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Abstract. We flesh out some details of the recently proposed Simplex atomic broadcast protocol,
and modify it so that leaders disperse blocks in a more communication-efficient fashion. The resulting
protocol, called DispersedSimplex, maintains the simplicity and excellent — indeed, optimal — latency
characteristics of the original Simplex protocol. We also present several variations, including a variant
that supports “stable leaders”, variants that incorporate very recently developed data dissemination
techniques that allow us to disperse blocks even more efficiently, and variants that are “signature free”.
We also suggest a number of practical optimizations and provide concrete performance estimates that
take into account not just network latency but also network bandwidth limitations and computational
costs. Based on these estimates, we argue that despite its simplicity, DispersedSimplex should, in
principle, perform in practice as well as or better than any other state-of-the-art atomic broadcast
protocol, at least in terms of common-case throughput and latency.

1 Introduction

Byzantine fault tolerance (BFT) is the ability of a computing system to endure arbitrary (i.e.,
Byzantine) failures of some of its components while still functioning properly as a whole. One
approach to achieving BFT is via state machine replication [Sch90]: the logic of the system is
replicated across a number of machines, each of which maintains state, and updates its state is by
executing a sequence of transactions. In order to ensure that the non-faulty machines end up in
the same state, they must each deterministically execute the same sequence of transactions. This
is achieved by using a protocol for atomic broadcast.

In an atomic broadcast protocol, we have a committee of n parties, some of which are honest
(and follow the protocol), and some of which are corrupt (and may behave arbitrarily). Roughly
speaking, such an atomic broadcast protocol allows the honest parties to schedule a sequence of
transactions in a consistent way, so that each honest party schedules the same transactions in
the same order. Each party receives various transactions as input — these inputs are received
incrementally over time, not all at once. It may be required that a transaction satisfy some type of
validity condition, which can be verified locally by each party. These details are application specific
and will not be further discussed. Each party outputs an ordered sequence of transactions —
these outputs are generated incrementally, not all at once. One key security property of any secure
atomic broadcast protocol is safety, which means that each party outputs the same sequence of

⋆ This paper has been evolving since first submitted to https://eprint.iacr.org/2023/1916 on Dec. 13, 2023
under the original title of “DispersedSimplex: simple and efficient atomic broadcast”. Since then, number of topics
have been added: (i) practical optimizations and concrete performance estimates that take into account not just
network latency but also network bandwidth limitations and computational costs, (ii) a stable leader variant,
(iii) variants based on improved reliable data dissemination techniques recently introduced in [Loc24,LS24], (iv)
signature-free variants, and (v) more extensive comparison with other protocols.

https://orcid.org/0009-0003-6996-5660
https://eprint.iacr.org/2023/1916


transactions. Another key property of any secure atomic broadcast protocol is liveness. There are
different notions of liveness one can consider, but the basic idea is that the protocol should not get
stuck and stop outputting transactions.

Different protocols make different assumptions about the latency guarantees of the network and
the number of corrupt parties. Here, we assume that the number of corrupt parties is less than n/3,
and we consider protocols that are guaranteed to provide safety without any latency assumption,
and that are guaranteed to provide liveness only in intervals of “network synchrony”, in which the
latency is below a certain defined threshold. This is the partial synchrony model, introduced in
[DLS88]. The bound of n/3 on the number of corrupt parties is optimal in this model. Many quite
practical atomic broadcast protocols have been proposed in this model, starting with the classic
PBFT protocol [CL99], and this is still an area of active research.

In this paper, we consider the recently proposed Simplex atomic broadcast protocol [CP23]. Like
many other recent protocols in this space (such as HotStuff [YMR+18] and HotStuff-2 [MN23]),
Simplex is a leader-based, permissioned blockchain protocol: the protocol proceeds in slots (a.k.a.,
views, rounds), so that in each slot a leader proposes a block of transactions, and these blocks
get added to a tree of blocks. Over time, a path of committed blocks in this tree emerges —
safety ensures that all parties agree on the same path of committed blocks. In these protocols,
leaders typically are rotated in each slot — either in a round-robin fashion or using some pseudo-
random sequence — which also has the nice effect of mitigating against censorship of transactions.
The protocol relies on authenticated communication links and a PKI to support digital signatures
(preferably aggregate or threshold signatures for better communication complexity).

Simplex is a wonderfully simple, efficient, and elegant protocol. In this paper, we add to the
Simplex story in a number of ways:

– We flesh out some missing (but crucial) details of the Simplex protocol that are needed to get
a protocol with acceptable communication complexity. Along the way, we make a few other
simplifications; in particular, we observe that while the Simplex protocol as specified in [CP23]
relies on hash-based chaining of blocks, this turns out to be unnecessary.

– More importantly, we modify the protocol so that leaders disperse blocks in a more
communication-efficient fashion, while maintaining its simplicity and excellent — indeed, op-
timal — latency characteristics. We call this variation on the Simplex protocol Dispersed-
Simplex.

– We give a detailed analysis of DispersedSimplex (safety, liveness, and performance), and discuss
a number of important implementation details, arguing — based on concrete micro-benchmarks
and realistic assumptions on network behavior — that despite its simplicity, in typical scenarios,
DispersedSimplex should perform quite well in practice, even for n ≈ 100.

– We present and analyze a variant of DispersedSimplex that supports “stable leaders” (the paper
[CP23] did not investigate such a variant). We argue that this variant can achieve even better
performance, mainly because a stable leader can drive the protocol at a significantly faster rate
than a constantly rotating leader. The mechanism for failing over from an unresponsive leader
is very simple and lightweight (no more complicated or expensive than rotating leaders as in
the basic version of the protocol).

– We present and analyze variations of DispersedSimplex (for both rotating and stable leader
variants) that incorporate the recently developed techniques of [Loc24,LS24] for improving the
communication complexity of reliable broadcast using better data dissemination techniques. We
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show how to adapt these techniques to improve the communication complexity of Dispersed-
Simplex even further, without sacrificing latency.

– Perhaps more of theoretical interest, we show how all of the above variations of DispersedSimplex
can be implemented without any signatures at all, with roughly the same communication com-
plexity as if aggregate or threshold signatures were used, but somewhat higher latency.

– We compare DispersedSimplex to other protocols in the literature. As we will argue, Dispersed-
Simplex, especially the variants mentioned above that combine stable leaders and better data
dissemination techniques, should perform as well as or better than any other state-of-the-art
atomic broadcast protocol (including leader-based protocols such as HotStuff [YMR+18] and
HotStuff-2 [MN23], as well as DAG-based protocols such as [SAGL23]), at least in terms of
common-case throughput and latency. Again, these arguments are based on concrete micro-
benchmarks and assumptions on network behavior, and they suggest that it would be worth-
while to measure the actual performance of a well-engineered implementation (which we have
not done).

The rest of the paper. Section 2 gives an entirely self contained description of DispersedSimplex —
certainly, no knowledge of the Simplex protocol itself is assumed, but some familiarity with similar
protocols (like PBFT or HotStuff) may be helpful. Section 3 gives a complete analysis of Dispersed-
Simplex, including proofs of safety and liveness, as well as complexity estimates. This section also
contains practical optimizations and concrete performance estimates that take into account not
just network latency but also network bandwidth limitations and computational costs. Section 4
briefly presents some minor implementation details and simple variations of DispersedSimplex.
Section 5 describes and analyzes a variant of DispersedSimplex that supports stable leaders, and
discusses its impact on concrete performance estimates. Section 6 briefly shows how to adapt the re-
cently developed data dissemination techniques of [Loc24,LS24] to DispersedSimplex, and discusses
their impact on concrete performance estimates. Section 7 shows how all of the above variations
of DispersedSimplex can be implemented without any signatures at all. Section 8 closes with a
comparison to other atomic broadcast protocols.

2 The DispersedSimplex protocol

Like many other protocols in this area, the Simplex protocol iterates through slots (a.k.a., views,
rounds), where in each slot there is a designated leader who proposes a new block, which is chained
to a parent block, and two rounds of voting are used to commit the block. Moreover, to improve
latency, the protocol is “pipelined”, in the sense that it optimistically moves onto the next slot
as soon as the first round of voting succeeds, before the block for that slot is committed. Leaders
may be rotated in each slot, either in a round-robin fashion or using some pseudo-random sequence.
The DispersedSimplex protocol has the same structure as the Simplex protocol; however, instead of
broadcasting the block directly, the slot leader uses well-known techniques for information dispersal
to disseminate large blocks in a way that keeps the overall communication complexity low and avoids
a bandwidth bottleneck at the leader. In particular, the communication is balanced, meaning that
each party, including the leader, transmits roughly the same about of data over the network. We
will show how the information dispersal can be interleaved with the proposal phase and the first
voting round so that no extra latency is incurred.
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2.1 Preliminaries

We have a committee of n parties, P1, . . . , Pn, at most t < n/3 of which are corrupt. We assume
the parties are connected by authenticated point-to-point channels.

We will not generally assume network synchrony. However, we say the network is δ-synchronous
over an interval [a, b+ δ] if every message sent from an honest party P at time t ≤ b to an honest
party Q is received by Q before time t+ δ. In this case, for all t ∈ [a, b], we say that the network is
δ-synchronous at time t.

2.1.1 Signatures. We make use of an (n − t)-out-of-n threshold signature scheme (although
later, in Section 7, we discuss how to avoid signatures with concomitant tradeoffs). We refer to a
signature share and a signature certificate: signature shares from n− t on a given message may be
combined to form a signature certificate on that message. This can be implemented as just a set of
signatures, or as an aggregate signature scheme (such as one based on BLS signatures [BLS01] as in
[BDN18]) or as a threshold version of an ordinary signature scheme (such as one again based on BLS
signatures as in [Bol03]). The second and third implementations will result in much more compact
threshold signatures. The third implementation requires a set-up phase to distribute shares of a
signing key; however, this set-up can be implemented using an atomic broadcast protocol (such as
DispersedSimplex) using one of the first two implementations, so that only a PKI set-up is required;
once this set-up phase is complete, the protocol can shift to using the third implementation.

The security property for such a threshold signature scheme may be stated as follows.

Quorum Size Property: It is infeasible to produce a signature certificate on a message m, unless
n− t− t′ honest parties have issued signature shares on m, where t′ ≤ t is the number of corrupt
parties.

Under our assumption that the number of corrupt parties is strictly less than n/3, one can
easily establish the following standard property.

Quorum Intersection Property: It is infeasible to produce signature certificates on two distinct
messages m and m′, unless at least one honest party issued signature shares on both m and m′.

2.1.2 Information dispersal. We explicitly make use of well-known techniques for asyn-
chronous verifiable information dispersal (AVID) techniques involving erasure codes and Merkle
trees (introduced in [CT05]).

