
Accelerating BGV Bootstrapping for Large p
Using Null Polynomials Over Zpe

Shihe Ma1, Tairong Huang2, Anyu Wang2,3,4(B), and Xiaoyun Wang2,3,4,5,6

1 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing,
China, msh21@mails.tsinghua.edu.cn

2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China,
htr19@mails.tsinghua.edu.cn, anyuwang,xiaoyunwang@tsinghua.edu.cn

3 Zhongguancun Laboratory, Beijing, China
4 National Financial Cryptography Research Center, Beijing, China

5 Shandong Institute of Blockchain, Jinan, China
6 Key Laboratory of Cryptologic Technology and Information Security (Ministry of
Education), School of Cyber Science and Technology, Shandong University, China

Abstract. The BGV scheme is one of the most popular FHE schemes
for computing homomorphic integer arithmetic. The bootstrapping tech-
nique of BGV is necessary to evaluate arbitrarily deep circuits homo-
morphically. However, the BGV bootstrapping performs poorly for large
plaintext prime p due to its digit removal procedure exhibiting a com-
putational complexity of at least O(

√
p). In this paper, we propose opti-

mizations for the digit removal procedure with large p by leveraging the
properties of null polynomials over the ring Zpe . Specifically, we demon-
strate that it is possible to construct low-degree null polynomials based
on two observations of the input to the digit removal procedure: 1) the
support size of the input can be upper-bounded by (2B+1)2; 2) the size
of the lower digits to be removed can be upper-bounded by B. Here B
can be controlled within a narrow interval [22, 23] in our parameter selec-
tion, making the degree of these null polynomials much smaller than p for
large values of p. These low-degree null polynomials can significantly re-
duce the polynomial degrees during homomorphic digit removal, thereby
decreasing both running time and capacity consumption. Theoretically,
our optimizations reduce the computational cost of extracting a single
digit from O(

√
pe) (by Chen and Han) or O(

√
p 4
√
e) (by Geelen et al.)

to min(2B + 1,
√

⌈e/t⌉(2B + 1)) for some t ≥ 1. We implement and
benchmark our method on HElib with p = 17, 127, 257, 8191 and 655371.
With our optimized digit removal, we achieve a bootstrapping through-
put 1.38 ∼ 151 times that in HElib, with the speedup increasing with
the value of p. For p = 65537, we accelerate the digit removal step by
80 times and reduce the bootstrapping time from more than 12 hours to
less than 14 minutes.

Keywords: BGV · Bootstrapping · FHE · Homomorphic Digit Removal
· Null Polynomial

1 The code is available at https://github.com/msh086/BGV-Boot-for-Large-p.

https://github.com/msh086/BGV-Boot-for-Large-p

1 Introduction

Since Gentry’s first construction of the Fully Homomorphic Encryption (FHE)
scheme in 2009 [10], research in FHE has seen a surge following Gentry’s blueprint.
Among the various FHE schemes, Brakerski-Gentry-Vaikuntanathan (BGV) [5]
and Brakerski-Fan-Vercauteren (BFV) [7] are the most popular schemes for ho-
momorphic integer arithmetic. FHE relies on bootstrapping to remove the noise
accumulated during homomorphic operations to enable infinite homomorphic
computation on ciphertexts. The bootstrapping procedure developed by Halevi
and Shoup [13,15] and implemented in HElib [16] is the foundational blueprint
for all subsequent works and improvements [6,8,9]. However, BGV bootstrapping
is highly time-consuming and is the bottleneck for evaluating deep homomorphic
circuits.

In a nutshell, BGV bootstrapping, like bootstrapping in other FHE schemes,
computes the decryption function homomorphically. Most existing methods for
BGV bootstrapping (including the works of Halevi-Shoup [13,15] and Geelen-
Vercauteren [9]) require homomorphically removing the lower digits of encrypted
p-radix values, which corresponds to the noise-removal operation in BGV decryp-
tion. Specifically, given pe−rm+ ϵ ∈ Zpe , the digit removal procedure computes
m ∈ Zpr by homomorphically evaluating a series of polynomials. In contrast,
Kim et al. designed a bootstrapping framework without digit removal [17]. They
first obtain a noiseless encryption of ϵ under a small ciphertext modulus ∆ and
an encryption of m + ϵ ∈ Zpr . Then, they use the TFHE functional bootstrap
to obtain an encryption of ϵ under a large modulus, where the dimension and
number of functional bootstraps equal the ring dimension. Finally, m is obtained
by subtracting ϵ from m + ϵ. However, their method has a computational cost
growing at least quadratically with the ring dimension, thus requiring a small
ring dimension for efficiency. With either digit removal or functional bootstrap,
removing ϵ is the most computationally heavy part of BGV bootstrapping.

When the digit removal is performed modulo pe for some prime p, the number
of levels and computational cost to extract a single digit is (e − 1) log2(p) and
2(e−1)

√
p respectively for the algorithm in [13]. If the Chen-Han optimization is

applied [6], the depth and the computational cost would be log2((p−1)(e−1)+1)
and 2

√
(e− 1)(p− 1) + 1 instead. The most recent progress on BGV bootstrap-

ping includes the works of Geelen et al. [8,9]. In their first paper, Geelen et al.
exploit the null polynomials modulo pe and other optimizations to reduce the
computational complexity of homomorphic digit removal. Asymptotically, the
computational cost of extracting a single digit is reduced from O(

√
pe) (using

Chen-Han’s method) to O(
√
p 4
√
e), at the cost of consuming log2(p) more levels.

In the second paper, Geelen and Vercauteren design a new approach to sim-
plify the decryption formula evaluated by BGV bootstrapping, which unifies the
bootstrapping of BGV and BFV under a single framework.

Our Contributions. Despite all the optimizations on BGV bootstrapping, its
cost still “scales very poorly with large p”, as commented by Halevi in issue #80

2

of HElib [12]. This is because the polynomials evaluated during digit removal
have degrees that are at least p, implying a complexity of at least O(

√
p) when

evaluating these polynomials. This may explain why HElib and other works
choose small p for BGV bootstrapping, e.g., p up to 127 or 257. In contrast,
large p’s are favored to perform high-precision integer arithmetic in practice,
and one of the common choices is p = 65537 = 216 + 1.

In this work, we address the open problem of bootstrapping with large val-
ues of p by introducing novel optimizations for the homomorphic digit removal
process. Our contributions are summarized as follows.

(1) We propose two new constructions of low-degree null polynomials over Zpe

to reduce the degree of the polynomials involved in homomorphic digit removal.

– The first construction exploits the sparsity of the input for digit removal
and gives null polynomials with a maximum degree of (2B + 1)2. Here, B
represents the bound of the coefficients of ⌊ϵ0 + ϵ1s⌉, where ϵi’s are random
polynomials whose coefficients are sampled uniformly from (−1/2, 1/2) and s
is the secret key with Hamming weight h. When the cyclotomic order M has
only a few prime factors, B can be approximated as being proportional to√
h. In all of our selected parameters, the actual value of B can be controlled

within a narrow interval [22, 23]. Meanwhile, the value of p is distributed
within the interval [17, 65537], and the value of pr ranges from 13 to 16 bits.
The explicit formula for B is quite complex, so we defer it to Lemma 6.

– The second construction leverages the fact that the lower digits in digit
removal are bounded by B, and gives null polynomials with degree upper
bounded by ⌈e/t⌉(2B + 1) for some integer t satisfying t ≥ logp(2B+1) and
e− t = r > 0, where r is determined by the plaintext modulus pr. We note
that the bounded property of the lower digits has been utilized by Geelen et
al. for the construction of null polynomials [8]. However, in their work, the
digit extraction polynomial is expressed as the composition of multiple sub-
polynomials, and null polynomials are employed to accelerate the evaluation
of these sub-polynomials. In contrast, we demonstrate that it is possible to
directly use the null polynomials to accelerate the evaluation of the digit
extraction polynomial, without relying on function composition.

By employing these two types of null polynomials, we can reduce the compu-
tational complexity of extracting a single digit to min(2B+1,

√
⌈e/t⌉(2B + 1)).

In contrast, previous methods require a complexity of either O(
√
pe) [6] or

O(
√
p 4
√
e) [8]. Table 1 compares the depth and computing cost of digit extrac-

tion in previous and our works. Since we optimize bootstrapping by reducing
the digit extraction polynomial modulo a low-degree null polynomial, both the
depth and the computing cost can be saved as long as the null polynomial has
a degree smaller than the original polynomial.

(2) We implement our optimized digit removal on HElib and benchmark
it with the HS bootstrapping implemented in HElib as the baseline. For p =
17, 127, 257, 8191 and 65537, our method has a throughput 1.38x∼151x that of

3

HS bootstrapping. Specifically, for p = 65537, we reduce the running time of the
digit removal step by 80 times and obtain a 151x throughput.

Table 1: Depth and computing cost of the digit removal procedure in modulo
Zpe , both in previous and our works. The number of non-scalar multiplications
is estimated assuming odd BSGS optimization [8].

Method No. of non-scalar mult Depth consumption

CH18 [6]
√

2((p− 1)(e− 1) + 1) log2((p− 1)(e− 1) + 1)
GIKV23 [8] 2

√
2p 4

√
e 2 log2(p) + log2(e)

Ours(first type)
√

2⌈ e
t
⌉(2B + 1) log2(2B + 1) + log2(⌈ e

t
⌉)

Ours(second type)
√
2(2B + 1) 2 log2(2B + 1)

Our Techniques. The digit removal procedure in BGV bootstrapping, as sug-
gested in [13,15,9], aims to extract the highest r digits of pe−rm + ϵ ∈ Zpe

for plaintext m ∈ Zpr and noise ϵ, which corresponds to the rounding step of
the decryption function. This procedure is currently realized with digit removal
polynomials with degrees at least p [13,6,8]. Our direction of optimization is
to exploit the null polynomials over Zpe to reduce the degree of digit removal
polynomials, thereby reducing both the depth and computating cost of digit re-
moval. Although it has been observed by Geelen et al. [8] that low degree null
polynomials can be constructed over Zpe by utilizing the bounded property of
the lower digits, we demonstrate that this kind of polynomials can be employed
to expedite the evaluation of digit removal polynomial in a more straightforward
and effective manner.

To facilitate our optimization, we adapt the digit removal process with the
aim of computing ϵ ∈ Zpe from ϵ∗∆ + ϵ ∈ Zpe by employing the techniques
proposed by Kim et al. [17], where ∆ is an integer and ϵ∗, ϵ have a small bound
B. By doing this, we can construct low-degree polynomials to assist in the digit
removal process from the following two perspectives.

Firstly, we observe that for such digit removal, the input ϵ∗∆ + ϵ has a
small support size of (2B + 1)2, which is independent of the message or noise
in the input ciphertext. Consequently, we can construct a global null polynomial∏

a∈supp(ϵ∗∆+ϵ)(X−a), which is a monic null polynomial of degree (2B+1)2 over

supp(ϵ∗∆+ ϵ). Given that B is typically small (around 20 ∼ 30 in practice), the
degree of this null polynomial can be smaller than p when p is large. In contrast,
in HS or GV bootstrapping, the support size of pe−rm+ ϵ can be as large as pe,
making the construction of such low-degree null polynomials infeasible.

