RLWE-based distributed key generation
and threshold decryption*

Ferran Alborch!®, Ramiro Martinez!®, and Paz Morillo®

Universitat Politecnica de Catalunya, Barcelona, Spain
{ferran.alborch, [ramiro.martinez, paz.morillo}@upc.edu

Abstract. Ever since the appearance of quantum computers, prime fac-
toring and discrete logarithm based cryptography has been put in ques-
tion, giving birth to the so called post-quantum cryptography. The most
prominent field in post-quantum cryptography is lattice-based cryptog-
raphy, protocols that are proved to be as difficult to break as certain dif-
ficult lattice problems like Learning With Errors (LWE) or Ring Learn-
ing With Errors (RLWE). Furthermore, the application of cryptographic
techniques to different areas, like electronic voting, has also seen to a
great interest in distributed cryptography. In this work we will give two
original threshold protocols based in the lattice problem RLWE: one for
key generation and one for decryption. We will prove them both correct
and secure under the assumption of hardness of some well-known lattice
problems and we will give a rough implementation of the protocols in C
to give some tentative results about their viability.

Keywords: Post-Quantum Cryptography - Threshold Cryptography -
Lattices - Ring Learning With Errors (RLWE) - RLWE Encryption

1 Introduction

The appearance of the computer in the XXth century caused the explosion of
cryptography, the safety of which enabled the huge development of the con-
nected society. Similarly, the development of quantum computing and specifi-
cally Shor’s algorithm [14], which renders cryptography based on the discrete
logarithm and prime factoring problems effectively useless against a quantum
adversary, spawned new types cryptography.

There are two main types developed to overcome the attacks of quantum
computers: quantum cryptography and post-quantum cryptography. Quantum
cryptography relies on quantum algorithms that cannot be broken by quantum
adversaries, while post-quantum deals with classical (non-quantum) algorithms
that cannot be broken by quantum adversaries. Although both are interesting
in their own right, given that widespread usage of moderately powerful quan-
tum computers seems unachievable in the short run, we focus in post-quantum

* This work is supported by the Spanish Ministry of Science and Innovation under
Project PID2019-109379RB-100.

https://orcid.org/0000-0002-3563-9133
https://orcid.org/0000-0003-0496-6462
https://orcid.org/0000-0002-0063-2716
mailto:ferran.alborch@upc.edu
mailto:ramiro.martinez@upc.edu
mailto:paz.morillo@upc.edu

2 F. Alborch, R. Martinez, P. Morillo

cryptography. In this realm the area that has had more recent advancements is
lattice-based cryptography, especially cryptography based in the Learning With
Errors (LWE) problem and its variants, like Ring Learning With Errors (R-
LWE), the variant which our proposals are built around. This is backed by the
fact that in the Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process [1] most third-round finalists are lattice-
based schemes.

There are many applications of post-quantum cryptography, but the one we
are involved with is electronic voting. However in electronic voting we have an
added difficulty, and that is the lack of trust. Given that the lack of trust in other
entities is what initially spawned the concept of cryptography, going further in
this direction is the next logical step to follow. Therefore, what we want is to
“spread” that trust, so that one single corrupt player can no longer mess up
with the protocol. Distributed cryptography is this idea of spreading the tasks
between several players so that only certain subsets of them can perform the
cryptographic protocol. And this finally brings us to our main subject: R-LWE-
based distributed key generation and threshold decryption.

1.1 State of the art

Despite the usefulness of and interest in lattice based threshold public key en-
cryption cryptography, there are not many proposals, and even less that focus on
the R-LWE problem. Most current proposals revolve around the LWE problem
(for example [5], [6], [L1] and [15]) which has the potential problem of keys and
ciphertexts growing with O(n?) instead of with O(n) like the R-LWE variant
(with n the dimension of the lattice), thus having a high possibility to need a
greater amount of operations and therefore computation time. In the world of
threshold encryption based on R-LWE as far as we know there is only one pro-
posal given in [16], which is based on the homomorphic properties of their Fully
Homomorphic Encryption scheme. However, this proposal does not come with a
distributed key generation protocol (they rely on a Trusted Third Party (TTP)
for that) and as with all the other proposals, to the best of our knowledge there
are no given implementations to truly analyze computation times.

1.2 Contributions

In this work we give original protocols of both distributed key generation and
threshold decryption, that as far as we know are the first R-LWE based thresh-
old protocols including both decryption and key generation. The protocols are
based on the LWE proposal given by Bendlin and Damgard in [5], their ideas
transported into the R-LWE setting. Furthermore, we prove these protocols both
correct and secure, we give a set of parameters for which our protocols have more
than 100 bits of security and we give a rough implementation in C of the proto-
cols to analyze their performance. Most of this section has been taken from the
introduction in the Master’s Thesis |2] by Ferran Alborch Escobar.

RLWE-based distributed key generation and threshold decryption 3

2 Preliminaries

2.1 Notation

Elements in R, Z or Z, will be indicated as lower case letters (a,b,...), while
elements in R", Z" or Z; will be indicated as bold lower case letters (a,b,...).
We will consider Z, with the representatives in [—%, %) X +— x means X is
sampled from a random variable following the distribution x, ¥ <— x™ means

Y is a vector such that every coordinate independently follows the distribution

x and for any set 7, j & J is the action of choosing j uniformly at random
from J. We will also identify any polynomial of degree n —1, f(z) = ag+ a1z +
oo F ap 12" € Zg[x] with the vector f = (ap,a1,...,a,—1) € Z'. Finally, a
function g is said to be negligible over n (g := neg(n)) if Vk € Z~q, Ing € Z=g
such that ¥n > ng, |g(n)| < .

2.2 Cryptographic primitives

We will start by giving some cryptographic primitives, well-known definitions,
protocols or techniques used in cryptography upon which we will build our en-
cryption scheme and protocols. First we will properly define what an encryption
scheme is.

Definition 1. An encryption scheme is a tuple S = (M,C,K,E, D) such that:

— M is a set called plaintext space.

— C is a set called ciphertext space.

— K is a set called key space. Generally a key generation is also specified to
generate k € IC.

— & ={Ey : k € K} is a set of functions Ex, : M X R — C called encryption
functions. R is a randomness space because some encryption protocols use
random values.

— D ={Dy : k € K} is a set of functions Dy, : C — M called decryption
functions.

Note that if D and £ use the same key, then we call it symmetric encryp-
tion, otherwise we call it asymmetric or public key encryption. In public key
encryption IC can be divided in two different sets, Ky the secret key space and
K, the public key space. The public key (known by all entities) is used to en-
crypt messages and the secret key (known only to the entity decrypting) is used
to decrypt.

Once we have defined a cryptosystem we need to prove some properties about
it, otherwise it would not be useful. The most important of these properties are
correctness and security.

4 F. Alborch, R. Martinez, P. Morillo

Definition 2. Let (M,C,K,E,D) be an encryption scheme. The encryption
scheme is said to be correct if for all e € K, exists some computable d € K,
such that, given X the security parameter,

Pr[Dg(Eec(m)) # m] = neg(A)
for all m € M.

In contrast with correctness of an encryption scheme, security has many dif-
ferent ways in which it can be defined. This is due to the fact that a decryption
should always be correct (or always except with negligible probability) but secu-
rity depends on how is the adversary we want to protect us against (information
available, computational power) and what we want to ensure (that the adver-
sary cannot know what message was encrypted or that he cannot distinguish
which message has been encrypted from a pool of plaintexts). In our case we are
interested in CPA security.

Attack Game 1 (Attack Game 5.2 and 11.2, [7]). Let S = (M,C,K,E,D)
be an encryption scheme. Given an adversary A, the Chosen Plaintext Attack
(CPA) attack game, has two experiments, Experiment 0 and Experiment 1. For
b€ {0,1} we define Experiment b as:

— The challenger chooses e & K, (and sends it to the adversary if we are in
public key encryption).

— The adversary submits polynomially many queries to the challenger. For i =
1,2,..., A submits two same-length messages mo,, m1, € M. The challenger
computes ¢; = E.(myp,) and sends it to the adversary.

— The adversary outputs a bit b € {0,1}.

Let Wy, be the event in which A outputs 1 in the event b, then we define A’s
CPA advantage as:

CPAAdvA, 8] := [Pr[Wo] — Pr[W1]].

Definition 3 (Definition 5.2 and 11.4, [7]). An encryption scheme S is said
to be CPA secure if for all efficient adversaries A, the value CPAAdv[A,S] is
negligible.

Furthermore, security can be achieved against different types of adversaries
depending on what capacities they have. We will focus basically in passive ad-
versaries (also known as honest but curious), who can see all the information
the corrupted players have but cannot make them deviate from the protocol,
and active adversaries (also known as malicious), who can make the corrupted
players deviate arbitrarily from protocol.

2.3 Distributed Cryptography

The specific branch of cryptography we are interested in this work is distributed
cryptography.

