
Covert Adaptive Adversary Model: A New Adversary Model for
Multiparty Computation

Isheeta Nargis and Anwar Hasan

University of Waterloo
Waterloo, Ontario, Canada

isheeta@gmail.com, ahasan@uwaterloo.ca

Abstract. In covert adversary model, the corrupted parties can behave in any possible way like active
adversaries, but any party that attempts to cheat is guaranteed to get caught by the honest parties with
a minimum fixed probability. That probability is called the deterrence factor of covert adversary model.
Security-wise, covert adversary is stronger than passive adversary and weaker than active adversary.
It is more realistic than passive adversary model. Protocols for covert adversaries are significantly
more efficient than protocols for active adversaries. Covert adversary model is defined only for static
corruption. Adaptive adversary model is more realistic than static adversaries. In this article, we define
a new adversary model, the covert adaptive adversary model, by generalizing the definition of covert
adversary model for the more realistic adaptive corruption. We prove security relations between the new
covert adaptive adversary model with existing adversary models like passive adaptive adversary model,
active adaptive adversary model and covert static adversary model. We prove the sequential composition
theorem for the new adversary model which is necessary to allow modular design of protocols for this
new adversary model.
Keywords: Covert Adversary, Covert Adaptive Adversary, Static Adversary, Adaptive Adversary, Pas-
sive Adversary, Active Adversary, Simulation-based Security Definition.

1 Introduction

In a secure multiparty computation (MPC) problem, a group of mutually distrusting parties compute a
possibly randomized function of their inputs in such a way that the privacy of inputs is maintained and
the computed output follows the distribution of the function definition. MPC is a very strong primitive in
cryptography since almost all cryptographic problems can be solved, in principle, by a general secure MPC
protocol. Yao introduced the concept of MPC in 1982. He described the famous Millionaires’ problem where
two millionaires want to find out who is richer without revealing the amount of wealth each owns. MPC has
subsequently been applied in a variety of areas.

– In the electronic voting problem, some parties want to elect one candidate from a list of candidates such
that the result of vote counting is correct and the votes remain private.

– Consider the situation where some hospitals wish to perform research on a certain disease by performing
data mining on their patient database, but the hospitals have to maintain the privacy of their patient
database.

– Sometimes government security wants to check whether there is any criminal, from a list of criminals, on
a particular flight of an airline company. The government does not want to disclose the list of criminals to
the airline company, and the airline company does not like to reveal the information of all the passengers
on a flight.

There are many other applications of secure MPC such as financial analysis, secure auction, privacy-
preserving biometric identification, secure computation on gene sequences, private information retrieval,
private set intersection and privacy-preserving machine learning.

The parties do not trust one another. Some parties may try to learn about other parties’ inputs. Some
parties may try to modify the outputs of other parties. The problems and risks associated with a multiparty

2

computation problem are modeled by an entity called the adversary . The adversary tries to control parties.
A party which is controlled by the adversary is called a corrupted party . A party which is not controlled
by the adversary is called an honest party . Depending on the assumption on the computational power of
the adversary and the communication channel, there are two types of security models. In cryptographic
model of security , it is assumed that the adversary can see all the communication between any pair of
parties and the adversary is a probabilistic polynomial-time Turing machine. In information-theoretic
model of security , it is assumed that the adversary cannot see the communication between any pair of
honest parties and the computational power of the adversary is unlimited. An adversary that corrupts at
most t parties is called a t-limited adversary or a threshold adversary . In that case, the number t is
called the threshold .

In order to simplify the analysis, the efficiency of protocols is generally measured in terms of a special
parameter called the security parameter. All parties and the adversary get the security parameter as an
input. The efficiency of MPC protocols are measured by some metrics. One round of an MPC protocol is
a sequence of steps of the MPC protocol such that each party sends one message to each other party in
that sequence. The round complexity of an MPC protocol is the number of rounds needed for executing
that protocol. The communication complexity of an MPC protocol is the total communication (in bits)
among the parties during the execution of that MPC protocol. The computational complexity of an MPC
protocol is the asymptotic computational complexity needed for executing that protocol. Sometimes some
other parameters are also used to get an estimate of the computational complexity of an MPC protocol. Many
MPC protocols use public key encryption (PKE) scheme as its building blocks. Usually the PKE operations
constitute the main bottleneck in the time consumed by an MPC protocol. For this reason, the number of
PKE operations performed by each party gives a good measure of the computational complexity of MPC
protocols. The number of exponentiation operations performed by each party is another performance metric
of MPC protocols since the exponentiation operations take a big amount of time.