Erasure codes. For integer parameters k ≥ d ≥ 1, a (k, d)-erasure code encodes a bit string M as a
vector of k fragments, f1, . . . , fk, in such a way that any d such fragments may be used to efficiently
reconstruct M . Note that for variable-length M , the reconstruction algorithm also takes as input
the length β of M . The reconstruction algorithm may fail (for example, a formatting error)—if
it fails it returns ⊥, while if it succeeds it returns a message that when re-encoded will yield k
fragments that agree with the original subset of d fragments. We assume that all fragments have
the same size, which is determined as a function of k, d, and β.

Using a Reed-Solomon code, which is based on polynomial interpolation, we can realize a (k, d)-
erasure code so that if |M | = β, then each fragment has size ≈ β/d. More precisely, using a
Reed-Solomon code over binary finite fields, we can always construct a code such that fragments
are of size at most max(⌈β/d⌉, ⌈log2(k)⌉)—the term ⌈log2(k)⌉ comes from the fact that we need
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to work with a field of cardinality at least k. In what follows, we will use the more general upper
bound of

β/d+O(log(k))

on fragment size, which serves as an upper bound for the above construction, as well as for other
constructions and implementations (which may impose additional restrictions on the length of
fragments, such as being a multiple of some specific constant).

In our protocol, the payload of block will be encoded using an (n, n − 2t)-erasure code. Such
an erasure code encodes a payload M as a vector of fragments f1, . . . , fn, any n− 2t of which can
be used to reconstruct M . This leads to a data expansion rate of (at most) roughly 3; that is,∑

i|fi| ≈ n/(n− 2t) · |M | < 3|M |.

Merkle trees. Recall that a Merkle tree allows one party P to commit to a vector of values
(v1, . . . , vk) using a collision-resistant hash function by building a (full) binary tree whose leaves are
the hashes of v1, . . . , vk, and where each internal node of the tree is the hash of its two children. The
root r of the tree is the commitment. Party P may “open” the commitment at a position i ∈ [k]
by revealing vi along with a “validation path” πi, which consists of the siblings of all nodes along
the path in the tree from the hash of vi to the root r. We call πi a validation path from the root
under r to the value vi at position i. Such a validation path is checked by recomputing the nodes
along the corresponding path in the tree, and verifying that the recomputed root is equal to the
given commitment r. The collision resistance of the hash function ensures that P cannot open the
commitment to two different values at a given position.

Encoding and decoding. For a given payload M of length β, we will encode M as a vector of
fragments (f1, . . . , fm) using the (n, n− 2t)-erasure code, and then form a Merkle tree with root r
whose leaves are the hashes of f1, . . . , fn. We define the tag τ := (β, r).

For a tag τ = (β, r), we shall call (fi, πi) a certified fragment for τ at position i if

– fi has the correct length of a fragment for a message of length β, and
– πi is a correct validation path validation path from the root under r to the fragment fi at

position i.

The function Encode takes as input a payload M . It builds a Merkle tree for M as above with
root r (encoding M as a vector of fragments, and then building the Merkle tree whose leaves are
the hashes of all of these fragments). It returns(

τ, {(fi, πi)}i∈[n]
)
,

where τ is the tag (β, r), β is the length of M , and each (fi, πi) is a certified fragment for τ at
position i.

The function Decode takes as input(
τ, {{(fi, πi)}i∈I

)
,

where τ = (β, r) is a tag, I is a subset of [n] of size n− 2t, and each (fi, πi) is a certified fragment
for τ at position i. It first reconstructs a message M ′ from the fragments {fi}i∈I , using the size
parameter β. If M ′ = ⊥, it returns ⊥. Otherwise, it encodes M ′ as a vector of fragments (f ′

1, . . . , f
′
n)

and Merkle tree with root r′ from (f ′
1, . . . , f

′
n). If r

′ ̸= r, it returns ⊥. Otherwise, it returns M ′.
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Under collision resistance for the hash function used for the Merkle trees, any n − 2t certified
fragments for given tag τ will decode to the same payload — moreover, if τ is the output of the en-
coding function, these fragments will decode to M (and therefore, if the decoding function outputs
⊥, we can be sure that τ was maliciously constructed) This observation is the basis for the proto-
cols in [DW20,LLTW20,YPA+21]. Moreover, with this approach, we do not need to use anything
like an “erasure code proof system” (as in [ADVZ21]), which would add significant computational
complexity (and in particular, the erasure coding would have to be done using parameters compat-
ible with the proof system, which would likely lead to much less efficient encoding and decoding
algorithms).

2.2 Protocol data objects

2.2.1 Blocks. A block B is of the form Block(v, v′, τ), where

– v = 1, 2, . . . is the slot number associated with the block (and we say B is a block for slot v),
– v′ < v is the slot number of B’s parent block (v′ = 0 if B’s parent is a notional “genesis” block),

and
– τ is a tag obtained by encoding B’s payload M .

For simplicity, we call a certified fragment for the tag τ a certified fragment for B.

2.2.2 Support, commit, and complaint shares and certificates. A support share from party
Pi on block B is an object of the form SuppShare(B, σi, fi, πi), where σi is a valid signature share
from Pi on the object Supp(B), and (fi, πi) is a certified fragment for B at position i. A support
certificate on B is an object of the form SuppCert(B, σ), where σ is a valid signature certificate on
the object Supp(B).

A commit share from party Pi on slot v is an object of the form CommitShare(v, σi), where σi
is a valid signature share from Pi on the object Commit(v). A commit certificate on v is an object
of the form CommitCert(v, σ), where σ is a valid signature certificate on the object Commit(v).

A complaint share from party Pi on slot v is an object of the form ComplaintShare(v, σi), where
σi is a valid signature share from Pi on the object Complaint(v). A complaint certificate on v is
an object of the form ComplaintCert(v, σ), where σ is a valid signature certificate on the object
Complaint(v).

2.3 Subprotocols

We describe our protocol in terms of a main protocol and a few simple subprotocols. In our presen-
tation, these subprotocols are all running concurrently with each other and with the main protocol:
a single party can be thought of as running a local instance of the main protocol and each of the
subprotocols on different threads on the same CPU. However, this particular architecture is mainly
intended just for ease of presentation.

We describe first the data structures and logic of the subprotocols.

2.3.1 Certificate pool. Each party maintains a certificate pool. Whenever a party receives a
quorum of n−t support, commit, or complaint shares, and it does not already have a corresponding
certificate, it will generate a certificate, add it to the pool, and broadcast the certificate to all parties.
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Similarly, whenever a party receives a support, commit, or complaint certificate, and it does not
already have a corresponding certificate, it will add it to the pool, and broadcast the certificate to
all parties.

2.3.2 Complete block tree. Each party also maintains an complete block tree. The complete
block tree always contains a tree of blocks, rooted at a notional genesis block at slot 0. A block
B = Block(v, v′, τ) is added to the pool if

– v′ = 0 or the complete block tree contains a parent block B′ = Block(v′, ·, ·),
– the certificate pool contains a support certificate for B;
– the party has received a quorum of n − 2t support shares for B, from which the party can

reconstruct the effective payload M of B as

M ← Decode(τ, {(fi, πi)}i∈I),

where {(fi, πi)}i∈I is the corresponding collection of certified fragments for τ ;
– M ̸= ⊥ and satisfies some correctness predicate that may depend of the path of blocks (and

their payloads) from genesis to block B′.

Unlike the certificate pool, when a party adds a block to its complete block tree, it does not
broadcast anything to other parties.

Under cryptographic assumptions, we will see that for any given slot number v > 0, there will
never be more than one block B = Block(v, ·, ·) for slot v in the complete block tree.

2.3.3 Block commitment. We say that a block B for slot v is explicitly committed by P if the
complete block tree of P contains B and the certificate pool of P contains a commit certificate
for slot v. In this case, we say that all of the predecessors of block B in the complete block tree
are implicitly committed by P . The notional genesis block is always considered to be a committed
block. The payloads of committed blocks may be then transmitted in order to the “execution layer”
of the protocol stack of a replicated state machine.

2.4 The main protocol

The logic of the main protocol for a party Pj is described in Fig. 1. In the description, leader(v)
denotes the leader for slot v — as discussed above, leaders may be rotated in each slot, either in
a round-robin fashion or using some pseudo-random sequence. The details for generating and vali-
dating block proposals are described below. In the main protocol, a party makes its decisions based
on the objects it its certificate pools and its complete block tree (which are maintained as described
in Section 2.3) and the objects it has received from other parties over authenticated channels. The
core of the protocol is expressed as in terms of a “wait until either” statement which triggers one
of several clauses based different preconditions. Although not strictly necessary, for concreteness,
we assume that if more than one clause’s precondition is satisfied, then the syntactically first such
clause is triggered.

Note that a party will not issue a commit share in a slot if it has already issued a complaint
share in that slot — this rule is essential for safety. Also note that a party may issue a support
share in a slot even if it has already issued a complaint share in that slot — this rule is not essential
and the protocol would also provide both safety and liveness if a party chose not to issue a support
share in this case.
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DispersedSimplex: main loop for party Pj

vlast ← 0
for v = 1, 2, . . .

tstart ← clock()
done← proposed← supported← complained← false
while not done do

wait until either:
the certificate pool contains a complaint certificate for slot v ⇒

done← true
the complete block tree contains a block for slot v ⇒

if not complained then broadcast a commit share for v
done← true, vlast ← v

not complained and clock() > tstart +∆timeout ⇒
complained← true
broadcast a complaint share for slot v

leader(v) = Pj and not proposed ⇒
proposed← true

(∗) generate block proposal material B, (f1, π1), . . . , (fn, πn)
for i ∈ [n]: send BlockProp(B, fi, πi) to Pi

(∗∗) not supported and received from leader(v) a valid block proposal BlockProp(B, fj , πj) ⇒
supported← true
generate a signature share σj on Supp(B)
broadcast the support share SuppShare(B, σj , fj , πj)

Fig. 1. Logic for main loop of DispersedSimplex protocol for party Pj

2.4.1 Generating block proposals. The logic for generating block proposal material B,
(f1, π1), . . . , (fn, πn) in slot v at line (∗) is as follows:

– build a payload M that validly extends the path in the complete block tree ending at the block
for slot vlast;

– compute

(τ, {(fi, πi)}i∈[n])← Encode(M);

– set B := Block(v, vlast, τ).

2.4.2 Validating block proposals. To check if BlockProp(B, fj , πj) is a valid block proposal
from the leader in slot v at line (∗∗), party Pj checks that each of the following conditions holds:

– B is of the form Block(v, v′, τ), where v′ < v and the complete block tree contains a block for
slot v′;

– the certificate pool contains complaint certificates for slots v′ + 1, . . . , v − 1;

– (fj , πj) is a certified fragment for τ at position j.