RLWE-based distributed key generation and threshold decryption 5

Definition 4 ([13]). A threshold secret sharing scheme of threshold t and
u players is a scheme such that given some data D it divides it into u pieces

Dy...,D, such that:

— Knowledge of t +1 or more pieces D; makes D easily computable.
— Knowledge of t or less pieces D; leaves D completely undetermined (i.e. all
its possible values are equally likely).

Definition 5. We will call a threshold encryption scheme a secret sharing scheme
where what we try to recover is a plaintext from a ciphertext.

One of the first secret sharing schemes and one of the most used still due to
its simplicity to compute and understand, is Shamir Secret Sharing. We will use
it profusely throughout our work.

Technique 2 ([13]). Shamir Secret Sharing over a field F of a secret s € F of
threshold t works as follows:

— Choose t elements b; € F and define the polynomial f(z) := s + Zle b; 2t
(i.e. choose a random polynomial f(z) € F[x] such that f(0) = s).

— For every player P;, their share of the secret is f(i;), with i; € F being
different for every player and agreed before-hand.

— When t+1 players want to recover the secret they use Lagrange interpolation
to find f(z) and then compute f(0).

The convenience of this secret sharing scheme lays in two main properties:
the recovery of the secret is done through Lagrange interpolation (which is easy
to compute) and the shares are linear, which means that a linear combination of
the shares is a share of the linear combination of secrets. Both these properties
will be used in our work.

Other distributed cryptographic tools we will use will be both the Pseudo-
Random Secret Sharing (PRSS) and the Non-Interactive Verifiable Secret Shar-
ing (NTVSS) techniques. These tools will be primordial in our proposal, since the
security of our protocols is based on being able to mask the relevant information
with noise in such a way that the adversary cannot retrieve it. To generate this
noise we will use these two protocols.

Definition 6. A Pseudo-Random Function (PRF), ®.(), is a deterministic
function that maps two sets (domain and range) on the basis of a key, which
when run multiple times with the same input gives the same output but given an
arbitrary input the output seems random, i.e. one cannot distinguish the output
of a given input from a random oracle.

Technique 3 ([§]). Pseudo-Random Secret Sharing in Z, (PRSS) allows u
players to non-interactively share a common random value x with a threshold of
t players (t < u) given a pseudo-random function @.(-) that with input a key and
a value p outputs values in the interval I = [a,b], a < 0,b > 0 and whatever
group of players of size less or equal than t cannot obtain relevant information
on x. The algorithm works as follows:

6 F. Alborch, R. Martinez, P. Morillo

— For each subset H of t players a Trusted Third Party (TTP) defines a key
Ky € Zg uniformly at random.

— Each player P; is given Ky, VH such that P; ¢ H.

— The pseudo-random number they are sharing is

T = Z@KH (1)

for a value pi. Since there are () such subsets H, we know x € [(Y)a, (%)b].

— To compute 27 a Shamir share of x every player computes

o= B, () ful))

H#P;

where fy(x) is the unique degree-t polynomial such that fr(0) = 1 and
fu(i)=0 for all P, € H.

Technique 4 ([8]). Non-Interactive Verifiable Secret Sharing in Z, (NIVSS),
allows a dealer D to share a secret s with u players with threshold t given a value
w and a pseudo-random function ¢.(-) that with input a key and p outputs values
in the interval I = [a,b], a < 0,b > 0. It works very similarly to PRSS. The
algorithm works as follows:

1. For each subset H of t players the dealer D chooses a key Ky € Zq uniformly
at random.

2. The dealer D gives to player P; all the Ky such that P; ¢ H.

3. The dealer D reconstructs the pseudo-random wvalue the players share © =
>y Pry (1), since he has all the keys.

4. D broadcasts the value s — x, and now all the players have a share of s by
adding their shares of © to s — x.

Finally, since we will be using distributed methods, one must ensure that
the order in which the different players send information does not compromise
the security of the scheme, since, broadly speaking, the last player to send in-
formation would have an advantage respect the first one due to knowing more
information when making its decision. To solve this problem it is standard to
use commitment schemes.

Definition 7 (Definition 8.8, [7]). Given a message space M, a commitment
scheme is a pair of efficient algorithms C = (C, V') where C is an algorithm that
given m € M outputs a commitment ¢ and an opening string o and V is a
deterministic protocol that given (m,c,0) outputs accept or reject; and such
that it satisfies the following properties:

— Correctness: For allm € M, if C(m) = (¢, 0) then

Pr [V (m,c,0) = ‘accept’] = 1.

RLWE-based distributed key generation and threshold decryption 7

— Binding: This property is the notion that once a commitment c is generated,
it should only commit for one message in M. In particular, for every efficient
adversary A that outputs (¢, m1,01,m2,02) we must have that

mi1 # mo and

Pr V(mi,c,01) = V(ma,c,02) = ‘accept’

18 negligible over \ the security parameter.

— Hiding: This property is the notion that the commitment ¢ alone should not
reveal any information about the message m. To properly define this we use
a semantic security attack game (see Attack Game 2.1, []) where instead of
encrypting the messages we compute its commitment. What we ask is, if Wy,
denotes the event that the adversary outputs 1 in experiment b, then

[P[Wo] — Pr{W4]| = neg()).

2.4 Ring Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev in 2005 in
a previous version of [12] as a generalization of the parity learning problem, and
gave both a cryptographic protocol based on it and a reduction of its security
to a hard lattice problem (the GAPSVP).

However, cryptosystems based on the LWE problem have several issues. For
example, many of them need to encrypt bit by bit and primarily the public keys
required are very costly to store since they are usually (big) matrices of elements
in Z4. Coupling these two together we get that a lot of storage space is usually
needed to encrypt small amounts of information.

To solve these problems, the Ring Learning with Errors variant was intro-
duced by Lyubasevsky, Peikert and Regev in [9]. It is essentially a particular
case of LWE but in polynomial rings over finite rings. The problem is over the
polynomial ring R, = Z[z]/(f), where f is a polynomial in Z,[z].

Given an element a(z) € R,, one can see the principal ideal generated by
a(x)

(a(z)) = {c(x) € Rqle(x) = a(z) - b(z), b(x) € Ry}
as an ideal lattice in Z7. This correspondence is easy to see in the case f(z) =
z™ +1 (the particular R, we will use given its specific properties) due to the fact

that the vector of coefficients of the product of polynomials in R, can be found
through the anticyclic matrix as follows

a(z) - b(z) (modz"+1)=

a] —ap —Aap—-1 ... —a2 bl
as ai —ap ... —Aas
— as ag a1 ... —Qg

Qp Qp—-1 AGpn—2 ... Q1

8 F. Alborch, R. Martinez, P. Morillo

where a = (ay,...,a,) and b = (by,...,b,) are the coefficients of a(z) and b(x)
respectively.

With this out of the way we can finally define the Ring Learning With Errors
problem, on which a lot of lattice-based cryptography is based.

Definition 8. Let x be a probability distribution over Ry and s € Ry. Then the
R-LWE distribution A, is the distribution in Ry x Ry given by (a, b= a-s+e),
where a € R, is chosen uniformly at random, e +— x and all the operations to
compute b are made in R,.

Definition 9. The decisional R-LWE problem is to distinguish samples from
As . from the uniform distribution in Ry x Rq with a probability that is non-
negligibly bigger than %

Definition 10. The search R-LWE problem is to find s given a polynomial
amount of samples from As , with non-negligible probability.

Therefore, a sample of the R-LWE distribution is a point of an ideal lattice
that has been offset by a margin set by the distribution x (which is normally
taken such that the error is small). So the search R-LWE problem could be seen
as finding a point in the ideal lattice £(a) (remember that a vector a uniquely
defines an ideal lattice through its anticyclic matrix) “close” to the sample, and
the decision R-LWE could be seen as given an ideal lattice £(a), decide whether
the points given are all “close” to £(a) or are uniformly distributed.

When implementing LWE or R-LWE we will use a certain type of distribution
over Zg4 called discrete Gaussians, given their nice properties and ease in sampling
values from them. There are several different definitions of discrete Gaussians
but in our implementation we will use the following, given it is much easier to
sample.

Definition 11 ([12]). ¥,, o € RT is the distribution in T = R/Z obtained
by sampling a Gaussian random variable X, X ~ N(0,0) and then reducing
modulo 1. Therefore:

L ()
W = o
) = 3 e) vre

Note that if Y ~ ¥, then Y = X (mod 1), with X ~ N(0, o) where reducing
modulo 1 is taking only the decimal part of any real number.

