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Abstract. VOLE-in-the-head paradigm recently introduced by Baum et al. (Crypto 2023)
allows transforming zero-knowledge protocols in the designated verifier setting into public-coin
protocols, which can be made non-interactive and publicly verifiable. Our transformation applies
to a large class of ZK protocols based on vector oblivious linear evaluation (VOLE) and leads
to resulting ZK protocols that have linear proof size and are simpler, smaller, and faster than
related approaches based on MPC-in-the-head.
We propose a new candidate post-quantum signature scheme from the Multivariate Quadratic
(MQ) problem based on a new protocol for the VOLE-in-the-head paradigm, which significantly
reduces the signature size compared to previous works. We achieve a signature size of 2.5KB
for a 128-bit security level. Compared to the state-of-the-art MQ-based signature schemes, our
signature scheme achieves a factor from 3 to 4 improvement in terms of the signature size while
keeping the computational efficiency competitive.

1 Introduction

Zero-Knowledge, Code-based signature schemes, and Multivariate Quadratic Assump-
tion. Zero-knowledge proofs allow a prover to demonstrate to a verifier their knowledge of a witness
for an NP statement without disclosing any additional information. These proofs have numerous
applications in cryptography. Notably, the Fiat-Shamir transform [FS87] enables the conversion of
any public-coin zero-knowledge proof system into a signature scheme, making it one of the primary
methods for developing efficient signature schemes.

Digital signatures are fundamental to Internet authentication. However, the majority of existing
constructions are susceptible to attacks by quantum computers [Sho94]. This drives the exploration
of alternative digital signature schemes based on assumptions that are believed to resist quantum
computer attacks. The recent call by NIST to standardize post-quantum cryptographic primitives has
catalyzed research into efficient post-quantum signature schemes, with particular attention on code-
based signatures. Recent code-based signature schemes built based on various assumptions (syndrome
decoding, multivariate quadratic, MinRank, subset sum assumptions) and using two main paradigms
that are MPC-in-the-head and later VOLE-in-the-head.

A multivariate quadratic map F : Fn
p → Fm

p is a system of m quadratic polynomials in n variables
defined over some finite field Fp. The MQp,m,n problem is, for uniformly random F : Fn

p → Fm
p and

x ∈ Fn
p , to find x given F and F(x). The average-case hardness of the multivariate quadratic problem

is one of the leading candidate post-quantum cryptographic assumptions. The Rainbow signature
scheme [DS05] is one of the oldest and most studied signature schemes in multivariate cryptography.
However, recent attacks [Beu21,Beu22] have reduced the security of this well-known construction.

Code-based signature schemes from MPCitH. Numerous recent studies on Fiat-Shamir code-
based digital signatures have embraced the MPC in the head paradigm, initially introduced in the
seminal work of [IKOS07]. In essence, this paradigm allows the prover to mentally execute an MPC
protocol while virtual parties receive shares of the witness, and a target function validates the cor-
rectness of the witness. Subsequently, the prover commits to the view of all parties, and upon request
from the verifier, opens a random subset of these views. The verifier checks the consistency of these
views and verifies that the output corresponds to the correct witness. Soundness is guaranteed by the
inability of a cheating prover to generate consistent views for all parties. Moreover, zero-knowledge
property is established through the security of the MPC protocol against an honest-but-curious ad-
versary, who only gains access to the perspectives of a subset of corrupted parties. Recently, there
have been efficient code-based signatures [AGH+23,FJR22,CCJ23,BCC+24] from syndrome decod-
ing assumption and MPCitH with signature sizes from 3 KB-7KB. Turing attention to multivariate
quadratic assumption, [Beu20,Wan22,Fen22] proposed signatures with sizes ranging from 7KB-14KB.
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Code-based signature schemes from VOLEitH. Another paradigm utilized in constructing sig-
nature schemes is VOLE-based zero-knowledge (ZK) proofs [WYKW21,BMRS21,YSWW21], which
typically offer higher efficiency compared to most MPC in the head (MPCitH) protocols. However,
these protocols rely on the existence of vector oblivious linear function evaluation (VOLE) correla-
tions between the prover and the verifier, which can be efficiently generated using two-party proto-
cols [BCG+19]. Due to this prerequisite, VOLE-based protocols were unable to operate effectively
in the public-coin model until the introduction of the VOLE-in-the-Head (VOLEitH) approach by
Baum et al. [BBD+23]. In addition to a generic zero-knowledge proof system, Baum et al. employed
this approach to develop the FAEST post-quantum signature scheme, solely based on AES and
hash functions. [CLY+24] recently introduced a signature scheme based on the Regular Syndrome
Decoding assumption with signature sizes of 4KB and it combines the VOLE-in-the-Head technique
from [BBD+23] with a sketching method of [BGI16] to reduce the check of the noise structure to a sys-
tem of degree-2 equations, which are then proven using the Quicksilver VOLE-based zero-knowledge
proof [YSWW21].

1.1 Our contribution

We first propose a new zero-knowledge protocol for the multivariate quadratic problem over a finite
field. Our zero-knowledge proof is a publicly verifier and is constructed from a designated-verifier
ZK protocol by using the VOLE-in-the-Head technique [BBD+23], SoftspokenOT [Roy22] and multi-
PPRF (puncturable pseudorandom function) [BCC+24]. To construct the designated-verifier ZK pro-
tocol for the multivariate quadratic problem, firstly we observe that to prove the knowledge of the
witness in MQ problem MQp,m,n is equivalent to proving the knowledge of the solutions in a set of
polynomials of degree 2 over Fp, then, therefore, we adapt the Quicksilver ZK proof [YSWW21] for
nullity check of a polynomial with the cost of O(n log p) bits. Since all frameworks of VOLE-in-the-
Head, SoftspokenOT, or Quicksilver ZK proof when applied to signature is only over the binary field
F2, we carefully adapt all of them to get a public verifier ZK protocol over any finite field Fp.

Table 1. Comparison of the new signature scheme with other signatures relying on the MQ problem (re-
stricting to the schemes using the FS heuristics).

Instance Protocol Name Variant Signature Size

[SSH11] (3 rounds) - 28 502 B
q = 4 MQ-DSS [CHR+16] - 41 444 B

MudFish [Beu20] - 14 640 B

n = 88 Mesquite [Wan22] Fast 9 578 B
Short 8 609 B

m = 88 [Fen22] (MQ version) Fast 10 764 B
Short 9 064 B

Our scheme Fast 5725 B
Short 2523 B

[SSH11] (3 rounds) - 40 328 B
MQ-DSS [CHR+16] - 28 768 B

q = 4 MudFish [Beu20] Fast 15 958 B
Short 13 910 B

n = 88 Mesquite [Wan22] Fast 11 339 B
Short 9 615 B

m = 88 [Fen22] (MQ version) Fast 8 488 B
Short 7 114 B

Our scheme Fast 9236 B
Short 2535 B

Secondly, we achieve a new signature scheme based on the multivariate quadratic problem using
the Fiat-Shamir transform, we compile our publicly verifier zero-knowledge protocol into an MQ-based
signature scheme. We compare our scheme with the state of the art in two MQ instances:
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– Multivariate Quadratic equations over a small field: (q,m, n) = (4, 88, 88).
– Multivariate Quadratic equations over a larger field: (q,m, n) = (256, 40, 40).

Both of these instances are believed to correspond to the security of 128 bits [BMPS20]. We present the
asymptotic of our signature size for different settings on Table 2 and the comparison with the state-
of-the-art of MQ-based signatures on Table 1. Compared to the state-of-the-art MQ-based signature
schemes, our signature reduces the size of the signature by a factor from 3 to 4 improvement in various
settings. Specifically, for the set of parameter (q,m, n) = (4, 88, 88), our shortest signature has the
size of 2523B while the current state of the art [Wan22] has the size of 8609B, and for the set of
parameter (q,m, n) = (256, 40, 40), we obtain the shortest of signature size of 2535B while the state
of art [Fen22] is 7114B.