Note that even if some of the conditions do not hold at a given point in time, they may hold at a
later point in time. When party Pj sees a block proposal in slot v, it can check the stated conditions
— if these conditions fail due to the lack of either a parent block in the complete block tree or
a complaint certificate, these conditions will need to be rechecked whenever a new block is added
to the complete block tree or a new complaint certificate is added to the certificate pool. We will
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discuss below (in Section 4.1) how to efficiently implement the test that the certificate pool contains
the necessary complaint certificates using a data structure whose size is proportional to the gap
between current slot and the last committed slot so that the amortized cost of these tests is O(1)
per slot.

3 Analysis

By abuse of terminology, we state security properties unconditionally — they implicitly assume the
security of the threshold signature scheme and the collision resistance of the hash functions used
to build Merkle trees, and should be understood to hold with all but negligible probability for all
efficient adversaries.

3.1 Initial observations

We state some basic properties:

Uniqueness and Validity Property: Suppose that a block B for some slot v is added to the
complete block tree of some party. Then no other block for slot v can be added to the complete
block tree of that party or any other party. Moreover, if the leader for slot v is honest, B must
have been proposed by that leader.

The first part follows from the Quorum Intersection Property, based on the fact an honest party
issues a support share for at most one block per slot. The second part follows from the Quorum
Size Property.

Completeness Property: If an object X appears in the certificate pool (so X is a support,
commit, or complaint certificate) or in the complete block tree (so X is a block), then X
(or its equivalent) will eventually appear in the corresponding pool/tree of every other party.1

Moreover, if X appears in a party’s pool/tree at a time t at which the network is δ-synchronous,
it will appear in every party’s pool/tree before time t+ δ.

For the support, commit, and complaint certificates, this is clear. For the blocks in the complete
block tree, we are relying on the Quorum Size Property: when a support certificate for a block B
is added to the support pool, at least n−2t honest parties must have already broadcast support
shares for B, which contain B as well as fragments sufficient to reconstruct B’s payload.

Incompatibility of Complaint and Commit Property: It is impossible to produce both a
complaint and commit certificate for the same slot v.

This follows from the Quorum Intersection Property, based on the fact that in each slot, an
honest party will never issue both a complaint share and a commit share.

3.2 Safety

Safety follows immediately from the following lemma.

Lemma 3.1 (Safety). Suppose a party P explicitly commits a block B for slot v, and a block C
for slot w ≥ v is in the complete block tree of some party Q. Then B is an ancestor of C in Q’s
complete block tree.

1 Note that the “or equivalent” qualification is necessary to account for signature certificates, if these are not
necessarily unique.
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Proof. By the Incompatibility of Complaint and Commit Property, no complaint certificate for slot
v can be produced. Let C ′ be the parent of C and suppose w′ is the slot number of C ′. Since C ′ is in
Q’s complete block tree, a support certificate for C ′ must have been produced, which means at least
one honest party must have issued a support share for C ′, which means v ≤ w′ < w. The inequality
v ≤ w′ follows from the fact that there is no complaint certificate for slot v, and an honest party
will issue a support share for C only if it has complaint certificates for slots w′ + 1, . . . , w − 1.

If v = w′, we are done by the (first part of the) Uniqueness and Validity Property, and if v < w′,
we can repeat the argument inductively with C ′ in place of C. ⊓⊔

3.3 Liveness

Liveness follows immediately from the following lemmas. The first lemma analyzes the optimistic
case where the network is synchronous and the leader of a given slot is honest, showing that the
leader’s block will be committed.

Lemma 3.2 (Liveness I). Consider a particular slot v ≥ 1 and suppose the leader for slot v is
an honest party Q. Suppose that the first honest party P to enter the loop iteration for slot v does
so at time t. Further suppose that the network is δ-synchronous over the interval [t, t+3δ] for some
δ with ∆timeout ≥ 3δ. Then each honest party will finish the loop iteration before time t + 3δ by
adding Q’s proposed block B to its complete block tree. and will eventually commit B. Moreover,
each honest party will eventually commit B, and this will happen before time t+ 4δ if the network
remains δ-synchronous over the interval [t, t+ 4δ].

Proof. By the Completeness Property, before time t + δ, each honest party will enter the loop
iteration for slot v by time t+ δ, having either a complaint certificate for slot v − 1 or a block for
slot v− 1 in its complete block tree. So before time t+ δ, the leader Q will propose a block B that
extends a block B′ with slot number v′ < v. By the logic of the protocol, we know that Q must
have complaint certificates for slots v′ + 1, . . . , v − 1 at the time it makes its proposal. Again by
the Completeness Property, before time t+2δ, each honest party will have B′ in its complete block
tree and all of these complaint certificates in its certificate pool, and moreover, will receive Q’s
proposal before this time, and hence will broadcast a support share for Q’s proposal by this time.
Therefore, before time t+ 3δ, each honest party will have added B to its complete block tree. By
the assumption that ∆timeout ≥ 3δ, when each honest party adds B to its complete block tree, the
complaint condition will not have been met, and therefore, each honest party will issue a commit
share for v at this time. If the network remains δ-synchronous, the commit shares will be received
by all honest parties before time t+ 4δ. ⊓⊔

The second lemma analyzes the pessimistic case, when the network is asynchronous or the
leader of a given round is corrupt. It says that eventually, all honest parties will move on to the
next round.

Lemma 3.3 (Liveness II). Suppose that the network is δ-synchronous over an interval [t, t +
∆timeout + 2δ], for an arbitrary value of δ, and that at time t, some honest party is in the loop
iteration for slot v and all other honest parties are in a loop iteration for v or a previous slot. Then
before time t+∆timeout + 2δ, all honest parties finish the loop iteration for slot v.

Proof. By the Completeness Property, every honest party will enter the loop iteration for slot v
before time t + δ. By time t + δ +∆timeout, every honest party will have either added a block for
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slot v to its complete block tree or broadcast a complaint share for slot v. In either case, less than
δ time units later all honest parties will have finished the loop iteration for slot v. ⊓⊔

Finally, we note that in periods of asynchrony, for any slot v in which the leader Q is honest,
if any block is committed in slot v, it must have been the block proposed by Q. This follows from
the (second part of the) Uniqueness and Validity Property.

3.4 Complexity estimates

3.4.1 Communication complexity. We measure the communication complexity per slot. This
is the sum over all honest parties P and all parties Q of the bit-length of all slot-v-specific messages
sent from P to Q.

The communication complexity per slot of DispersedSimplex is easily seen to be bounded by

3nβ +O(n2(κ+ λ log n)),

where

– β is a bound on the size of a block,
– κ is a bound on the size of a threshold signature share or certificate,
– and λ is a bound on the size of the hash function outputs used for Merkle trees.

Indeed, the cost breaks down as follows:

– 3nβ +O(n2 log n) for disseminating payload fragments,
– O(n2 log n · λ) for disseminating Merkle paths,
– O(n2κ) for disseminating signature shares and certificates.

If blocks are large, in particular, if β ≫ n(κ + λ log n), the communication complexity will be
dominated by the cost of disseminating the payload fragments.

Moreover, the communication load is balanced, meaning that each party, including the leader
for a slot, transmits roughly the same about of data over the network. In fact, as we described the
protocol, for large β, each non-leader transmits about 3β bits in total, while the leader transmits
about 6β bits in total. In Section 3.5, we discuss a simple variation in which the leader also transmits
only about 3β bits. In Section 6, we discuss a variation in which each party transmits only 1.5β–2β
bits.

3.4.2 Latency. We may also measure various notions of latency. We define:

– optimistic proposal-commit latency: assuming the leader is honest, and that the network is
appropriately synchronous, the time it takes for the leader’s proposal to be committed by all
honest parties (same as the notion of “proposal confirmation time” in [CP23]);

– optimistic consecutive-proposal latency: assuming two consecutive leaders are honest, and that
the network is appropriately synchronous, the amount of time that elapses between when they
make their respective proposals (similar to the notion of “optimistic block time” in [CP23]).

If a given transaction is submitted to the system (i.e., to all parties), the sum of these two latencies
upper bounds the total time it takes for a transaction to be included in a proposal and then
committed. The optimistic consecutive-proposal latency also upper bounds what we might call
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the optimistic reciprocal block throughput, the reciprocal of the rate at which blocks are proposed
(and committed) in a steady state where all leaders are honest and the network is appropriately
synchronous.

For DispersedSimplex, just as for Simplex, we readily see that if the network is δ-synchronous
with ∆timeout ≥ 3δ, then the optimistic proposal-commit latency is 3δ and the optimistic
consecutive-proposal latency is 2δ. This proposal-commit latency is optimal [ANRX21].

It is also useful to look at the latency between proposals made between non-consecutive honest
leaders. That is, if leaders in slots v and v + k + 1 are honest, but the k leaders in the intervening
slots are crashed or corrupt, how much time may elapse between the time the leader in slot v makes
its proposal and the time the leader in slot v+k+1 makes its proposal. Let us call this the optimistic
k-gap proposal latency. For DispersedSimplex, just as for Simplex, this is 2δ + k · (∆timeout + δ). If
leaders are chosen at random, then the probability that there is a gap of size k between slots with
honest leaders decreases exponentially with k.

We note that DispersedSimplex protocol is optimistically responsive, meaning that it runs as
fast as the network will allow so long as leaders are honest.

3.5 Other costs and concrete estimates

The above analysis abstracts away a number of practically important details. Indeed, our latency
estimates in Section 3.4.2 only took into account propagation delays caused by network latency,
but did not take into account transmission delay (caused by limited network bandwidth) and
computation delay (caused by limited compute bandwidth).

In this section, we discuss other costs and make some concrete estimates for performance under
specific assumptions. We are generally interested in values of n up to around 100, where each of the
n parties is running commodity hardware and connected to a WAN with typical network bandwidth
and latency.

We first consider the computational cost of erasure coding. This should not have a significant
impact on the overall system performance, assuming one uses a reasonably good implementa-
tion of erasure coding algorithms. One such implementation is the reed-solomon-simd library at
https://github.com/AndersTrier/reed-solomon-simd, which is based on [LC12,LAHC16]. We
benchmarked this implementation with parameters corresponding to t = 32 and n = 3t + 1 = 97
and payload sizes of 100KB and 1MB on a Macbook Pro with an Apple M1 Max CPU. The encoder
runs at a rate of nearly 2GB/s for both payload sizes. The decoder runs at a rate of about 250MB/s
for the 100KB payload and about 500MB/s per second for the 1MB payload. Generally, the en-
coder speed is independent of the payload size and the decoder speed increases with the payload
size (because fixed costs get amortized). At these speeds, it is very unlikely that the erasure coding
will be a bottleneck.