Definition 12 ([12]). The discretization to Z,, q € Zxo of any distribution
inT (W:T — RY), noted as ¥ : Z, — RT is sampling from ¥, multiplying by
q, and then rounding to the closest integer. Therefore:

it 3

T(i) = / L W) dr

i—

RLWE-based distributed key generation and threshold decryption 9

Note that if Z ~ ¥, then Z = |¢Y] (mod q), with Y ~ &,.
Definition 13. Let k € Z~q such that
Pr[|W,] > k] <27*

for X\ security parameter and some i € Z~o. Then we define the truncated Dis-
crete Gaussian of parameters o and k as the distribution which samples from ¥,
and rejects any sample bigger than k, when seeing them with representatives in

[_%v %) :
3 Encryption Scheme and Protocols

Having given all the necessary preliminaries, we can finally present our encryp-
tion scheme, threshold decryption protocol and distributed key generation pro-
tocol, which we will prove correct in Section [d] secure in Section [§] and analyze
its implementation in Section [6]

We will use a version of the LPR encryption scheme presented in [9).

Encryption Scheme 5. Let g,n,u € Z~g, where u is the number of players,
and x be a distribution over R,. The encryption scheme S = (M,C,K,E,D)
and key generation we will be using is the following:

- M ={0,1}" C Zy = R,. We will see every m € M as an element in R,
with m being its vector of coefficients.
- CC Ry xRy
— This is a public encryption scheme, we have Ks C Ry and K, € Ry X Ry.
e For any pair of keys (pk,s) € K, x Ky we will have s +— > | x

(meaning it is the sum of u samples of x) and pk = (ag,bg) = (ag,ag-
s+ e) where ag <& Ry and e +— > 1 | x.

— & ={Epk : pk = (ag,bg) € K,} such that given a message m € M:

Epk:M—>C

m+— (u,v)

where (u,v) = (ag-TE+ ey, bp-TE+e, +m-|1]) with rg, ey, ey +— X.
— D={Ds:s €K} such that given a ciphertext (u,v) € C:

Ds:C—7P
(u,v) —»m
where we will recover every bit of m by rounding every coefficient of

v—s-u:e-rE—&—ev—&eu—I—m-[%J

to 0 or 4] (mod q) and then mapping 0 to 0 and 2] to 1.

10 F. Alborch, R. Martinez, P. Morillo

Decryption Protocol
Inputs: s/, Ky st. j ¢ H, d.(-), fu
Player P;

(u,v)
! = ZHg_j ¢KH(U_+ v) - fu(j)

é=v—-8-u

x’ &’

Fig. 1. Decryption Protocol

Now we will define the Threshold Decryption Protocol based on this encryp-
tion scheme and a Distributed Key Generation protocol to work together with
it. For clarity we use a TTP to generate the keys in the encryption protocol,
however, what we are looking for is a totally distributed scheme, so we also de-
fine a Distributed Key Generation Protocol to take the place of the TTP in the
threshold decryption protocol.

Protocol 6. Let x be a distribution over Ry and @.(-) a pseudo-random function
with image in I, being Ip an integer interval. Then the Threshold Decryption
Protocol works as follows:

1. A TTP generates the keys Ky € Zq for every subset H of players of size t
and distributes them according to the PRSS technique. It also generates the
secret key s ~ > i x and the public key (ag,bg) as stated in Encryption
Scheme @ Then the TTP sends to the players (ag,br) and Shamir shares
of s. We call 7 the Shamir share of s of player P;, understood as a Shamir
share on the vector of coefficients of s.

. Client receives ciphertext ¢ = (u,v), and sends all players c.

3. Each player P; computes & = v — s/ - u that is a Shamir share of é =

e Tpte,—s-e +m- |1 witherg e, s e,~x.

4. Each player P; computes ’, as in the PRSS protocol but using p = u +
v (since it changes for every message and it is hard to distinguish from
uniformly at random), its Shamir share of € =Y ;5 Pk, (u + v) and gets
x’ + &’ Shamir share of © + é.

5. Client reconstructs © + € for every allowed subset of t + 1 players, picks
whichever value is repeated more times, then for every coefficient returns 0
if € + € is closer to 0 than to | 2| and returns 1 otherwise, and this is made
public.

IS}

See Fig. [I}
For the key generation protocol we will assume a commitment scheme is used
in the initial steps of interaction, when all the sampling is done and sent.

Protocol 7. Let x be a distribution over Ry, i = z+2x%+.. . +(n—1)2""t € R,
and ®KC(-) a pseudo-random function with image in 1%, where Ixq is an
integer interval. The Distributed Key Generation Protocol works as follows:

RLWE-based distributed key generation and threshold decryption 11

1. For the secret key s € Ry, each player P; chooses its contribution s; =
(81;,--+8n;) with s; ~ x. Then they act as the dealer in a NIVSS to share
every s;; to all players. All players verify the value broadcast when doing the
NIVSS (si; —> 4 gbfggH (1)) is in the interval (})Ikc. Now all players have

shares of every s;; and]by their linearity also of s; = Zj si;- Then s is the
polynomial in Ry with coefficients (s1,...,8n).

2. For the keys Ky € Zq that will be used for the PRSS in the threshold de-
cryption, for every subset H of t players each player P; chooses uniformly at
random Ky, €Z, their contribution on these keys and shares it with all the
players using Shamir secret sharing. Then the players will have, by adding
all the shares received by other players, Shamir shares of Ky = Zj Ky;.
Finally oll players send privately their shares on Kg to all the players in A
the complement of H, so they can recover K.

. For the contributions to e € R, proceed identically to when generating s.

. Forag € Ry every player P; chooses its share (GE,lj, ceey aEmj) randomly in
Ry and does a Shamir share of it. Then all players send to all players their
share on all the (aE’lj, ceey aE,nj) so every player can recover (by adding the

shares) (EJ a1, .,Zj aE,nj). The polynomial in R, with these coeffi-
cients will be ag.

5. Fvery player computes locally their Shamir shares on bg = ag - s + e by
performing these same operations with the shares they have on s and e.

6. Finally, the public key (ag,bg) is made public.

~ Qo

See Fig. [2| for a more detailed look into the steps of interaction needed.
Note that we will denote with subindexes the additive contributions and with
superindexes the Shamir shares.

4 Correctness

With all the preliminaries on hand and having defined both protocols we can now
proceed to prove their correctness. We will give the proof for the case of a passive
adversary in the Key Generation phase and an active (or passive) adversary in
the Decryption phase, since this will be the case our implementation will use,
the reasons for this decision will be explained in Section [6.1] The proof for the
case where there is an active adversary during the Key Generation Protocol will
be in Section of the Appendix.

Theorem 8. Let n,q,u € Zwg, n =27 and u being the number of players. Let
Ry = Zg[z]/ (2™ + 1), ®P(:) be a pseudo-random function with image interval I%
where

Ip = [~(2nuk® + k) - B (2nuk? + k) - 2>‘+5] ,

X be a n-dimensional distribution obtained by n independent truncated Discrete
Gaussian with parameters o and k and

2] = @nun® +) ((?) IS 1> .

12 F. Alborch, R. Martinez, P. Morillo

Key Generation Protocol
Inputs: x, $XC(), u

Player P;
Sj; €5 < X
K, K, K, & ZgV|H|=n—t
. J J KG
8 =8 —2n QSK;'\,Hv (1)
J
s . KG
€ =€~y QSKfVHj ()
K}Ij ,ag; = Shamir.Shares(Kr,, ag;)
Cj = Commit(éj, é]', KJSVH]. 5 KIeVHj N K}{j,aE})
Cj
{Ck}zzl
%

PR e ’ ’
SJ’eJ’KNHj ’KNHj ,KHj AE;

u

o o E 3 ’ ’
{Sk»ekaJSka K, vKHkva'Ek}k .

{Verify(Cx); = {’accept’ or 'reject’}}r_,
{Vcrify(ck)J}::l
OR)G T e

{Verify(Ci)k} k=1
%

if Verify(C;)r = 'reject’ for some i, k abort

{Verify.interval(sx); = {"accept’ or 'reject’}}}_;
{Verify.interval(ér); = {’accept’ or 'reject’}};_,
s' =3 8k + ZH;PJ- Qﬁgﬂ (1) - fu(5)
. J
e =3 ér+ ZH;PJ- ¢§§H (1) - fr(5)
. J
Kf_H = Zk:l K/}I/k
@ =D h—1 CEL
{Vcrifyintcrval(ék)j,Vcrifyintcrval(ék)j}2:1

{Verify.interval($§;), Verify.interval(é;) }?ib,k=1

if Verify.interval(s;)r = 'reject’ for some i, k abort
if Verify.interval(é;), = 'reject’ for some %, k abort
aJIIZ,Kg_I to k s.t. HZF Py,

{ak K} st H%Pj}zzl

Kpu = Reconstruct.Shamir(K¥%) s.t. H # P;
ag = Reconstruct.Shamir(a’;)
b =ag -8 +¢é

a.E,bJ)‘2
et
=

br = Reconstruct.Shamir(b%)
bp

Fig. 2. Key Generation Protocol

RLWE-based distributed key generation and threshold decryption 13

Then Protocol [¢] will have correct output against an active static adversary cor-
rupting up to t < % players.