Secondly, we observe that the lower digits ϵ have smaller sizes than that in
HS or GV bootstrapping when ∆ = pt for some integer t. Based on this, we can
construct monic local null polynomials of degree no more than ⌈e/t⌉(2B+1) over

supp(ϵ∗∆ + ϵ), which have the form of
∏⌈e/t⌉−1

j=0 (
∏

i∈supp(ϵ)(X − i) − j · pv) for

4

some v ≥ t. Although the degree of this polynomial now depends on e, its actual
value is typically much smaller than (2B+1)2 since ⌈e/t⌉ is usually smaller than
2B + 1, particularly for large p.

Utilizing these two types of low-degree null polynomials, we can effectively
reduce the polynomials that need to be evaluated during the digit removal pro-
cess, producing polynomials with the same effects but much lower degrees. This
reduction directly decreases the depth and computing cost of evaluating these
polynomials and the BGV bootstrapping. Furthermore, given that B is pro-
portional to

√
h, we can achieve a smaller B by decreasing h using the sparse

bootstrapping key encapsulation technique developed by Bossuat et al. [4], which
in turn significantly reduces the degree of digit removal polynomials.

Finally, in contrast to the functional bootstrap approach by Kim et al. [17],
our approach employs digit removal to compute Enc(ϵ; pr+vp(∆)). This computa-
tion inherently leverages the SIMD acceleration in BGV, leading to a substantial
increase in efficiency. This benefit can be especially pronounced in scenarios in-
volving large ring dimensions.

Roadmap. Section 2 defines the necessary notations and provides some back-
ground knowledge related to this paper, including an overview of BGV boot-
strapping and a brief introduction to some mathematical concepts. Section 3
describes the digit removal procedure and existing optimizations on it. Section 4
gives more technical details and related proofs of our optimization on digit re-
moval. Section 5 compares our results to previous results by an implementation
based on HElib [16].

2 Preliminary

2.1 Basic Notations

– For any M ∈ Z+, we use ΦM (X) to represent the M -th cyclotomic polyno-
mial, ϕ(M) to represent Euler’s totient function. We denoteR = Z[X]/(ΦM (X))
and Rq = R/qR for any positive integer q.

– For any q ∈ Z+, we denote the set of representatives of Zq as JqK, which is
{0, 1} if q = 2, and [−⌊ q

2⌋, ⌊
q−1
2 ⌋] if q > 2. For a ∈ Z, we use [a]q ∈ JqK to

denote its value modulo q. We say that a is q-reduced if a = [a]q.

– For q = pe, where p is an odd prime7, any integer a ∈ JqK can be represented

as a p-radix integer with e digits, i.e., a =
∑e−1

i=0 pi · ai, where each digit
ai ∈ JpK. We denote the p-radix digits of a as a⟨i⟩p, and the integer formed by

the digits a⟨i⟩p, a⟨i−1⟩p, . . . , a⟨j⟩p as a⟨i, j⟩p =
∑i

k=j p
k−j ·a⟨k⟩p ∈ Jpi−j+1K.

For a polynomial m ∈ Rpe , represented under a specific polynomial basis,
we extend the above notations to m by applying them to its coefficients.

7 For p = 2, a ∈ J2eK can be similarly represented using the two’s complement encod-
ing. However, we omit the details since we will not deal with p = 2 in this paper.

5

– A list or vector of n values, a0, . . . , an−1, is represented as [a0, a1, . . . , an−1].
The infinity norm of a vector v is denoted by |v|. For a polynomial a ∈ R,
the infinity norm of the coefficient vector of a is denoted by |a|, provided
that the polynomial basis is clear from the context.

– The support of a random variable a is denoted as supp(a). We sometimes
exclude from supp(a) the low-probability tails of a (e.g., tails with probability
less than 2−32).

2.2 Canonical and Powerful Norms

Let ω = e2πi/M ∈ C be anM -th primitive root of unity. The canonical embedding
is a homomorphism from R to Cϕ(M), defined as

canon(a) = [a(ωi)]i∈Z∗
M
, ∀a ∈ R. (1)

The canonical norm is then defined as |a|can = |canon(a)| ∈ R.
Another norm commonly used in FHE schemes is the powerful norm. Assume

M =
∏k

i=1 Mi, where the Mi’s are pairwise coprime. Then there is an isomor-
phism between A = Z[X1, . . . , Xk]/(ΦM1

(X1), . . . , ΦMk
(Xk)) and R, namely

f(X1, . . . , Xk) → f(XM/M1 , . . . , XM/Mk). (2)

The powerful representation of an element a ∈ R is denoted as pwfl(a) ∈ A.
The Z-basis for R induced by the Z-basis {Xi1

1 · · ·Xik
k } for A, where 0 ≤ ij ≤

ϕ(Mj), 1 ≤ j ≤ k, is referred to as the powerful basis for R. The powerful norm
is then defined as |a|pwfl = |pwfl(a)| ∈ Z.

The powerful norm is closely related to the canonical norm [13,15]. Specifi-
cally, it satisfies

|a|pwfl ≤ DM |a|can, (3)

where DM =
∏

prime x|M P (x) and P (x) = 2
x·tan(π/2x) . Since P (x) ≤ 4

π for x ≥ 2,

the powerful norm is very close to the canonical norm when M has only a few
prime factors [14].

In contrast, the infinity norm on the standard basis [Xi]i=0,...,ϕ(M)−1 can be
much larger than the canonical norm, depending on the number of prime factors
in M (see [14] for details). Since the powerful norm is more tightly bounded
than the standard norm, some noise-sensitive operations in BGV are performed
on the powerful basis, such as decryption and bootstrapping.

2.3 BGV FHE Scheme

We introduce some fundamental operations used in the BGV scheme. The sym-
bols involved are summarized in Table 2.

6

Table 2: Summary of symbols used in BGV.

Symbol Meaning

M Cyclotomic order of the polynomial ring
R Cyclotomic ring Z[X]/ΦM (X)
p Prime for plaintext modulus
r Hensel lifting parameter for plaintext modulus
pr The plaintext modulus
d The extension degree of each slot
n The number of slots in Rpr

Secret Key and Ciphertext. The secret key polynomial s ∈ R is sampled to have
a bounded Hamming weight h. This means that h coefficients of s are set to −1
and 1 with equal probability, while the remaining coefficients are set to 0. For a
plaintext polynomial m ∈ Rpr , we use

Encs(m; pr; ϵ) = (b, a) = (−as+m+ prϵ, a) ∈ R2
q (4)

to denote the BGV ciphertext that encryptsm, with noise prϵ, with respect to the
secret key s. Here, q is coprime to p, a is sampled from Rq, and ϵ is sampled from
the discrete Gaussian distribution with standard deviation σ. Decryption of the
ciphertext is performed by computing [[pwfl(b+as)]q]pr = [m+prϵ]pr = m. The
notation can be simplified to Enc(m; pr) or Enc(m) if the omitted parameters
are clear from the context or unimportant.

The plaintext of BGV is often encrypted in a SIMD (Single Instruction, Mul-
tiple Data) manner. Specifically, using ring isomorphism, the plaintext spaceRpr

can be represented as the direct product of n = ϕ(m)
d copies of finite fields (or

finite rings if r > 1) with extension degree d, where d is equal to the multi-
plicative order of p in Z∗

m. Thus, we may also use Enc([m0,m1, . . . ,mn−1]) to
denote the encryption of the plaintext polynomial whose n slots hold the values
[m0,m1, . . . ,mn−1].

Key Switching. For a given ciphertext Encs(m), it is feasible to switch it to
Encs′(m) for another secret key s′ using the key switching operation. This oper-
ation requires the encryption of the appropriate forms of s under the secret key
s′ in the public key.

Homomorphic Addition and Multiplication. Given Encs(m0; p
r) and Encs(m1; p

r),
it is possible to compute homomorphically Encs(m0 + m1; p

r) and Encs(m0 ·
m1; p

r). Additionally, homomorphic multiplication requires re-linearization, which
is essentially key-switching from s2 to s.

Noise Measurement. In BGV, the decryption result will be correct if |m +
prϵ|pwfl < q/2. Furthermore, the ratio q/|m + prϵ|can, often referred to as the
capacity of a ciphertext, is typically used to measure the capability of this cipher-
text to perform homomorphic operations before a decryption error may occur.

7

BGV Bootstrapping. As homomorphic computations progress, the capac-
ity of the ciphertext continues to decrease. Bootstrapping is required when the
capacity becomes too low to perform any further homomorphic operations. Boot-
strapping removes the noise in the input ciphertext by homomorphically evalu-
ating the decryption function of the input ciphertext. Given c = Encs′(m; pr) as
the input ciphertext, BGV bootstrapping consists of the following five steps, as
illustrated in Figure 1.

– Simplifying the decryption formula: By performing modulus-switching, key-
switching and some scalar operations on c, we obtain (b, a) ∈ R2 satisfying
pwfl(b + as) ≡ pwfl(pe−rm + ϵ) mod pe for some e > r. Let m∗ = b + as,
the decryption formula is simplified to perform digit removal on pwfl(m∗) to
obtain pwfl(m) = pwfl(m∗)⟨e− 1, e− r⟩p.

– Homomorphic inner product: Compute b+a ·Encs′(s; pe). Since Encs′(s) has
plenty of capacity, this step outputs Encs′(m

∗; pe) with high capacity.
– Moving coefficients into slots: A linear transformation called CoeffToSlot

moves the coefficients of pwfl(m∗) into the slots. Then, the obtained cipher-
text is unpacked into d ciphertexts, whose slots of the i-th ciphertext contain
[pwfl(m∗)i·n, . . . ,pwfl(m

∗)i·n+n−1] ∈ Zn
pe .

– Homomorphic digit removal: For each of the d ciphertexts obtained in the last
step, the higher digits of their values in slots are extracted through a series
of polynomial evaluations. This is also the most computationally heavy step.
The i-th ciphertext now encrypts [pwfl(m)i·n, . . . ,pwfl(m)i·n+n−1] ∈ Zn

pr .
– Moving slots back into coefficients: Finally, the extracted digits in the slots

of the d ciphertexts are packed into a single ciphertext. The slot values of the
packed ciphertexts are moved into the powerful basis coefficients by another
linear transform called SlotToCoeff.

Thin Bootstrapping. In 2018, Chen and Han discovered that when each slot only
stores integers in Zpr instead of extension field (ring) elements, the procedures
above can be simplified [6]. Specifically, the digit removal only needs to be applied
once. Their modified bootstrapping routine consists of four steps. These steps
are illustrated in Figure 2.

– SlotToCoeff: Move the integers in slots to the powerful basis coefficients,
resulting in an encryption of a plaintext polynomial with sparse coefficients
under the powerful basis.

– Decryption Formula Simplification: Simplify the decryption formula using
the same technique of HS bootstrapping. Note that the modulus switching
error produced in this step will make the encrypted plaintext polynomial
non-sparse.

– CoeffToSlot: Move the powerful basis coefficients to the slots and project the
values in slots to Zpe using a linear map.

– Homomorphic Digit Removal: Now, since each slot contains an integer in-
stead of an extension field (ring) element, no unpacking is needed anymore.
The digit removal is also applied on only one ciphertext instead of d cipher-
texts.

8

Enc(m; pr)

Enc(pe−rm+ ϵ; pe)

Enc([pe−rmi·n + ϵi·n, . . . , p
e−rmi·n+n−1 + ϵi·n+n−1]; p

e)

Enc([mi·n, . . . ,mi·n+n−1]; p
r)

Enc(m; pr)

Decryption Formula Simplification and
Homomorphic Inner Product

CoeffToSlot and Unpacking

Homomorphic Digit Removal

Repacking and SlotToCoeff

for i = 0, 1, . . . , d− 1

for i = 0, 1, . . . , d− 1

Fig. 1: The workflow of GV bootstrapping [9]. The workflow of HS bootstrap-
ping [13,15] can be obtained by simply replacing e by r+ e− e′. Note that both
m and ϵ are represented in the powerful basis by default.