We next consider the computational cost of signature generation, verification, and aggregation.
Let us assume we use aggregate BLS signatures with the standard proof-of-possession mitigation
against rogue-key attacks, so that public keys and signatures are very cheaply aggregated by simply
adding them together. On the same hardware above, we benchmarked the blst library at https:
//github.com/supranational/blst. The cost of signing or verifying one BLS signature is well
under 1ms, and the cost of adding public keys and signatures in the aggregation process can be
effectively ignored (at least for quorums of size up to a few hundred). To aggregate many unverified
BLS signatures, a party P can very cheaply aggregate the unverified signatures and then verify
the result. If the aggregate verification fails, P will have to perform a much more expensive search
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to find out which of the individual signatures were bad. However, once the bad signatures are
found, since the parties that contributed those signatures must be corrupt, P can simply ignore all
signatures (and indeed all messages) sent from these parties going forward. This works because we
are assuming the signatures are sent over authenticated channels (although P cannot publicly prove
their corrupt behavior, unless the BLS signatures are themselves authenticated using some cheaper
digital signature, such as EdDsa). Thus, over the long run, the cost of verifying and aggregating a
set of individual signatures is essentially just the cost of one BLS signature verification. Similarly,
when a party P receives an aggregate signature from another party, if the verification of that
aggregate signature fails, P can simply ignore that party going forward.

The other main computational cost to consider is that of hashing. On the same hardware
mentioned above, the openssl implementation of SHA256 runs at a speed of 2GB/s.

With these benchmarks, and additional assumptions on network bandwidth and latency, we
can estimate the performance (latency and throughput) of the protocol (in the optimistic setting).
We shall assume network bandwidth of 1Gb/s (i.e., 125MB/s) and that the protocol is running
over a WAN, so that there is essentially no contention for network bandwidth among the parties.
Specifically, our assumption is that all parties can simultaneously transmit to the network at a rate
of 1Gb/s. We shall assume a network latency of 100ms (so it takes 100ms for a packet to travel
from P to Q once P has transmitted the packet, which is generally consistent with round-trip times
reported in https://www.cloudping.co/grid/p_90/timeframe/1D).

The protocol’s performance will depend on:

– transmission delay: the delay per slot induced by network bandwidth,
– propagation delay: the delay per slot induced by the network latency,
– computation delay: the delay induced by computation.

The optimistic consecutive-proposal latency is just the sum of these delays and throughput is the
block size β divided by the sum of these delays. Here, we will assume that β is the number of bytes
in a block. Of course, β also impacts transmission and computation delay.

We will make one small change to the protocol that will streamline its execution. Namely,
instead of using an (n, n − 2t)-erasure code, we will use an (n − 1, n − 2t − 1)-erasure code, and
adopt the convention that the leader does not hold a fragment. We note that with this change, the
encoding of a block is still at most 3β bytes, and that the above benchmarks for n = 97 are still
valid. With this change, the way the block data flows through the network in a given slot is as
follows:

– the leader encodes a block of size β as a codeword of size ≈ 3β, and transmits to each of the
n− 1 other parties its fragment, which has size ≈ 3β/n, so that the leader transmits a total of
≈ 3β bytes across the network.

– each party other than the leader broadcasts its fragment of size ≈ 3β/n to the n − 2 other
parties (besides itself and the leader), so each such party transmits a total of ≈ 3β bytes across
the network.

Assuming fragments are sufficiently large, each fragment can be broken up into many packets,
and a simple “packet-switching pipeline” strategy can be used to minimize the transmission delay.
Specifically, the leader begins by sending to each other party P the first packet of P ’s fragment,
then it sends to each other party P the second packet of P ’s fragment, and so on; at the same
time, when a party P receives one packet of its own fragment from the leader, it immediately
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broadcasts that fragment to all other parties. One sees that with this simple “packet-switching
pipeline” strategy, the transmission delay per slot is roughly 3β bytes divided by the network
bandwidth available to each party (without pipelining, it would be twice as much). With a network
bandwidth of 1Gb/s, this translates into a transmission delay per slot of about 25ms for every 1MB
of (original, unencoded) block data.

Next, consider propagation delay. This is twice the network latency, so 2 ·100ms = 200ms under
our assumptions. To make things more concrete, let us choose a block size that roughly balances
transmission and propagation delay, so a block size of 8MB. With a block size this large, and for
n ≈ 100, the size of each fragment is ≈ 240KB, large enough to make the simple “packet-switching
pipeline” strategy feasible (with packets of size ≈ 1KB, a party can transmit one packet to each
other party in time under 1ms).

Third, consider computation delay. There are several components to this:

– erasure coding: the leader encodes β bytes of data, and then each receiving party decodes and
encodes the same amount of data; with our given estimates (for n = 97), this takes 2 · 4ms +
16ms = 24ms. Using multiple cores, this could likely be reduced significantly.

– hashing: the leader hashes 3β bytes of data, and then each receiving party hashes the same
amount of data; with our given estimates, this takes 2 · 12ms = 24ms. However, the hashing
done by the leader can overlap entirely with the transmission delay (the hashing can be done
concurrently with the transmission of the fragments). For the receiving parties, in a typical
execution, of the 3β bytes of data they need to hash, at least 2β bytes of hashing can overlap
with the transmission delay (assuming the hashing is done as packets are received). If they
receive support shares from all other parties, no more hashing needs to be done. In the worst
case, they need to hash β bytes (after the re-encoding step), and with our given estimates, this
takes 4ms. Using multiple cores, this could likely be reduced even more.

– signing and aggregating: each party generates a support share and then forms a support cer-
tificate. With our given estimates, this takes a total of 2ms. However, the 1ms of time spent
forming a support certificate easily overlap the above 4ms of hashing time (assuming multiple
cores). We do not count here the cost of processing commit shares and certificates, as these can
be performed on a separate core.

This all adds up to a computation delay of 24ms + 4ms + 1ms = 29ms, and we will round this up
to 40ms to be conservative (although by exploiting multiple cores, it could be much less).

With these parameters, we estimate the total delay per slot as:

– 200ms transmission,

– 200ms propagation,

– 40ms computation.

This translates to a throughput of 8MB every 440ms, so about 18MB per second. The optimistic
consecutive-proposal latency is 440ms and the optimistic proposal-commit latency is that plus
about 100ms, so about 540ms.

To get a better understanding of this setting, consider the following example timeline. Suppose
that at time t a leader starts transmitting the packets of a block. By time (roughly) t+ 100ms the
other parties start echoing these packets. By time (again, roughly) t + 200ms the leader finishes
transmitting packets and transmits the remaining elements of its block proposal. By time t+300ms
all of these packets and remaining elements have been echoed by the other parties; moreover, by
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this same time, the other parties have validated the block proposal and have broadcast a signature
share on a corresponding support message. By time t+ 400ms, the other parties have received all
the fragments and other data they need, and then perform 40ms of computation to finish the slot
with a block in the complete block tree by time t+ 440ms.

Note that all of the above estimates are essentially independent of n. Indeed, the component of
propagation and computation delay that depends on n will be a very small fraction of the total for
block sizes of at least 1MB and for n up to several hundred.

Later in Section 5 we will discuss a variation of DispersedSimplex that supports “stable leaders”,
and in Section 6 we will discuss variations that utilize better techniques for data dissemination, and
we will argue that all of these variations, both in isolation and in combination with one another,
lead to even better performance.

4 Some implementation details and minor variations

4.1 Implementing the block proposal validation logic

To validate a proposal for a block B in slot v whose parent is a block B′ in slot v′, a party needs
to check if its complaint pool contains complaint certificates for slots v′ + 1, . . . , v − 1. Here is a
simple, practical way to do this.

Suppose that when a party enters the loop iteration for slot v, the highest slot number for which
it has committed is vcom. We know by the Incompatibility of Complaint and Commit Property, there
can never be a complaint certificate for slot vcom. So the party can maintain two data structures.

– A doubly linked list of those slots in the range {vcom, . . . , v − 1} for which it does not have a
complaint certificate, in order from lowest to highest.

– A lookup table from {vcom, . . . , v−1} to nodes in this doubly linked list — this table could just
be a dynamic, circular array.

Then, the party can perform the following operations:

– Whenever a new complaint certificate appears for a slot in the range {vcom, . . . , v−1}, it accesses
the corresponding node via the lookup table and removes it from the linked list.

– When the value of vcom or v is increased, it updates both the lookup table and linked list in the
obvious way.

For each slot, a constant amount of work is performed to maintain this data structure. Moreover,
at any point in time, a party can find in constant time the highest slot number v∗ < v for which it
has complaint certificates for slots v∗ + 1, . . . , v − 1.

4.2 Simple variations

We mention here a few simple variations of DispersedSimplex.

– Choice of parent block. In the protocol, the leader in slot v proposes a new block whose parent
is Bprev. In fact, the leader is free to choose as the parent block any block B′ for a slot v′

such that v′ < v and the leader’s complaint pool contains complaint certificates for each slot
v′ + 1, . . . , v − 1.
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– Moving on from bad blocks. In the protocol, in managing the complete block tree, when a party
reconstructs the payload and finds that it is bad (either ⊥ or otherwise invalid), it effectively
just ignores the block and the slot will eventually time out. In a variation, parties could choose
to move on to the next slot right away. To do this, we also have to modify the protocol in two
ways. First, each party should record the fact that is there was bad block in a given slot. Second,
the logic for block proposal validation should change, so that instead of checking that we have
a complaint pool contains complaint certificates for each slot v′+1, . . . , v− 1, we check that for
each of these slots, we either saw a bad block or we have a complaint certificate.

– Optimizing small payloads. For small payloads, instead of erasure coding the payload and dis-
persing fragments, the leader could just disperse the payload directly. A support share would
also contain the payload as well. Alternatively, we could use an erasure code with different
parameters that was more suitable for small payloads.

5 Stable leaders

In many settings, it makes sense to keep a leader that is doing a good job in place for an extended
number of slots. There are a number of advantages to this. One advantage is with respect to
the most common type of failure, when a party is temporarily crashed or rebooting. In this case,
whenever such a crashed party is selected as leader, the protocol has to wait sufficiently long to
“time out” and move to the next slot, effectively wasting the equivalent of a few slots. In contrast,
if a leader by default stays in place for, say, 1000 slots, when we come to a crashed leader, we will
still waste the equivalent of a few slots, but this will be a much smaller percentage of all slots.
Another advantage is that if transactions are being submitted to the system by external clients,
then (just as in classical PBFT) these transactions can typically just be sent to a stable leader.
Yet another advantage, as we will discuss below, is that a stable leader can drive the protocol even
faster, achieving both higher throughput and lower latency.

The Simplex protocol has such a very natural internal logic to it that the logic for maintaining
stable leaders suggests itself almost immediately. Let us say that by default a leader will stay in
place for a certain number of consecutive slots, which we call an epoch. For example, one epoch
might be 1000 consecutive slots.

– So that we can move to the next epoch as soon as we detect a faulty leader, we shall adopt
the convention that a complaint certificate for a slot v effectively covers the rest of the epoch
containing v.

– In order to maintain safety, this means that any party that issues a complaint share for a slot v
must abstain from issuing a commit certificate in slot v and all remaining slots of the interval
containing v.