Proof. What we want to see first is that |z + é; < § Vi, where -; notes the
coefficient 7 on the polynomial, given the way the decryption works in Encryption
Scheme Bl

Let € = e-rg + e, — s - e,. Since the product in R, is done through the
anticyclic matrix, we know that:

lél; <lei-rm,| +leic1-TE, |+ ...+ leiva - TE, |+

tleirr e, |+ e | +1si e |+ .o+ [sit1 - eq,

and therefore, since 7g, €,,e, ~ x and s,e ~)" x, where every coefficient of
X is truncated by k, we get that

|él; < 2nuk? + kK

u
t

u
i € Ip.

Adding both results we then get that

Furthermore, given that there are (%) keys Ky, we know that

|+ €|, < (?) (2nuk?® + k) - 22P 4+ (2nuk? + k)

= (2nuk? + k) ((?) P 1)

<€J
=1

as we wanted to see.

Finally, we just need to see that when the client reconstructs, there is indeed
a majority of correct results, and this derives directly from having at most ¢
corrupt players, therefore there will be a majority of subsets of ¢t + 1 players
where they are all honest, and thus output the correct decryption.

For the case where we combine both protocols, which means that we replace
the TTP in Protocol [with Protocol[7} the outputs of this protocol and the TTP
are equally generated for the case of a passive adversary in the Key Generation
phase, since it cannot make any player deviate from the protocol. Therefore we
can directly apply Theorem [8] Furthermore, the same theorem and proof is valid
against a passive adversary corrupting up to t = u — 1 players, only noting that
we will have all of the decryptions correct since a passive adversary cannot make
any player deviate from the protocol.

14 F. Alborch, R. Martinez, P. Morillo

5 Security

We will divide the proofs of security for the protocols into several theorems to
ease the proofs. First we will prove the CPA security of Encryption Scheme
as a one-player scheme and then we will prove that no information is leaked
when distributing the protocols. Finally we will add everything to prove the
CPA security of both protocols used together.

5.1 Security of Encryption Scheme

We will split the proof of security of Encryption Scheme [f]in three distinct parts:
reducing the security of the encryption scheme to the decisional R-LWE problem,
reducing the R-LWE problem with the " distribution to the R-LWE problem
with truncated discrete Gaussian, and finally reducing the decisional R-LWE
problem to K-DGS, a well-known lattice problem assumed to be hard to solve.
We will make this splitting because the first reduction will be for any distribution
X, while the second reduction will be specifically for the distribution ", The
first reduction follows the ideas from the reduction of Regev’s encryption scheme
to LWE given in [12]. For the detailed proof see Section [B|of the Appendix.

Theorem 9. Given x a distribution over Ry, there exists a reduction to the se-
mantic security of the Encryption Scheme @fmm the decisional R-LWE,, prob-
lem.

Note that the reduction is to the semantic security of the scheme and not
the CPA security. However it is well-known that in public key encryption both
notions are equivalent (see for example Theorem 11.1 in [7]).

Secondly, we want to be able to insure that if we know how to solve an
instance of the decision R-LWE problem with a truncated discrete Gaussian we
can solve an instance of the decision R-LWE problem with the " distribution.
This is clearly so given an instance of the decision R-LWE problem with the v
distribution one can see it as an instance with the truncated discrete Gaussian
distribution except for a negligible amount of times. Therefore the advantage
of the adversary solving both instances will differ at most a negligible amount,
thus getting what we needed.

Finally we need to see that our R-LWE instance is as hard to solve as a
lattice problem, in our case as hard to solve as the Discrete Gaussian Sampling
over K (K-DGS), where K is the field such that R is its ring of integers, in other
words, R = Ok. Thankfully, this job has already been done in [10], though to
do so properly we need to give some clarifications about different ways to define
the R-LWE distribution.

Let K be a number field with R its ring of integers. Let RV be the fractional
codifferential ideal of K (R = {z € K | Tr(zR) C Z}), and let T® = Kr/R".
Let ¢ > 2 be an integer modulus. Let us unpack this. Firstly in our specific case of

RLWE-based distributed key generation and threshold decryption 15

K being a cyclotomic field with n = 2¥ for some case, we have R = Z[z]/(z" +1),
so in turn it can be seen that RV is isomorphic to R. Secondly, Kg = K ®g R
which is isomorphic to R, so looking it component by component T could be
seen as isomorphic to T" with T = R/Z. With this out of the way we can see
their definition.

Definition 14 (Definition 2.14, [10]). For s € R and an error distribu-
tion ¢ over Kg, the R-LWE distribution As, over Ry, x TR is sampled by

independently choosing a & R, and an error term e < 1, and outputting
(a,b=(a-s)/q+e mod RY).

Now our postulate is that this definition taking as ¥ an n-dimensional spher-
ical continuous Gaussian with parameter ¢ (which is a distribution used in |10])
and then raising it to R, again, is a more general definition to our Definition
using V¢, in the sense that if we can solve an instance of the R-LWE problem

defined ;Vith the distribution in Definition [§] we can solve an instance of the
R-LWE problem with the distribution in Definition It can be seen as one,
since a spherical Gaussian in R™ can be seen as the product of n independent
Gaussians over R with the same standard deviation. Then in essence what we are
doing in Definition [14| is multiply a times s, then divide the result by ¢ (which
we can since we are seeing the elements in Kg which is a field) and adding the
error distribution. Then we reduce it modulo R thus landing in T*. Now if we
look it component by component we have in essence computed a - s/q and then
added to each component a sample of W¢, so when raising it again to R;’ (by

q
multiplying by ¢ and rounding) we get that g(a-s/q) = a-s € R) and to every

component we have added an independent sample taken from ¥ . Therefore, if

q
pg s the spherical Gaussian with parameter £, given an adversary who solves

R—LWE;{ it is easy to give an adversary who solves R—LWEPZ.

Therefore we can apply the following result from [10].

Lemma 1 (Corollary 7.3, [10]). There is a polynomial-time quantum reduc-
tion from K-DGS., to the (average-case, decision) problem of solving R—LWEpg
1

using | samples with £ = (%) ! ,a>0 and

|5

¥(Z) = max {n(I) . “w (\/log(n)) ,)\I/é?\l/) }

as long as aq > w (log(n)>.

In conclusion, we have seen that breaking the security of Encryption Scheme
is at least as hard as solving the decision R-LWE problem with a truncated
discrete Gaussian, which is at least as hard as solving the decision R-LWE prob-
lem with the &" distribution, which in turn is at least as hard as solving the
K-DGS problem.

16 F. Alborch, R. Martinez, P. Morillo

5.2 Non-Leakage of Information

In this section we need to see that the adversary does not gain any extra infor-
mation by interacting with the distributed protocol. We will start first with the
Protocol [6 seeing that an adversary A cannot distinguish between interacting
with the protocol or with random inputs. Furthermore, we will also give the ad-
versary the ability to choose its shares of the secret key and the PRSS keys, since
it makes the game easier and it only serves to see that the protocol’s security is
even stronger than what is usually required.

To appropriately do so we will need the following auxiliary lemmas about
statistical distance, the proofs of which will be in Section |B| of the Appendix.

Lemma 2. Let Y be a probability distribution over Z such that |Y| is bounded
by k and X be a discrete uniform distribution in the integer interval [—a, a] with
a>rk-2* Then A(X,X) <27* where X =X +Y.

Lemma 3. Let X,Y be two probability distributions over a countable support
N such that A(X,Y) <272, and n € Zwq with n = 2° for some B € Rwg. Then
A(X™ Y™) <275,

With these auxiliary lemmas we can go ahead and prove the adversary cannot
distinguish between interacting with the protocol and random values.

Theorem 10. Assume that ®.(-) is a secure pseudo-random function modeled as
a random oracle, that the keys Ky have been securely generated and distributed,
that the secret key s has been securely generated and shared and that the parame-
ters follow the conditions of Theorem @ Then the Decryption Protocol (Protocol
@ 18 secure against a passive and static adversary, corrupting up tot = u — 1
players.

Proof. We want to construct an Attack Game in which the adversary cannot
distinguish between the protocol executed correctly or with random values to
show that the distribution does not leak anything about the secret key s nor the
error e.

Let C denote the set of corrupted players and B the set of honest players.
The Attack Game works as follows. Assume that the challenger knows the secret
key s and the K such that C' O H (the keys that the adversary does not know)
which have been securely generated. Assume that the challenger sends to the
adversary A the ciphertext (u,v) and then A submits (si, Ku.,d) as the
challenge, where s;, are the shares on the secret key of the corrupted players,
Kp,, are the keys K g such that C' 2 H (the keys A knows) chosen by A, and d,
are the shares on the decryption of the corrupted players. Then the challenger
generates consistent shares on s for the players not in C.

Once all these preliminaries are done, the challenger chooses b & {0,1} and
proceeds as following;:

— If b = 0: The challenger uses the decryption protocol to compute the shares
of the decryption d'; for the honest players. It computes the decrypted mes-
sage m and outputs (d5, m).