Enc([m0, . . . ,mn−1]; p
r)

Enc(m; pr)

Enc(pe−rm+ ϵ; pe)

Enc([pe−rm0 + ϵ0, . . . , p
e−rmn−1 + ϵn−1]; p

e)

Enc([m0, . . . ,mn−1]; p
r)

SlotToCoeff

Decryption Formula Simplification and
Homomorphic Inner Product

CoeffToSlot

Homomorphic Digit Removal

Fig. 2: The workflow of thin GV bootstrapping. The workflow of HS bootstrap-
ping can be obtained by simply replacing e by r + e − e′. Both m and ϵ are
represented in the powerful basis by default.

9

Overflow Part Extraction. In [17], Kim et al. propose an overflow part extraction
technique to facilitate the bootstrapping of all RLWE-based FHE schemes with
the functional bootstrap of FHEW/TFHE. When applied to a BGV ciphertext,
the process takes as input a ciphertext (b, a) = Encs(m; pr; ϵ) ∈ R2

q satisfying
|m + prϵ| < q

2∆ for some integer ∆. Define (b′, a′) = ([∆b]q, [∆a]q) ∈ R2 and

(b′′, a′′) = (b
′−∆b
q , a′−∆a

q). Then (b′′, a′′) extracts a noiseless encryption of the

overflow part I = ⌊(b′ + a′s)/q⌉ modulo ∆. Specifically, by denoting b + as =
m+ prϵ+Kq, it has b′′ + a′′s ≡ ((b′ + a′s)−∆(b+ as))/q ≡ (Iq+∆(m+ prϵ)−
∆(m+ prϵ+Kq))/q ≡ I mod ∆.

Moreover, by performing the above operations on the powerful basis instead
of the standard basis, we can obtain a noiseless encryption of I = ⌊pwfl(b′ +
a′s)/q⌉. In this case, the input requirement should also be measured with respect
to the powerful norm, i.e., |m+ prϵ|pwfl < q

2∆ .

2.4 Null Polynomial in Zpe [X]

BGV bootstrapping involves evaluating polynomials in Zpe [X]. When e > 1,
Zpe is not a field, rendering the conventional polynomial theory over finite fields
inapplicable to Zpe [X]. One difference is that it is impossible to represent all
functions over Zpe as polynomials in Zpe [X]. A necessary but not sufficient con-
dition exists for a function over Zpe [X] to be represented as a polynomial, as
detailed in Lemma 1.

Lemma 1 ([8]). Let f ∈ Zpe [X], then for all a ∈ Z, it has

f(a+ pk) ≡ f(a) mod pk, ∀k ≤ e.

On the other hand, there exist low degree null polynomials in Zpe [X], which
are non-zero polynomials but evaluate to zero at every point in Zpe . The con-
struction of null polynomials is closely related to p-adic valuation vp(·) : Z → Z,
which is defined as

vp(x) =

{
argmaxi(p

i|x) if x ̸= 0

∞ if x = 0
. (5)

The most common way to construct null polynomials is to use the falling factorial
basis (X)i, which is defined as

(X)i =

i−1∏
j=0

(X − i). (6)

It can be verified that (X)i is a null polynomial over Zpvp(i!) due to i!|(a)i for all
a ∈ Z.

The null polynomials can also be defined over S ⊆ Zpe , which means they
only need to evaluate to zero at every point in S instead of in Zpe [8]. Suppose
there exists a monic null polynomial f(X) over S with a small degree d, then we
can represent any polynomial defined over S as a polynomial of degree at most
d− 1 by reducing it modulo f(X).

10

3 Homomorphic Digit Removal and its Optimizations

This section describes the existing digit removal algorithms in BGV [13,6,15,8].
Recall that, given an integer r and an encryption of w ∈ Zpe , the homomorphic
digit removal algorithm aims to output the encryption of the highest r digits
w⟨e− 1, e− r⟩p by homomorphically computing and discarding the lowest e− r
digits one by one.

We start by introducing the homomorphic digit removal procedure used in HS
bootstrapping. This procedure utilizes a lifting polynomial, denoted as Fk(X),
to perform digit removal. Fk(X) is a degree-p polynomial over Z satisfing the
property Fk(a + bpj) ≡ a mod pj+1 for all a ∈ JpK, b ∈ Z and 1 ≤ j ≤ k, where
k is a positive integer such that k ≤ e − 1. Let wi,j be an integer modulo pe−i

whose lowest digit is w⟨i⟩p and the higher j digits are zero. It follows that

wi,j = Fk(wi,j−1),∀1 ≤ j ≤ k. (7)

Furthermore, HS bootstrapping uses the formula

wi,0 = (w −
i−1∑
j=0

wj,i−j · pj)/pi (8)

to shift the i-th digit down to the lowest digit. These two equations are sufficient
to compute all wi,e−1−i for i < e− r. Finally, the highest r digits are extracted
by removing these e− r lowest digits:

w⟨e− 1, e− r⟩ = (w −
e−r−1∑
i=0

wi,e−1−i · pi)/pe−r. (9)

An example for e = 5, r = 2 is presented in Figure 3. The horizontal arrows
represent evaluations of Fk, while the diagonal arrows indicate the computation
of wi,0 and w⟨e−1, e−r⟩ from previous rows using Equation (8) and Equation (9).

w0,0 w0,1 w0,2 w0,3 w0,4
F1 F2 F3 F4

w1,0 w1,1 w1,2 w1,3
F1 F2 F3

w2,0 w2,1 w2,2
F1 F2

Fig. 3: Digit removal in HS bootstrapping for e = 5, r = 2.

11

Chen-Han Optimization. Chen and Han [6] discovered the existence of a digit
extraction polynomial Ge(X) of degree (p − 1)(e − 1) + 1, satisfying Ge(a) ≡
[a]p mod pe for all a ∈ Z. This discovery allows for the computation of wi,j to
be skipped when e − i − 1 − r < j < e − i − 1, and wi,e−1−i = Ge−i(wi,0) can
be computed directly. As a result, the multiplicative depth required to extract
wi,e−1−i is reduced from (e− 1− i) log2(p) to log2((p− 1)(e− i− 1) + 1). This
reduction increases the capacity of the ciphertext after bootstrapping.

An illustration of the Chen-Han optimization for e = 5, r = 2 is presented in
Figure 4. In this scenario, the computations for w0,3, w1,2, w2,1 are skipped, and
w0,4, w1,3, w2,2 are directly computed using G5, G4, G3.

w0,0 w0,1 w0,2 w0,4
F1 F2

G5

w1,0 w1,1 w1,3
F1

G4

w2,0 w2,2
G3

Fig. 4: Chen-Han digit removal for e = 5, r = 2.

GIKV Optimizations. Geelen et al. [8] applied several optimizations to the digit
removal algorithm:

– They noted that for a fixed i, wi,j = Gi+j(wi,0) are computed as evaluations
of multiple polynomials on the same input wi,0. The multi-polynomial Baby-
Step-Giant-Step (BSGS) algorithm can be used to reduce the complexity
of evaluating m degree-n polynomials to 2

√
mn [11]. Furthermore, if the

evaluated polynomials are odd functions, which is the case for Ge(X), the
complexity can be reduced to

√
2mn.

– They observed that wi,j satisfies the properties of wi,j′ for j′ ≤ j. Thus,
it suffices to compute only wi,j instead of computing all wi,j′ for j′ < j.
This optimization must be applied carefully to ensure that the digit removal
procedure’s overall depth (or the critical path’s length) is not increased.

– They decomposed Ge(X) into the composition of multiple polynomials, re-
ducing the number of non-scalar multiplications needed to evaluate Ge(X)
from O(

√
pe) to O(

√
p 4
√
e), at the cost of increasing the depth by log2(p).

– They represented the null polynomials as a lattice and found a small-norm
representation of Ge(X) and Fk(X) by solving the CVP problem in that
lattice. This helps reduce the capacity consumed in homomorphic polynomial
evaluation due to smaller polynomial coefficients.

12

4 Details on Our Digit Removal Procedure

In this section, we elucidate the specifics of our optimization of the digit re-
moval procedure. Initially, we offer a summary of BGV bootstrapping equipped
with our optimized digit removal procedure in Section 4.1. Then we present the
construction of low-degree null polynomials in Section 4.2 and provide the de-
termination of bootstrapping parameters in Section 4.3. Finally, we explain how
to adapt our method for thin bootstrapping in Section 4.4, and discuss how our
method can be combined with other existing optimizations in Section 4.5.

4.1 Overview of BGV Bootstrapping with Our Digit Removal

To begin with, we describe our bootstrapping procedure in detail, since it mod-
ifies the original bootstrapping procedure and involves some extra parameters.
We assume that the ciphertext to be bootstrapped encrypts extension field (ring)
elements in its slots, and we leave the thin bootstrapping case for Section 4.4.
The workflow of our bootstrapping is described below and illustrated in Figure 5.

Decryption Formula Simplification. Let Encs′(m; pr) denote the cipher-
text that is to be bootstrapped. We first modulus-switch it to qks, and obtain
Encs′(m; pr) modulo qks. Next, we apply key-switching to this ciphertext to
obtain a new ciphertext with respect to the bootstrapping key s, denoted as
Encs(m; pr) modulo qksR, where R represents an additional key-switching mod-
ulus. Then we perform modulus-switching on the powerful basis to q0, yielding
a ciphertext (b, a) ∈ R2

q0 . For a more concise statement of our bootstrapping
procedure, the selection of parameters qks, q0 and R, along with the specific
key-switching procedure, will be detailed in Section 4.3.

Suppose ∆ is an auxiliary modulus. The ciphertext (b, a) ∈ R2
q0 is multiplied

by ∆ to obtain (b′, a′) = ([∆b]q0 , [∆a]q0) ∈ R2, where both pwfl(b′) and pwfl(a′)
are q0-reduced. The modulus of (b′, a′) is then directly raised from q0 to a very
large modulus Q. Next, the ciphertext is modulus-switched and key-switched to
the main key s′, resulting in a ciphertext c̃ = Encs′(∆m+[q0]pr+vp(∆)I ′; pr+vp(∆)),
where I ′ = ⌊pwfl(b′+a′s)/q0⌉ is the overflow part of (b′, a′) on the powerful basis
with respect to q0.

On the other hand, utilizing the overflow part extraction technique in [17] (as
described in Section 2), a noiseless encryption of I ′ with respect to s is obtained

by computing (b′′, a′′) = (b
′−∆b
q0

, a′−∆a
q0

) ∈ R2
∆, where both pwfl(b′′) and pwfl(a′′)

are required to be ∆-reduced.

Homomorphic Inner Product. Compute c′′ = b′′ + a′′ ·Encs′(s; pr+vp(∆)) =
Encs′(I

′ +∆I∗; pr+vp(∆)), where I∗ = ⌊pwfl(b′′ + a′′s)/∆⌉ denotes the overflow
part of (b′′, a′′) on the powerful basis with respect to ∆.

CoeffToSlot and Unpacking. Move the coefficients of pwfl(I ′+∆I∗) into the
slots by applying a linear transform to c′′. Then, unpack the resulting ciphertext
into d ciphertexts, each one encrypting only integers in its slots.