– This means that once one honest party issues a complaint share for a slot v, it may not be
possible to commit a block in slot v or in any of the remaining slots of the interval containing
v, even though blocks may continue to be supported and added to the complete block tree.

– Therefore, in order to maintain liveness, we introduce logic that prevents parties from moving
too far ahead of the slot of the last committed block in an epoch.

The details of our protocol, which we call StableDispersedSimplex, are in Fig. 2. Note that
for any slot number v, begin(v) denotes the first slot number of the epoch containing v, while end(v)
denotes the last slot number in an epoch. The value k is a constant parameter, which can be set to
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StableDispersedSimplex: main loop for party Pj

vlast ← 0, v ← 1
repeat forever

tstart ← clock()
done← proposed← supported← complained← false
if v = begin(v) then complainedInEpoch← false // new epoch
while not done do

wait until either:
the certificate pool contains a complaint certificate for any slot in [begin(v) . . v] ⇒

done← true, v ← end(v) + 1 // go to next epoch
the complete block tree contains a block for slot v and

( v = end(v) or there is a committed block for all slots in [begin(v) . . v − k] ) ⇒
if not complainedInEpoch then broadcast a commit share for v
done← true, vlast ← v, v ← v + 1 // go to next slot

not complained and ( complainedInEpoch or clock() > tstart +∆timeout ) ⇒
complained← complainedInEpoch← true
broadcast a complaint share for slot v

// The rest is the same as in Fig. 1
leader(v) = Pj and not proposed ⇒

proposed← true
generate block proposal material B, (f1, π1), . . . , (fn, πn)
for i ∈ [n]: send BlockProp(B, fi, πi) to Pi

not supported and received from leader(v) a valid block proposal BlockProp(B, fj , πj) ⇒
supported← true
generate a signature share σj on Supp(B)
broadcast the support share SuppShare(B, σj , fj , πj)

Fig. 2. Logic for main loop of StableDispersedSimplex protocol for party Pj
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1 or any other small positive integer. The logic to go to the next slot on seeing an approved block
ensures that the approved blocks do not get more than k slots ahead of the committed blocks (and
if the network is well behaved and the leader is honest, it should never get more than 1 slot ahead).

The protocol makes use of the identical subprotocols for maintaining the certificate pool and
complete block tree. The logic for generating block proposals is identical to that in the basic
protocol.

The logic for validating block proposals is the same as in the basic protocol, except as follows.

– First, if v > begin(v), we require that v = v′+1, which enshrines the fact that an honest leader
should propose blocks with consecutive slot numbers.

– Second, instead of checking that the certificate pool contains complaint certificates for slots
v′ + 1, . . . , v − 1, we check that it contains complaint certificates that effectively cover this
interval — that is, for each w ∈ [v′ + 1 . . v − 1], there exists a complaint certificate for a slot u
such that w ∈ [u . . end(u)]. It is an easy exercise to generalize the data structures and algorithms
in Section 4.1 to work in this setting.

One sees that this protocol is identical to the basic protocol if all epochs are of size 1.

5.1 Analysis

We sketch here the main ideas of the safety and liveness analysis for this protocol.

The basic properties in Section 3.1 hold here as well, except that the Incompatibility of Com-
plaint and Commit Property generalizes here as follows: if a complaint certificate for a slot v has
been produced, then it is impossible to produce a commit certificate for any slot in [v . . end(v)].
This follows from the Quorum Intersection Property and the fact that if an honest party issues a
complaint share in slot v, it will not issue a complaint share in v or any subsequent round in the
same epoch as v.

Lemma 3.1 holds for this protocol as stated. The proof of Lemma 3.1 go through with essentially
no change, other than to note the fact that we use complain certificates that cover the interval
[v′ + 1 . . v − 1].

As for Lemma 3.2, the statement may be adjusted as follows:

Lemma 5.1 (Liveness I — stable leader version). Consider a particular slot v ≥ 1 and
suppose the leader for slot v is an honest party Q. Suppose that the first honest party P to enter the
loop iteration for slot v does so at time t. Further suppose that the network is δ-synchronous over
the interval [t, t + 3δ] for some δ with ∆timeout ≥ 3δ. Then before time t + 3δ, each honest party
will reach a loop iteration ≥ v. In addition, if each honest party issues a commit share in rounds
begin(v), . . . , v − 1, then each honest party will finish loop iteration v before time t+ 3δ, by adding
Q’s proposed block B to its complete block tree and issuing a commit share for round v.

Proof. The proof goes through with essentially no change in the case where v is the first slot in an
epoch. For later slots in the epoch, we need to add the extra assumption that each honest party
issued a commit share for all previous slots in the epoch — and so did not issue a complaint share
in those slots. This guarantees that before time t+ δ all honest parties will enter the loop iteration
for slot v, and that before time t+ 2δ, not only will all honest parties issue support shares for Q’s
proposal but will also commit the block for slot v− 1. Therefore, before time t+3δ, each party will
finish the loop iteration for slot v as stated. ⊓⊔
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The lemma is stated as it is so that by repeated application of the lemma, it follows that so
long as the network remains appropriately synchronous, an honest leader will continue to get all of
its proposals committed.

Lemma 3.3 holds for this protocol essentially as stated – the conclusion would be better worded
as “all honest parties have entered the loop iteration for some slot w > v”. The proof only needs
to be changed to reflect the fact that before time t + δ, every honest party either enters the loop
iteration for slot v or moves to the next epoch because of a complaint certificate for some round in
[begin(v) . . v − 1]. In the latter case, before time t + 2δ, all honest parties will have moved to the
next epoch.

5.2 Improved performance through stability

As mentioned above, performance can be improved by having stable leaders. To see how, let us
return to the concrete example in Section 3.5, with the parameters used there: n ≈ 100 parties
connected over a WAN, 1Gb/s bandwidth, 100ms latency, and an 8MB block size.

In the example timeline we gave there, if the leader starts transmitting the packets of a block
at time t, then by time (roughly) t + 200ms the leader stops transmitting, but the other parties
will not finish the slot until time (again, roughly) t + 440ms. With a constantly rotating leader,
the leader for the next slot will wait until this time before it begins transmitting the packets of
its block. However, a stable leader can start transmitting these packets already at time t+ 200ms.
Indeed, between time t and t + 200ms, it could have gathered the transactions for its next block
(and even performed the erasure encoding of that block), so that it can start transmitting the these
packets right away at time t+ 200ms.

Thus, throughout an epoch where the leader is honest and the network is synchronous, we basi-
cally get another level of pipelining, with the leader starting a new slot every 200ms. In somewhat
more detail:

– the leader transmits its first proposal from time t to t + 200ms, its second proposal from time
t+ 200ms to t+ 400ms, and so on;

– each receiver echoes the first proposal from time t + 100ms to t + 300ms, the second proposal
from time t+ 300ms to t+ 500ms, and so;

– each receiver downloads fragments for the first proposal from time t+ 200ms to t+ 400ms, for
the second proposal from time t+ 400ms to t+ 600ms, and so;

– each receiver

• assembles fragments for the first proposal starting at time t+400ms, placing the first block
in the complete block tree by time t + 440ms (and in time to validate the second proposal
at time t+ 500ms),

• assembles fragments for the second proposal starting at time t+ 600ms, placing the second
block in the complete block tree by time t+640ms (and in time to validate the third proposal
at time t+ 700ms),

• and so on;

– each receiver commits the first block by time t + 540ms, the second block by time t + 740ms,
and so on.

Note that in these circumstances, all parties will essentially fully utilize all available network band-
width. Achieving all this assumes multi-threading on a few cores.
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This translates to a throughput of 8MB every 200ms, so about 40MB per second. The optimistic
consecutive-proposal latency is 200ms. The optimistic proposal-commit latency remains the same
as in the rotating leaders version, so about 540ms.

Finally, we note that while the stable leader may nearly saturate its upload bandwidth, it is
not consuming very much download bandwidth, which leaves plenty of bandwidth available for
downloading transactions that are submitted directly to the stable leader by external clients.

5.3 Performance, quality, and censorship attacks

One problem with the stable leader regime is that it opens up the protocol to “performance attacks”
[CWA+09,ACKL11]. In such an attack, a corrupt leader (perhaps in collusion with other parties)
“slow walks” the protocol, making it perform much below its potential, but not slow enough to
trigger sufficiently many complaints to dislodge the leader. For example, in StableDispersedSimplex,
a corrupt leader could drive the protocol through an entire epoch at a rate of just below one block
per∆timeout time units. In an implementation, the parameter∆timeout may be set to a conservatively
large value, and thus such a leader can drive the protocol at a much slower pace than an honest
leader would, even when the network is synchronous. Another problem is that while a corrupt leader
may deliver blocks at a fast rate, those blocks could contain a small number of transactions, or a
small number of “quality” transactions (according to some quality metric).

We can use the complaint mechanism of StableDispersedSimplex to mitigate against both types
of attacks. Each party can monitor the throughput and quality of the stream of transactions it
delivers, and issue a complaint if either of these metrics fall below some prescribed threshold for
some sustained period of time. Each party will make these decisions based on local information,
but as soon as more than n − 2t honest parties issue complaints against a leader, no more blocks
can be committed in the epoch, and so all remaining honest parties will soon complain and dislodge
the leader. Because the mechanism in StableDispersedSimplex to fail over to a new leader is fairly
lightweight, this approach should be quite effective in practice.

A more insidious problem with the stable leader regime is that it allows a corrupt leader to
selectively censor transactions. One could, in principle, use the complaint mechanism to dislodge
a censoring leader. However, building a reliable censorship detector may not be practical. In that
case, a reasonable compromise may be to limit the length of epochs — most of the performance
benefits of stable leaders will already be realized by using relatively short epochs that extend for,
say, a hundred slots, so that a censoring leader will not be in place for a very long period of time.

6 Using better data dissemination techniques

Recently, [Loc24,LS24] presented techniques to reduce the communication complexity of reliable
broadcast using erasure codes with better parameters. That is, instead of using an (n, n−2t) erasure
code as we do here (and in most of the literature on communication-efficient reliable broadcast,
starting with [CT05]), the papers [Loc24,LS24] show how to use (n, n − t) erasure codes. This es-
sentially reduces the encoding expansion rate. For example, while an (n, n− 2t) erasure code leads
to an encoding expansion rate of 3, using an (n, n − t) erasure code leads to an expansion rate
of just 1.5. For long messages of size β, using an (n, n − 2t) code generally leads to a communi-
cation complexity of ≈ 3nβ. However, using an (n, n − 2t) code does not immediately lead to a
communication complexity of ≈ 1.5nβ, as one might expect — some additional communication is
required to maintain the reliable broadcast security properties. The paper [Loc24] shows how to
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reduce communication complexity to ≈ 2nβ in the worst case. The paper [Loc24] also shows how
to reduce communication complexity to ≈ 1.5nβ during periods of synchrony and assuming very
few parties are corrupt, either crashed or actively malicious; however, the particular strategy in
[Loc24] sacrifices optimistic responsiveness. The paper [LS24] shows how to reduce communication
complexity to ≈ 1.5nβ even in the worst case.