RLWE-based distributed key generation and threshold decryption 17

— If b = 1: The challenger computes for every H such that C' O H some
element rg € Iy uniformly at random and we denote as y the polynomial
in R, with vector of coefficients ZCQH Pry(u+v)+ > ooy TH- Then the
challenger generates d’z consistent shares of y+m || (the challenger knows
m since it can be computed using the protocol, given that everything needed
is known) and outputs (dz, m).

Finally A outputs be {0, 1}, meaning whether it thinks it has interacted with
the protocol or with a simulation, and the Game concludes.

It is clear that m will be correct in both cases given the proof of Theorem
and furthermore, y 4+ m|[4| will be an effective “decryption” of m in the sense
that every coeflicient will be closer to 0 if m; = 0 and closer to [] if m; = 1,

because
u
lyli < ;

Therefore we only need to see that dz are indistinguishable whether they
are computed with b = 0 or with b = 1. Let us see it. First of all, y and x
are computationally indistinguishable to the adversary given the properties of
pseudo-randomness of @.(-). We now want to see that the way y and y + e -
TE + e, — S-e, =y + é are distributed are at a negligible statistical distance.
It is clear that y is distributed in the interval ()17 (with (%) values distributed
uniformly in Ip) and as we have seen in the proof of Theorem [§ é is in the
interval [—2nuk? + K, 2nuk?® + k|™. Therefore, since the distribution of every
coefficient is identical and independent we have that by Lemma 2]

Ip

<
9 | =

Z.

Ay, {y +e}i) <2727
and by Lemma [3]
Aly,y+eé) <27

so the distribution of y and y-+€ are at a negligible statistical distance. Therefore,
we get that y +m|2] and « +é+m/| 2] are computationally indistinguishable.

Finally, adding it all together we get that the output (d'z, m) is computation-
ally indistinguishable whether it has been computed with b = 0 or with b = 1,
S0

Pr [z} - b} - ;‘ = neg()\)

as we wanted to see.

After Theorem [I0] we have only seen that Protocol [f]is secure when the keys
are securely generated and against a passive adversary corrupting ¢t < u — 1

18 F. Alborch, R. Martinez, P. Morillo

players, but it is standard to see that the same protocol is secure against an
active adversary corrupting ¢ < % players if instead of the client reconstructs m
using the shares of all subsets of ¢t + 1 players, since that will give a majority of
correct outputs.

The reason behind this is that we have already seen that no information is
leaked, so the only thing required is to see that the adversary cannot abort the
protocol or cause an incorrect output. In case of an active adversary (who can
cause players to deviate arbitrarily from the protocol), what is needed is that if
all combinations of ¢ + 1 players are decrypting the message, there needs to be
a majority of combinations of ¢t 4+ 1 players with no corrupt players. This gives
us that ¢ < % is enough.

Now we need to see that Protocol[7]leaks no information against an adversary
corrupting up to t = u — 1 players. To do so we will once again see that the ad-
versary cannot distinguish between interacting with the protocol or a simulation
where the challenger sets before-hand the values of the keys.

Theorem 11. Assuming that the image interval of the pseudo-random function
DKG () is I where

Ixg = [~k 2278 K. 22TF]
that C is a commitment scheme such that it has a trapdoor and the parameters
follow the conditions on Theorem of correctness, then the Key Generation Pro-

tocol (Pmtocol@ is secure against a passive and static adversary, corrupting up
tot=wu—1 players.

Proof. We want to construct an Attack Game in which the adversary cannot
distinguish between the protocol executed correctly and a simulation where the
challenger sets the values of s,e,ag and Ky for all H before-hand.

Let C' denote the set of corrupt players and B the set of honest players. The
Attack Game works as follows. Assume that whenever a corrupt player needs to
sample a uniform distribution it sends a query to the challenger for a random
value from a random oracle. Let Cc = Commit($¢, éc, Kvac , KJSVHC Ky, aEe)
the challenge output by A4, the first step of the interaction in protocol [7] as we

can see in Fig.|2} Then the challenger chooses b & {0,1} and proceeds as follows:

— If b = 0: The challenger and the adversary follow Protocol [7] to generate
ag,bg and the shares sy, €3, K5 ag® and outputs (ag, bg, 8’5, €5, K5, ag?).
— If b = 1: The challenger samples s,e ~ > X, ag & R, and every

Ky ﬁ Zq and computes bg = ag - s + e. Then he uses the trapdoor in
the commitment scheme to recover (S¢, éc, KISVHC , Kf\,HC , K}{C,
agy), and proceeds as follows. We will divide the explanation depending on
what he is simulating to ease comprehension, but everything will be done
simultaneously, following the flow of information seen in Fig. [2]

RLWE-based distributed key generation and threshold decryption 19

e For the “generation” of s, the challenger will use the keys K vac (of which
he knows all of them given that they were generated through queries to
the random oracle through the challenger) to recover s¢, the contribution
of the corrupt players to s. With this information, the challenger can
compute sp the contribution of the honest players to s such that s =
sc + sp. With these values computed the challenger follows with the
protocol.

e For the “generation” of e the challenger proceeds identically as with
generating s.

e For the “generation” of K, the challenger samples random values in
Zq for K}y (the first step) and commits them. It then will receive K§
from the adversary (the shares of Ky pertaining to the corrupt players)
and will compute consistent Shamir shares KZ so that the players share
K. Then, as in the protocol, the challenger sends the shares K& to all
players not in H.

e For the “generation” of ag, the challenger samples random values in
R, for agp (the first step) and commits them. It then will receive a$,
(the shares of ag pertaining to the corrupt players) and will compute
consistent Shamir shares ag so that the players share ag. Then, as in

the protocol, the challenger sends the shares aZ to all players.

e For the “generation” of bg the challenger outputs bg at the end of the
protocol.

Th%n’ the challenger outputs (ag, bg, s, e, K&,
agE)

Finally A outputs be {0,1}, meaning whether it thinks it has interacted with
the protocol or with the simulation, and the Game concludes.

It is clear that the flow of information is the same in both cases and that the
values will be correct and what the challenger sampled before-hand, so we just
need to see that the adversary cannot distinguish between the values received
when b = 0 from the ones received when b = 1. For s (and e) it is clear that they
are indistinguishable, since we used the trapdoor in the commitment scheme to
set the values necessary before any messages were sent from the adversary to the
challenger. Furthermore, we know that no information was leaked in the NIVSS
since because of Lemmas [and [l we know that no information was leaked as in
the proof of Theorem

For Ky (and in turn ag since they are analogous), we need to see that the
adversary cannot distinguish from K7, = generated by the protocol or them being
random in Z,. To see this we will use the security of Shamir secret sharing, since
the adversary can only control up to t players. Therefore, the value shared is
completely undetermined by the shares of the corrupt players, so both cases
(b =0 and b = 1) are indistinguishable to the adversary.

20 F. Alborch, R. Martinez, P. Morillo

Finally, by adding everything up, we get that (ag, bg, i3, €5, KB, ag?) are

indistinguishable whether we have b =0 or b =1, so

as we wanted to see.

As in Section[d] we have also proven the equivalent to this last theorem for an
active adversary, however we will not use the result for the implementation, for

reasons we will state in Section [6.1] However the proof can be found in Section
[A72] of the Appendix.

Having proved the security of each protocol individually, we only need to see
that using both protocols together still gives us an encryption scheme which is
semantically secure.

Main Theorem. Assume the conditions in Theorems [§ and are fulfilled.
Then, if K-DGS, is hard, then encryption under keys generated by Protocol@
and decryption following Protocol [6| is semantically secure against a static and
passive adversary corrupting up to t = u — 1 players acting through the Key
Generation phase and the same adversary being active corrupting up tot < g
players in the Decryption phase.

Proof. First, using the result in Theorem we can see that the adversary
cannot distinguish between executing both protocols, or replacing the key gen-
eration with keys generated by the challenger. Using then Theorem [§| we can see
that the adversary cannot distinguish between taking part in the decryption or
having the challenger decrypt all by itself. Therefore we get that the adversary
cannot distinguish between the semantic security game when both distributed
protocols are used from the basic semantic security game of Encryption Scheme
[l This means, using what we have seen in Section [5.1] that breaking semantic
security when both protocols are being used is as hard as breaking semantic
security of the encryption scheme, so using the reduction to K-DGS, and that
we assume this problem to be hard, we have that our protocols are semantically
secure, as we wanted to see.

6 Implementation

The first step for the implementation is finding good parameters that guarantee
the security of the particular instance of the R-LWE problem. To verify it we
will use the bounds on ¢ in Lemma [I] and the LWE hardness estimator given by
Albrecht et al. in [3]. We use the LWE estimator because, as far as we know,
no major attacks are known to exploit the particular properties R-LWE, so the
estimated hardness for LWE translates as estimated hardness for R-LWE.