13

Digit Removal. Each value stored in the slots currently is equal to one of the
coefficients of pwfl(I ′+∆I∗) and has the form of J = J ′+∆J∗ for some integer
J ′, J∗. We note that the plaintext modulus here is pr+vp(∆), and the goal of the
digit removal procedure is to extract J ′ modulo pr+vp(∆) from [J ′+∆J∗]pr+vp(∆) .
We assume that J ′ and J∗ are bounded by B, the derivation of which will be
discussed in Section 4.3. Our digit removal procedure depends on the selection
of ∆, which has two cases.

In the first case, we choose an integer t such that pt > 2B+1, and let ∆ = pt.
The digit removal involves computing J⟨t− 1, 0⟩ modulo pr+t from J for all the
slot values. This can be accomplished by using the digit removal algorithms in
[13,6], but with acceleration by the low-degree null polynomials constructed in
Section 4.2.

In the second case, we require the existence of an integer ∆0 such that ∆0

is coprime with p and (p− 1)/(2B)− 1 > ∆0 > (2B + 1). We then let ∆ = ∆0.
The digit removal involves computing J ′ from J ′+∆0J

∗, which is accomplished
by evaluating the lifted interpolation polynomial constructed in Section 4.2.

Note that the computation above is applied to all the d ciphertexts after
unpacking.

Repacking and SlotToCoeff. Pack the d ciphertexts into a single one and
move the encrypted slot values into the powerful basis coefficients through a
linear transform. The resulting ciphertext is cI = Encs′(I

′; pr+vp(∆)).

Assembling the Parts Together. The process varies depending on the choice
of ∆. If ∆ = pt, we compute (c̃ − [q0]pr+tcI)/p

t, which yields (Encs′(p
tm +

[q0]pr+tI ′; pr+t)−[q0]pr+tEncs′(I
′; pr+t)))/pt = Encs′(p

tm; pr+t)/pt = Encs′(m; pr).

On the other hand, if∆ = ∆0, we compute (c̃−[q0]prcI)·[∆0]
−1
pr , which results

in (Encs′(∆0m + [q0]prI ′; pr) − [q0]prEncs′(I
′; pr)) · [∆0]

−1
pr = Encs′(∆0m; pr) ·

[∆0]
−1
pr = Encs′(m; pr).

4.2 Constructing Low-degree Polynomials for Digit Removal

Denote t = vp(∆) and ∆0 = ∆/pt. It should be noted that the definition of ∆0

aligns with that in Section 4.1, and ∆0 is coprime to p. Recall that the goal of the
digit removal procedure is to extract J ′ modulo pr+t from [J ′+∆J∗]pr+t provided
that |J ′| < ∆/2. As discussed in Section 4.1, the approach to accomplish this
differs depending on the value of t. For t > 0, (i.e., the ∆ = pt case), we can
construct two types of low-degree null polynomials by exploiting the sparsity
of the input to digit removal, namely the global ones from the sparsity of the
whole input, and the local ones from the sparsity of the lower digits in the input.
For t = 0, (i.e., the ∆ = ∆0 case), although existing digit removal polynomials
are unavailable, we can still construct a digit extraction polynomial through
interpolation. This case can also be viewed as a special case of the global null
polynomial.

14

Enc(m; pr)

Enc(m; pr)

Assembling

Enc(∆I∗ + I ′; pr+vp(∆))

Enc([∆I∗i·n + I ′i·n, . . . ,∆I∗i·n+n−1 + I ′i·n+n−1]; p
r+vp(∆))

Enc([I ′i·n, . . . , I
′
i·n+n−1]; p

r+vp(∆))

Enc(I ′; pr+vp(∆))

Decryption Formula Simplification and
Homomorphic Inner Product

CoeffToSlot and Unpacking

Homomorphic Digit Removal

Repacking and SlotToCoeff

for i = 0, 1, . . . , d− 1

for i = 0, 1, . . . , d− 1

Enc(∆m+ [q]
pr+vp(∆)I ′; pr+vp(∆))

Fig. 5: The workflow of BGV bootstrapping using our digit removal method.
m, ϵ, I ′, I∗ are all represented in the powerful basis.

Global Null Polynomials from Sparsity of the Input. We begin with
the case where t > 0. In this case, computing J ′ is equivalent to extracting
the lowest t digits from [J]pr+t . This can be accomplished by evaluating the
digit extraction or lifting polynomials, as introduced in [13,6] and described
in Section 3, provided that J ′ = [J ′]pt . Subsequently, we demonstrate how to
construct global null polynomials to reduce the degree of these polynomials.

We adopt the notations wi,j from Section 3 and let w0,0 = w = J ′ + ∆J∗.
Since |J ′| ≤ B and |J∗| ≤ B, it has that supp(w) = supp(J ′+∆J∗) ≤ (2B+1)2.
It is evident that all wi,j ’s are deterministic functions of w because they are
obtained by evaluating polynomials with predetermined coefficients and division
by power of p. Therefore, supp(wi,j) ≤ supp(w) ≤ (2B + 1)2 holds for all wi,j .
When a polynomial f(X) is evaluated on wi,j (where f(X) could be either a
digit extraction or lifting polynomial), g(X) =

∏
a∈supp(wi,j)

(X−a) serves as the

global monic null polynomial over supp(wi,j) with a degree at most (2B + 1)2.
By reducing f(X) modulo g(X), we obtain an equivalent representation of f(X)
with a degree less than (2B + 1)2. This concludes the following lemma.

Lemma 2. For t > 0, it has |supp(wi,j)| ≤ (2B + 1)2 during the digit removal
procedure of BGV bootstrapping. Moreover, all polynomials evaluated on wi,j can
be reduced to a polynomial with a degree less than (2B + 1)2.

In the alternative case where t = 0, J ′ is not equal to the lower digits of
J since ∆0 is coprime with p. This implies that the computation of J ′ using
existing digit removal algorithms is not feasible. Nevertheless, we demonstrate
that it is still possible to construct a low-degree polynomial by leveraging the
sparsity of the input.

15

Lemma 3. For t = 0, there exists a polynomial f of degree less than (2|J ′| +
1)(2|J∗|+ 1) ≤ (2B + 1)2, such that f(J ′ +∆0J

∗) = J ′ over supp(J ′ +∆0J
∗),

provided that |J ′ +∆0J
∗| < p/2 and |J ′| < ∆0/2.

Proof. |J ′| < ∆0/2 guarantees the information of J ′ is recoverable from J ′ +
∆0J

∗. Since |J ′ + ∆0J
∗| < p/2 and Zp is a field, the standard interpolation

theory guarantees the existence of f0 ∈ Zp[X] such that f0(J
′ +∆0J

∗) = J ′.
We can lift this interpolation to Zpr [X] with r > 1 recursively. Given a

polynomial fk ∈ Zpk [X] over the set S = supp(J ′ + ∆0J
∗) ⊆ JpK, we aim to

lift it to fk+1 ∈ Zpk+1 [X] such that fk+1(a) ≡ [fk(a)]pk mod pk+1. Let d(a) =
[(fk(a) − [fk(a)]pk)/pk]p, there exists a degree |S| − 1 polynomial f∗

k ∈ Zp[X]
such that f∗

k (a) ≡ d(a) for all a ∈ S, which can be computed using interpolation
algorithms over Zp. Let fk+1 = fk − pk · f∗

k . It can be verified that fk+1(a) ≡
[fk(a)]pk mod pk+1 for all a ∈ S, which finishes the induction. ⊓⊔

We note that the condition |J ′ + ∆0J
∗| < p/2 appears to be essential in

our construction. Specifically, suppose |J ′ + ∆0J
∗| ≥ p/2 and we attempt to

construct an f as in Lemma 3. If p > ∆0, there may exist J0, J1 ∈ supp(J ′ +
∆0J

∗) such that J0 = J1 + kp for some k ̸= 0 coprime to ∆0. Consequently,
we have f(J0) ≡ f(J1) mod p by Lemma 1, which implies that f(J0) = f(J1)
since f(J0), f(J1) ∈ J∆0K ⊂ JpK. However, from the definition of f , we have
f(J0) − f(J1) ≡ J0 − J1 = kp mod ∆0, leading to a contradiction. For p < ∆0,
we can consider J0 = J1+k∆0 with k ̸= 0 coprime to p and obtain a contradiction
similarly.

It appears that the interpolated polynomial f(X) for t = 0 is irrelevant to
the global null polynomial. In fact, the construction of f(X) has already ac-
counted for the reduction of the corresponding global null polynomial g(X) =∏

a∈supp(J′+∆0J∗)(X − a), which also has a degree of at most (2B + 1)2. Conse-
quently, we categorize the method for the case of t = 0 as a part of the global
null polynomial optimization.

Local Null Polynomial From Small Lower Digits. The construction of
our local null polynomials is analogous to the method employed by Geelen et
al. [8]. When applied to our case for reducing the degree of the digit removal
polynomials, the local null polynomials possess a lower degree than the global
null polynomials for small parameters but exhibit a higher degree asymptotically.
Note that the local null polynomials are only applicable in the case where∆ = pt.
The detailed construction is as follows.

Recall that in our digit removal process, the value of the lower digits to be
removed has a support size of 2B + 1, which is independent of the message
m and the noise ϵ of the input ciphertext. This is a significant difference from
previous digit removal methods, where the support size of the lower digits to
be removed is dependent on both m and ϵ. For instance, the powerful norm of
lower digits in HS bootstrapping is B0(1 + δ + p−e′(2pr + 1 + 1/q2)) [15], while
in GV bootstrapping it is B0+ |pe−rm+peϵ|/q [9]. This means that the support
size of the lower digits in our bootstrapping can be much smaller than that in

16

previous approaches. This property can be leveraged to construct low-degree null
polynomials as stated in the following lemma.

Lemma 4. Suppose p is a prime and w ∈ Zpe . If L ≤ w⟨t− 1, 0⟩p ≤ H,

Λk(X) =

k−1∏
j=0

(

H∏
i=L

(X − i)− j · pt+vp((H−L)!)−⌊logp(H−L)⌋)

is a monic null polynomial over supp(w) ⊆ Zpe for e ≤ k(t + vp((H − L)!) −
⌊logp(H − L)⌋) + vp(k!).

Proof. Denote g(X) =
∏H

i=L(X − i) and wt = w⟨t− 1, 0⟩. Then it has

vp(g(w)) = vp(w − wt) + vp(

wt−1∏
i=L

(w − i)) + vp(

H∏
i=wt+1

(w − i))

= vp(w − wt) + vp(

w−L∏
j=w−wt+1

j) + vp(

w−wt−1∏
j=w−H

j).

Since H − L ≤ pt − 1, pt ∤ j = w − i except for j = w − wt (i.e., i = wt).
We also know that vp(a) = vp(a + b · pt) if pt ∤ a, where a, b ∈ Z. This implies

vp(
∏w−L

j=w−wt+1 j) + vp(
∏w−wt−1

j=w−H j) = vp(
∏wt−L

j=1 j) + vp(
∏−1

j=wt−H j) because

vp(

w−L∏
j=w−wt+1

j) = vp(

w−L∏
j=w−wt+1

(j + wt − w)) = vp(

wt−L∏
j=1

j),

vp(

w−wt−1∏
j=w−H

j) = vp(

w−wt−1∏
j=w−H

(j + wt − w)) = vp(

−1∏
j=wt−H

j).