In passive adversary model, it is assumed that the corrupted parties collaborate together to learn more
about the inputs and outputs of the honest parties but the corrupted parties still follow the protocol. In
active adversary model, the corrupted parties can behave in any possible way, including the violation of the
protocol. Active adversary model portrays the real world scenario better than passive adversary model. Active
adversary notion is more secure than passive adversary notion. Usually the protocols for passive adversary
model are simpler and more efficient than protocols for active adversary model. In static adversary model,
it is assumed that the adversary selects the parties to corrupt before the protocol starts and the set of
corrupted parties remain fixed throughout the execution of the protocol. In adaptive adversary model, the
adversary can corrupt a party at any time, even after the the execution of the protocol is finished. Adaptive
adversary model is more realistic that static adversary model. Adaptive adversary model is a stronger security
model than static adversary model. It is possible to design simpler and more efficient protocols for static
adversary model than the protocols for adaptive adversary model. Depending on the assumption of erasure,
there are two types of adaptive adversary model. In adaptive adversary model with erasure, it is assumed
that the parties can erase some local data. In erasure-free adaptive adversary model, it is assumed that the
adversary learns the full history of a party when it corrupts that party. Assuming erasure is unrealistic as
complete erasure is sometimes impossible to achieve. Moreover, erasure is a property that cannot be verified
by another party. For these reasons, erasure-free adaptive adversary model is more realistic than adaptive
adversary model with erasure. The protocols for adaptive adversary model with erasure are simpler than the
protocols for erasure-free adaptive adversaries.

Aumann and Lindell [AL10] defined a new type of adversaries called the covert adversaries. In covert
adversary model [AL10], the corrupted parties can behave in any possible way like active adversaries, but
any party that attempts to cheat is guaranteed to get caught by the honest parties with a minimum fixed
probability. That probability is called the deterrence factor of covert adversary model. This definition is
suitable in many application settings including business, financial, political and diplomatic setting where
getting caught cheating results in a loss of reputation, embarrassment or negative press. Security-wise,
covert adversary is stronger than passive adversary and weaker than active adversary [AL10]. It is more
realistic than passive adversary model. Protocols for covert adversaries are significantly more efficient than
protocols for active adversaries [AL10].

3

Aumann and Lindell [AL10] defined covert adversary model only for static corruption. Adaptive adversary
model is more realistic and more secure than static adversaries.

In this article, we define a new adversary model, the covert adaptive adversary model, by generalizing
the definition of covert adversary model for the more realistic adaptive corruption. Since the original covert
adversary model defined by Aumann and Lindell is only defined for static corruption, we call the covert
adversary model of Aumann and Lindell the covert static adverasry model.

We prove security relations between the new covert adaptive adversary model with existing adversary
models like passive adaptive adversary model, active adaptive adversary model and covert static adversary
model. We prove the sequential composition theorem for the new adversary model which is necessary to
allow modular design of protocols for this new adversary model.

2 Background

2.1 Preliminary Definitions

For a set R, let r
$← R denote that r is obtained by sampling uniformly at random from R. For a probabilistic

polynomial-time algorithm A, let Coins(A) denote the distribution of the internal randomness of A. The
notation y = A(x, r) means that y has been computed by running A on input x and randomness r. The
notation y ← A(x) means that y should be computed by running A on input x and randomness r where

r
$← Coins(A). For a binary string x, let |x| denote the length of x.

Definition 1. The security parameter is an additional integer valued parameter used to specify the guar-
anteed “level of security”. All the parties and the adversary receive the security parameter as an input. The
security parameter is denoted by s. All complexity characteristics (or the efficiency parameters) are measured
in terms of the security parameter.

An MPC problem is defined by a functionality.