RLWE-based distributed key generation and threshold decryption 21

6.1 Choosing Parameters

We set the security parameter A = 100. We need to find the following parameters:
n, q, k and £ which will then allow us to compute Ip and Ixg. We will first leave
everything in function of n and ¢ and we will then use the concrete hardness of
an instance of the R-LWE problem to fix n and gq.

Let n = 27 and ¢ € Z~(. Using the conditions on I, on Theorem [8| we get
that

2
-1+ 1+ﬁ

R =
dnu

To find &, we will use the following lemma, the proof of which is in Section
of the Appendix.

Lemma 4. Let @% be a discrete Gaussian. Then Ve > 0:

e_<m;"%>2
<2

2

|

Vs

Using the bound on Definition [[3] and Lemma [4] we can get the following

bound
Pr ||| > FPTUWE ﬂ
()
\/; n—l—%
<27

which when isolating the £ gives us the following bound

(4)
~2log (V2 (54 3)

From here we will take the equality, since with a fixed ¢ the larger the standard
deviation the greater the hardness of that specific instance of the decision R-
LWE problem.

Now we can find n and g using the LWE hardness estimator, which given
n, q, @ outputs the concrete hardness of that specific instance. We will set n as a
power of 2, since it allows us to use more efficient multiplication algorithms and
q as a prime near a power of 2. Using this, we implemented a Python algorithm
to find these parameters. The code can be found in the repository in Section [C]
of the Appendix. This has yielded the following results as parameters for u =7
and ¢ = 2 and more than 100 bits of security, as can be seen in Table[l]

22 F. Alborch, R. Martinez, P. Morillo

Table I. Parameters for secure implementation

n = 4096
q = 713623846352979940529142984724747568191373381
K = 168
13 = 14.897861091181875
Ip = 8403614205785368527542540898258331059093504
Ixc = 872305872233851041593123383308976128

Bits of Security = 121

In this code there is also the computing of parameters for the case of an
active adversary in Key Generation phase using the conditions on Theorem
giving us that to have 100 bits of security against this type of adversary we need
to bump up to n = 8192. This, as we will see with the results in Section [6.3
hurts the viability of the protocols, that is why we give our main proposal as
secure against an adversary who acts passively in the Key Generation phase and
actively in the Decryption phase.

6.2 Implementation Particulars

There are several implementation decisions we have taken and need to discuss.
Firstly, we have not coded a truly interactive protocol between u different players,
but rather a simulation where one processor computes all the steps simulating
the interaction, in the sense that the protocols are divided by steps between
interactions where all computing can be done without interaction. Then the
program computes how much time every step costs for every player and picks the
maximum as the “official” time for that step. This is done this way since we only
want to analyse roughly how viable our protocols are, so this approximate works
for us. This also means that the execution of the simulation lasts considerably
longer than the “real time” for the execution, thus limiting us with the amount
of players we can reasonably use.

Secondly, to have the most compact possible form of Shamir Secret Sharing
we have used Shamir over the field of Z, instead of embed it in Q. This is the
main reason why we have taken ¢ prime, since none of the reductions require it.

Thirdly, regarding the implementation of the PRF, we have used the main
result in [4], which says that an HMAC is a PRF under the condition that the
underlying compression function is a PRF. To ensure this condition is satisfied
we have used the HMAC based around SHA-3.

Finally, regarding the Commitment Scheme we have used for the Key Gen-
eration protocol, we have used the hash of the message we want to send con-
catenated with a random string. We have used SHA-2 since, as far as we know,
it is secure enough. However, should the need arise it could be swapped for a
more secure alternative. Furthermore, we have only needed to use a commitment
scheme after the first round where every player sets their values. This is so be-
cause once all the values have been set and all the shares sent, the contributions

RLWE-based distributed key generation and threshold decryption 23

of the adversary are no longer needed, since the honest players already can gen-
erate a majority of correct values. And given that no other value needs to be set
in a way the adversary cannot exploit (since the adversary becomes irrelevant),
a commitment scheme in any further communication step seems unnecessary.
However, this commitment phases could be added with no major change to the
protocol nor the prove of security or correctness, only a slightly slower execution.

6.3 Results of the simulation

In this final section we will discuss the results we have obtained from the exe-
cution of the code for the simulation of both protocols, code which you can find
in the repository linked in Section [C] of the Appendix. The specifications of the
system where we have executed the programs are found in Table [[} Further-
more, we have used the following C libraries: FLINT (Fast Library for Number
Theory) to ease computations in Ry, which in turn uses the GMP and MPFR
libraries to deal with multiple precision numbers, and OpenSSL library for cryp-
tography related functions like Hashes or HMACs. Also mention that any result
we obtain from the execution of the simulation has been found by averaging the
times of 10000 executions of the code, so as to better portray the results, getting
rid of outliers.

Table II. Specifications of the system

Operating System Ubuntu 18.04.5 LTS

CPU Intel® Core™ i5-8500
Memory 15,4 GiB
Word Size 64 bits

CPU Clock Speed 3.00GHz x 6

From what we have seen to this point there are two main dependencies:
growth of time in respect to the threshold ¢ and growth of time in respect to the
dimension of the lattice. This is so because the threshold defines the minimum
number of players needed (and vice versa, given a number of players we can
get the maximum threshold it allows) depending if we are protecting ourselves
against an active or a passive adversary, and as we have seen in Section [6.1] given
the adversary model, given an n we can find the rest of parameters that make
the protocol secure (taking into account that there is a minimum n for which
this analysis works).

In regards to the dependency on t, analysing the protocols theoretically lets
us see that when performing either the PRSS or the NIVSS there are () different
keys Kp, meaning that the number of additions grows asymptotically with the
value (7;) This means that the dependency should be approximately exponential
in the active case where u = 3t 4+ 1 and approximately linear in the passive case
where u = t + 1. When obtaining results from the simulation, we have gath-
ered results for the values of ¢ most frequently used in real life applications like

24 F. Alborch, R. Martinez, P. Morillo

electronic voting, which means ¢t < 3 against active adversaries and ¢ < 7 for
passive adversaries. This decision is mainly due to how we have implemented
the simulation, since instead of having the several players’ protocols being ex-
ecuted at the same time, we have them executed consecutively and then take
the maximum time spent as the overall time. In the case of the Key Generation,
since there are various steps of interaction, this process is applied to every one
of the steps. Therefore, due to time constraints, we were limited to how many
players we could simulate 10000 executions of the codes. Having said all that,
the results we obtained for the dependency on t followed our predictions. In the
active case they behaved greater than lineally in the three points we had and
in the passive case it behaved approximately linearly. A more in depth analysis
cannot be made unless more extensive data is gathered.

In regards to the dependency on n, given that there is multiplication of poly-
nomials in both protocols, which is implemented using the Karatsuba algorithm
that scales by the order of n'°223) > 15 5o the time grows asymptotically with
this value. The results obtained for the dependency on n, which can be seen in
Fig. |3 show the expected results only in the decryption phase against a passive
adversary. For the other cases we see linear, or practically linear, behaviour for
the range of values of n we are interested in for real life applications. This is
due to the fact that the protocols need to perform a much higher number of
additions than products, and this difference ends up being high enough for the
linear growth of the addition to offset the growth of the product at these values
of n.

Finally, we want to discuss the viability of the protocols. As we can see in
Table [[T]] the Key Generation times are significantly slower than the Decryption
time, between 4 and 7 times slower. This however does not pose a big problem,
since by design in most implementations one round of Key Generation will be
used to decrypt many messages, therefore we can focus our main analysis in
the decryption times. In that front, the 530.36 ms per decryption in the active
case translates to approximately 7000 messages per hour, while the 131.73 ms
per message in the passive case translates to approximately 27000 messages per
hour. As we can see it will be half these votes per hour with n = 8192, which
will be needed against an active adversary as we have said in Section [6.1

Table ITI. Time comparison between active and passive adversary

Key Generation Decryption Encryption

n Active Passive Active Passive
4096 7031.34 ms 1005.63 ms 530.36 ms 131.73 ms 191.79 ms
8192 14320.01 ms 2160.05 ms 1167.24 ms 372.75 ms 539.71 ms

RLWE-based distributed key generation and threshold decryption

Active adversary t =2, u =7

Average key generation time depending on n Average decryption time depending on n
0! 1200

2500 5000 500 o 2500 sdo 7500

Passive adversary t =6, u =7

Average key generation time depending on n Average decryption time depending on n

inms

Times in ms

Fig. 3. Times of the simulation for n = 256,512, 1024, 2048, 4096, 8192

References

25

1. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the second round
of the NIST post-quantum cryptography standardization process. US Department

of Commerce, NIST (2020)

2. Alborch Escobar, F.: RLWE-based distributed key generation and threshold de-

cryption. Master’s thesis, Universitat Politécnica de Catalunya (2021)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with

errors. Journal of Mathematical Cryptology 9(3), 169-203 (2015)

4. Bellare, M.: New proofs for NMAC and HMAC': Security without collision-
resistance. In: Annual International Cryptology Conference. pp. 602—619. Springer

(2006)

26

10.