A naive adaptation of any of these protocols to DispersedSimplex would significantly increase
the optimistic proposal-commit latency. We show here how to adapt the techniques of [Loc24] and
[LS24] to DispersedSimplex without increasing this latency at all. We start by showing in some
detail how to adapt the techniques of [Loc24], and then below in Section 6.3 we briefly sketch how
to adapt the techniques of [LS24], which gives better communication complexity in the presence of
actively malicious parties, but is somewhat more complicated.

We now describe how to adapt the techniques of [Loc24] to obtain a simple variant of Dispersed-
Simplex with the following properties:

– When the leader is honest and the network is synchronous, its communication complexity is
≈ 1.5(n+ t∗)β, where t∗ < n/3 is the number of actively malicious parties (not counting crashed
parties), and β is the payload size.

– In the worst case, its communication complexity is ≈ 2.5nβ.

– It is optimistically responsive and has the same optimistic proposal-commit latency and opti-
mistic consecutive-proposal latency as DispersedSimplex.

We call this protocol DispersedSimplex∗. Recall the communication complexity of Dispersed-
Simplex is essentially 3nβ. So even in the worst case, protocol DispersedSimplex∗ improves the
communication complexity. In the optimistic setting, when the leader is honest and the network
is synchronous, the communication complexity improves further, depending on the number t∗ of
actual, actively malicious parties. Arguably, we expect t∗ to be typically quite small in practice;
perhaps more importantly, with respect to communication complexity, the performance degrades
gracefully as t∗ increases. We stress that all of this achieved without sacrificing optimistic latency
or optimistic responsiveness.

Besides using an (n, n − t) erasure code rather than an (n, n − 2t) erasure code, the only
difference between DispersedSimplex∗ and DispersedSimplex is the following change to the logic
of the subprotocol managing the complete block tree — no changes to the high-level protocol in
Section 2.4 are needed. Whenever a party Pj successfully adds a block B to its complete block
tree, it broadcasts an “advertisement” BlockAdvert(B), to all parties (including itself) from which
it did not receive a certified fragment for B — there can be at most t such parties. If a party Pi

has received BlockAdvert(B) from a party Pj , it will send the message BackupRequest(B) to Pj ,
provided all of the following conditions hold:

(i) it is holding a support certificate for B;

(ii) it has not already received (and echoed) its own certified fragment (fi, πi) for B, either directly
from the leader, or in response to another “backup request” for B;

(iii) at least ∆grace time has elapsed since obtaining the support certificate for B;

(iv) at most t corresponding “backup requests” for B have been sent to other parties;

(v) it has not already sent BackupRequest(B) to Pj .

When Pj receives such a “backup request” from Pi in response to a “advertisement” for B that it
sent to Pi, party Pj will send to Pi a message that contains Pi’s missing certified fragment (fi, πi)
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(recall that Pj has computed all the certified fragments for B as part of the decoding logic). Party
Pi can then echo this “backup fragment” to all other parties, who may use this “backup fragment”
in combination with other certified fragments (backup or otherwise) to reconstruct B. Note that
in condition (iii), ∆grace is a parameter that should be set to allow an honest leader to deliver the
certified fragment Pi is expecting. It is a “grace period” that ensures that in periods of synchrony
when the leader is honest, Pi will not waste its own download bandwidth or any other honest
party’s upload bandwidth for a fragment that the leader will deliver to Pi. This parameter should
be set to the nominal network delay expected during periods of synchrony, or just a little higher.
Condition (iv) ensures that Pi sends at most t+ 1 “request backups”, which also limits the usage
of Pi’s download bandwidth but ensures at least one honest party will receive its request.

The above logic ensures the following completeness property:

If an honest party Q adds a block B to its complete block tree, then eventually all parties
will do so. Moreover, if the block is added at a time t at which the network is δ-synchronous,
it will appear in every party’s complete block tree before time t+ 4δ +∆grace.

To see this, observe that

– by time t + δ all honest parties will have a support certificate for B and an advertisement for
B from Q,

– by time t+ δ +∆grace they will send (if necessary) backup requests for their fragment to Q,
– by time t+ 3δ +∆grace they will echo these fragments, and
– by time t+ 4δ +∆grace all honest parties will be holding n− t certified fragments for B.

This property ensures that Lemmas 3.2 and 3.3 still hold, provided the time bounds are all
adjusted accordingly. Indeed, one just had to add the term 3δ + ∆grace to all time bounds, since
this is the additional time it may take for all honest parties to enter the loop iteration for a given
slot once one honest party does so. While these adjustments can increase the amount of time it
takes to recover from a failed leader, it seems like it should be a worthwhile tradeoff in practice,
especially in the stable leader regime (see Section 5), which one can also adapt in the obvious way
to DispersedSimplex∗. Let us call this protocol StableDispersedSimplex∗. One observation to
note: in the stable leader regime, a smaller value of ∆timeout ≥ 4δ may be used for all slots in an
epoch other than the first slot (only in the first slot do we need to budget time to recover from a
bad leader).

The above logic also ensures that during periods of δ-synchrony, where ∆grace ≥ δ, if the
leader is honest, no honest party will send backup requests for that leader’s block. Therefore,
each honest party will transmit at most t∗ backup fragments, where t∗ < n/3 is the number of
activelymalicious parties (not counting crashed parties). This leads to the optimistic communication
complexity estimate 1.5(n+ t∗)β mentioned above. Even in the worst case, each party will transmit
at most t backup fragments in response to a backup request, and at most t parties will broadcast a
second (backup) fragment (see argument in [Loc24]), which leads to the worst case communication
complexity estimate 2.5nβ mentioned above.

6.1 Concrete estimates

Let us return to the concrete example in Section 3.5, with the parameters used there: n ≈ 100 parties
connected over a WAN, 1Gb/s bandwidth, 100ms latency. In this section, we will optimistically
assume that the number t∗ of actively malicious parties is very small, so that we can effectively
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ignore the bandwidth consumed by sending “backup fragments” to such parties (alternatively, we
could use the construction sketched in Section 6.3, which gives better communication complexity
bounds in the presence of actively malicious parties).

Instead of an 8MB block size as in Section 3.5, we will use 16MB block size. The reason for
this is because the expansion rate of the code is half as much as before. Therefore, we can transmit
twice as much data in the same amount of time (assuming, as we are, that t∗ is small). In addition,
the time it takes for encoding, decoding, and hashing 16MB blocks is about the same as for 8MB
blocks For hashing, this is clear, because of the better expansion rate of the code. For the encoding
and decoding times, this was verified experimentally using the reed-solomon-simd library.

Analogous to what we did in Section 3.5, we modify the protocol slightly, using a (n−1, n−t−1)
code instead of an (n, n− t) code, so that the leader never holds or disperses its own fragment.

All of the performance estimates in Section 3.5 hold here as well, except that now we are
processing 16MB blocks instead of 8MB blocks. Therefore, we get a throughput of 16MB every
440ms, so about 36MB per second. The optimistic consecutive-proposal and consecutive-proposal
latencies are exactly the same: 440ms and 540ms, respectively.

Now consider StableDispersedSimplex∗. All of the performance estimates in Section 5.2 hold
here as well, except that now we are processing 16MB blocks instead of 8MB blocks. Therefore, we
get a throughput of 16MB every 200ms, so about 80MB per second. The optimistic consecutive-
proposal and consecutive-proposal latencies are exactly the same: 200ms and 540ms, respectively.

6.2 Performance attacks

StableDispersedSimplex∗ is subject to the performance attack discussed in Section 5.3, by which
a corrupt leader may drive the protocol at a rate of just below one block per ∆timeout time units.
However, despite fact that the advertise/request mechanism to deliver backup fragments can add
additional delay when the leader is corrupt, this additional delay will not exacerbate this perfor-
mance attack — the leader cannot drive the protocol any slower than this for an extended period
of time. Moreover, as discussed in Section 5.3, the protocol can be adapted to monitor performance
and dislodge a leader if throughput drops below some target value.

6.3 Improving the communication complexity in the presence of actively malicious
parties

One can also adapt the techniques of [LS24] to DispersedSimplex, which leads to an optimistic
communication complexity of 1.5nβ (independent of t∗) and a worst case communication com-
plexity of 2nβ. However, this comes at the cost of a considerable increase in the complexity of
the protocol logic, as well as increase in its computational cost, but not one that should impact
overall performance in a well-engineered implementation. We sketch here the basic ideas of this
technique. As we will see, this technique works best in the stable leader regime (see Section 5),
so we will assume that we are working exclusively in that regime here. We call this new variant
StableDispersedSimplex†.

The main idea, which we borrow from [LS24], is to use a two-level encoding scheme. As above,
a block payload M of size β is encoded using an (n, n− t) code to obtain fragments f1, . . . , fn, each
of size at most 1.5β/n+O(log n). In addition, each fragment fi is encoded using an (n, n−2t) code
to obtain “minifragments” ϕi1, . . . , ϕin, each of size at most 4.5β/n2+O(log n). A two-level Merkle
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tree is formed: the top-level is a tree with a root r and n leaves r1, . . . , rn, where each ri is the root
of a Merkle tree whose leaves are the hashes of the minifragments ϕi1, . . . , ϕin.

To disseminate a block, a leader will send the fragment fi to each party Pi as usual, along
with the Merkle path πi from r to ri. To validate fi, party Pi will compute the minifragments
ϕi1, . . . , ϕin, form their Merkle tree with root ri, and validate that against the Merkle path πi.

2

When decoding fragments for a given block B, a party Pj will decode n− t fragments as usual,
obtaining the payload M and all of its fragments. It will then encode each fragments as a vector of
minifragments and build the two-level Merkle tree as above, and compare this to the Merkle tree
root for B.3 Only then will Pj add B to its complete block tree. In addition, Pj will send to each
party Pi from which it did not receive a fragment the “backup minifragment” ϕij — so instead
of sending full-sized backup fragments as in DispersedSimplex∗, it only sends very small backup
minifragments.

Note that a party Pi that is holding a support certificate for a block B, but did not receive
its fragment for B, can still reconstruct its fragment for B by collecting n − 2t corresponding
minifragments, and then echo this fragment to all parties. However, the completeness property we
had for adding blocks to the complete block tree is now lost. Before, if a single honest party added
a block B to its complete block pool, we were sure that every honest party would eventually obtain
and echo its fragment for B, and so every honest party would eventually add B to its complete
block tree. Now, however, we cannot make that claim when the leader is corrupt. What we can
show, however, is that if n− 2t parties honest parties add B to their complete block pool, then all
other honest parties will eventually do so (within two network delays). As a consequence, we can
be sure that if either

– a finalization certificate for B is formed, or

– a support certificate for any immediate successor of B is formed,

then every honest party will eventually add B to their complete block tree (within two network
delays).