2 Preliminaries

2.1 Notation

Given a set S, we write s←r S to indicate that s is uniformly sampled from S. Given a probabilistic
Turing machine A and an input x, we write y ←r A(x) to indicate that y is sampled by running A
on x with a uniform random tape, or y ← A(x; r) when we want to make the random coins explicit.
Given an integer n ∈ N, we denote by [n] the set {1, · · · , n}. We use λ = 128 for the computational
security parameter. We let negl(λ) denote any function that is negligible in the security parameter.

Field and Operations. We use Fp to denote a field and Fpr = Fp[X]/f(X) (r ∈ N) as an etension
field of Fp. Wlog, we assume Fp is an extension field of F2. Given a vector x ∈ Ft

p (or Fn
pr ), we say

y = liftr(x) mean that we lift x to Fpr as y =
∑t

i=1 xi ·Xi ∈ Fpr for t ≤ r.

Vectors and Matrix. For a matrix M, we denote Mi,j for entry in ith row and jth column, also
Mj, Mi as the jth column and the ith row respectively. The symbol ⊙ is the point-wise product
between a vector and a matrix i.e given a vector u = (u1, · · · , um) ∈ Fm and a matrix M ∈ Fn×m,
u⊙M = (u1 ·M1, · · · , um ·Mm) ∈ Fn×m. For the simplicity, given a polynomial f over n variables,
a matrix M ∈ Fn×τ

p we denote f(M) = (f(M0), · · · , f(Mτ−1)) as a vector in Fτ
p . We denote diag(∆)

where ∆ = (∆1, · · · , ∆τ ) ∈ Fτ
p as a matrix over Fτ×τ

p of the form

∆1

· · ·
∆τ

. We use [1 · · · 1] for

all-one row vector and U = [1 · · · 1] · u is a matrix where each row is a repetition codeword u.

Binary tree. Given a tree of size 2D, for each leaf i ∈ [2D], we define CoPath(i) as co-path to i in
the tree,i.e., the set of intermediate nodes that can be used to recover all leaves except the i−th one.
Denote bit-decompose i as

∑D
j=1 2

j−1 · ij for ij ∈ {0, 1}, the associated value of i-th leaf is defined as
Xi := Xi1,...,iD .

2.2 Basic Cryptographic Definitions

Definition 1 (Indistinguishability). Two distributions X,Y are (t, ϵ)-indistinguishable if for an
algorithm D : {0, 1}m → {0, 1} running in time t, we have |Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ϵ.

Definition 2 ((t, ϵ)-secure PRG). Let G : {0, 1}∗ → {0, 1}∗ and let l(.) be a polynomial such that
for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}l(λ). Then, G is a (t, ϵ)-secure pseudorandom generator
if

– Expansion: l(λ) > λ;
– The distributions

{
G(s)|s← {0, 1}λ

}
and

{
r|r ← {0, 1}l(λ)

}
are (t, ϵ)-indistinguishable.

Definition 3 (Collision-Resistant Hash Functions). A family of functions Hashk : {0, 1}∗ →
{0, 1}l(λ); k ∈ {0, 1}κ(λ) indexed by a security parameter λ is collision-resistant if there exists a
negligible function v such that, for any PPT algorithm A, we have:

Pr

[
x ̸= x′

∩Hashk(x) = Hashk(x
′)

k ∈ {0, 1}κ(λ)
(x, x′)← A(k)

]
≤ v(λ)
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2.3 Multivariate Quadratic Problem

Given a tuple of parameters p,m, n, the Multivariate Quadratic Problem asks to find a vector solution
in Fn

p (under the promise that it exists) to a random system of m linear equations over Fp.

Definition 4 (Multivariate Quadratic Problem - Matrix form). Let Fp be the finite field. Let
(m,n) be positive integers. The multivariate quadratic problem MQp,m,n with parameters (p,m, n) is
the following problem:

– (Problem generation) Sample x←r Fn
p and (Ai)i≤m ←r Fn×n

p , (bi)i≤m ←r Fn
p .

Set yi ← xTAix+ bT
i x. Output (Ai,bi, yi)i≤m.

– (Goal) Given (Ai,bi, yi)i≤m, find x ∈ Fn
p such that xTAix+ bT

i x = yi for all i ∈ [m].

Recent attacks have reduced the security of well-known constructions [Beu21,Beu22] as rainbow, in
our work we use the parameter set in [BMPS20] that are considered as secure parameters for the
security level of 128 bits.

2.4 The MPC-in-the-Head Paradigm

The MPC-in-the-head paradigm was initiated by the work of Ishai et al [IKOS07] and provided a
compiler that can build honest-verifier zero-knowledge (HVZK) proofs for arbitrary circuits from
secure MPC protocols. Assume we have an MPC protocol with the following properties:

– N parties (P1, · · · , PN ) securely and jointly evaluate a function f : {0, 1}∗ → {0, 1} on x while
each party possess an additive share JxKi of input x,

– Secure against passive corruption of N − 1 parties i.e any (N − 1) parties can not recover any
information about the secret x.

Then the HVZK proof of knowledge of x such that f(x) = 1 is constructed as:

– Prover generates the additively shares of the witness x into (Jx1K, · · · , JxN )K) among N virtual
parties (P1, · · · , PN ) and emulate the MPC protocol "in-the-head".

– Prover commits to the view of each party and sends commitments to the verifier.
– Verifier chooses randomly (N − 1) parties and asks the prover to reveal the view of these parties

except one. The verifier later accepts if all the views are consistent with an honest execution of
MPC protocol with output 1 and agrees with the commitments.

Security of MPC protocol implies that the verifier learns nothing about the input x from the N − 1
shares, and MPC correctness guarantees that the Prover can only cheat with probability 1/N . Security
can then be amplified with parallel repetitions.

2.5 Information-Theoretic Message Authentication Codes

We use information-theoretic message authentication codes (IT-MACs) based on subfield Vector
Obvious Linear (sVOLE) [YSWW21] to authenticate values over Fp or Fpr . Specifically, JxK =
(K[x],M[x], x) is IT-MACs authenticated value JxK where x ∈ Fp is known by the P can be au-
thenticated by the V who holds a global key ∆ ∈ Fpr and a local key K[x] ∈ Fpr , then P is given a
MAC defined as M[x] = K[x] − x ·∆. IT-MACs is additively homomorphic, in particular, given the
public coefficients c1, · · · , cl, c ∈ Fp or Fpr , given y =

∑l
i=1 ci · xi + c, the parties can locally compute

JyK = (K[y],M[y], y) from JxiK as K[y] =
∑l

i=1 ci · K[xi] + c and M[y] =
∑l

i=1 ci ·M[xi] + c · ∆. To
authenticated x, P reveal x, M[x] to V to valid the correctness of sVOLE correlation. Note that the P
can only cheat with a probability of 1/pr since to find an IT-MACs Jx′K = (K[x′],M[x′], x′), P needs
to guess ∆ ∈ Fpr such that ∆ = (M(x)−M(x′)) · (x− x′)−1.

Lemma 5 (Schwartz–Zippel lemma). Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of to-
tal degree d over an field F. Let S be a finite subset of F and let r1, · · · , rn be selected at random
independently and uniformly from S. Then Pr[P (r1, r2, . . . , rn) = 0] ≤ d/|S|.
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Batch IT-MACs. We extend the above notation to vectors of authenticated values as well. In
this case, JxK means that M[x] = K[x] − x · ∆ where ∆ ∈ Fpr , x ∈ Fn

p and M[x], K[x] ∈ Fn
pr . To

authenticated a vector x = (x1, · · · , xn) ∈ Fn
p , instead of opening 2 vectors x ∈ Fn

p ,M[x] ∈ Fn
pr , P

only need to reveal a combinations
∑n

i=1 χi ·xi,
∑n

i=1 χi ·M[xi] where {χi}i≤n are sampled randomly
over Fpr , V then checks

∑n
i=1 χi ·M[xi] +∆ ·

∑n
i=1 χi · xi =

∑n
i=1 χi · K[xi]. The security holds with

the soundness error of (n+ 1)/pr by following the SZ lemma ( Section 2.5).
In our concept of signature to maintain both soundness and efficiency, we extend the authenticated
vectors multiple times (denoted as τ times). It means for an authenticated vector x ∈ Fn

p , Jx, τK =

(K[x],M[x],x) and has a global key ∆ = (∆1, · · · , ∆τ ) corresponding, where K[x],M[x] ∈ Fn×τ
pr

and ∆ ∈ Fτ
p such that Mi[x] = Ki[x] − x ·∆i for all i ∈ [0, . . . , τ). The batch IT-MACs of a vector

are generated by the sVOLE protocol that securely realizes the ideal functionality Figure 1 and the
efficient way to authenticate is followed by technique in SoftSpokenOT (see Section 4.2).