11.

12.

13.

14.

15.

16.

F. Alborch, R. Martinez, P. Morillo

Bendlin, R., Damgard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Theory of Cryptography Conference. pp. 201-218.
Springer ((2010))

Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M., Sahali,
A.: Threshold cryptosystems from threshold fully homomorphic encryption. In:
Annual International Cryptology Conference. pp. 565-596. Springer (2018)
Boneh, D., Shoup, V.: A graduate course in applied cryptography (2020)
Cramer, R., Damgard, 1., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Theory of Cryptography Conference.
pp. 342-362. Springer (2005)

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM) 60(6), 1-35 (2013)

Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWFE
for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. pp. 461-473 (2017)

Pilaram, H., Eghlidos, T.: A lattice-based changeable threshold multi-secret shar-
ing scheme and its application to threshold cryptography. Scientia Iranica 24(3),
1448-1457 (2017)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1-40 (2009)

Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612613
(1979)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303-332 (1999)

Singh, K., Rangan, C.P., Banerjee, A.: Lattice-based identity-based resplittable
threshold public key encryption scheme. International Journal of Computer Math-
ematics 93(2), 289-307 (2016)

Zhang, X., Xu, C., Jin, C., Xie, R., Zhao, J.: Efficient fully homomorphic en-
cryption from RLWE with an extension to a threshold encryption scheme. Future
Generation Computer Systems 36, 180-186 (2014)

RLWE-based distributed key generation and threshold decryption 27

A Correctness and Security against Active Adversaries

A.1 Correctness

We will prove correctness of the Decryption protocol against an active (or pas-
sive) adversary when the keys are generated by the Key Generation protocol
against an active adversary.

Theorem 12. Let n € Zsq be the number of coefficients in Ry, u € Zs be the
number of players, ®P(-) be a pseudo-random function with image interval I, x
be a distribution in R, where every coefficient is a truncated Discrete Gaussian
with parameters o and K,

Ip = |- (47%52 (274 1) +) - 22,

(4n%/<c2 (227 +1) + m) : 2*”’},

kg = [—m . 2>‘+’37/€ . 2’\+B] .

and

EJ > (4n§m2 (22 +1) + /s) ((1:) 2P 1)

Then Protocol @ will have correct output except with probability 2=~ against
an active adversary corrupting up to t < g players.

Proof. What we want to see first as before, is that | + é|; < % Vi, where -;
notes the coefficient ¢ on the polynomial, given the way the decryption works in
Encryption Scheme

Let € = e-rg + e, — s - e,. Since the product in R, is done through the
anticyclic matrix, we know that:

|eli <lei-rm,| +lei—1-rE, |+ ...+ leiva TE, |+

Heivr - rr, | +lew | +[si ey |+ [Siq1 - eu, |-

Now, we still have g, e,, €, ~ x but for ¢ of the contributions we can only
assure that they are in 2 - [, so we get that

|é]; < 2n (%25 I 2%/@) K+ K
= 4n§f£2(2)‘+5 +1)+k

Furthermore, given that there are (;‘) keys K, we know that

u
i € Ip.
e (1)

28 F. Alborch, R. Martinez, P. Morillo

Adding both results we then get that

|z + é|; < (?) (47%;@2 (2P +1) + ﬁ) CoMBy

as we wanted to see.

Finally, we just need to see that when the client reconstructs, there is indeed
a majority of correct results, and this derives directly from having at most ¢
corrupt players, therefore there will be a majority of subsets of ¢t + 1 players
where they are all honest, and thus output the correct decryption.

As in Section the same proof works against a passive adversary corrupting
up to t = u — 1 players.

However, in the case of dealing with an active adversary in the key generation
phase, to have a truly correct scheme we need to see that the protocol cannot
be halted by any actions performed by a malicious adversary. However, in the
protocol, whenever a verification fails the protocol halts. To deal with these
we implement the following dispute resolution policy, where a dispute is raised
whenever a player receives a value that fails verification stating there which other
player sent the values.

The policy works as follows, once the protocol is halted the players look at
the disputes that have risen, and then “eliminate” all players involved in them, in
the sense that a new execution of the key generation protocol will start without
both players involved in every dispute, and in case a player is involved in more
than one dispute only the first one will be analyzed. This policy ensures that
the protocol will produce a correct output with at most ¢ halts since no dispute
can be risen between honest players, and given that the security of the scheme
is based only on assuming that there is at least one contribution on s and e
following the distribution, the output generates no problems. Finally note that
since in every dispute there is at most one honest player, the ratio of corrupt

players will never go above .

A.2 Security

To be able to prove security when the Key Generation is against an active
adversary we will only need to reword the Theorem as follows.

Theorem 13. Assuming that ®.(-) is a secure pseudo-random function modeled
as a random oracle, that the keys Ky have been securely generated and dis-
tributed, that the secret key s has been securely generated and shared and that

RLWE-based distributed key generation and threshold decryption 29

the parameters follow the conditions of Theorem the Decryption Protocol
(Protocol@ is secure against an active and static adversary, corrupting up to
t < 3 players.

The proof is analogous to the proof of Theorem [§]

We will now prove that the Key Generation leaks no information when act-
ing against an active adversary corrupting up to ¢t < g players. As before, we
will prove that the adversary cannot distinguish between interacting with the
protocol or a simulation where the challenger sets before-hand the values of the
keys.

Theorem 14. Assuming that the image interval of the pseudo-random function
DKC() is I, where

HKG = [7I£~2)\+ﬁ,li‘2)\+ﬁ] ,

that C is a commitment scheme such that it has a trapdoor and the parameters
follow the conditions on Theorem of correctness, then the Key Generation Pro-
tocol (Protocol@ is secure against an active and static adversary, corrupting up
to t < % players.

Proof. We want to construct an Attack Game in which the adversary cannot
distinguish between the protocol executed correctly and a simulation where the
challenger sets the values of s,e,ag and Ky for all H before-hand.

Let C denote the set of corrupt players and B the set of honest players. The
Attack Game works as follows. Assume that whenever a corrupt player needs to
sample a uniform distribution it sends a query to the challenger for a random
value from a random oracle. Let Cc = Commit($¢, éc, Kvac , KfVHC Ky aEe)
the challenge output by A4, the first step of the interaction in protocol [7] as we
can see in Fig.|2} Then the challenger chooses b & {0,1} and proceeds as follows:

— If b = 0: The challenger and the adversary follow Protocol [7] to generate
ag,bg and the shares 8’3, €3, KB, ag®? and outputs (ag, bg, sy, €5, K&, ag?).
— If b = 1: The challenger samples s,e ~ > X, ag & R, and every

Ky ﬁ Zq and computes bg = ag - s + e. Then he uses the trapdoor in
the commitment scheme to recover (S¢, éc, K f;,HC , KfVHC K
agy), and proceeds as follows. We will divide the explanation depending on
what he is simulating to ease comprehension, but everything will be done
simultaneously, following the flow of information seen in Fig. [2]

e For the “generation” of s, the challenger will use the keys K]SVHC (of which
he knows all of them since he controls more than ¢ players), to recover
Sc, the contribution of the corrupt players to s. With this information,
the challenger can compute sp the contribution of the honest players to
s such that s = s¢ + sp. With these values computed, the challenger
proceeds with the protocol.

30 F. Alborch, R. Martinez, P. Morillo

e For the “generation” of e the challenger proceeds identically as with
generating s’.

e For the “generation” of Ky, the challenger recovers Ky, (since it con-
trols more than ¢ players) the contribution of the corrupt players to Kp.
With this information, the challenger can compute Ky, the contribu-
tion of the honest players such that Ky = Kp, + Kp, for all H. With
these values computed, the challenger proceeds with the protocol.

e For the “generation” of ag, the challenger recovers ag ¢ (since it controls
more than ¢ players) the contribution of the corrupt players to ag. With
this information, the challenger can compute a g g the contribution of the
honest players such that ag = agc+agp. With these values computed,
the challenger proceeds with the protocol.

e For the “generation” of bg the challenger outputs bg at the end of the

protocol.
Then, the challenger outputs (ag, bg, s, e, K5,
aEB).
Finally, A outputs b € {0,1}, meaning whether it thinks it has interacted with
the protocol or with a simulation, and the Game concludes.

It is clear that the flow of information is the same in both cases and that
the values will be correct and what the challenger has sampled before-hand, so
we just need to see that the adversary cannot distinguish between the values
received when b = 0 from the ones received when b = 1. We can see they are in-
distinguishable since the challenger uses the trapdoor in the commitment scheme
to get the values necessary before any message were sent from the challenger to
the adversary. And, once again, we know that no information was leaked in the
NIVSS by the same reasoning from the proof of Theorem [T1]

Therefore, (ag, bg, sz, €5, KB, ag?) are indistinguishable to the adversary
whether they have been computed with b =0 or b =1, so

Pr [~ = b} - ;‘ = neg(\)

as we wanted to see.

