEvent1.

3. Otherwise, SIM checks to see if Q1[(ϕi, y)] ̸= ⊥, if the check holds, it returns Q1[(ϕi, y)],

4. Otherwise, it samples γ ←$ Zq (using its own random tape).

5. It then sets Q1[(ϕi, y)] = γ.

6. Finally, SIM returns γ.

– H2 : When A queries H2 on inputs (pk,m), SIM first checks to see if Q2[(pk,m)] ̸= ⊥, If so, it returns
Q2[(pk,m)]. Otherwise, it sets y ← hkr , and increments kr ← kr + 1. It then sets Q2[(pk,m)] = y. Finally,
SIM returns y.

– H3 : When A queries H3 on inputs (R, pk,m), SIM checks to see if Q3[(R, pk,m)] ̸= ⊥. If so, it returns
Q3[(R, pk,m)]. Otherwise, it sets c ← hkr , and increments kr ← kr + 1. it then sets Q3[(R, pk,m)] = c.
Finally, SIM returns c.

Simulating Signing Oracles. To simulate signing oracles, SIM does as follows:

– Sign1(k,m): When A queries OSign1 on participant identifier k and message m, SIM does the following:
1. If k ̸∈ honest, output ⊥.

2. Derives y ← H2(pk,m) honestly.

3. SIM then checks to see if Qy[y] ̸= ⊥. If so,
(a) SIM parses (m′, z, c, R, (Rj , zj)j∈[n])← Qy[y].

(b) SIM then returns (y,Rk).

4. However, if this is the first time that A has queried OSign1 on m, SIM then samples z ←$ Zq, and sets
c← hkr . It then increments the counter kr ← kr + 1.

5. SIM then derives R← gz · pk−c.

6. Then, using its knowledge of (sk
(1)
i , sk

(2)
i), i ∈ corrupt, SIM deterministically derives each (ri, Ri, zi), i ∈

corrupt, by first deriving

(ri, Ri)← Shine.Gen(i, sk
(1)
i , y)

and then deriving

zi ← ri + c · sk(2)i

7. SIM then derives each honest party’s commitment Rj , j ∈ honest with respect to the joint commitment
R defined in Step 5 and each corrupted party’s Ri, i ∈ corrupt, via Equation 24:

Rj ← RL0(j) ·
∏

i∈corrupt

R
Li(j)
i (24)

where Li(x) is the ith Lagrange polynomial defined by corrupt ∪ {0}.

36

8. SIM then derives each honest party’s response zj , j ∈ honest via Equation 25:

zj ← z · L0(j) +
∑

i∈corrupt

zi · Li(j) (25)

9. SIM sets Qy[y] = (m, z, c, R, (Rj , zj)j∈[n]).

10. SIM then checks if Q3[(pk, R,m)] = ⊥; if the check does not hold, then a bad event has oc-
curred. We refer to this bad event as BadEvent2. In this case, SIM aborts. Otherwise, SIM programs
Q3[(pk, R,m)] = c.

11. SIM then outputs (y,Rk).

– Sign2(k,m, C, (yj , Rj)j∈C): When A queries OSign2 on honest participant identifier k, message, coalition,

and tuples {(yj , Rj)}j∈C , SIM does the following:

1. Honestly follows the protocol to ensure that |C| ≥ 2t− 1, and returns ⊥ if the check does not hold.

2. Checks to ensure that k ∈ honest and k ∈ C, if not, SIM outputs ⊥.

3. Derives y′ ← H2(pk,m) honestly.

4. If yi ̸= y′ for any i ∈ C, then SIM outputs ⊥.

5. SIM verifies the query is valid, by checking that Shine.Verify(t, µ, C, (Rj)j∈C) = 1. If the check does
not hold, SIM outputs ⊥.

6. SIM then checks if Qy[y
′] ̸= ⊥. If the check does not hold, then a bad event has occurred; we refer to

this bad event as BadEvent3. In this case, SIM aborts.

7. Otherwise, SIM parses the entry (m, z′, c′, R′, (R′
j , z

′
j)j∈[n])← Qy[y

′].

8. If (Rj)j∈C ̸= (R′
j)j∈C , SIM aborts. We refer to this event as BadEvent4.

9. Otherwise, SIM derives R←
∏

j∈C R
λj

j , where λj is defined by C. If R ̸= R′, SIM aborts. We refer to
this bad event as BadEvent5.

10. Otherwise, SIM returns z′k.

Analysis of SIM’s Simulation. The simulation of H1, H2, and H3 are perfect because SIM simply simulates by
lazy sampling.