Denote h = wt − L and l = −(wt − H), it only remains to derive a lower
bound on vp(h!) + vp(l!) where h, l ∈ [0, H − L] and h+ l = H − L. To do this,
we generalize the definition of (unsigned) p-ary integers by allowing each digit
to lie in [0, 2p − 2] instead of [0, p − 1]. The digit symbol ·⟨·⟩ is generalized as
well, and a =

∑
i p

ia⟨i⟩ still holds for any a. We also define a function fv on

a generalized p-ary integer a as fv(a) =
∑k

i=1 a⟨k, i⟩, where a has k + 1 digits.
Obviously, fv(a) = vp(a!) for a regular p-ary integer a.

Suppose the p-ary representation of both h and l has k+1 digits, we construct
a generalized unsigned p-ary integer a with k+1 digits, where a⟨i⟩ = h⟨i⟩+l⟨i⟩ ∈
[0, 2p− 2]. Since a⟨k, i⟩ = h⟨k, i⟩+ l⟨k, i⟩, it has fv(a) = fv(h) + fv(l).

Now, we normalize a into a regular p-ary integer following the textbook
add-with-carry approach. Specifically, we find the lowest digit that is at least
p, carry this digit to the next digit, and repeat this process until all digits lie
in [0, p − 1]. Suppose a⟨i⟩ ≥ p, after a single step of carrying a becomes a′,
where a′ represents the same integer as a and agrees with a in all but two digits,
namely a′⟨i⟩ = a⟨i⟩ − p and a′⟨i + 1⟩ = a⟨i + 1⟩ + 1. Now fv(a

′) − fv(a) =

17

a′⟨k, i+1⟩ − a⟨k, i+1⟩ = 1. It takes at most ⌊logp(H −L)⌋ carries to normalize
a into a regular p-ary representation of h + l = H − L, implying fv(H − L) ≤
⌊logp(H − L)⌋+ fv(h) + fv(l).

The above argument establishes that vp(g(w)) = vp(w−wt)+vp(h!)+vp(l!) ≥
t+vp((H−L)!)−⌊logp(H−L)⌋. Suppose vp(g(w)) = a·pt+vp((H−L)!)−⌊logp(H−L)⌋,

then vp(Λk(w)) = vp(
∏k−1

j=0 (a − j)) + k(t + vp((H − L)!) − ⌊logp(H − L)⌋) ≥
vp(k!) + k(t + vp((H − L)!) − ⌊logp(H − L)⌋). Thus, Λk(w) ≡ 0 mod pe for
e ≤ vp(k!) + k(t+ vp((H − L)!)− ⌊logp(H − L)⌋), which is equivalent to saying
that Λk(X) is a null polynomial over supp(w) modulo pe. ⊓⊔

Remark. Lemma 4 can be viewed as an extension of the construction of null
polynomials presented in [8]. Specifically, in [8] the lowest digit can take any value
while the remaining t − 1 lowest digits are required to be 0, which corresponds
to H = −L = (p− 1)/2 for odd p, or H = 1, L = 0 for p = 2 in Lemma 4.

Next, we demonstrate how Lemma 4 can be utilized to expedite the digit re-
moval methods in Section 3. To begin with, we depict how local null polynomials
can be employed to accelerate the evaluation of the digit removal polynomials
with input wi,0, the first element in each row of the digit removal methods.

For the first row of the digit removal in Figure 3 (HS digit removal), Fig-
ure 4 (Chen-Han digit removal), or GIKV’s first optimization on digit removal,
Lemma 4 can be invoked to speed up the polynomial evaluations on w0,0. In
this case, Λ⌈e/t⌉(X) with H = −L = B is a monic null polynomial of degree
⌈ e
t ⌉(2B + 1) over supp(w0,0) because |w0,0⟨t − 1, 0⟩p| = |I ′| = B. Polynomial

evaluations on w0,0 can be accelerated if this null polynomial has a lower degree
than the lifting polynomial F (X) or the digit extraction polynomial Gi(X).
Selecting a larger t will diminish both the computational complexity and the
depth consumption of the first-row digit removal because the degree of H(X)
is reduced. However, it also augments the plaintext modulus pe = pr+t for the
SlotToCoeff transform and the digit removal steps, which may result in less
after-bootstrap capacity.

For the i-th row of digit removal (i > 0), the local null polynomial cannot
be directly constructed for wi,0 because wi,0⟨t − 1, 0⟩ for i > 0 are no longer
bounded by |B| and its support size may not be small. To tackle this issue, we
can modify the digit shifting formula Equation (8) into the following formula
Equation (10). Note that wi,0 obtained in this way can still be used in digit
removal and additionally satisfy |wi,0⟨ti − 1, 0⟩| = |w⟨ti − 1 + i, i⟩| for some
ti ≤ t− i.

wi,0 = (w −
i−1∑
j=0

wj,i−j+ti−1 · pj)/pi. (10)

Specifically, for ti = t− i, |wi,0⟨t−1, 0⟩| ≤ ⌈B
pi ⌉. Although this approach reduces

the cost of evaluating polynomials on wi,0, the depth and computational cost of
obtaining wi,0 may be increased.

Finally, for polynomials evaluated on the other wi,j ’s with j > 0 in HS or
Chen-Han digit removal, we can adopt Λ⌈e/(j+1)⌉(X) with H = min(⌊p/2⌋, B),

18

L = max(−⌊(p−1)/2⌋,−B) as the local null polynomial over supp(w0,j), thereby
accelerating the polynomial evaluation.

Remark. Unlike the global null polynomials, the construction of local null poly-
nomials is independent of the overflow part extraction method of [17]. We can
obtain the same bound B on the lower digits of the input of the digit removal
step in HS/GV bootstrapping by modifying their parameter selection criteria,
without using the techniques in [17]. This enables us to construct low-degree
local null polynomials similarly. Please refer to Supplementary Material B for
more details.

4.3 Determining the Parameters

We proceed to show how to determine the parameters involved in our bootstrap-
ping procedure, as detailed in Section 4.1. Initially, we offer a concise introduc-
tion to the key-switching procedure and give a discussion regarding the choice
of corresponding parameters.

Details on Key-switching. The key-switching algorithm is the same as that
used in HElib [14]. Let Encs′(m; pr; ϵ) = (b, a) ∈ R2

qks
be the input ciphertext be-

fore key-switching to s. Similar to HElib, we assume ϵ has the size of a modulus-
switching noise. qks is decomposed in a mixed-radix way during key-switching.
Specifically, let Di(1 ≤ i ≤ L) be the radices where D1 is the lowest radix and∏L

i=1 Di = qks. Also define D∗
i =

∏i−1
j=1 Dj . These is a unique decomposition of

any a ∈ Rqks
under this set of radices, i.e.,

a =

L∑
i=1

aiD
∗
i , ai ∈ JDiK. (11)

The key-switching keys from s′ to s consist of Encs(D
∗
iRs′; pr; ϵi) under modulus

qksR, where R is the additional key-switching modulus coprime to p and ϵi’s are
fresh encryption noises.

The key-switching step computes

Encs′(Rm; pr; ϵ′) = (bR, 0) +

L∑
i=1

aiEncs(D
∗
iRs′; pr; ϵi). (12)

The noise ϵ′ after key-switching consists of two parts, the scaled noise Rϵ and the
key-switching-added noise

∑L
i=1 aiϵi. Let β and α be the canonical bounds on

prϵ and pr
∑L

i=1 aiϵi, respectively. Then the additional key-switching modulus
R is chosen such that the key-switching-added noise is smaller than the scaled
noise, i.e., Rβ ≥ α, ensuring at most one bit of capacity is lost during key
switching. This choice of R based on one-bit capacity loss is similar to that in
HElib. Halevi and Shoup have established estimates of α and β [14], which are
presented as follows. In our parameter selection, we set the k in these estimates
to 10, as that in [14].

19

Lemma 5 ([14]). With failure probability no more than erfc(k/
√
2) · ϕ(M)/2,

the estimates of β and α are

β = kpr
√

hϕ(M) log(ϕ(M))

12
,

α ≤

{
max(Di)Lp

rσkϕ(M)
√

log(ϕ(M))/12 if M is a power of 2

max(Di)Lp
rσkM

√
ϕ(M) log(ϕ(M))/12 otherwise

,

where σ = 3.2 is the basic standard deviation of ϵi’s.

Establish the Powerful Bound B. As mentioned earlier, the powerful bound
B of I ′ and I∗ determines the degree of the global null polynomial, which further
affects the complexity of the digit removal procedure. Note that both I ′ and I∗

can be represented as ⌊pwfl(b/q+as/q)⌉, where pwfl(b),pwfl(a) can be viewed as
random q-reduced polynomials in the powerful basis for some q and s is the secret
key. Halevi and Shoup provided a high-probability bound on pwfl(b/q + as/q),
which we present as follows.

Lemma 6 ([15]). Let a and b be random elements in R, whose powerful basis
coefficients are sampled uniformly in JqK. Let s be a secret key with Hamming
weight h, then

Pr[|b/q + as/q|pwfl > (1 + 1/q2)(k

√
hϕ(M)2ω(M)

12M
+ 0.5)] ⪅ ϕ(M) · erfc(k/

√
2),

where ω(M) is the number of distinct prime factors of M .

Since the correction factor 1 + 1/q2 is very close to 1 in practice, we omit it
and denote the bound on pwfl(b/q + as/q) as B0, and define B = ⌊B0⌉, i.e.,

B0 = k

√
hϕ(M)2ω(M)

12M
+ 0.5 and B = ⌊B0⌉.

In our parameter selection, M is chosen such that it has only 2 prime factors,
ensuring that ϕ(M)2ω(M)/(12M) is bounded by 1/3. On the other hand, k is a
constant that is typically set to around 10. As a result, B can be considered to
be proportional to

√
h.

Note that HElib sets the parameter k in Lemma 6 to 10 by default [16],
corresponding to a failure probability ≈ 2−60 for ϕ(M) ≤ 216. In contrast, we
use k = 8 to establish B in our analysis for better efficiency. Although this may
increase the failure probability to a maximum of 2−33, we argue that this is still
practical as the failure probability remains smaller than those in most works on
CKKS bootstrapping.

20

Employ the Sparse Secret Key Encapsulation. Since B increases with
h and a smaller B leads to smaller degrees of null polynomials as described in
Section 4.2, we adopt the sparse secret key encapsulation technique of Bossuat et
al. [4] to key-switch to a bootstrapping-only secret key with a very low Hamming
weight before simplifying the decryption formula. This will drastically reduce the
value of h and thus the value of B.

The sparse key encapsulation technique requires key-switching keys from the
main secret key s′ (with Hamming weight h′) into the bootstrapping secret key s
(with Hamming weight h). To provide enough security, these key-switching keys
should have a very low ciphertext modulus, which we denote as qboot. Denoting
the maximum ciphertext modulus for s′ as Q′, the security of the whole scheme is
the minimum security in these two parameter sets: (M,h′, Q′) and (M,h, qboot).
While a small qboot may provide higher security, it also needs to be large enough
so that the noise during decryption formula simplification will not corrupt the
correctness of the ciphertext.

Denote the modulus under which the decryption formula simplification takes
place as q0 and the modulus for key-switching as qks. The ciphertext to be boot-
strapped is first modulus-switched to qks, key-switched to s (with a ciphertext
modulus of qboot = qksR now), and finally modulus-switched to q0 before the
decryption formula simplification step. Thus, we need to take into account the
modulus-switching error and key-switching error when choosing qboot.