Definition 2 ([Gol09]). Let n denote the number of parties. An n-party functionality, denoted f :
({0, 1}∗)n → ({0, 1}∗)n is a random process that maps sequences of the form x = {x1, . . . , xn} into sequences
of random variables f(x) = (f1(x), . . . , fn(x)). For each i ∈ {1, . . . , n}, the i-th party, Pi, has input xi and
wishes to obtain the i-th element in f(x1, . . . , xn), denoted
fi(x1, . . . , xn). Functions mapping n inputs to n outputs are a special case of functionality. Functionalities
are randomized extensions of functions.

There are two types of functionalities – non-reactive functionalities and reactive functionalities.

Definition 3. In a standard functionality or non-reactive functionality, each party has a single input
and a single output. The output of each party is a probabilistic function of the inputs of all the parties. This
is also called secure function evaluation which is a widely used term.

Definition 4 ([Gol09]). In a reactive functionality, parties perform some computations for multiple
iterations. There exists a global state that is updated in each iteration. The global state may not be known
by any individual party. It is shared among the parties. Initially, the global state is an empty state. Each
iteration proceeds in the following way.

1. Each party receives an input for current iteration.
2. Parties compute the outputs for current iteration. The outputs of parties in current iteration depend

on the inputs of the parties in current iteration and the global state in current iteration.
3. Parties update the global state for the next iteration based on the inputs of the parties in current

iteration and the global state in current iteration.

4

Canetti [Can00] used the term “probabilistic function” for defining an MPC problem. Goldreich [Gol09]
used the term “functionality” to define an MPC problem. The term “functionality” is more general than the
term “probabilistic function”. The term “probabilistic function” covers only the non-reactive functionalities.
On the other hand, functionalities can be either non-reactive or reactive. For this reason, we use the term
“functionality” is used to define MPC problems.

Interactive Turing machines are an extension of classical Turing machines in the sense that they allow
interaction among the machines. For more details on their definition, see [GMR85] and [Gol06], page 191.
In an MPC problem, each party is modeled by an Interactive Turing machine.

Parties use a protocol to solve an MPC problem.

Definition 5 ([Can01]). A protocol is an algorithm written for a distributed system. A protocol describes
how the parties communicate among themselves to compute a given functionality. An n-party protocol is
represented as a system of n interactive Turing machines where each interactive Turing machine represents
the program to be run within a different party. Conventionally, the Turing machine representing the i-th
party is called Pi.

The notion of balanced vectors are used in the security definitions of MPC protocols. A vector x =
{x1, . . . , xn} such that xi ∈ {0, 1}∗ for 1 ≤ i ≤ n, is called balanced , if, for every i, j such that 1 ≤ i, j,≤ n,
|xi| = |xj |.

The notion of distribution ensembles are used in the security definition of MPC protocols.

Definition 6 ([Can00]). A distribution ensemble, X = {X(s, a)}s∈N,a∈{0,1}∗ , is an infinite sequence of
probability distributions, where a distribution X(s, a) is associated with each value of s ∈ N and a ∈ {0, 1}∗.

Distribution ensembles are used to represent the outputs of computation where the parameter s denotes the
security parameter and the parameter a represents the input of the computation.

The notion of computational indistinguishability is used in the security definition of MPC protocols. Intu-
itively, two given distribution ensembles are computationally indistinguishable if no efficient (polynomial-
time) machine can differentiate between them.

Definition 7 ([Can00]). Let δ : N→ [0, 1]. Two distribution ensembles
X = {X(s, a)}s∈N,a∈{0,1}∗ and Y = {Y (s, a)}s∈N,a∈{0,1}∗ have computational distance at most δ if,
for every algorithm D that is probabilistic polynomial-time in its first input, for all sufficiently large s, all
a ∈ {0, 1}∗, and all auxiliary information w ∈ {0, 1}∗, the following holds:

|Pr[D(1s, a, w, x) = 1]− Pr[D(1s, a, w, y) = 1]| < δ,

where x is chosen from distribution X(s, a), y is chosen from distribution Y (s, a), and the probabilities are
taken over the choices of x, y, and the random choices of D.

Two distribution ensembles X = {X(s, a)}s∈N,a∈{0,1}∗ and Y = {Y (s, a)}s∈N,a∈{0,1}∗ are defined to be

computationally indistinguishable, denoted X
c≡ Y , if X and Y have computational distance at most

s−c for all c > 0.