SIM’s simulation of key generation for signing keys with respect to pk for which it does not know the
corresponding sk is perfect, because A is allowed to corrupt up to t− 1 participants. As such, SIM chooses

t− 1 random secret keys sk
(2)
i , i ∈ corrupt, and then simulates signing for the (unknown) honest signing keys

sk
(2)
j , j ∈ honest. SIM follows the protocol honestly when it derives Shine keys.
SIM’s simulation of signing is indistinguishable from honestly following the protocol when SIM does not

abort, because the output signature z′k from OSign2 is valid with respect to the relation gz
′
k = Rk · (pk(2)k)c,

where Rk is output from OSign1 . Further, by Equations 24 and 25, all honest parties’ commitments (Ri)i∈honest

and responses (zi)i∈honest are consistent with corrupted parties’ commitments and responses for any signing
session.

SIM aborts with negligible probability more than Game 4 because:

1. When SIM aborts due BadEvent1 and |honest| ≥ t, then Game 4 also aborts.
2. The probability that BadEvent2 occurs is q3/q because it can only occur if A queries H3(R, pk,m) for the

correct R for the given m as computed in step 5 of SIM’s simulation of Sign1.
3. SIM aborts due to BadEvent3 with zero probability, because we assume the use of authenticated channels.
4. If SIM aborts due to BadEvent4, then |C ∩ honest| ≥ t, and so Game 2 also aborts.
5. If SIM aborts due to BadEvent5, then |C ∩ honest| ≥ t, then both Game 3 and Game 4 would also abort.

37

Output. At the end of the game, A outputs a forgery (m∗, σ∗ = (R∗, z∗)). If gz
∗ ̸= R∗ · (pk)c∗ (meaning

that the forgery is invalid), SIM outputs ⊥. Without loss of generality, we assume that A queried H3 on
(R∗, pk,m∗).

Otherwise, if A’s forgery is valid, SIM outputs the tuple (j, aux), where j is the index corresponding to
c∗ = hj , and aux = (m∗, σ∗) is the adversary’s forgery with respect to pk = Y .

Difference between Game 5 and Game 4. The only additional advantage introduced in Game 5 is that SIM
aborts on BadEvent2 with probability q3/q if A queries H3 before it is programmed. Let W5 be the event that
A wins in Game 4. Then

|Pr[W5]− Pr[W4]| ≤
q3
q

(26)

Finishing the Proof. The advantage of A against SIM is given by Game 5. Combining Equations 15, 16, 18,
20, 22, and 26 gives Equation 10. This completes the proof. ⊓⊔

Proof (Of Lemma 3). We now show that if there exists a PPT adversary A against the unforgeability of
Arctic and an algorithm SIM as described in Lemma 2 that simulates Arctic to A, then we can define a PPT
adversary D that can efficiently solve for discrete logarithm challenges.
D begins by accepting a discrete logarithm challenge Y ∈ G and public parameters par. It then chooses a

(t, µ, n) such that n ≥ µ ≥ 2t− 1, and
(
n−1
t−1

)
= poly(n).

D then executes the modified forking algorithm ForkSIMm (X) as described in Section 3.3 and shown in
Figure 1, providing as input the instance X = (par, Y, n, t, µ).

ForkSIMm (X) then either outputs ⊥ when it fails or the value (j, aux) when it accepts. Corollary 1 upper-
bounds the probability that ForkSIMm (X) will output ⊥ and Lemma 2 upper-bounds the additional advantage
of A against SIM. Putting these two together gives Equation 27.4

accept(ForkSIMm) ≥
AdvufA,Arctic(λ, n, t, µ)

2

qr
− 2(q1 + q3)

q
− 3q2r

q
(27)

We now show that when ForkSIMm (X) outputs an accepting output (i.e., it does not output ⊥), then D can
solve for its discrete logarithm challenge Y with perfect success.

In the case that ForkSIMm (X) outputs an accepting output, it outputs the tuple (hj , h
′
j , aux, aux

′). From
these values, D then parses the following:

(m∗, σ∗)← aux, (m∗∗, σ∗∗)← aux′,

(R∗, z∗)← σ∗, (R∗∗, z∗∗)← σ∗∗,

hj = c∗, h′
j = c∗∗

Because hj , h
′
j are with respect to the same index j corresponding to A’s random query for c∗, c∗∗ in its

first and second execution, then we know that R∗ = R∗∗ and m∗ = m∗∗. D can then solve for the discrete
logarithm y to its challenge Y = gy by Equation 28:

y = sk =
z∗ − z∗∗

c∗ − c∗∗
(28)

Because Forkm outputs ⊥ in the case when any random oracle outputs collide (i.e., in the case when any
hi = h′

i), then we know that Equation 28 is solveable. This completes the proof. ⊓⊔
4 Because SIM is run twice by Forkm, the number of bad events that can occur is doubled.