Once qks is known, we can decide the value of R ≥ α/β because α and β are
determined by qks. For simplicity, we set q0 = qks. Denote the ciphertext before
overflow part extraction as Encs(m; pr; ϵ) under modulus q0. We note that the
condition |∆(m + prϵ)|pwfl < q0/2 must be fulfilled so that the method of Kim
et al. [17] works correctly, where ∆ is the auxiliary modulus for overflow part
extraction. The condition that q0 needs to satisfy is presented in Lemma 7.

Lemma 7. The overflow part extraction (in Section 2) works correctly during
decryption formula simplification if

q0 > 2∆(2βDM +B0p
r),

where DM is the multiplicative factor when converting from the canonical norm
to the powerful norm, as defined in Section 2.2.

Proof. As mentioned above, the input ciphertext of the overflow part extraction
step must have its noise bounded by q0

2∆ on the powerful basis. Thus, we will
compute an estimate of this noise from the beginning.

The input ciphertext of bootstrapping has a modulus of q0 and a noise with
canonical norm β. After key-switching to the bootstrapping secret key s, the
ciphertext has a modulus of q0R and a noise bounded by 2βR on the canonical
embedding, which is ensured by our choice of R. Then, we modulus-switch the ci-
phertext to q0 on the powerful basis. The noise added by this modulus switching
can be modeled as ϵ0 + ϵ1s, where ϵi are powerful basis polynomials with coeffi-
cients uniformly distributed in [−pr/2, pr/2]. Thus, Lemma 6 can be applied to
bound the modulus-switching-added noise as well, giving a bound of prB0. Now,

21

measured on the powerful basis, the scaled noise is DM · 2β and the total noise
is DM · 2β +B0p

r. Thus, the requirement for q0 is DM · 2β +B0p
r < q0

2∆ . ⊓⊔

Practical Parameters Selection. In practice, we select the bootstrapping
parameters in the following way. First, the Hamming weight h of the encap-
sulated bootstrapping key s is chosen arbitrarily. Then, the powerful bound B
on the overflow parts I ′ and I∗ is computed using Lemma 6 before the auxil-
iary modulus ∆ is chosen. Now the value of ∆ is determined in one of the two
ways. It can be either set to pt such that pt > 2B + 1 (as required by digit
removal algorithms), or to some integer ∆0 that is coprime with p and satis-
fies 2B + 1 < ∆0 < p−1

2B − 1 (as required by Lemma 3). Finally, the modulus
q0 = qks and R are selected such that R ≥ α/β and the criteria described in
Lemma 7 are satisfied. The selected parameters can guarantee the correctness
of the bootstrapping but do not ensure the security of the sparse bootstrapping
key encapsulation. Thus, if the computed value of q0R does not provide sufficient
security (or provides excessive security), the entire process should be repeated
with a larger (or smaller) h. Additionally, the main secret key s′ for homomor-
phic computation should be generated with an appropriate Hamming weight h′,
which is independent of the various requirements mentioned in this section.

Table 3: Examples of Bootstrapping Parameters
Parameter Set M p r k h B ∆ log2(q0) log2(R)

A 32551 = 43 · 757 127 2 8
24 23 127 ≥ 37.85 ≥ 27.38
26 24 127 ≥ 37.85 ≥ 27.38
28 25 127 ≥ 37.85 ≥ 27.38

B 45551 = 11 · 41 · 101 17 4 8
22 30 172 ≥ 41.93 ≥ 29.22
24 31 172 ≥ 41.93 ≥ 29.22
26 32 172 ≥ 41.93 ≥ 29.22

Below, we provide a concrete illustration of the bootstrapping parameter
selection. Table 3 presents two sets of parameters, including h,B,∆, q0, and R,
selected as described above. The security estimates for different values of M,h,
and q0R are depicted in Figure 6. As Figure 6 demonstrates, the security level
increases significantly with the parameter h, making it straightforward to meet
security requirements by choosing a larger h. Conversely, if we fix the cyclotomic
order M and the number of digits in key-switching to L = 3, and consider B

as a constant, we can set q0/p
r ≤ c0 and R = c1q

1/L
0 for some constants c0, c1

according to Lemma 6 and Lemma 7. Consequently, q0R ≤ c1c
L+1
L

0 pr
L+1
L :=

cpr
L+1
L for some constant c. When combined with the concrete parameters from

Table 3, it suggests that log2(q0R) = 100 is sufficient to support a plaintext
modulus pr of more than 30 bits, which is adequate in most scenarios.

22

60 70 80 90 100
log2(q0R)

120

125

130

135

140

145

150

Se
cu

rit
y

le
ve

l

h = 24
h = 26
h = 28

(a) M = 32551

60 70 80 90 100
log2(q0R)

120

125

130

135

140

145

Se
cu

rit
y

le
ve

l

h = 22
h = 24
h = 26

(b) M = 45551

Fig. 6: The impact of h and log2(q0R) on the security level.

4.4 Adapting for Thin Bootstrapping

Our optimization of the digit removal process is readily adaptable for thin boot-
strapping, where each slot encrypts an integer instead of an extension field (ring)
element. When employing the techniques of Kim et al. [17], the thin bootstrap-
ping procedure deviates slightly from the ordinary case as stated in Section 4.1.
The major distinction is that we need to apply the CoeffToSlot transform to
both c̃ and c′′. The parameter selection remains consistent with the ordinary
case and is omitted here.

SlotToCoeff. Given a ciphertext Encs′([v0, v1, . . . , vn−1]; p
r), where vi ∈ Zpr are

the integers stored in the slots, this step moves the vi’s to certain powerful basis
coefficients of the encrypted plaintext polynomial using the SlotToCoeff trans-
form. The output ciphertext of this step encrypts a polynomial whose powerful
basis coefficients are all zero except those storing the slot values. Let m0 be the
corresponding plaintext polynomial.

Decryption Formula Simplification. This step is identical to the ordinary case.
We can still obtain c̃ = Encs′(∆m0 + [q0]pr+vp(∆)I ′; pr+vp(∆)) and (b′′, a′′) =
Encs(I

′;∆).

Homomorphic Inner Product. Similar to the ordinary case, this step computes
c′′ = b′′ + a′′ · Encs′(s; pr+vp(∆)) = Encs′(I

′ +∆I∗; pr+vp(∆)).

CoeffToSlot. The coefficients of pwfl(I ′ + ∆I∗) encrypted in c′′ are moved to
the slots. Then, another linear transform is applied such that each slot contains
only an integer, producing c0 = Encs′([J

′
0 +∆J∗

0 , . . . , J
′
n−1 +∆J∗

n−1]; p
r+vp(∆)),

where J ′
i , J

∗
i are the coefficients of pwfl(I ′) and pwfl(I∗) and are bounded by B.

On the other hand, we also need to apply these linear transforms to c̃ so that we
can assemble them later. The ciphertext obtained from c̃ is c1 = Encs′([∆v0 +
[q0]pr+vp(∆)J ′

0, . . . ,∆vn−1 + [q0]pr+vp(∆)J ′
n−1]; p

r+vp(∆)).

23

Digit Removal. The digit removal is performed on c0 in a similar way to the
ordinary case. The only difference is that it is performed only once instead of d
times. This step outputs Encs′([J

′
0, . . . , J

′
n−1]; p

r+vp(∆)).

Assembling the Parts Together. This step mirrors the process in the ordinary
case. Nevertheless, note that in thin bootstrapping, we are assembling the in-
tegers in the slots, as opposed to assembling powerful basis coefficients in the
ordinary case.

Remark. In the case of ∆ = pt, we ignore the extracted overflow part in thin
bootstrapping and directly perform digit removal on

[q0]
−1
pr+tc1 = Encs′([p

t[q0]
−1
pr+tv0 + J ′

0, . . . , p
t[q0]

−1
pr+tvn−1 + J ′

n−1]; p
r+t)

to avoid the extra CoeffToSlot linear transform applied to c′′. This choice will not
harm the performance of the digit removal because the global null polynomial
is usually ineffective due to its higher degree than the local null polynomials.

4.5 Combining with Existing Optimizations

Our digit removal procedure is compatible with multiple existing optimiza-
tions, mainly in homomorphic polynomial evaluation. The optimization already
adopted in our implementation includes multi-poly BSGS [11], odd function op-
timization [8] and lazy relinearization [18].

Note that Geelen et al. used optimal-depth BSGS [3] in their work, which
was initially designed for polynomial evaluation in CKKS. However, we do not
use this technique, since the multiplicative depth in BGV is quite different from
that in CKKS. In CKKS, both scalar and non-scalar multiplication consume the
same amount of capacity per level, thus it suffices to model the cost using multi-
plicative depth. However, in BGV, integer multiplication, scalar multiplication,
and non-scalar multiplication cost different amounts of capacity, with the non-
scalar one being the most expensive. Thus, we focus on the non-scalar depth
and ignore the capacity loss caused by integer multiplication when evaluating
polynomials during digit removal. This choice can slightly improve the efficiency
of polynomial evaluation and simplify the implementation.

Other optimizations that can be directly applied to our method include con-
structing low-norm polynomials by solving CVP in the null polynomial lattice [8]
and fast polynomial evaluation using the Galois structure of the underlying
ring [19]. However, since they either are just made public or require too much
implementation effort, we decided not to include them in our analysis and im-
plementation.

Some existing optimizations interact with our method in a non-trivial way.
For example, our local null polynomials construction technique can further ac-
celerate the function composition method developed by Geelen et al. [8]. When
the digit extraction polynomial is represented as the composition of two sub-
polynomials, with degrees of (p − 1)(e′ − 1) + 1 and p⌈ e

e′ ⌉, respectively. Com-
bined with our local null polynomial technique, their degrees can be reduced to

24

min((2B + 1)⌈ e′

t ⌉, (p − 1)(e′ − 1) + 1) and min(p, 2B + 1)⌈ e
e′ ⌉. For large values

of p (e.g., p > (2B + 1)), one or both of the sub-polynomials can be reduced to
a lower degree.

Despite the compatibility of our digit removal with a number of existing
techniques, the connection between these techniques and the overall efficiency
is highly complicated, making it hard to find the optimal strategy through the-
oretical analysis. For example, polynomial composition will reduce the benefits
brought by multi-polynomial BSGS. Also, the polynomial composition can be
accelerated by increasing the value of t, which in turn affects both the degree
of the local null polynomials and the capacity consumed in homomorphic op-
erations. Moreover, many optimizations trade capacity for lower computational
costs, making it more difficult to find the critical path of the digit removal pro-
cedure, which is needed by some optimizations. It might be possible, however,
to find the best solution by enumerating all the possible combinations of these
optimizations with a fine-grained cost model.

However, as our goal is to argue the advantage of our digit removal proce-
dure, we choose to avoid the tedious work of finding the best combination of
optimizations. Instead, we focus on simple cases that suffice to demonstrate the
advantage of our method compared to previous ones. Firstly, we assume that
the number of digits to extract is at most two (i.e., 2B+1 < p2). Since 2B+1 is
around 50 ∼ 60 in practice, this assumption holds for p ≥ 11, which still enables
a wide choice of p. Conversely, for small values of p, the degree of polynomials
used in digit removal is too low for our global/local null polynomial technique to
be effective. Secondly, we ignore the tradeoff between running time and capac-
ity when constructing the local null polynomials with different values of t and
always use the smallest t = ⌈logp(2B + 1)⌉.