Having proved the security of each protocol individually, we only need to see
that using both protocols together still gives us an encryption scheme which is
semantically secure.

Theorem 15. Assume the conditions in Theorems[I3 and[I]] are fulfilled. Then,
if K-DGS, is hard, then encryption under keys generated by Protocol @ and
decryption following Protocol[6is semantically secure against a static and passive
adversary corrupting up to t = uw — 1 players acting through the Key Generation
phase and the same adversary being active corrupting up to t < 5 players in the
Decryption phase.

Proof. The proof is analogous to the proof of the Main Theorem but changing
Theorems [§] and [I1] for Theorems [12] and [I4] respectively.

RLWE-based distributed key generation and threshold decryption 31

B Proofs of auxiliary Theorems and Lemmas

B.1 Proof of Theorem

Theorem 16. Given x a distribution over R4, there exists a reduction to the
semantic security of the Encryption Scheme@fmm the decisional R-LWE, prob-
lem.

Proof. What we want to see is that given an efficient adversary A who has non-
negligible semantic security advantage, we can construct an efficient adversary
B with access to A who given an instance of the decisional R-LWE problem, it
can solve it with probability non-negligibly bigger than %

Let (a@;,b;) € R, x R, be an instance of the decisional R-LWE problem.
What we need B to do is to be able to output whether a polynomial amount
of instances are samples of the distribution A, or of the uniform distribution
over R, x Ry, in other words, we want to know whether b; = @; - 3+ € for some
5¢c R, and e +— x.

Note that any adversary 4 who breaks semantic security may be of one
of two types. Either A has non-negligible semantic security advantage against
the encryption scheme when (ag,bg) are generated independently uniformly at
random (instead of having bg = ag - s + e) or it does not. We will construct
two different adversaries for these cases.

Assume firstly that A has a negligible semantic security advantage against
the encryption scheme when (ag, bg) are generated independently uniformly at
random. Let (a1, by) be an instance of the R-LWE,, problem, then we define the
following attack game.

Attack Game 1: The attack game goes as follows:
— Set the public key to (@1, b1) and send it to .A.

— Receive mg1, mq; from the adversary, and choose by & {0,1}.

— Compute w1 = @1 - g + €4 and v1 = by - rg + €,y + my, 1| 4] with
TE, €y, €y < X, and send (u1,v1) to A.

— Receive by from the adversary.

Then B will work as follows. When given the instances, it picks (@i, b;) and
performs the Attack Game 1 with A a polynomial amount of times. Then it
computes the advantage:

Number of queries where by = by 1

SSAdvi[A,S] = '
vilA,; S] Total number of queries 2

We know from how we have defined the adversary A, since SSAdv[A, 8] is
non-negligible, if the instances follow the distribution A, , then SSAdv]i[A,S]
will be non-negligible and if the instances are uniform over R, x R, then SSAdvj[A, S]
will be negligible. This means that with non-negligible probability B can solve
the decisional R-LWE, problem as we wanted.

32 F. Alborch, R. Martinez, P. Morillo

Assume now that A has a non-negligible semantic security advantage against
the encryption scheme when (ag,bg) are generated independently uniformly at
random. Let, once again, (a1,b1) and (as, bs) be two instances of the R-LWE,,
problem, then we define the following attack game.

Attack Game 2: The attack game goes as follows:
— Set the public key to (@1, @2) and send it to the adversary.
— Receive mgz, myy from the adversary, and choose by & {0,1}.
— ug = by and vy = by + my,2[4] and send (ug,v1) to A.
— Receive by from the adversary.

Then B will work as follows. When given the instances, it picks two of them
(@1,b1) and (a@q, bs2), and performs the Attack Game 2 with A a polynomial
amount of times. Then it computes the advantage:

N f ies where by = 1
SSAdV[A, S] = umber of queries where by = by 1

Total number of queries 20"

We know from how we have defined the adversary A, since SSAdv[A,S] is
non-negligible, if the instances follow the distribution A, , then SSAdvj[A,S]
will be non-negligible and if the instances are uniform over R, x R, then SSAdv;[A, S]
will be negligible, since if b; are uniformly at random then v, is independent from
the public key and my,2. This means that with non-negligible probability B can
solve the decisional R-LWE, problem as we wanted, since it is possible to dis-
tinguish, with non-negligle probability, a negligible event from a non-negligible
event.

B.2 Proofs of Lemmas [2] and [3]

Lemma 5. Let Y be a probability distribution over Z such that |Y| is bounded
by k and X be a discrete uniform distribution in the integer interval [—a, a] with
a>r-2). Then A(X,X) <27, where X = X +Y.

Proof. The first thing to notice is that for any z € Z such that |z| > k + a, we
will clearly have X (z) = X(z) = 0, since the support of X will only go from
—K — a to k + a. Furthermore, for n € [—a + K, a — k], we can do the following
analysis:

X(n) = Z Y(m)X(n—m)

=X(n) > Y(m)

= X(n)
1
2a +1

RLWE-based distributed key generation and threshold decryption 33

using that n — m will always fall in the support of X (thus X(n —m) is never
zero), that X is uniform and that Y only takes values in [—k, K].

Now taking everything together we get from the definition of statistical dis-
tance:

AKX, X) = % 3 ’X(n) - X(n)’
nez
-3 > X (n) -~ X(n)
ne[—a—k,—a+k—1]U[a—k+1,a+K]
< % > max{X (m)}

n€(—a—k,—a+r—1]Ula—r+1,a+k]

—_

1

~ 2 2 20+ 1

n€l—a—k,—a+r—1]Ula—k+1,a+kK]
2.2k
2. (2a+ 1)
K
~ k-2
=27

Lemma 6. Let X,Y be two probability distributions over a countable support
N such that A(X,Y) <272, and n € Zwq with n = 2° for some B € Rsg. Then
A(X™, Y™ <27 M5,

Proof. We define the n-dimensional distributions

X, =,....Y, X,....X)
\w—/
where we have X" = Xo and Y" = Xm It is also clear that
A(X;, Xi1) = AX,Y).
Finally, because of the triangle inequality for distances
A(X™Y™) = A(Xo, X,)
n—1
<Y AXL Xig)
i=0
=nA(X,Y)
< g-M+B

B.3 Proof of Lemma [4]

To prove the lemma we will use another distribution called rounded discrete
Gaussian.

34 F. Alborch, R. Martinez, P. Morillo

Definition 15. The rounded Gaussian distribution over Z with parameter o >
0 is defined by the probability function

for z € Z with

po’(x): We_m'

The distribution we are interested in is Qg, its standard reduction modulo ¢
as it is defined as

0,(0) =Y Qi + k).

keZ

It is clear once again from the definition that if Y ~ §2,, then Y = | X] with
X = N(0,0), hence the name rounded Gaussian.

Now we can see the relation between 2 and ¥.

Lemma 7. For any o € R we have that 2, is indeed a random variable and in
fact we have that 2, = W%.

Proof. First we need to see that 2, is a random variable. Indeed

Z Da(i) = Z Z QG(Z. + kQ)
i= i=0 kE€Z

Il I

™M &M
L IM

=9
g

+

g

RLWE-based distributed key generation and threshold decryption 35

Now we can see that £2,(i) = W= (i) for all i € Zg4, and therefore 0, ="

as random variables. ! B
D0(i) =D 24(i + kq)
k€EZ
ithets

2
_ T
= g e (20) dz
fezitha—% V27O

i+3
q 1 a(y
:Zﬁﬁ 27me ((;;)> q-dy
keZ
i+l 2
[Ty L ()
“Jor T W
=W=(i)

where we have used the change of variables y = %kq and the dominated con-
vergence theorem.

Therefore, if we know a bound for 2, we know a bound for ¥. Given this

result, we can now bound the distributions using the fact that {2 is a rounded
Gaussian and Mill’s inequality:

+ 2
+oo 2 67(ﬁ>
Pr(IN(0,0)| > t] = 2/ po(@)dz < | 2E7
¢ T t
Lemma 8. For all c,0 > 0 then,

e rtm)

>c} :Pr(Qa >c)
< Pr (|92, >¢)

I pits
=2 Z/ po(x)dx

j=Te17973

+oo
= 2/ po(z)dx
[

-3

(52
2 e 20
<\ z T 1
™ Je]l =3
where we have used Lemmal[7] thus seeing what we wanted.

Pr[w%

Proof. Let ¢,0 > 0, then

Pr[W%

36 F. Alborch, R. Martinez, P. Morillo

C Link to repository

All relevant codes for the implementation can be found in the following GitHub

repository, last update made on December 20 2021:
https://github.com/FerranAlborch/Implementation-RLWE-based-distributed-

key-generation-and-threshold-decryption

https://github.com/FerranAlborch/Implementation-RLWE-based-distributed-key-generation-and-threshold-decryption
https://github.com/FerranAlborch/Implementation-RLWE-based-distributed-key-generation-and-threshold-decryption

	RLWE-based distributed key generation and threshold decryption