PARAMETERS:

– Given a field extension Fp ⊆ Fpr . Denote n as the length of each vector that is produced in
each sVOLE instance and τ as the repetition parameter.

FUNCTIONALITY:

– Depending on P and V:
• If the P is corrupted then wait for A to send u ∈ Fn

p ,V ∈ Fn×τ
pr ; samples ∆ ←r Fτ

pr and
computes W := V + u · [1 · · · 1] · diag(∆).

• If the V is corrupted then wait for A to send ∆ ∈ Fτ
pr , W ∈ Fn×τ

pr ; samples u←r Fn
p and

computes V := W − u · [1 · · · 1] · diag(∆).
• Otherwise, samples u←r Fn

p ,W←r Fn×τ
pr ,∆←r Fτ

pr and computes W := V+u · [1 · · · 1] ·
diag(∆).

– If P and V send (init) to functionality, sends (u, V) to P
– If P and V send (get) to functionality and (∆, W) to V.
– P defines M[x] = V and V defines K[x] = W.

Fig. 1. Ideal functionality Fn,τ
sVOLE of multi-subVOLE over Fp

2.6 Designated-Verifier ZK for nullity check of Polynomial sets

We recall the ideal functionality of nullity check for a set of t polynomials of degree 2 having n
variables over Fp in Figure 2. From the footprint of IT-MACs, the instantiation of Fp,t

polyZK is followed
by Quicksilver technique [YSWW21].

PARAMETERS:

– Given an arbitrary field Fp.
– Prover P and verifier V hold t polynomials f1, · · · , ft of degree 2 all over n variables.
– Prover P holds a witness w ∈ Fn

p such that fi(w) = 0 for all i ∈ [t].

FUNCTIONALITY:

– Upon receiving (prove, {fi}i∈[t],w) from P and (verify, {fi}i∈[t]) from V then:
Send true to V if fi(w) = 0 for all i ∈ [t] and false to V otherwise.

Fig. 2. Ideal functionality Fp,t
polyZK

In particular, given t polynomials {fi}i≤t of degree 2 over n variables, P holds a witness w ∈ Fn
p

and wants to prove that fi(w) = 0. For every polynomial fi, we present it as fi = fi,2 + fi,1 + fi,0
where fi,h is a degree-h polynomial such that all terms in fi,h have exactly degree h.
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Given an IT-MACs of JwK = (M[w],K[w],w), P and V hold (w,M[w]) and (∆,K[w]) respectively.
Now V computes:

Bi = fi,2(K[w]) + fi,1(K[w]) ·∆+ fi,0 ·∆2

= fi,2(M[w] +∆ ·w) + fi,1(M[w] +∆ ·w) ·∆+ fi,0 ·∆2

= fi(w) ·∆2 +Ai,1 ·∆+Ai,0 = Ai,1 ·∆+Ai,0.

where Ai,0, Ai,1 are the aggregated coefficient for all terms with ∆ and constant coefficients. Note
that the prover with witnesses w and MACs M[w] can compute all the coefficients locally.

Batch nullity check. P and V generates randomly an IT-MACs JAK = (M[A],K[A], A), P then
defines (A1, A0) and sends to V:

A1 :=

t∑
i=1

χi ·Ai,1 +A, A0 =

t∑
i=1

χi ·Ai,0 +M[A]

While V checks if
∑t

i=1 χ
i ·Bi+K[A] = A1 ·∆+A0. Note that to obtain a negiliable soundness error (

(t+2)/pr [YSWW21]), we lift the IT-MAC JAK to the extension field Fpr instead of Fp (see Section 3
for details). As a consequence, the batch nullity check results in a total communication of (n+2r) log p
bits in the sVOLE-hybrid model. When using the interpolation approach to compute the coefficients
A0, A1, we have that the computational cost of the prover and verifier is O(4tz + 2n) and O(2tz)
respectively, where z is the maximum number of terms in all t polynomials.

2.7 Universal Hashing

We recall the definitions of n-hiding and ϵ-universal [Roy22] in the following definitons:

Definition 6 (Universal). A family of linear hash functions is a family of matrices H ⊆ Fr×n
p . The

family is ϵ-almost universal if for any non-zero x ∈ Fn
p

Pr
H←H

[Hx = 0] ≤ ϵ

The family is ϵ-almost uniform, if for any non-zero x ∈ Fn
p and for any non-zero x ∈ Fr

p.

Pr
H←H

[Hx = v] ≤ ϵ

Definition 7 (Hiding). A matrix H ∈ Fr×(n+h)
p is Fn

p -hiding if the distribution of Hv is independent
from v[0 . . . n) when v[n . . . n + h) ← Fh

p . A hash family H ⊆ Fr×(n+h)
p is Fn

p -hiding if every H ∈ H
is Fn

p -hiding.

Transforming a uniform hash family into a universal family that is hiding is followed by the below
proposition.

Proposition 8. Let H ⊆ Fr×n
p be an ϵ-almost uniform hash family. Let HUHF ⊆ Fr×(n+r)

p be the
family {[HIr] : H ∈ H}, where Ir is the r × r identity matrix. Then, it holds that (1) H′ is ϵ-almost
universal, and (2) HUHF is Fn

p -hiding.

In this paper, we assume the family HUHF is a simple matrix hash family [BJKS94], where H = Fr×n
p

which is p−r-uniform.

2.8 Multi-Instance Puncturable PRF

Pseudorandom functions [GGM86], are families of keyed functions Fk such that no adversary can
distinguish between a black-box access to Fk for a random key k and access to a truly random function.
A puncturable pseudorandom function (PPRF) [KPTZ13,BW13,BGI14] is a PRF F such that given
an input x, and a PRF key k, one can generate a punctured key, denoted k{x} = F.Punc(K,x),
which allows evaluating F at every point except for x (i.e., there is an algorithm F.Eval such that
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F.Eval(k{x}, x′) = FK(x′) for all x′ ̸= x), and such that Fk(x) is indistinguishable from random given
k{x}. Then we recall the definition of τ -multi-instance PRF [BCC+24]. The motivation for using
τ -multi-instance PRF from our use of PPRFs in signatures: our signature construction uses τ parallel
instances of the PPRF using the same K, while distinct salts are used across distinct signature queries.
Then,

Definition 9 ((N, τ)-instance (t, ϵ)-secure PPRF). A function family F = {FK} with input do-
main [2D], salt domain {0, 1}s, and output domain {0, 1}λ, is an (N, τ)-instance (t, ϵ)-secure PPRF if
it is a PPRF which additionally takes as input a salt K, and for every non-uniform PPT distinguisher
D running in time at most t, it holds that for all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprf
D (λ) = 1]− Pr[Expiw-pprf

D (λ) = 1]| ≤ ϵ(λ)

where the experiments Exprw-pprf
D (λ) and Expiw-pprf

D (λ) are defined below.