5 Implementation

Experiment Setup. Our implementation is based on HElib [16] (commit ID
3e337a6), which is one of the most popular libraries implementing BGV boot-
strapping. We’ve also incorporated the sparse key encapsulation technique devel-
oped in [4] into BGV bootstrapping, as suggested by Geelen and Vercauteren [9].
For a fair comparison, our baseline also employs this technique.8

The experiments are conducted on a machine running Fedora 33 (Worksta-
tion Edition) equipped with a 3 GHz Intel(R) Core(TM) i9-10980XE CPU and
125GB of RAM. Consistent with previous works [15,8], the compiled program is
executed in a single thread.

Parameter Selection. The parameters chosen by Halevi and Shoup [15]
mostly offer a security level of 80 bits, with one parameter set providing 128
bits of security. Also, Geelen et al. [8] used parameters with a security level

8 Note that we do not compare with the results of [8] since they do not use the sparse
key encapsulation technique, which prevents a fair comparison.

25

Table 4: The selected parameter sets are categorized as follows: Parameter sets
that share the same Roman number have identical values of p, r,M . Type-A pa-
rameter sets utilize∆ = pt, while type-B parameter sets employ∆ = ∆0 coprime
to p. Other parameter sets use HElib’s original bootstrapping (HS bootstrap-
ping). Parameters that provide 80-bit security are enclosed in braces.

ID pr M d log2(Q) λ′ h λ log2(ϵ) B
∆ or

pe−e′ log2(q0R)

I
174 38309 24 1462 82.5

24(12) 136.0(81.3) −34.3
/

172
63.8(64.5)

I-A 24(14) 133.1(89.8) 23(18) 70.3

II
1272 56647 45 2253 82.6

22(12) 134.1(87.3) −33.7
/

127
69.4(60.7)

II-A 22(12) 135.4(85.7) 22(17) 66.6

III
2572 55427 28 2176 82.8

22(12) 135.5(87.4) −33.8
/

257
64.2(64.7)

III-A 22(12) 133.4(85.5) 22(17) 70.6

IV
8191 45193 14 1803 82.3

22(12) 130.2(83.3) −34.0
/

8191
66.3(66.8)

IV-A 24(12) 136.7(81.9) 23(17) 72.7
IV-B 22(12) 131.8(83.8) −33.0 22(17) 45 62.8

V
65537 50731 18 2036 82.3

22(12) 130.6(83.0) −33.9
/

65537
74.6(75.1)

V-A 24(12) 136.8(82.3) 23(17) 81.2
V-B 22(12) 132.8(84.8) −32.9 23(17) 47 67.1

ranging from 66 to 81 bits. In practice, using a parameter set with 128-bit se-
curity can significantly reduce the efficiency of bootstrapping or even render it
impossible (i.e., bootstrapping cannot be completed successfully if it consumes
more capacity than what the parameter set can provide). Thus, we opt to estab-
lish the main secret key s′ with at least 80 bits of security. The concrete security
level is estimated using the Lattice-Estimator [2,1](commit ID fd4a460).

For the encapsulated key s, we use two security levels: 80 bits and 128 bits.
The 128-bit-secure version is included because the security of sparse keys is still
not well understood at present and s is highly sparse under 80 bits of security
(with h = 12). Thus, we choose to be more conservative to provide resistance
against potential future attacks on sparse keys. Additionally, we also provide an
implementation of the 80-bit-secure version as it offers better efficiency.

The Hamming weight of the main secret key is always set to 120 to align
with HElib. The parameter k, which bounds the overflow part (see Lemma 6),
is set to 8 for both original bootstrapping in HElib and our bootstrapping. This
should ensure a bootstrapping failure probability less than 2−32 for practical
parameters. Moreover, since the bound B on the overflow part is proportional
to 2ω(M)/2 (where ω(M) is the number of prime factors of the cyclotomic order
M), we use M with ω(M) = 2 exclusively for better performance. The candidate
parameter sets are automatically generated using the paramsx program provided
in HElib. We then select some of these candidates that meet the above criteria
and have inexpensive linear transformations. The selected parameter sets are
listed in Table 4.

26

Table 5: Benchmark results of thin bootstrapping with 128 bits of security for
s. The parameter sets without any suffix use the HS bootstrapping provided by
HElib. The parameter sets suffixed with ’-A’ use ∆ = pt, where both the global
and local null polynomial optimizations are available. Those suffixed with ’-B’
use ∆ = ∆0, where the digit removal is performed using the lifted interpolation
polynomial (i.e., only the global null polynomial optimization is available).

Parameter Set ID I I-A II II-A III III-A IV IV-A IV-B V V-A V-B

Capacity
(bits)

Initial 1003 1042 1573 1616 1542 1581 1253 1294 1287 1415 1462 1457
Linear map 136 138 123 126 134 136 132 140 110 148 155 120
Digit extract 452 332 297 282 400 311 558 274 322 808 317 385
Remaining 408 561 1142 1200 1002 1124 552 865 847 445 972 943

Time
(sec)

Linear map 12 12 29 30 32 31 20 20 36 25 25 48
Digit extract 41 23 76 50 112 42 321 27 150 2512 33 194

Total 54 36 107 81 145 76 342 49 187 2540 60 243

Throughput (bps) 7.59 15.42 10.69 14.73 6.92 14.84 1.62 17.51 4.52 0.175 16.10 3.89

Speedup 1x 2.03x 1x 1.38x 1x 2.15x 1x 10.8x 2.80x 1x 91.7x 22.1x

Benchmark Data and Analysis. We conduct tests on general and thin
bootstrapping using the parameters given in Table 4. The throughput of a boot-
strapping operation is calculated as the ratio of the remaining after-bootstrap
capacity to the bootstrapping time, as in Geelen et al.’s work [8]. The remain-
ing after-bootstrap capacity is defined as the after-bootstrap capacity minus the
minimum capacity required for a ciphertext to be bootstrappable. For instance,
the capacity needed to perform the SlotToCoeff transform in thin bootstrapping
is subtracted from the after-bootstrap capacity. The test results for 128-bit-
secure s are provided in Table 5 and Table 6, while those for 80-bit-secure s are
included in Supplementary Material A.

As indicated in the tables, the time consumed by our digit removal procedure
is significantly reduced compared to that in HElib. Our optimizations not only
reduce the running time but also decrease the capacity consumed during the
digit removal procedure, thereby improving the throughput from both aspects.
For Type-A parameters, this improvement is due to the low-degree local null
polynomials. For instance, in parameter set I-A, the second-row digit extraction
polynomial has a degree of 65 and is reduced modulo a monic null polynomial
of degree 15. For parameter sets II-A to V-A, the degree reductions for the first-
row digit extraction polynomials are 253 → 135, 513 → 135, 8191 → 94 and
65537 → 94, respectively. For Type-B parameters (IV-B and V-B), the decrease
in polynomial degrees is attributed to the lifted interpolation polynomials, which
have degrees of 2023 and 2207, respectively.

For Type-A parameters, the packing transform and SlotToCoeff transform
in general bootstrapping is performed with plaintext modulus pr+t instead of pr

in HS bootstrapping, leading to a higher capacity consumption. However, our
bootstrapping begins with a higher capacity because the elements multiplied
during the inner product step are smaller compared to HS bootstrapping. Fur-

27

Table 6: Benchmark results of general bootstrapping with 128 bits of security for
s. The parameter sets without any suffix use the HS bootstrapping provided by
HElib. The parameter sets suffixed with ’-A’ use ∆ = pt, where both the global
and local null polynomial optimizations are available. Those suffixed with ’-B’
use ∆ = ∆0, where the digit removal is performed using the lifted interpolation
polynomial (i.e., only the global null polynomial optimization is available).

Parameter Set ID I I-A II II-A III III-A IV IV-A IV-B V V-A V-B

Capacity
(bits)

Initial 1003 1019 1573 1594 1542 1558 1253 1266 1287 1415 1431 1457
Linear map 207 241 194 219 208 241 199 243 158 225 277 171
Digit extract 446 341 298 293 400 316 559 288 329 812 331 389
Remaining 344 434 1070 1080 927 998 484 732 791 363 820 889

Time
(sec)

Linear map 93 93 285 277 319 319 113 115 113 115 112 115
Digit extract 953 568 3176 2148 3010 1224 4535 363 2095 46088 574 3471

Total 1046 662 3462 2427 3330 1545 4648 479 2209 46203 688 3589

Throughput (bps) 0.329 0.656 0.309 0.445 0.278 0.646 0.104 1.527 0.358 0.008 1.191 0.248

Speedup 1x 2.00x 1x 1.44x 1x 2.32x 1x 14.7x 3.44x 1x 151x 31.5x

thermore, the significant improvement of the digit removal step dominates the
overall performance.

The test data also suggests that Type-B parameters, which use global null
polynomials for digit removal, are generally less efficient than Type-A parameters
that utilize local null polynomials. Although Type-B parameters still improve
the throughput of baseline parameters, they are about 4 to 5 times less efficient
than their Type-A counterparts. This is because while global null polynomials
have asymptotically better degrees, local null polynomials have lower degrees
within the currently considered parameter range.

Additionally, as shown in Supplementary Material A, switching from a 128-
bit-secure s to an 80-bit-secure one reduces the Hamming weight from 22 ∼ 24 to
12 ∼ 14, further enhancing throughput improvement. Type-B parameters benefit
most from such reduction in h, experiencing an improvement in throughput of
up to 1.47 times, while Type-A parameters have their throughput increased by
up to 1.24 times.

6 Conclusion

We optimize BGV bootstrapping by performing digit removal on I∗∆ + I ′ ∈
Zpr+vp(∆), which is independent of the message and noise in the input ciphertext.
Utilizing the fact that both I∗ and I ′ are bounded by a small integer B, we design
the global null polynomial and local null polynomial optimizations to reduce the
polynomial degrees during homomorphic digit removal to min((2B + 1)2, (2B +
1)⌈(r+ vp(∆))/vp(∆)⌉). This method is especially effective for large values of p.
Experiment results show that we achieve a throughput of 1.38 ∼ 151 times that
of HS bootstrapping implemented in HElib.

28

Acknowledgments

This work is supported by the National Key R&D Program of China (2018YFA0704701,
2020YFA0309705), Shandong Key Research and Development Program (2020ZLYS09),
Natural Science Foundation of China (92267203) , the Major Scientific and Tech-
nological Innovation Project of Shandong, China (2019JZZY010133), the Major
Program of Guangdong Basic and Applied Research (2019B030302008), and Ts-
inghua University Dushi Program.