Consider a single epoch in the stable leader regime. A series of blocks B1, B2, B3, . . . will be
placed in the complete block trees of the honest parties. Once a support certificate for block Bv

is formed, we can be sure that each honest party will eventually hold B1, . . . , Bv−1 in their own
complete block tree. However, without modification, the protocol could get stuck. Some small set
of honest parties could finish slot v with block Bv in their complete block tree, and perhaps issue
a commit share for slot v, and then move onto slot v + 1. Because these honest parties have
B1, . . . , Bv in their complete bock tree, all other honest parties will eventually have B1, . . . , Bv−1

in their complete block trees, and so will eventually enter slot v. However, all of these other honest
parties could get stuck in slot v. The parties stuck in slot v + 1 will eventually issue complaint
shares for slot v+1, but will not issue complaint shares for slot v — and they cannot, as this would
break safety, since they may have already issued commit shares for slot v. Likewise, the parties
stuck in slot v will eventually issue complaint shares for slot v, but will not issue complaint shares
for slot v + 1.

The above problem can be solved by adding two rules to the protocol.

2 In a practical implementation, it may be desirable to also build a Merkle tree whose leaves are the hashes are the
hashes of the fragments f1, . . . , fn, in addition to, or folded into, the two-level Merkle tree. This allows for simpler
validation of fragments and potentially enables more parallel computation.

3 If we use the variation in footnote 2, both Merkle trees will have to be checked.
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Rule 1: Whenever a party would normally issue a complaint share in slot v, it also issues a com-
plaint share for slot v + 1, provided v + 1 lies in the same epoch as v.

Rule 2: Whenever a party enters a new epoch, either because it naturally moves on from the last
epoch or in reaction to a complaint certificate for the last epoch, it will broadcast full-sized backup
fragments for the block in slot vlast, provided vlast lies in the last epoch (and it only needs to
send backup fragments to those parties from which it did not receive a fragment).

With Rule 2, we essentially fall back to the more expensive strategy used in DispersedSimplex∗,
but only once per epoch. As it does happen only once per epoch, we chose not use the adver-
tise/request paradigm for sending backup fragments, but simply send them directly. With Rule 2,
we re-establish an important invariant for the protocol: if all honest parties enter a given epoch,
and some honest party exits that epoch, then all honest parties will eventually do so (within two
network delays).

With Rule 1, we also re-establish the following invariant for the protocol: if all honest parties
enter a given epoch, then some honest party eventually exits that epoch.

To see how these two rules work together, consider again the above situation where we had
some parties stuck in slot v and others in slot v+1. Eventually, if nothing else happens, the parties
stuck in slot v will issue complaint shares for slots v and v + 1 and the parties stuck in slot v + 1
will issue complaint shares for slot v+1. So a complaint certificate for slot v+1 will eventually be
formed, and the parties stuck in slot v + 1 will exit the epoch, broadcasting backup fragments for
the block in slot v on their way out. This ensures that the parties stuck in slot v will move on to
slot v + 1, see the complaint certificate for slot v + 1, and exit the epoch as well.

We leave the details of the safety and liveness analysis to the reader. However, we claim the
following:

– Lemma 3.1 holds for this protocol as stated.

Note that Rule 1 does not impact safety, as a complaint in one slot in an epoch is effectively a
complaint for the remainder of the epoch.

– Lemma 5.1 holds for this protocol, provided ∆timeout ≥ 4δ.

This follows from the fact when any honest party enters any slot in an honest epoch, all other
parties will enter that slot at most 2δ time units later (for the first slot in any epoch, this
is guaranteed by Rule 2 above, and for any other slot, it is guaranteed because the leader is
honest).

– Lemma 3.3 holds for this protocol, but with a time bound of 2∆timeout+5δ in place of ∆timeout+
2δ.

This time bound may occur in the scenario above where parties are stuck in two consecutive
slots. The parties stuck in the first slot may have taken time 2δ to enter that slot, and some of
them may nearly time out in that slot but move onto the second slot without doing so, only to
time out in the second slot. Then it takes δ more time units to transmit the complaint shares
to get the parties in the second slot unstuck and 2δ more time units get the remaining parties
in the first slot unstuck.

6.3.1 Concrete estimates. In terms of concrete performance, we expect
StableDispersedSimplex† to perform just as well as the simpler protocol StableDispersedSimplex∗.
Communication costs will be strictly lower, especially when more parties are actively malicious;
however, the encoding, decoding, and hashing costs will be higher. Nevertheless, with a careful
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implementation, and especially with the use of a few more cores, it should be possible to achieve
essentially the same performance metrics as in Section 6.1, but now, even in the presence of a
much larger number of actively malicious parties. Note that just as in Section 6.1, we can use an
(n− 1, n− t− 1) code for the fragments, and, in addition, we can use an (n− 1, n− 2t− 1) code for
the minifragments, so that the leader never holds or disperses its own fragment or minifragments.

6.3.2 Performance attacks. The same discussion in Section 6.2 applies here:
StableDispersedSimplex† is no more vulnerable to performance attacks than StableDispersed-
Simplex, and the protocol can be adapted to monitor performance and dislodge a leader if
throughput drops below some target value.

7 A signature-free variant

It is perhaps worth pointing out that Simplex, as well as DispersedSimplex, can be implemented
without any threshold signatures at all. In this implementation, the only cryptographic assumptions
needed are authenticated communication links and collision resistant hash functions (used for block
chaining in both Simplex and DispersedSimplex and for Merkle trees in DispersedSimplex). The
price to pay, however, is some extra latency. In this section, we sketch how this may be done in a
fairly simple and modular fashion.

The basic idea is to use the “echo/ready” logic of Bracha’s reliable broadcast protocol [Bra87]
in place of threshold signatures. The general idea is this:

– To issue a signature share on a message m, a party broadcasts the object Echo(m).
– Whenever a party receives the same object Echo(m) from n − t distinct parties, or the same

object Ready(m) from t + 1 distinct parties, he broadcasts the object Ready(m) (if he has not
done so already).

– Whenever a party receives the same object Ready(m) from n− t distinct parties, he reports out
a signature certificate on m.

The analogs of the Quorum Size Property and Quorum Intersection Property hold here as well:

Quorum Size Property: If some honest reports out a signature certificate on a message m, then
n− t− t′ honest parties must have issued signature shares on m, where t′ ≤ t is the number of
corrupt parties.

Quorum Intersection Property: If some honest party reports out a signature certificate on m
and some honest party reports out a signature certificate on m′ ̸= m, then at least one honest
party must have issued signature shares on both m and m′.

Another property enjoyed by this logic is a completeness property, which says that if one honest
party reports out a signature certificate on a message m at time t, then eventually all honest parties
will do so (and before time 2δ if the network is δ-synchronous over [t, t+ 2δ]).

The above logic can be incorporated into the management of the support, commit, and complaint
pools in Section 2.3.1. These pools keep track of those which certificates have been reported out,
and this information is used to manage the approved block pool as in Section 2.3.2, to commit
blocks as in Section 2.3.3, and to implement the logic of the main protocol as in Section 2.4. This
all works because the only thing that a party in the original protocol did with a certificate was to
(i) keep track of which certificates it had obtained, and (ii) ensure that all other parties obtained
the same certificates.
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7.1 Safety and liveness

In terms of the analysis of the safety and liveness properties of the resulting protocol, the only
changes are as follows:

– In the completeness property in Section 3.1, the statement regarding the timing of the delivery
of object X should read as follows: if X appears in a party’s pool time t and the network is
δ-synchronous over [t, t+ 2δ], then X it will appear in every party’s pool before time t+ 2δ.

– Lemma 3.1 holds without change.

– Lemmas 3.2 and 3.3 hold if we replace the assumption that the network is δ-synchronous by
the assumption that it is (δ/2)-synchronous.

7.2 Communication complexity

The communication complexity is the same as reported in Section 3.4.1, but with κ := 1.

7.3 Latency

If we consider the latency metrics discussed in Section 3.4.2, then all of the latency bounds essen-
tially double. In particular, if the network is δ-synchronous, then for DispersedSimplex, as well as
for Simplex, the optimistic proposal-commit latency is 6δ and the optimistic consecutive-proposal
latency is 4δ. These estimates take into account the fact that if an honest leader makes a proposal
at time t, then all parties will receive the proposal by time t + δ; however, the other parties may
need to wait until time t + 2δ to obtain the data needed to validate the proposal (the support or
complaint certificate for the previous slot) as they wait for Bracha’s “ready amplification” logic to
run its course.

As discussed in Section 3.4.2, the optimistic consecutive-proposal latency upper bounds the
optimistic reciprocal block throughput, the reciprocal of the rate at which blocks are proposed (and
committed) in a steady state where all leaders are honest and the network is appropriately syn-
chronous. In this setting, the optimistic reciprocal block throughput is actually bounded by ≈ 3δ.
To see this, let us define pv to be the time at which the slot-v leader proposes a block Bv, and sv
to be the time at which the following event happens: either

– all honest parties have issued a support share for Bv, or

– some honest party approves Bv.

With this definition, and by Bracha’s “echo/ready” logic, we see that by time sv + 2δ, all honest
parties will have approved Bv. We have

sv+1 ≤ sv + 3δ. (1)

To see this, note that by time sv +2δ all honest parties, including the slot-(v+1) leader, will have
approved Bv, and so by time sv +3δ all honest parties have either issued a support share for Bv+1

or approved Bv+1. We also clearly have

pv ≤ sv. (2)

In addition, we have

sv ≤ pv + 2δ, (3)
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which again follows from Bracha’s “echo/ready” logic. Therefore, if the leaders in slots v, v +
1, . . . , v + k are all honest, we have

pv+k ≤ sv+k (from (2))

= pv − pv + sv+k

≤ pv − (sv − 2δ) + sv+k (from (3))

= pv + 2δ + (sv+k − sv)

≤ pv + 2δ + 3kδ (from (1)),

which implies (for large k) that the optimistic reciprocal block throughput is bounded by ≈ 3δ.

7.4 Stable leaders

The above technique can clearly be used to make the StableDispersedSimplex protocol in Section 5
signature free as well. In this setting, the optimistic reciprocal block throughput can be reduced
from ≈ 3δ to ≈ 2δ. Moreover, the very fact that the leader is stable makes the notion of optimistic
reciprocal block throughput more relevant. The main idea is the observation that a stable leader
need not wait until it has reported out a support certificate for one block before proposing the
next block (in contrast, if the leader is constantly rotating, the next leader must wait to report out
either a timeout or support certificate for the previous slot, in order to maintain liveness). Instead,
we can impose the following pipelined proposal rule: the leader will propose block Bv+1 in slot v+1
upon

– receiving support-echo objects for Bv from n− t distinct parties, or
– receiving support-ready objects for Bv from t+ 1 distinct parties.