Exprw-pprf
D (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ
– K := (K1, . . . ,KN )←r {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ )←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤N,e≤τ ← (FKj,e(ij,e,Ki))j≤N,e≤τ

Output b← D(K, i, (Kij,e
j,e , yj,e)j≤N,e≤τ )

Expiw-pprf
D (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ
– K := (K1, . . . ,KN )←r {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ )←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ

Output b← D(K, i, (Kij,e
j,e , yj,e)j≤N,e≤τ )

3 Technical Overview

Designated-Verifier Zero-Knowledge Proofs from batch nullity checks. Since x ∈ Fn
p in

MQp,m,n problem is the solution of a system of equations {fi(x1, · · · , xn) = xTAix+bT
i x−yi}i≤m of

degree 2 over n variables (consider xTAix+bT
i x as a multivariate polynomial). Therefore, we transfer

constructing a DVZK protocol for the MQ problem into a DVZK protocol for batch m nullity check
of a polynomial set. Its instantiation is based on Quicksilver technique [WWCY22] in the sVOLE
hybrid model. Each polynomial fi is presented as fi = fi,1 + fi,2 where all terms in fi,1 and fi,2
have degree of 1 and 2 respectively (specifically, fi,1 and fi,2 have n and n2 terms, for simplicity we
omitted yi since yi can be easy adapted as a constant coefficient). For the efficiency of the signature
constructed from this DVZK protocol, we need to repeat the DVZK protocol τ -times. To build a
nullity check for the set of polynomials, Quicksilver technique [WWCY22] for polynomials check is
applied and upgraded to the version of τ - repetitions. In particular,

– Given an IT-MACs of x in the version of τ - repetitions i.e., (M[x],K[x],x) ∈ Fn×τ
pr ×Fn×τ

pr ×Fn
p , P

locally computes fi(M[x]+x · [1 · · · 1] ·diag(X)) = Ai,0+Ai,1X (degree only 1 since the coefficient
of degree 2 is 0 if x is solution of fi).

– From (∆,K[x]) ∈ Fτ
pr ×Fn×τ

pr , V can locally compute Bi := fi,1(K[x])◦∆+fi,2(K[x]). Note that
Bi = Ai,0 +Ai,1 ◦∆ since K[x] := M[x] + x · [1 . . . 1] · diag(∆).

– V and P check relation Bi = Ai,0 + Ai,1 ◦ ∆ for i ∈ [m] by sending to each other a sample
challenge χ ∈ Fτ

pr and a linear combination of (Ai,0,Ai,1) constructing from χ respectively. Note
that we need to generate τ extra OLEs over Fpr to mask (Ai,0,Ai,1) in the linear combination
sent from P, this only costs (r · τ) sVOLE correlations over Fp and it is negligible when r · τ is
small. See Section 4 for more details about lifting (r · τ) sVOLEs from the subfield Fp to τ OLEs
over the extension field Fpr .

MQ-based signature from VOLE-in-the-Head paradigm. We first design a public-coin ZK
proof for MQ problem and then apply the Fiat-Shamir transform to make it into a signature scheme.
Our public-coin ZK protocol is constructed from our DVZK protocol by using the VOLE in-the-head
paradigm. In particular, since in our DVZK protocol only V who holds the global key ∆ obtained from
sVOLE correlation can valid the proof, therefore we use Spoftspoken OT to construct sVOLE, this
manner allows every Pr defines ∆ as a challenge in publicly verifier ZK protocol. Then we use multi-
instance PPRF to efficiently generate and open the set of sd that is used in constructing softspokenOT-
based sVOLE. Note that compared to the original VOLE-in-the-head mamner [BBD+23], we use
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multi-instance PPRF instead of vector commitment and construct commitment that is associated
with each sd by a pseudorandom generator PRG later it is modeled as a random oracle. Finally,
applying the Fiat-Shamir heuristic to publicly verifier ZK protocol, we achieve a new signature scheme
from the MQ problem, and the security is maintained from multi-instance PPRF, publicly verifier
ZK protocol, and random oracles.

4 Publicly-Verifier ZK for Multivariate Quadratic problem

Observe that for MQp,m,n, given (Ai,bi, yi)i≤m, to prove that the prover P holds x ∈ Fn
p such that

xTAix + bT
i x = yi for all i ∈ [m], P needs to convince that P knows the solution of a system of m

questions of form xTAix + bT
i x = yi. If we consider xTAix + bT

i x as a multivariate polynomial of
degree 2 over n variables x = (xi, · · · , xn) ∈ Fn

p then it is equivalent to prove that P holds a root of
a set of m polynomials degree 2. It means that to prove the knowledge of MQp,m,n, it is sufficient to
prove the knowledge of a root of a polynomial set of degree 2.

Firstly, we present in the Section 4.1 a zero-knowledge protocol for MQ based on Quicksilver
(see Section 2.6) in the sVOLE hybrid model. Since the limit of sVOLE, this construction Figure 3
is only a designated verifier ZK protocol. To turn it into a publicly verifier, we apply techniques
from [BBD+23] to combine VOLEitH, multi-instance PRF [BCC+24] and SoftspokenOT [Roy22].
Note that to achieve a signature scheme based on VOLEitH signature FAEST [BBD+23] we adapt
all constructions for multi-times τ repetitions.

4.1 Designated-Verifier ZK for Multivariate Quadratic problem

In this section, we present an efficient zero-knowledge proof for the MQ problem Figure 3 in the Fn,τ
sVOLE

hybrid model, and its security (soundness and zero-knowledge) is shown in Theorem 10. Specifically,
two main concerns need to be addressed:

– Firstly, packing subfield VOLE correlations between Fp and Fpr into OLEs correlations over Fpr

to get mask for QS check with a soundness of O(2−λ). Given (r ·τ) instances of sVOLE correlation
over Fp i.e.,

W = V + u · [1 · · · 1] · diag(∆) where u ∈ Fr·τ
p , V,W ∈ F(r·τ)×τ

pr

we define (A∗0,A
∗
1,B

∗) ∈ Fτ
pr as for all i ∈ [0, τ):

A∗1,i = liftr(u[i·r...(i+1)·r)) ∈ Fpr ,

A∗0,i = liftr(V
i
[i·r...(i+1)·r)) ∈ Fpr ,

B∗i = liftr(W
i
[i·r...(i+1)·r)) ∈ Fpr .

From the additive homomorphic property of sVOLE correlation, it is easy to check that B∗ =
A∗0 +A∗1 ◦∆ ∈ Fτ

pr .
– Secondly, how to apply Quicksilver techniques for the polynomial set (Section 2.6) to τ -repetitions

of nullity check. Recall notation, given a polynomial f over n variables, a matrix M ∈ Fn×τ
p we

denote f(M) = (f(M0), · · · , f(Mτ−1)) as a vector in Fτ
p . We can see that the correctness is shown

similarly as in Quicksilver except working on the vector of length τ instead of a single instance.
We consider A∗0,A

∗
1 as vectors over Fτ

pr and we have:

B =

m∑
i=1

Bi ◦ χi +B∗ =

m∑
i=1

(fi,1(K[x]) ◦∆+ fi,2(K[x])) ◦ χi +B∗

=

m∑
i=1

gi(∆) ◦ χi +B∗ (since K[x] := M[x] + x · [1 . . . 1] · diag(∆))

=

m∑
i=1

(
Ai,0 +Ai,1 ◦∆+Ai,2 ◦∆2

)
◦ χi +A∗0 +A∗1 ◦∆

= QS0 + QS1 ◦∆ (since Ai,2 = 0 if x is witness )

(1)
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Theorem 10. The protocol ΠMQ−DVZK is an honest verifier zero-knowledge protocol for multivariate
quadratic problem MQp,m,n in the FsVOLE-hybrid model. The security holds against a malicious prover
or a semi-honest verifier with the soundness error in the former case is bounded by ((m + 2)/pr)τ

and information-theoretic security.

The proof is followed by [BBD+23,CLY+24]. The soundness error comes from whether the malicious
prover can 1) guess correctly the value of ∆ ←r Fτ

pr this happens with a probability of (1/pr)τ , or
2) cheat in Equation (1) to keep this equation hold since this equation has degree 2, ∆ ←r Fτ

pr is
uniformly random and kept secret from the adversary’s view then from Section 2.5, the probability
that the above equation holds is bounded by ((m+ 2)/pr)τ .
We can use the Fiat-Shamir heuristic to make the online phase non-interactive at the cost of the
information-theoretic security is degraded to computation security. Specifically, both parties can
compute χ ∈ Fτ

pr as H(γ0, · · · , γn−1), where H : {0, 1}∗ → Fτ
pr is a cryptographic hash func-

tion modeled as a random oracle and (pr)τ ≥ 2λ. The communication then consists of sending
γ ∈ Fn

p ,QS0 ∈ Fτ
pr ,QS1 ∈ Fτ

pr . In total, the asymptotic communication cost is around (n+2·τ ·r)·log p
bits.

Proof. The correctness of the proof follows the explanation above. For security, we prove in the UC
model where we construct simulators that are secure against a malicious prover and an honest verifier
to argue soundness and zero-knowledge properties respectively.