References

1. Albrecht, M.R.: lattice-estimator. https://github.com/malb/

lattice-estimator/ (2023)
2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of

Learning with Errors. Journal of Mathematical Cryptology 9(3), 169–203
(2015). https://doi.org/doi:10.1515/jmc-2015-0016, https://doi.org/10.1515/

jmc-2015-0016

3. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In: Can-
teaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021.
pp. 587–617. Springer International Publishing, Cham (2021)

4. Bossuat, J.P., Troncoso-Pastoriza, J., Hubaux, J.P.: Bootstrapping for approximate
homomorphic encryption with negligible failure-probability by using sparse-secret
encapsulation. In: Ateniese, G., Venturi, D. (eds.) Applied Cryptography and Net-
work Security. pp. 521–541. Springer International Publishing, Cham (2022)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. ACM Trans. Comput. Theory 6(3) (jul 2014).
https://doi.org/10.1145/2633600, https://doi.org/10.1145/2633600

6. Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE Boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2018. pp. 315–337. Springer International Publishing, Cham (2018)

7. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/
144, https://eprint.iacr.org/2012/144

8. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On Polynomial Functions
Modulo pe and Faster Bootstrapping for Homomorphic Encryption. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 257–286.
Springer Nature Switzerland, Cham (2023)

9. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV Revisited. Journal
of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/s00145-023-09454-6,
https://doi.org/10.1007/s00145-023-09454-6

10. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Comput-
ing. p. 169–178. STOC ’09, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/

10.1145/1536414.1536440

11. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011.
pp. 129–148. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

29

https://github.com/malb/lattice-estimator/
https://github.com/malb/lattice-estimator/
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440

12. Halevi, S.: Comment under Issue #80 of HElib. https://github.com/homenc/

HElib/issues/80#issuecomment-207448286 (2016)
13. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)

Advances in Cryptology – EUROCRYPT 2015. pp. 641–670. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2015)

14. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https:

//eprint.iacr.org/2020/1481, https://eprint.iacr.org/2020/1481
15. Halevi, S., Shoup, V.: Bootstrapping for HElib. Journal of Cryptology 34(1),

7 (Jan 2021). https://doi.org/10.1007/s00145-020-09368-7, https://doi.org/10.
1007/s00145-020-09368-7

16. IBM: HElib. https://github.com/homenc/HElib/ (2023)
17. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: General

Bootstrapping Approach for RLWE-based Homomorphic Encryption. IEEE Trans-
actions on Computers pp. 1–13 (2023). https://doi.org/10.1109/TC.2023.3318405

18. Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-Precision Boot-
strapping for Approximate Homomorphic Encryption by Error Variance Minimiza-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EU-
ROCRYPT 2022. pp. 551–580. Springer International Publishing, Cham (2022)

19. Okada, H., Player, R., Pohmann, S.: Homomorphic polynomial evaluation us-
ing galois structure and applications to bfv bootstrapping. Cryptology ePrint
Archive, Paper 2023/1304 (2023), https://eprint.iacr.org/2023/1304, https:
//eprint.iacr.org/2023/1304

30

https://github.com/homenc/HElib/issues/80#issuecomment-207448286
https://github.com/homenc/HElib/issues/80#issuecomment-207448286
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://github.com/homenc/HElib/
https://doi.org/10.1109/TC.2023.3318405
https://eprint.iacr.org/2023/1304
https://eprint.iacr.org/2023/1304
https://eprint.iacr.org/2023/1304

Supplementary Material

A Benchmark Results with 80 Bits of Security for s

Table 7: Benchmark results of general bootstrapping with 80 bits of security for
s.

Parameter Set ID I I-A II II-A III III-A IV IV-A IV-B V V-A V-B

Capacity
(bits)

Initial 1003 1019 1580 1594 1542 1558 1253 1266 1287 1415 1431 1458
Linear map 207 242 192 221 209 242 199 239 161 226 283 180
Digit extract 446 340 299 257 401 276 559 286 310 812 331 359
Remaining 334 434 1084 1114 926 1037 484 738 808 363 814 911

Time
(sec)

Linear map 90 93 285 278 332 319 113 111 111 115 115 113
Digit extract 936 552 3327 1793 3109 1043 4515 310 1514 47111 517 2450

Total 1027 647 3614 2074 3442 1364 4629 423 1626 47227 634 2566

Efficiency (bps) 0.335 0.671 0.300 0.537 0.269 0.760 0.104 1.74 0.497 0.008 1.28 0.355

Speedup 1x 2.00x 1x 1.79x 1x 2.83x 1x 16.7x 4.76x 1x 167x 46.3x

Table 8: Benchmark results of thin bootstrapping with 80 bits of security for s.

Parameter Set ID I I-A II II-A III III-A IV IV-A IV-B V V-A V-B

Capacity
(bits)

Initial 1003 1042 1580 1617 1542 1581 1253 1294 1287 1415 1462 1458
Linear map 136 138 123 126 134 136 132 141 110 148 155 121
Digit extract 449 332 296 247 400 271 558 273 321 808 317 354
Remaining 411 561 1156 1234 1002 1164 552 865 848 445 972 975

Time
(sec)

Linear map 12 12 29 30 32 31 20 20 36 25 26 47
Digit extract 43 23 75 43 112 37 325 24 109 2609 28 140

Total 55 36 106 75 145 70 347 46 147 2635 56 189

Efficiency (bps) 7.44 15.6 10.9 16.5 6.93 16.6 1.59 19.0 5.76 0.169 17.4 5.16

Speedup 1x 2.09x 1x 1.51x 1x 2.40x 1x 11.9x 3.62x 1x 103x 30.5x

B Exploiting Local Null Polynomials in HS/GV
Bootstrapping

The overflow part extraction technique [17] is necessary to construct low-degree
global null polynomials, where the entire input to digit extraction is required
to be sparse (i.e., both higher and lower digits should be small). However, low-
degree local null polynomials can be constructed without extracting the overflow

31

part, because it only requires the lower digits to be small and has no require-
ments for the higher digits. In this section, we show how to port the local null
polynomial optimization to HS and GV bootstrapping without the technique
of [17].

B.1 Local Null Polynomials in HS Bootstrapping.

First, we introduce the algorithmic procedure of HS bootstrapping. The HS
bootstrapping is parameterized by two parameters e and e′. Given a BGV ci-
phertext with plaintext modulus pr, they first modulus-switch the ciphertext to
the special modulus q = pe + 1, where e > r. Denote the obtained ciphertext
by c = (b, a) ∈ R2, where b, a should be q-reduced on the powerful basis. Every
polynomial used here is assumed to be in its powerful basis representation. Note
that

b+ as = m+ prϵ+ Iq = (m+ I) + prϵ+ peI, (13)

where m ∈ Rpr is the plaintext polynomial, ϵ is the RLWE noise and m+prϵ
should be q-reduced to ensure the correctness of decryption. The polynomial
I = ⌊ b+as

q ⌉ can be understood as the overflow part of b+ as modulo q.
Observe that b+ as ≡ m+ I mod pr, so homomorphically computing b+ a ·

Enc(s; pr) results in a ciphertext encrypting Enc(m + I; pr) with large homo-
morphic capacity. To remove the effect of I, it suffices to obtain the encryption
of I under plaintext modulus pr, or equivalently I⟨r − 1, 0⟩p.

Observe that if m+I+prϵ is pe-reduced, the value represented by the highest
r digits in [b+ as]pe+r is exactly [I]pr . Thus, denoting b+ as as m′, we have the
simplified decryption formula

m ≡ m′⟨r − 1, 0⟩ −m′⟨e+ r − 1, e⟩ mod pr. (14)

The BGV decryption function is now simplified to computing m′ = b + as
modulo pe+r homomorphically, extracting the lowest r and the highest r digits,
and finally computing their difference.

Halevi and Shoup noticed that, by adding multiples of q to b and a, we can
make both b and a divisible by pe

′
for some integer e′. Denote the b and a after

that by b′ = b+ q∆b and a′ = b+ q∆a, then m′ = b′ + a′s = m+ prϵ+ I ′ + peI ′

is also divisible by pe
′
, i.e., m′⟨e′−1, 0⟩ = 0, where I ′ = I+∆b+∆as. Note that

m+I ′+prϵ also needs to be pe-reduced to ensure the correctness of the decryption
formula. Let m′′ = b′

pe′ + a′

pe′ s = m′

pe′ , this optimization further simplifies the

decryption formula to

m ≡ pe
′
m′′⟨r − 1− e′, 0⟩ −m′′⟨e+ r − e′ − 1, e− e′⟩ mod pr. (15)

Additionally, if e′ ≥ r, we have m ≡ −m′′⟨e+r−e′−1, e−e′⟩ mod pr, which
means extracting the highest r digits of m′′ suffices to recover m.

Here we assume e′ ≥ r because the increase in noise caused by a larger e′

can be compensated by choosing a larger e, as we will see later. In this case, to
extract m′′⟨e + r − e′ − 1, e − e′⟩ with low-degree local null polynomials, it is

32

crucial to bound the size of the lower digits (m + I ′ + prϵ)/pe
′
. Equation (12)

from [15] provides a high-probability bound on these lower digits as

BHS = |m+ I ′ + prϵ|pwfl/pe
′
≤ B0(p

e′(1 + 1/q) + 2pr + 1 + 1/q2)/pe
′
. (16)

This bound should also satisfy BHS ≤ pe−e′/2 for correctness (i.e., m+ I ′ + prϵ
is pe-reduced).

Now, the lowest e′− e digits of m′′ is exactly (m+ I ′+ prϵ)/pe
′
. By choosing

e′ to be sufficiently large and adjusting e for correctness requirements, the bound
on m′′⟨e− e′− 1, 0⟩ (i.e., BHS) can be made arbitrarily close to B. For example,
one may set pe

′ ≥ 2B0(2p
r + 1 + 1/q2) such that BHS ≤ B0(1 + 1/q) + 1/2 ≈

⌊B0⌉ = B. This indicates there exists a local null polynomial of degree no more

than ⌈ e−e′+r
e−e′ (2BHS + 1)⌉ ≈ ⌈ e−e′+r

e−e′ (2B + 1)⌉ using Lemma 4, which is similar
to the results in Section 4.2.

B.2 Local Null Polynomials in GV Bootstrapping.

Recently, Geelen and Vercauteren provided a unified decryption formula for both
BGV and BFV, which has a simpler structure than the result of Halevi and
Shoup. Similar to the HS bootstrapping, the GV bootstrapping also modulus-
switches the input ciphertext to the special modulus q, satisfying gcd(q, p) = 1.
Denote the ciphertext modulo q by c = (b, a) ∈ R2

q, which satisfies [b + as]q =
m + prϵ. If we multiply c by pe−r modulo q, the resulting ciphertext (b′, a′) =
([pe−rb]q, [p

e−ra]q) ∈ R2 satisfies

b′ + a′s = pe−rm+ peϵ+ I ′q. (17)

Let b′′ = [b′]pe · [q]−1
pe and a′′ = [a′]pe · [q]−1

pe , we have

b′′ + a′′s ≡ (b′ + a′s) · [q]−1
pe ≡ [q]−1

pe pe−rm+ I ′ mod pe. (18)

If |I ′|pwfl = | b
′+a′s−(pe−rm+peϵ)

q |pwfl < pe−r

2 , the value represented by the

highest r digits in [b′′ + a′′s]pe is exactly [q−1m]pr . Let m′′ = b′′ + a′′s, the
decryption formula is then simplified to

m ≡ qm′′⟨e− 1, e− r⟩ mod pr. (19)

Now it only remains to bound |I ′|pwfl to construct the low-degree local null

polynomials. By increasing q, the contribution of the term pe−rm+peϵ
q can be

made arbitrarily small, leading to |I ′|pwfl ≈ | b
′+a′s
q |pwfl = B0.

Our decryption formula simplification is a special case of GV bootstrapping
if we ignore the adoption of methods in [17]. Recall that in Section 4.1, we
require |∆(m + prϵ)|pwfl < q0/2 for ∆ = pt. This requirement corresponds to
|pe−rm+peϵ|pwfl < q/2 in GV bootstrapping by substituting e = r+t and q0 = q.
In this case, pe−rm+ peϵ = [b′ + a′s]q, implying I ′ = (b′ + a′s− [b′ + a′s]q)/q =
⌊(b′ + a′s)/q⌉ and |I ′|pwfl = ⌊B0⌉ = B.

33

	Accelerating BGV Bootstrapping for Large p Using Null Polynomials Over Zpe