2.2 The Simulation Paradigm Based Security Definition

To define security for MPC problemd, it is necessary to think about what security requirements are desirable
in the solution. Some important security requirements are as follows.

– Correctness: The outputs of the honest parties follow the same distribution as the outputs of the
honest parties defined according to the functionality evaluated at the inputs of all parties.

– Privacy: The adversary cannot learn more about the inputs of the honest parties than what it can
learn from the outputs of the corrupted parties.

5

– Independence of Inputs: No party can select its input based on the inputs of other parties.

Proving the correctness requirement and the privacy requirement separately is not sufficient for proving a
multiparty computation protocol secure. The reason is that these two requirements are dependent on one
another ([Can00]). The correctness requirement states that the outputs of the honest parties must be the
“correct” values evaluated at the inputs of all parties. The privacy requirement states that the adversary
cannot learn more about the inputs of the honest parties than what it can learn from the outputs of the honest
parties. The correctness requirement depends on the privacy requirement in the sense that the correctness
requirement must ensure that the input values that the corrupted parties contribute to the computation are
selected without any knowledge of the inputs of the honest parties. The privacy requirement depends on the
correctness requirement since the privacy requirement have to make sure that the adversary learns only the
“correct” values of the outputs of the corrupted parties.

There has been several attempts to give security definition for multiparty computation problems. One
possible approach for defining security of protocols is to list all the requirements that have to be satisfied by
a protocol to be secure ([HL10], Section 1.1). There are two problems in this approach. First, some important
requirement may be missed in the process of listing. Different applications need different sets of requirements.
It would be better if a general definition of the security of protocols for all cryptographic applications can
be established. Second, the security definition should be simple enough so that it is trivial to see that all
possible adversarial attacks are prevented by the security definition.

The second approach for defining security of protocols is called the simulation paradigm based security
definition. Goldwasser and Micali [GM84] introduced the notion of simulation paradigm for defining security
of encryption schemes. Goldwasser et al. [GMR85] used the simulation paradigm for defining security of zero-
knowledge proofs. In his seminal work, Canetti [Can00] proposed the security definition of MPC protocols.
His security definition extends the simulation paradigm for the more general and more complex setting of the
security definition of MPC protocols. His security definition captures the following security requirements –
correctness, privacy and independence of inputs. In his definition, the correctness and privacy requirements
are combined together. His definition is a generalized definition, meaning that it can be applied for defining
security of protocol for any cryptographic application.

One important property of Canetti’s simulation paradigm based security definition is that it satisfies
“sequential composition” which allows modular design of protocols (For more details on modular design of
protocols, see Section 2.3). Simply stated, if a security definition of protocols satisfy sequential composition,
then it is not necessary to consider the details inside a subprotocol that is invoked in another “outer” protocol
while considering the security of the outer protocol. When considering the security of the outer protocol, the
subprotocol can be though of as a black-box that satisfies the input-output property of the problem solved
by the subprotocol. The term “sequential” is used to denote that this property is satisfied if there are more
than one subprotocols invoked by the “outer” protocol in such a way that one subprotocol is invoked only
after the invocation of the previous subprotocol is finished within the outer protocol. In other words, no two
subprotocols are invoked in parallel within the outer protocol.

Canetti’s security definition is widely accepted as a standard security definition of MPC protocols.

In a simulation paradigm based security definition of protocols, two conceptual worlds are defined
– the ideal world and the real world.

The ideal world models the situation where a functionality is evaluated in an ideal scenario, as described
below. There exists an incorruptible trusted party. Each party sends its private input to the trusted party.
The adversary cannot see the communication between an honest party and the trusted party. The trusted
party may select some value uniformly at random for using in the evaluation of the functionality. The trusted
party computes the functionality on the inputs received from the parties (and using the randomly generated
value if necessary). The trusted party then sends each party its output. Each honest party outputs the
message it receives from the trusted party. Each corrupted party outputs a special symbol ⊥, denoting that
it is corrupted. The adversary outputs an arbitrary probabilistic polynomial time function of whatever it
sees during the computation. A functionality computed in the ideal world in the above manner is called an
ideal functionality .