Malicious Prover. Malicious prover. Sim emulates functionality FsVOLE and interacts with adversary
A as follows:

– Sim emulates FsVOLE for A by choosing uniform ∆ ∈ Fτ
pr , and recording all the vector u and their

corresponding MAC tags V that are received by FsVOLE from adversary A. These values define
the corresponding keys naturally. When emulating FsVOLE, Sim also receives {A∗0,A∗1} ∈ Fτ

pr×Fτ
pr

and can locally construct B∗ = A∗0 +A∗1 ◦∆ ∈ Fτ
pr .

– When A sends γ ∈ Fn
p in step 1 of online phase, Sim extracts the witness as xi := γi+uifori ∈ [n].

– Sim executes the remaining part of protocol ΠMQ−DVZK as an honest verifier, using ∆ and the keys
defined in the first step. If the honest verifier outputs false, then Sim sends x =⊥ and (fi)i∈[m] to
FpolyZK and aborts. If the honest verifier outputs true, Sim sends x and (fi)i∈[m] to FpolyZK where
x = (x1, · · · , xn) is extracted by Sim as above.

It is easy to see that the view of A simulated by Sim has an identical distribution as its view in
the real-world execution. Whenever the honest verifier in the real-world execution outputs false, the
honest verifier in the ideal-world execution outputs false as well (since Sim sends ⊥ to FpolyZK in this
case). Therefore, we only need to bound the probability that the verifier in the real-world execution
outputs true but the witness x sent by Sim to FpolyZK satisfies that fi(x) = 0 for some i ∈ [m]. And
this happens with probability at most (m+2)/pr [YSWW21] since we repeat τ times so the soundness
is bounded by ((m+ 2)/pr)τ using union bound.

Semi-honest Verifier. Sim emulates FpolyZK. If Sim receives false from F, then it simply aborts. Oth-
erwise, Sim interacts with A as follows:

– In the preprocessing phase, Sim emulates FsVOLE, gets the global key ∆ and the keys K[x] for
all the authenticated values, which are received from A. Additionally, S also receives B∗ = A∗0 +
A∗1 ◦∆ ∈ Fτ

pr .
– Sim executes the step 1 of online phase in ΠMQ−DVZK by sending uniform γ ∈ Fn

p to A.
– For steps 5–6 of ΠMQ−DVZK, Sim computes W,Bi by using ∆, the keys K[x] and B∗ received

from A following the protocol description, and then samples QS1 ←r Fτ
pr and computing QS0 :=

B− QS1 ◦∆. Then, Sim sends (QS0,QS1) to A.
Note that γ and (A∗0,A

∗
1) are uniform and kept secret from the view of adversary A. Therefore,

we easily obtain that the view of A simulated by Sim is distributed identically to its view in the
real-world execution, which concludes the proof.

4.2 Publicly-Verifier ZK for MQP

In this section, we show how to transfer our designated-verifier ZK protocol ΠMQ−DVZK ( Figure 6)
to publicly-verifier ZK protocol using SoftspokenOT and vector commitment in VOLE in-the-Head
paradigm.
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PARAMETERS:

– Given a field Fp and τ, r ∈ N, τ ∈ N number of repetitions.
– Prover P and verifier V hold (Ai,bi, yi)i≤m ∈ Fn×n

p × Fn
p × Fp.

– P holds x = (x1, · · · , xn) ∈ Fn
p such that xTAix+ bT

i x = yi for all i ∈ [m].
– P and V define a set of polynomials {fi}i≤m of degree 2 as fi(x1, · · · , xn) = xTAix+bT

i x−yi
over Fp. Each polynomial fi is presented as fi = fi,1+fi,2 where all terms in fi,1 and fi,2 have
degree of 1 and 2 respectively.

– An instantiation of FsVOLE for multi-subVOLE over Fp.

PROTOCOL:

– Preprocessing phase:

1. P and V invokes on input (init) to Fn+r·τ,τ
sVOLE , P gets (u,V) where V =

[
V1

V2

]
,V1 ∈

Fn×τ
pr , V2 ∈ F(r·τ)×τ

pr .
Note that the first n-coordinates of u are used to hide witness x and the last (r · τ)-
coordinates of u are used to mask polynomials in the QS check i.e., using u[n, r · τ) and
V2 to produce τ -OLEs over F2λ where P gets {A∗

0,A
∗
1} ∈ Fτ

pr × Fτ
pr .

– Online phase:
1. P sends γ := x− u[0, n) ∈ Fn

p to V.
P defines V1 →M[x].

2. For i ∈ [1,m], P defines a vector that consists of τ univariate 2-degree polynomials over
field Fpr as

gi = fi,1(M[x] + x · [1 · · · 1] · diag(X)) ·X + fi,2(M[x] + x · [1 · · · 1] · diag(X)),

and computes the coefficients {Ai,0,Ai,1,Ai,2} ∈ (Fτ
pr )

3 such that gi = Ai,0 +Ai,1 ·X +
Ai,2 ·X2. Note that Ai,2 = 0.

3. V samples χ←r Fτ
pr and sends it to P.

4. P computes

QS0 :=

m∑
i=1

Ai,0 ◦ χi +A∗
0,

QS1 :=

m∑
i=1

Ai,1 ◦ χi +A∗
1.

and sends them to V. Note A∗
0, A

∗
1 is consider as vectors over Fτ

pr .
5. P and V invokes on input (get) to Fn+r·τ,τ

sVOLE , V gets (∆, W, B∗) such that:

W =

[
W1

W2

]
, W1 := V1 + γ · [1 · · · 1] · diag(∆),

W2 −→ B∗ = A∗
0 +A∗

1 ◦∆ ∈ Fτ
pr .

V defines W1 → K[x].
6. For i ∈ [1,m]:

• V computes Bi := fi,1(K[x]) ◦∆+ fi,2(K[x]).
7. P and V check that Ai,0 +Ai,1 ◦∆ = Bi in the following way:

• V computes B =
∑m

i=1 Bi ◦ χi +B∗ and checks that B = QS0 + QS1 ◦∆.
• If the check fails, V outputs false; otherwise it outputs true.

Fig. 3. The DVZK protocol ΠMQ−DVZK for Multivariate Quadratic problem in the FsVOLE-hybrid model

SoftspokenOT. Given PRG : {0, 1}λ → Fn
p be a pseudorandom generator. SoftspokenOT [Roy22]

shows how to construct a subfield VOLE over the extension field Fpr that securely realizes the ideal
functionality of FsVOLE Figure 1.
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In particular, assume P has a set of seeds {sdi}i∈[N ] and V has an index j ∈ [N ] and a set of seeds
all-but-one {sdi}i̸=j . P and V now construct a VOLE over Fpr by defining:

u =

N∑
i=1

PRG(sdi) ∈ Fn
p , v = −

N∑
i=1

i · PRG(sdi) ∈ Fn
pr

w =
∑
i ̸=j

i · PRG(sdi) = j · u+ v ∈ Fn
pr

P and V repeats τ individual times to get τ -sVOLE correlations (the VOLE global key needs to
contain enough entropy to ensure soundness), while P has {sdij} for i ∈ [0, τ), j ∈ [0, N) and V has
τ -set of all-but-one seeds (∆i, {sdij}j ̸=∆i

) for i ∈ [0, τ) then the muli-instance sVOLE is defined by
concatenating each instance.
P defines:

U =

 N∑
j=1

PRG(sd0j ) · · ·
N∑
j=1

PRG(sdτ−1j )

 , V =

 N∑
j=1

j · PRG(sd0j ) · · ·
N∑
j=1

j · PRG(sdτ−1j )


While V defines:

W′ =

 N∑
j=1

(j −∆0) · PRG(sd0j ) · · ·
N∑
j=1

(j −∆τ−1) · PRG(sdτ−1j )


To instantiate FsVOLE, P needs to re-randomize U by sending C := [U1−u∥ · · · ∥Uτ−1−u] ∈ Fn×(τ−1)

p

where u := U0. V then defines W = W′ + [0∥C] · diag(∆). Finally we get

W = V + u · [1 . . . 1] · diag(∆).