38

D Details on Extending Shine and Arctic to be Robust

As presented, Shine is not a robust algorithm: if corrupt players output incorrect values from Shine.Gen,
then Shine.Verify will compute that the |C| ≥ 2t− 1 commitments do not all lie on the same degree-(t− 1)
polynomial in the exponent, and output 0. However, Shine.Verify will not necessarily be able to identify which
party or parties misbehaved. This is because it is possible for the t− 1 corrupt parties to output commitments
that are wrong, but consistent with up to t− 1 of the honest players’ commitments, making it look like the
remaining honest player was the outlier. Therefore, as we will see in the next section, Arctic will have to just
abort in the case that Shine.Verify outputs 0.

However, we observe that in the honest supermajority case, where |C| ≥ 3t− 2, and so there are at most
t − 1 corrupt parties and at least 2t − 1 honest parties, Shine.Verify can be modified to be robust: if any
corrupt parties output incorrect values from Shine.Gen, Shine.Verify will be able to notice the inconsistency
and identify the misbehaving parties. Those parties can then be kicked out of C, and Arctic will be able to
continue and produce its correct deterministic signature. The misbehaving parties may also be able to be
kicked out of the system entirely, or have other external sanctions applied. The same observation was made
by Cramer et al. [16] for their NIVSS, but in their setting, the shares are themselves published, whereas in
Shine, only commitments are available to Shine.Verify.

The reason this works is based on a simple fact about polynomials, as used in error-correcting codes:
there can only be at most one polynomial of degree t− 1 that passes through at least 2t− 1 of a given set of
3t− 2 points. The reason is that if f1 and f2 each passed through a (possibly different) set of at least 2t− 1
of the 3t − 2 points, then those two sets must intersect in at least t points (by simple counting). Those t
points uniquely define a polynomial of degree t− 1, and so f1 = f2. In the honest supermajority setting, the
at least 2t− 1 honest parties will give consistent outputs from Shine.Gen, and so there will be exactly one
(not at most one) polynomial of degree t− 1 that passes through at least 2t− 1 of the exponents of the 3t− 2
commitments.

The typical way to find this unique polynomial is with the Berlekamp-Welch algorithm, but Shine.Verify
only has access to commitments to the purported polynomial evaluations, and not the evaluations themselves.
However, we can take advantage of the fact that we are already assuming that

(
n−1
t−1

)
is not too large, and

take a more brute force approach. The modification to Shine.Verify is then as follows: if player k running
Shine.Verify would output 0 in Step 4 of Shine.Verify, instead iterate through all t − 1-sized subsets S of
C \ {k}, and reconstruct (in the exponent) the polynomial that passes through player k’s own point, and
the points of S. If that polynomial fails to pass through at most t − 1 of the points, those points are the
misbehaving parties. Exclude them from C, and output 1.

There are
(|C|−1

t−1

)
possible subsets S, and at least

(
2t−1
t−1

)
of those subsets contain only honest parties. If

the iteration is done in a pseudorandom order (for example, keyed by dk), then the expected number of

iterations before the misbehaving parties are identified is at most
(|C|−1

t−1

)
/
(
2t−1
t−1

)
, which is significantly smaller

than
(
n−1
t−1

)
, which we already assumed is not too large.

Extending Shine to be robust will make round 1 of Arctic robust, so that the correct R can be computed
even if some or all of the malicious parties submit incorrect Rj values. To make round 2 of Arctic also robust,
we must also guard against an adversary submitting a correct Rj in round 1, but an incorrect signature share
zj in round 2.

In the event of the failure of the test gz ̸= R · pkc in Combine, one can identify the parties that submitted

incorrect zj values by checking gzi
?
= Ri · (pki)c. Once the parties submitting incorrect signature shares are

eliminated, the remaining correct shares (of which there will be at least t) can be combined into the final
signature σ = (R, z).

D.1 Communication Model for Robust Arctic

For non-robust Arctic, we discuss in Remark 4 how our adversarial model requires authenticated channels,
but does not assume replay protection. However, additionally in the robust setting, parties will require
a communication channel that ensures protection against replayed messages, to ensure that an adversary

39

cannot replay old messages from honest participants, resulting in a potential abort. Furthermore, to achieve
robustness, the communication model likewise requires liveness; the adversary cannot prevent honest parties
from exchanging messages.

40

	Introduction
	Our Results
	Observations of Honest Majority Assumptions in Practice

	Related Work
	Preliminaries
	General Notation
	Definitions and Assumptions
	General Forking Lemma
	A modified forking lemma.

	Deterministic Threshold Signature Schemes
	Unforgeability

	Verifiable Pseudorandom Secret Sharing
	Motivation
	VPSS Definition and Notions of Security
	Security.

	Shine, A Concrete Verifiable Pseudorandom Secret Sharing Scheme
	Security

	Arctic, A Deterministic and Stateless Two-Round Threshold Schnorr Signature Scheme
	The Construction.
	Security
	Extending Arctic and Shine to be Robust

	Performance Analysis of Arctic
	Conclusion
	Additional Performance Estimates
	Security of Shine
	Security of Arctic
	Details on Extending Shine and Arctic to be Robust
	Communication Model for Robust Arctic