6

When defining the ideal world, special consideration have to be given about the behavior of the adversary
that cannot be prevented in anyway. In the case of an active adversary, one behavior that cannot be prevented
is that the corrupted parties may replace their original inputs to different inputs before sending them to the
trusted party.

The real world defines the situation where the parties execute a protocol to compute the functionality.
There is no trusted party. Each honest party outputs whatever is prescribed in the protocol. Each corrupted
party outputs a special symbol ⊥. The adversary outputs an arbitrary probabilistic polynomial time function
of whatever it sees during the protocol execution.

To be secure, a protocol have to satisfy that the real world, where the protocol computes the functionality,
“emulates” the ideal world where there exists a trusted party for computing the functionality. A protocol is
called secure if no probabilistic polynomial time adversary can do more harm in the real world than what
it can do in the ideal world. It is formalized by saying that for any probabilistic polynomial time adversary
that performs some attack in the real world, there exists an ideal world adversary (or a simulator) that can
execute the same attack in the ideal world. Since the ideal world is defined in such a way that no adversarial
attack is possible, from the security definition it follows that no adversarial attack is possible in the real
world.

2.3 Composition

If a security definition allows composition , then the following holds. Let ρ be a secure MPC protocol
computing functionality f . If protocol ρ is used as a sub-protocol in another MPC protocol Π, then, when
considering the security of protocol Π, it is sufficient to use the definition of functionality f of protocol ρ,
as if, there is a trusted party for computing functionality f in the real world execution of protocol Π.

Definition 8 ([Can00]). Let m be a fixed positive integer known to all parties. The imaginary world, where
a multiparty functionality g is computed and there exists a trusted party computing some other multiparty
functionalities f1, . . . , fm, is called a hybrid world with ideal access to f1, . . . , fm, denoted by the term
(f1, . . . , fm)-hybrid world.

Two types of composition are described below – the sequential composition and the universal composition.

Sequential Composition. Sequential composition theorem is defined as follows.

Definition 9. Let m be a fixed positive integer known to all parties. Let ρ1, . . . , ρm be secure MPC protocols
computing functionalities f1, . . . , fm, respectively. If a security definition satisfies sequential composition
theorem, then the following holds. If protocols ρ1, . . . , ρm are executed inside another MPC protocol Π in
such a way that protocol ρi+1 is executed after the execution of protocol ρi has finished, then it is sufficient
to consider each protocol ρj replaced by a trusted party computing function fj inside protocol Π. It is called
sequential composition theorem as the inner protocols ρ1, . . . , ρm are called inside the outer protocol Π in a
sequential manner.

Universally Composable Security. In universally composable security definition , multiple in-
stances of the same functionality can be executed at the same time without any global coordination ([Can01]).
The communication is open, unauthenticated and asynchronous. The functionalities are reactive. The uni-
versally composable security is a stronger notion of security than the security notion where only sequential
composition theorem is satisfied.

2.4 Security Definition of MPC Protocols Secure Against Covert Static Adversaries

Aumann and Lindell [AL10] presented three formulations of the covert static adversary model – the failed
simulation formulation, the explicit-cheat formulation and the strong explicit-cheat formulation. Security-
wise, the explicit cheat formulation is strictly stronger than the failed simulation formulation, and strong

7

explicit cheat formulation is strictly stronger than the explicit-cheat formulation [AL10]. All protocols de-
signed for the covert static adversary model are designed for the most secure formulation, that is, the covert
static adversary model in the strong explicit cheat formulation. This is the most secure formulation. In most
literature, the term “covert adversary model” is used to refer to the strong explicit cheat formulation of the
covert static adversary model. The other two formulations of covert static adversary model are not used.
For this reason, we only present the strong explicit cheat formulation of the covert static adversary model
of [AL10].

In this section, we present the security definition of MPC protocols secure against covert static adversaries
following [AL10].

In static adversary model, the adversary receives an auxiliary input. The auxiliary input can be thought
of as the advice of the non-uniform Turing machine. It represents the a priori information that the adversary
possesses at the start of computation. The security definition have to ensure that the adversary cannot gain
anything more in the real world than what it gains in the ideal world, even when the adversary possesses
this a priori information.