VOLE consistency check. To make sure that P does not cheat when sending C. The V challenges P
to open a random, linear universal hash function applied to U0 and V. The linear hash function is
represented by a compressing matrix HUHF, and P sends

ũ = HUHF · u, Ṽ = HUHF ·V

and then V checks Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆)).

Multi-instance PPRF. The purpose of using PPRF is to allow P and V to efficiently open all
but one sd to V following the same technique as in MPCitH signatures [BCC+24]. Currently, there
are two approaches to optimizing the GGM tree based PPRF 1) using the half-tree technique and
circular correlation robust hash function [CLY+24,BCdSG24] to optimize in terms of computation,
2) constructing new multi-PPRF based on AES in ideal cipher [BCC+24]. In our construction, we use
the multi-instance of PPRF to easily plug into our signature. We recall the construction PPRF and
muti-instance of PRG in Figure 5 and Figure 4 respectively and followed by their formal theorems of
security.

PARAMETERS:

– For each K ∈ {0, 1}λ, πK : {0, 1}λ → {0, 1}λ is a uniformly random permutation.

CONSTRUCTION:

– Sample K←r {0, 1}2λ. parse K := (K0,K1).
– Fb : {0, 1}2λ → {0, 1}λ is defined as Fb(sd,Kb) = πKb(sd)⊕ sd for b ∈ {0, 1} and sd ∈ {0, 1}λ.

Fig. 4. Multi-instance PRG F0,F1 in the ideal cipher model
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Theorem 11. Let F0,F1 be the functions defined in Figure 4. Let q be the number of queries to the
oracle Oπ (ideal cipher model). Then (F0,F1) is an (N, τ)-instance (q, ϵ)-secure PRG in the ideal
cipher model, where

ε ≤ fN (λ) · q ·
(

1

2λ−1
+

1

2λ − q

)
+

4τN

22λ
,

for some function fN such that if N ≤ 2λ−1, fN (λ) ≤ 3τλ·ln 2
lnλ+ln ln 2 , and if N ≤ 2λ/2, fN (λ) ≤ 4τ .

PARAMETERS:

– Two functions F0,F1 : {0, 1}2λ → {0, 1}λ is a (N, τ)-instance (t, ϵ)-secure length-doubling
PRG.

– Number of leaves N = 2D ∈ N, computational security parameter λ.

CONSTRUCTION:

– Sample (sd,K) ←r {0, 1}3λ where K := (K0,K1). We use K0,K1 for F0,F1 respectively. For
simplicity, we sometimes write Fi(sd,Ki) as Fi(sd,K) for i ∈ {0, 1}.

– Let X0 := F0(sd,K0), X1 := F1(sd,K1).
– For i ∈ [2, D], define Xb1,...,bi−1,0 = F0(Fbi−1(Xb1,...,bi−1),K0), Xb1,...,bi−1,1 =

F1(Fbi−1(Xb1,...,bi−1),K1) where bj ∈ {0, 1} for all j ∈ [1, i− 1].
– We generalize the formula to compute the leaf of the tree as follows:

For each i ∈ [0, n− 1], bit-decompose i as
∑D

j=1 2
j−1 · ij for ij ∈ {0, 1} then:

Xi = Xi1,...,iD = FiD (FiD−1(Xi1,...,iD−1),KiD )

= FiD (FiD−1(. . . (Fi1(sdi1 ,Ki1),KiD−1),KiD )

To formalize, the value for each leaf i ∈ [0, N − 1] is denoted as:

PPRFsd(K, i) = FiD (PPRFsd (K, i1,...,D−1) ,K)

= FiD

(
FiD−1 (. . . (Fi1(sd,K) ,K) ,K

)
where i1,...,k =

∑k
j=1 2

k−j i̇j for any k ∈ [1, D].
– We define the co-path CoPath(i) for each i =

∑D
j=1 2

j−1 · ij ∈ [0, N − 1] as follows:

CoPath(i) = CoPath(Xi1,...,iD ) = {Xī1 , Xi1 ,̄i2 , . . . , Xi1,...,̄iD
}

Formalizing, we have:

CoPathsd(K, i) = PPRFsd

(
K, i1,...,j̄

)
j=1,...,D

where i1,...,k̄ =
∑k−1

j=1 2k−j .ij + īk for any k ∈ [1, D].

Fig. 5. Construction PPRF(sd,K, 2D) of Puncturable PRF

Theorem 12 (PPRF security [BCC+24]). Assume that PRG = (F0,F1) with Fb : {0, 1}2λ →
{0, 1}λ is an (N, τ)-instance (t, ϵ)-secure length-doubling PRG. Then the construction PPRF(sd,K, 2D)
described in Figure 5 is an (N, τ)-instance strongly (t,D · ϵ)-secure PPRF with input domain [2D]
and punctured key domain ({0, 1}λ)D.

VOLE in-the-Head. Putting all techniques together and using the compiler from [BBD+23], we ob-
tain a publicly verifier ZK protocol ΠMQ−PVZK from MQ problem in Figure 6 based on SoftspokenOT,
multi-instance PPRF, and nullity check for a polynomial set.

5 A Signature scheme from Multivariate Quadratic

In this section, we introduce a new signature scheme from the multivariate quadratic decoding as-
sumption. A signature scheme is given by three algorithms (KeyGen,Sign,Verify). KeyGen returns a
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PARAMETERS:

– Prover P and verifier V hold (Ai,bi, yi)i≤m ∈ Fn×n
p × Fn

p × Fp.
– P holds x = (x1, · · · , xn) ∈ Fn

p such that xTAix+ bT
i x = yi for all i ∈ [m].

– P and V define a set of polynomials {fi}i≤m of degree 2 as fi(x1, · · · , xn) = xTAix + bT
i x

over Fp. Each polynomial fi is presented as fi = fi,1 + fi,2 where all terms in fi,1 and f,2 have
degree of 1 and 2 respectively.

– Let k = n + r,N = pr and HUHF ⊆ Ft×(k+t)
p be a family of k-hiding, p−t-universal hash

function.
– Let PRG : {0, 1}λ → Fk+t

p be a pseudorandom generator.

PROTOCOL:

1. P uniformly samples {sdij} ←r {0, 1}λ for i ∈ [0, τ), j ∈ [0, N). The P defines U,V ∈ F(k+h)×τ
p

as follow

U =

[
N∑

j=1

PRG(sd0j ) · · ·
N∑

j=1

PRG(sdτ−1
j )

]
, V = −

[
N∑

j=1

j · PRG(sd0j ) · · ·
N∑

j=1

j · PRG(sdτ−1
j )

]

P defines u = U0 and C := [U1 − u∥ · · · ∥Uτ−1 − u] ∈ F(k+t)×(τ−1)
p . P sends C to V.

2. V samples HUHF ←r HUHF and sends it to P.
3. P defines ũ = HUHF · u, Ṽ = HUHF ·V and sends them to P.
4. P and V run step 1− 4 of ΠMQ−DVZK in Figure 3 by using first k-coordinates of u and k-rows

of V.
5. V samples randomly ∆ = (∆0, · · · ,∆τ−1), sends (get,∆) to P and receives back {sdij} for

i ∈ [0, τ), j ∈ [0, N ] \ {∆i}. Then compute

W =

[
N∑

j=1

(j −∆0) · PRG(sd0j ) · · ·
N∑

j=1

(j −∆τ−1) · PRG(sdτ−1
j )

]

6. P and V run step 5− 6 of ΠMQ−DVZK in Figure 3.
7. V outputs accept if two following checks are passed:

– SoftSpokenOT. Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆)).
– QuickSliver. P and V run step 7 of ΠMQ−DVZK in Figure 3.

Fig. 6. The publicly verifiable zero-knowledge protocol ΠMQ−PVZK for Multivariate Quadratic problem in the
FsVOLE-hybrid model

key pair (pk, sk) where pk and sk are the public and private key. Sign on an input a message m and
the secret key sk, produces a signature σ. Verify, on input a message m, a public key pk and a signa-
ture σ, returns 0 or 1. Standard security notions for signature schemes are existential unforgeability
against key-only attacks (EUF-KO, Definition 14) and against chosen-message attacks (EUF-CMA,
Definition 13).