This proposal rule ensures that at the time the leader proposes Bv+1, at least n − t − t′ honest
parties have issued support shares for Bv (and hence have already approved Bv−1). Thus, the leader
does not run too far ahead of the other honest parties.

With the values pv and sv defined as above, the inequalities (2) and (3) hold just as before.
Based on the pipelined proposal rule, it is not hard to see that pv+1 ≤ sv + δ. From this, we see
that

sv+1 ≤ max{sv + 2δ, pv+1 + δ} ≤ sv + 2δ.

Therefore, by reasoning similar to that used above, we see that

pv+k ≤ pv + 2(k + 1)δ,

which implies (for large k) that the optimistic reciprocal block throughput is bounded by ≈ 2δ.
Note also that with this pipelining, if one also takes into account transmission and computational

delays, this version of the protocol should be able to sustain exactly the same level of throughput
discussed in Section 5.2 (under the same assumptions).

7.5 Using better data dissemination techniques

One can easily adapt the techniques in Section 6 to work with this erasure free variant. We leave
the details to the reader.
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8 Comparison to other protocols

8.1 Simplex

As already mentioned above in Section 3.4.2, the optimistic proposal-commit latency (3δ) and the
optimistic consecutive-proposal latency (2δ) of DispersedSimplex are the same as for Simplex. A
proper comparison of the communication complexity of DispersedSimplex and Simplex is not really
possible. This is because description of Simplex in [CP23] is a bit problematic: taking the description
of the protocol in Section 2.1 of [CP23] literally, the size of the message in slot v is actually
proportional to v itself, but elsewhere (in particular in Section 3.4 of [CP23]) it is suggested that
messages are much smaller (but without any details). DispersedSimplex is optimistically responsive,
just like Simplex.

8.2 HotStuff and HotStuff-2

We may also compare DispersedSimplex to HotStuff [YMR+18] and the recently proposed improve-
ment HotStuff-2 [MN23].

8.2.1 Latency. HotStuff-2 has an optimistic proposal-commit latency of 5δ while HotStuff has
a an optimistic proposal-commit latency of 7δ. Pipelined versions of these protocols can achieve an
optimistic consecutive-proposal latency 2δ. Thus, (pipelined versions of) HotStuff and HotStuff-2
have the same optimistic consecutive-proposal latency of DispersedSimplex, but have worse opti-
mistic proposal-commit latency (which is just 3δ for DispersedSimplex).

We note that HotStuff and HotStuff-2 are optimistically responsive, just like DispersedSimplex
and Simplex.

8.2.2 Communication complexity. The reported communication complexity of HotStuff and
HotStuff-2 is

O(n(β + κ+ λ)).

Recall that β bounds the block size, κ the signature share/certificate size, and λ the hash size.
For small blocks, specifically if β ≪ n(κ + λ log n), this communication complexity is better than
that of DispersedSimplex, which is O(nβ+n2(κ+λ log n)), as we discussed above in Section 3.4.1.
However, this reported communication cost does not actually take into account the cost of reliable
block dissemination. In these protocols, the leader is (apparently) supposed to simply send its
proposed block to each party — at least, that is what is written in [YMR+18].

This creates two problems. First, there is no mechanism specified that ensures that all honest
parties obtain the payloads of committed blocks. Naive mechanisms in which parties simply poll
other parties for missing blocks can easily degenerate into O(n2β) communication complexity: all
corrupt parties could simply ask for a block from all honest parties. If information dispersal tech-
niques are used to ensure data availability, this would again make the communication complexity
quadratic in n. So at best, the communication complexity of these protocols is better only for small
blocks and only assuming corrupt parties do not misbehave too much.

Second, if the description in [YMR+18] is taken literally, the communication load in HotStuff
(and apparently HotStuff-2) is very unbalanced. This can create a communication bottleneck at the
leader. Indeed, as demonstrated empirically in [MXC+16,SDPV19], it seems that for systems with
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moderate network size (n up to a hundred or so) and large block sizes, taking care to disseminate
blocks to all parties in a way that does not create a bottleneck at the leader is more important
in practice than worrying about the quadratic dependence on n in the communication complexity.
In contrast, as mentioned above in Section 3.4.1, the communication load of DispersedSimplex is
balanced. That is, each party, including the leader, transmits roughly the same about of data over
the network. Thus, while in HotStuff (and HotStuff-2), the leader has to transmit O(nβ) bytes
across the network, in DispersedSimplex, the leader (and every party) transmits O(β) bytes across
the network.

8.2.3 Concrete estimates. It would be interesting to perform a careful empirical investigation
to compare the real-world performance of DispersedSimplex and (pipelined) HotStuff/HotStuff-2
under various parameter settings. However, we can attempt to make a “back of the envelope”
calculation, similar to what we did in Section 3.5. With the parameters we used there (1Gb/s
network bandwidth and 100ms network latency), the propagation delay per slot would be the
same, so about 200ms, and the computation delay would be less. As for the transmission delay, if
the block size is β bytes, then in each slot the leader has to transmit a total of nβ bytes across the
network. As a specific example, let us say n ≈ 100, so the transmission delay would be about 800ms
for every 1MB of block data. This is obviously much worse than the 25ms per 1MB of block data
for DispersedSimplex. With these estimates, the best possible throughput that could be achieved
is 1.25MB of block data per second. More concretely, suppose we set the block size to 1MB. So
ignoring computation delay (which is just a few ms),

– the throughput is about 1MB per second (vs 18MB per second for DispersedSimplex, or 80MB
per second for the stable-leader version of DispersedSimplex, as discussed in Section 6.1),

– the optimistic consecutive-proposal latency is 1s (vs 440ms for DispersedSimplex, or 200ms for
any of the stable-leader versions of DispersedSimplex discussed here), and

– (for HotStuff-2) the optimistic proposal-commit latency is that plus about 300ms, so about 1.3s
(vs 540ms for DispersedSimplex).

In the above calculations, we saw that for an unbalanced protocol like HotStuff (or PBFT),
as n increases, the throughput should decrease, and the latency should increase, while in a bal-
anced protocol like DispersedSimplex, throughput and latency should not depend very much on n.
This type of behavior has been confirmed experimentally in papers such as [MXC+16,SDPV19],
although not for the exact protocols considered here. Also, while we focused on throughput and
latency, there are other costs to consider — namely, the monetary (or other) costs associated with
transmitting a certain amount of data. These costs are directly proportional to the overall commu-
nication complexity, and it is indeed true that erasure coding does inflate these costs by a factor
of 3 (although this can be reduced to a factor of 1.5 using the techniques in Section 6). Another
factor to potentially consider is the fact that for a balanced protocol like DispersedSimplex, the
rate at which each party is transmitting is fairy constant, while for protocols like HotStuff, it is
very bursty.

8.2.4 A tension between timeouts. Another issue with HotStuff-2 is that in addition to a
timeout analogous to the value ∆timeout used in DispersedSimplex, there is a waiting period ∆wait

used by the leader in some situation to ensure that is becomes aware of any “hidden locks” held
by other parties that would prevent its proposal from being accepted (and thus lose the liveness
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property). Now, it is a well-established technique that a system might choose an initial timeout
∆timeout-value, but parties might adjust this value upwards if progress is not being made for a
while (which would deal with situations where the network becomes significantly slower than the
design parameter for an extended period). One could obviously implement such a technique in
both DispersedSimplex and HotStuff-2. Note that parties make these decisions locally and may end
up with (very) different values of ∆timeout. However, to preserve liveness in HotStuff-2, the leader
would have to adjust ∆wait as well as ∆timeout. Unfortunately, if the leader’s value of ∆wait becomes
too large relative the timeout ∆timeout-values of the other parties, the other parties will time out
before the leader makes its proposal. It is not clear if this is a significant problem in practice, but it
is worth pointing it out as a potential problem. In contrast, in a protocol such as DispersedSimplex,
if some parties have a ∆timeout-value that is “too large”, this will not impact liveness — it will only
impact what we called above the “optimistic k-gap proposal latency”, that is, the latency between
proposals made between consecutive honest leaders separated by k corrupt leaders.

8.3 ICC

The Simplex protocol bears a passing resemblance to the ICC protocols ICC in [CDH+21]. The main
difference is that for the ICC protocols, if the leader for a slot v is perceived to fail, then instead of
simply timing out, a (somewhat complicated) fail-over mechanism is triggered that will eventually
add a block to the complete block tree for slot v that is proposed by a different party. Latency
and communication costs in the optimistic setting for protocols ICC0 and ICC1 in [CDH+21] are
very similar to that of Simplex. We note that protocol ICC2 in [CDH+21] employs information
dispersal techniques to get better communication complexity, but at the expense extra latency.
Thus, DispersedSimplex is both simpler and more efficient than that any of the ICC protocols.

8.4 DAG-based atomic broadcast protocols

Recently, there has been a flurry of papers on DAG-based atomic broadcast protocols — for example
[KKNS21,DKSS22,SGSK22,SAGL23]. One of the attractions of these protocols is that, by design,
they are leaderless and thereby avoid the bandwidth bottleneck that some leader-based protocols
can exhibit. Indeed, as stated in [DKSS22]:

decoupling transaction dissemination from the critical path of consensus is the key to
blockchain scalability.

As mentioned above, the papers [MXC+16,SDPV19] already demonstrated the importance of tak-
ing care to disseminate blocks to all parties in a way that does not create such a bottleneck. We also
mentioned above that protocol ICC2 in [CDH+21] shows how to do this in a leader-based protocol,
and we have shown in this paper how DispersedSimplex achieves this in a leader-based protocol
with optimal proposal-commit latency. As shown in Section 5, a stable-leader variant of Dispersed-
Simplex can achieve even better performance, and specifically, when the leader is honest and the
network is synchronous, all parties will essentially fully utilize all available network bandwidth.
Thus, it is not entirely clear to us that the leader-bottleneck problem exhibited by some earlier
leader-based protocols is a valid reason to abandon leader-based protocols entirely, especially since
leader-based protocols (such as DispersedSimplex) still exhibit superior (and essentially optimal)
latency characteristics. Moreover, it is also not entirely clear to us that “decoupling transaction dis-
semination from the critical path of consensus” is an inherently good idea: while such a decoupling
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may be good from a software engineering point of view, as we demonstrate with DispersedSimplex,
it is precisely by tightly coupling dissemination with consensus that we can fully utilize network
bandwidth without sacrificing optimal latency, using a quite simple and elegant protocol.

There are many metrics on which consensus protocols may be compared. While DAG-based
consensus protocols may well be superior on some metrics, it does not appear (based on our analysis)
that the core metrics of common-case throughput and latency are among them.
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