Let n denote the number of parties. Let f : ({0, 1}∗)n → ({0, 1}∗)n denote an n-party functionality where
f = (f1, . . . , fn). Let A be a non-uniform probabilistic polynomial-time adversary. Let I ⊂ {1, . . . , n} denote
the set of corrupted parties. Let ε : N→ [0, 1] be a function.

The Ideal World in Covert Static Adversary Model. The execution in the ideal world with
deterrence ε proceeds in the following way.

Input: Each party Pi obtains an input xi. It is assumed that the inputs of all parties have the same length
s where s is the security parameter. The adversary A receives an auxiliary input z.

Sending Inputs to the Trusted Party: Each honest party Pi sends its original input xi to the trusted
party. Each corrupted party Pi may send its original input xi or some other input with the same length
as xi to the trusted party. The decision of the inputs sent by the corrupted parties is taken by A and
may depend on the inputs of the corrupted parties and the auxiliary input z. Let w = (w1, . . . , wn)
denote the set of inputs received by the trusted party where wi denotes the input received by the
trusted party from Pi.

Abort Options: If a corrupted party Pi sends wi = Aborti to the trusted party, then the trusted party
sends Aborti to the honest parties and halts. There are two special types of input in covert static
adversary model – Corruptedi and Cheati. These inputs are not available in passive adversary model
or active adversary model. If a corrupted party Pi sends wi = Corruptedi to the trusted party, then
the trusted party sends Corruptedi to the honest parties and halts. If multiple parties send Aborti
(respectively, Corruptedi), then the trusted party relates only to one of them (say, the one with the
smallest i). If both Corruptedi and Abortj messages are sent, then the trusted party ignores the
Corruptedi message.

Attempted Cheat Option: If a corrupted party Pi sends wi = Cheati to the trusted party, then the
trusted party works in the following way.

1. With probability ε, the trusted party sends Corruptedi to A and the honest parties, and halts.
2. With probability (1 − ε), the trusted party sends Undetected and the set {xj}j∈{1,...,n}\I of

honest parties’ inputs to A. Then, A sends the set {ŷj}j∈{1,...,n}\I of output values of its choice
for the honest parties to the trusted party. Then, for each j ∈ {1, . . . , n} \ I, the trusted party
sends ŷj to Pj . Then, the trusted party halts.

If multiple parties send Cheati, then the trusted party relates only to one of them (say, the one with
the smallest i).

Trusted Party Answers Adversary: The trusted party may select some value uniformly at random for
using in the evaluation of the functionality. The trusted party computes
(f1(w), . . . , fn(w)). For each i ∈ I, the trusted party sends fi(w) to A.

Trusted Party Answers Honest Parties: A sends either Aborti for some i ∈ I or the message Continue
to the trusted party. If the trusted party receives Aborti from A, then it sends Aborti to the honest
parties and halts. If the trusted party receives the message Continue from A, then it sends fi(w) to
Pi, for each i ∈ {1, . . . , n} \ I.

Output: The notion of the view of the adversary is used in the security definition of MPC protocols.

8

Definition 10. The view of the adversary in the ideal world of covert static adversary
model consists of the inputs of the corrupted parties, the auxiliary input of the adversary and the
messages the adversary receives from the trusted party.

Each honest party outputs what it receives from the trusted party. The corrupted parties output
nothing. A outputs an arbitrary (probabilistic polynomial-time computable) function of its view. It
can be assumed that the output of A consists of its entire view.

To model the outcome of a protocol execution or functionality evaluation, the notion of global output is
used.

Definition 11 ([Can00]). The global output for static adversaries is defined as the random variable
consisting of the output of the adversary and the outputs of the honest parties. Since the output of the
adversary can be assumed to be its entire view, the global output for static adversaries is defined as the
random variable consisting of the view of the adversary and the outputs of the honest parties.

The definition of global output in the ideal world of covert static adversary model is given below.

Definition 12. Let the global output IDEALCSεf,A,I(s, x, z) denote the vector consisting of the outputs of
the honest parties and the output of A after parties P1, . . . , Pn evaluating functionality f in the presence of
a non-uniform probabilistic polynomial-time adversary A in the ideal world of covert static adversary model
with deterrence ε where Pi has input xi, x = {x1, . . . , xn}, s is the security parameter and z is the auxiliary
input of A.