Definition 13 (EUF-CMA security). Given a signature scheme Sig = (Setup,Sign,Verify) and
security parameter λ, we say that Sig is EUF-CMA-secure if any PPT algorithm A has negligible
advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Verify(pk, µ∗, σ∗) = 1

∧µ∗ /∈ Q
(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← ASign(sk,·)(pk)

]
,

where ASign(sk,·) denotes A’s access to a signing oracle with private key sk and Q denotes the set of
messages µ that were queried to Sign(sk, ·) by A.

Definition 14 (EUF-KO security). Given a signature scheme Sig = (Setup,Sign,Verify) and se-
curity parameter λ, we say that Sig is EUF-KO-secure if any PPT algorithm A has negligible advantage
in the EUF-KO game, defined as

AdvEUF-KOA = Pr

[
Verify(pk, µ∗, σ∗) = 1

(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← A(pk)

]
.
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5.1 Description of the Signature Scheme

The key generation algorithm randomly samples a multivariate quadratic instance ((Ai,bi, yi)i≤m)
with solution x ∈ Fn

p . We describe it on Figure 7. The signing algorithm with secret key sk = (sd,x)
and message m ∈ {0, 1}∗ is described on Figure 8. The verification algorithm with public key pk =
(Ai,bi, yi)i≤m, message m ∈ {0, 1}∗, and signature σ, is described in Figure 9.

Inputs:

– A security parameter λ, a finite field Fp.
– Pseudorandom generators PRG1 : {0, 1}λ → (Fn×n

p )m,PRG2 : {0, 1}λ → (Fn
p )

m.

Key Gen:

1. Sample sd←r {0, 1}λ. Compute (Ai)i≤m ← PRG1(sd), (bi)i≤m ← PRG2(sd)
2. Sample x←r Fn

p .
3. Set yi ← xTAix+ bT

i x.
4. Output pk← (Ai,bi, yi)i≤m and sk← (sd,x).

Fig. 7. Key generation algorithm of the signature scheme

Theorem 15. Assume that PPRF is a (qs, τ)-instance (t, ϵPPRF)-secure PPRF, that PRG is a (qs, τ)-
instance (t, ϵPRG)-secure PRG, and that any adversary running in time t has at advantage at most
ϵMQ against the multivariate quadratic problem; ΠMQ−PVZK is a DVZK protocol with a soundness
error of ϵΠMQ−PVZK

. Model the hash functions H1,H2 as random oracles with output of length 2λ-bit
and the pseudorandom generator PRG∗2 as a random oracle. Then chosen-message adversary against
the signature scheme depicted in Figure 8, running in time t, making qs signing queries, and making
q1, q2, q3 queries, respectively, to the random oracles H1,H2 and PRG∗2, succeeds in outputting a valid
forgery with probability

Pr[Forge] ≤ qs (qs + q1 + q2 + q3)

22λ
+ ϵPPRF + εPRG + ϵMQ + ϵΠMQ−PVZK

,

We start by proving the following lemma:

Lemma 16 (EUF-KO =⇒ EUF-CMA).

AdvEUF-CMA
A ≤ AdvEUF-KOA +

qs (qs + q1 + q2 + q3)

22λ
+ ϵPPRF + ϵPRG

Proof. Let us consider an adversary A against the EUF-CMA property of the signature scheme. To
prove security we will define a sequence of experiments involving A, where the first corresponds to
the experiment in which A interacts with the real signature scheme, and the last one is an experiment
in which A is using only a random element independent from the witness.

Game 1 (Gm1). This corresponds to the actual interaction of A with the real signature scheme.
We need to bound the probability of what we’ll call Forge, i.e. the event that A can generate a valid
signature for a message that was not previously queried to the signing oracle.

Game 2 (Gm2). For this step, we abort if the sampled salt K collides with the value sampled in
any of the previous queries to hash functions H1 or H2 or if the input of PRG∗2 collides with the value
obtained in any of the previous queries. Therefore we can bound this probability by

|Pr[Gm1(Forge)]− Pr[Gm2(Forge)]| ≤ qs · (qs + q1 + q2 + q3)

22λ

Game 3 (Gm3). The difference with the previous game is that now before signing a message we
choose uniformly random values h1, h2 and ∆∗. Since Phase1, Phase2 and Phase5 are computed as
before and the only change compared to the previous game is that we set the output of H1 as h1,
the output of H2 as h2 and the output of PRG∗2(h2) as ∆∗ then the difference in forgery probability
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Inputs: A secret key sk and a message m ∈ {0, 1}∗.
Parameters:

– PRG∗ : {0, 1}λ → Fk+t
p , PRG∗

1 : {0, 1}2λ → Ft×(k+t)
p , PRG∗

2 : {0, 1}2λ → Fτ
pr .

– PRG : {0, 1}λ → {0, 1}2λ, H1,H2 : {0, 1}∗ → {0, 1}2λ

Initialization.

– Parse sk as (sd,x);
– Let (Ai)i≤m ← PRG1(sd), (bi)i≤m ← PRG2(sd);
– Set yi ← xTAix+ bT

i x.
– Sample (K0,K1)←r {0, 1}λ × {0, 1}λ. Set K← (K0,K1).

Phase 1. Establish τ − PPRF:
For each iteration e ∈ [τ ]:

– Sample sde ←r {0, 1}λ;
– For i = 0 to N − 1:

1. Compute sdei ← PPRFK(sd
e, i); // Can be computed efficiently by always storing the path to

the current node: to move from i to i+1, start from the closest ancestor of i+1 in the path to
leave i.

2. (sdei , com
e
i )← PRG(sdei ); // (sdei , com

e
i ) ∈ {0, 1}λ × {0, 1}λ.

Phase 2.

– Define U,V ∈ F(k+h)×τ
p as follow:

U =

[
N−1∑
i=0

PRG∗(sd0i ) · · ·
N−1∑
i=0

PRG∗(sdτ−1
i )

]
, V = −

[
N−1∑
i=0

j · PRG∗(sd0i ) · · ·
N−1∑
i=0

i · PRG∗(sdτ−1
i )

]

– Define u := U0 and C := [U1 − u∥ · · · ∥Uτ−1 − u] ∈ F(k+t)×(τ−1)
p .

Phase 3.

1. h1 ← H1(m,K,C, com0
0, · · · , comτ−1

N−1, · · · , com
τ
0 , · · · , comτ−1

N−1); // Accumulate the commitments in-
side the hash rather than storing and hashing all at once.

2. HUHF ← PRG∗
1(h1);

3. Define ũ = HUHF · u, Ṽ = HUHF ·V.

Phase 4.

1. Run step 1 − 4 of ΠMQ−DVZK in Figure 3 by using first k-coordinates of u and k-rows of V, get
(U0,U1) ∈ Fτ

pr ;

2. h2 ← H2(m,K, h1, ũ, Ṽ,QS0,QS1);
3. ∆← PRG∗

2(h2), define ∆ = (∆0, · · · ,∆τ−1).

Phase 5.
Output σ =

(
K, h1, h2, (QS0,QS1), (ũ, Ṽ), (CoPathK(∆e, sd

e), come
ie)e<τ

)
. // for Ṽ, only need to send

its collision-resistant hash value.

Fig. 8. Signing algorithm of the signature scheme

is due to the event that query to H1, H2 or PRG∗2 was ever made before but in this scenario Game 2
aborts, so

Pr[Gm2(Forge)] = Pr[Gm3(Forge)]

Game 4 (Gm4) In this game we sample at random the ∆∗i−th seed sd∆∗
i

and the related co-
path CoPath∆∗

i
. By using all the seeds {sdi}i ̸=i∆∗

i
in the CoPath∆∗

i
we will proceed by computing

all the parties’ views as well as the auxiliary material. Therefore, Phase 1 and Phase 3 are executed
in the actual way (i.e. by using the real witness) except for ∆∗i , for which the values are obtained
randomly instead of using the PPRF. Distinguishing between this game and the previous one is
perfectly equivalent to breaking the multi-instance security of the PPRF:

|Pr[Gm4(Forge)]− Pr[Gm6(Forge)]| ≤ ϵPPRF
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Inputs: A public key pk = (Ai,bi, yi)i≤m, a message m ∈ {0, 1}∗ and a signature σ.

1. Split the signature as follows:(
K, h1, h2, (QS0,QS1), (ũ, Ṽ), (CoPathK(∆e, sd

e), come
ie)e<τ

)
;

2. Recompute HUHF ← PRG∗
1(h1) via a pseudorandom generator using h1.

3. Recompute ∆ = (∆0, · · · ,∆τ−1) via a pseudorandom generator using h2.
4. For each iteration e ∈ [τ ],

– For each i ∈ [N ] \ {∆e}:
• Recompute sdei from the CoPathK(i

e, sde);
• Recompute (sdei , com

e
i )← G(sdei );

5. Compute:

W =

[
N−1∑
i=0

(i−∆0) · PRG(sd0i ) · · ·
N−1∑
i=0

(i−∆τ−1) · PRG(sdτ−1
i )

]
6. Run step 5− 7 of ΠMQ−DVZK in Figure 3. If the output is accept then check if

Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆))

7. Check if h1 ← H1(m,K,C, com0
0, · · · , comτ−1

N−1, · · · , com
τ
0 , · · · , comτ−1

N−1);
8. Check if h2 ← H2(m,K, h1, ũ, Ṽ,U0,U1);
9. Output ACCEPT if three conditions are satisfied.

Fig. 9. Verification algorithm of the signature scheme

Game 5 (Gm5). Now, before signing a message, we choose a uniformly random value to be used
as the ∆∗i− th party’s view, i.e. sd∆∗

i
, and its commitment com∆∗

i
. Since in the previous game, these

values were computed by using a multi-instance PRG on a random sd, with salt K, we can bound

|Pr[Gm4(Forge)]− Pr[Gm6(Forge)]| ≤ ϵPRG

Game 6 (Gm6) In this game, we will change Phase 4 by making the signer use the simulator
against the semi-honest verifier described in Theorem 10. We have

Pr[Gm5(Forge)] = Pr[Gm6(Forge)]

Game 7 (AdvEUF-KOA ) We say that an execution e∗ of a query

h2 ← H2(m,K, h1, ũ, Ṽ,QS0,QS1)

defines a correct witness if the following criteria are satisfied:

– h1 was output by a previous query

h1 ← H1(m,K,C, com0
0, · · · , comτ−1

N−1, · · · , com
τ
0 , · · · , comτ−1

N−1)

– each come∗

i in this query was output by a previous query

(sde
∗

i , come∗

i )← PRG(sde
∗

i )

for each i ∈ [N ];
– The vectors ũ, Ṽ is defined such that

Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆))

– The vector x defined by QS0,QS1 satisfies MQp,m,n.

In this game, for each query of H2 made by the adversary, we will check if there is an execution e∗

that defines a correct witness. Calling this event Solve then Pr[Solve] ≤ ϵSD + ϵΠMQ−PVZK
, since if it

occurs then QS0,QS1 define a solution for the MQp,m,n. In the end, we obtain

Pr[Forge] ≤ qs (qs + q1 + q2 + q3)

22λ
+ ϵPPRF + εPRG + ϵMQ + ϵΠMQ−PVZK

⊓⊔
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5.2 Parameters and Signature Size

Signature size. The signer generates the signature σ which consists of:

– The key K ∈ {0, 1}2λ for multi-instances PPRF, 2 hash values h1, h2 ∈ {0, 1}2λ.
– The vector C ∈ F(k+t)×(τ−1)

p i.e., τ − 1 correction strings Ci, . . . ,Cτ−1 where k = n+ r.
– The hashed VOLE secret ũ, Ṽ. This is used in the VOLE consistency check later. Note that

instead of sending Ṽ directly, the signer can send a collision-resistant hash of this. This saves
some communication asṼ is quite large, and it still allows to verify since the verifier can simply
compute Ṽ (from ∆, ũ, W) and check that its hash matches the collision-resistant hash sent by
the signer.

– The QuickSilver proof part (QS0,QS1) ∈ Fτ
pr .

– The partial {CoPathK(∆i, sd
i), comi

∆i
}i<τ for each of the τ PPRF instances, opening all positions

except ∆ ∈ Fτ
pr .

The asymptotic signature size is

(τ − 1) · (n+ r + t) · log p︸ ︷︷ ︸
C

+ ũ︸︷︷︸
t

+2 · τ · r · log p︸ ︷︷ ︸
U0,U1

+2 · λ︸︷︷︸
Ṽ

+2 · λ︸︷︷︸
K

+ 4 · λ︸︷︷︸
h1,h2

+ τ · r · log p · λ︸ ︷︷ ︸
CoPath

Parameters. In this section, we explain how to select parameters for our new signature scheme with
a security level of λ.

– The field size of Fp and Fpr depends on the security of MQp,m,n problem to ensure the security
level of λ [BMSV22]. For feasible implementation, Fp is chosen as an extension field of F2 and
subfield of F2λ .

– The repetitions τ ∈ N, instead of running a VOLEitH protocol to achieve a security level of λ
which costs O(2λ) computation, we can run several parallel τ -instances of the VOLEitH protocol
over smaller fields and concatenating the VOLE tags and keys that they produce. This creates
VOLE correlations over the F2λ with only a polynomial amount of work. Since QuickSilver is
applied and the challenge space is Fτ

pr , from the Theorem 10, the underlying DVZK achieves
soundness error of O(2−λ) if (

m+ 2

pr

)τ

= 2−λ

.
The choice for τ offers tradeoffs between signature size and speed. A small τ means computing
fewer VOLEitH protocols and hence a smaller signature size (because signature size scales in
the number of VOLE instances), but at the cost of larger values r and hence more work for the
signer and verifier and as reverse for a large τ . work for the signer and verifier. Observe that
τ needs to be divided by λ. This constraint leads to a limit choice of τ ∈ N i.e., an inefficient
actual implementation then we take into account the existing optimization of FAEST for sVOLE
correlations. In particular, given a suitable τ , choosing two length parameters k0, k1 ∈ N such
that

k0 := ⌈λ/(log p · r · τ)⌉ and k1 := ⌊λ/(log p · r · τ)⌋

while two repetition parameters are defined as τ0 := λ/(log p · r) mod τ and τ1 := τ − τ0, such
that k0 · τ0 + k1 · τ1 = λ/(log p · r), ensuring that concatenating the outputs of τ0 instances of
VOLEitH for Fpk0 and τ1 instances of VOLEitH for Fpk1 produces VOLE correlations in F2λ

exactly.
– Softspoken OT parameters, we use a sVOLE constructed from SoftspokenOT of length (n +

r + t where nth-sVOLE correlations are used to hide the witness of length n, next rth-sVOLE
correlations are for nullity check for polynomial set and last tth-correlations is added more to make
sure verifier learns nothing about u in VOLE consistent checks. Specifically, this check reveals
a (n + r + t) linear function of u to the verifier, which needs to hide the underlying witness.
From Proposition 8 and the universal hash function HUHF ∈ Ft×(n+r+t)

p is defined as a form of
[H|It] where H←r Ft×(n+r)

p , r needs to be chosen such that p−t = O(2−λ)1.
1 More details, p−t = O(2−λ−B) where B = 16 is added The extra few bits of security compensate for the

security loss
(
τ
2

)
in the proof of the SoftSpokenVOLE protocol from [BBD+23]
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5.3 Efficiency

We outline below a few satisfied parameter set constraints in Section 5.2 for different values of r.
For all values of r, the smallest signature size was achieved by setting (q,m, n) = (4, 88, 88) and
(r, τ) = (36, 2) respectively.

Table 2. Signature size in Bytes for various values of (r, τ) for the security level of 128 bits where r is degree
of extension field and τ is the number of repetitions, using two MQp,m,n parameter sets (q,m, n) = (4, 88, 88)
and (q,m, n) = (256, 40, 40) [Fen22].

Parameters r τ Signature size

(q,m, n) = (4, 88, 88)
36 2 2523B
20 4 2865B
12 8 3543B
8 16 4896B
6 24 5725B

(q,m, n) = (256, 40, 40)
9 2 2535B
5 4 2913B
3 8 3663B
2 13 4206B
1 49 9236B
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