Aumann and Lindell [AL10] used the notation IDEALεf,A(z),I(x, s) for denoting the global output in the

ideal world of covert static adversary model. We use the notation IDEALCSεf,A,I(s, x, z) to denote the
global output in the ideal world of the covert static adversary model so that the notation is consistent with
the use of notation IDEALf,S,Z(s, x, z, r) for the global output in the ideal world of adaptive adversary
model in Section 2.5.

The Real World in Covert Static Adversary Model. The real world in covert static adversary
model is the same as the real world in active static adversary model, described below. In the real world,
each party Pi obtains an input xi ∈ {0, 1}s and a random input ri ∈ {0, 1}∗. The adversary A receives an
auxiliary input z.

Parties execute an n-party protocol Π for evaluating functionality f . There is no trusted party. A sends
all messages on behalf of the corrupted parties and may follow an arbitrary polynomial-time strategy. The
honest parties follow the instructions of Π. A corrupted party Pi may abort at any point during the execution
of Π. If a corrupted party aborts before the execution of Π is finished, then the honest parties cannot compute
their outputs. After the execution of Π is finished, each honest party outputs whatever is specified by Π.
The corrupted parties output nothing.

Definition 13. The view of the adversary in the real world of covert static adversary model
consists of the inputs and random inputs of the corrupted parties, the auxiliary input, and all the messages
sent and received by the corrupted parties during the execution of protocol Π.

A outputs an arbitrary (probabilistic polynomial-time computable) function of its view. It can be assumed
that the output of A consists of its entire view.

The definition of global output in the real world of covert static adversary model is given below.

Definition 14. Let the global output REALΠ,A,I(s, x, z) denote the vector consisting of the outputs of the
honest parties and the output of A after parties P1, . . . , Pn executing protocol Π in the presence of a non-
uniform probabilistic polynomial-time adversary A in the real world of covert static adversary model where
Pi has input xi, x = {x1, . . . , xn}, s is the security parameter and z is the auxiliary input of A.

Aumann and Lindell [AL10] used the notation REALΠ,A(z),I(x, s) for denoting the global output in the
real world of covert static adversary model. We use the notation REALΠ,A,I(s, x, z) for making consistent

9

with the use of notation REALf,S,Z(s, x, z, r) for the global output in the ideal world of adaptive adversary
model in Section 2.5.

Security in the presence of covert static adversaries is defined as follows.

Definition 15 ([AL10]). Let f be an n-party functionality and let Π be an n-party protocol. Let ε : N →
[0, 1] be a function. Protocol Π is said to securely compute f in the presence of covert static ad-
versaries with deterrence ε if, for any non-uniform probabilistic polynomial-time adversary A in the real
world, there exists a non-uniform probabilistic polynomial-time adversary S in the ideal world such that for
every I ⊆ {1, . . . , n} and every balanced vector x, it holds that{

IDEALεf,S,I(s, x, z)
}
s∈N,〈x,z〉∈({0,1}∗)n+1

c≡ {REALΠ,A,I(s, x, z)}s∈N,〈x,z〉∈({0,1}∗)n+1 .

Aumann and Lindell [AL10] defined the hybrid world for covert static adversary model in the following way.

Definition 16 ([AL10]). An (f, ε)-hybrid world in the covert static adversary model is defined as the hybrid
world of the active static adversary model with the following modification: the trusted party works as the
trusted party defined in the ideal world of covert static adversary model with deterrence ε.

Aumann and Lindell [AL10] defined the global output in the hybrid world for covert static adversary model
in the following way.

Definition 17 ([AL10]). Let f1, . . . , fp(s) be probabilistic polynomial-time functionalities and let Π be an
n-party protocol that uses ideal calls to a trusted party computing f1, . . . , fp(s). Furthermore, let A be a
non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the
f1, . . . , fp(s)-hybrid execution of Π on input x, auxiliary input z to A and security parameter s, denoted

HY BRID
f1,...,fp(s)
Π,A,I (s, x, z), is defined as the output vector of the honest parties and the adversary A from

the hybrid execution of Π with a trusted party computing f1, . . . , fp(s).

Aumann and Lindell [AL10] used the notation HY BRID
f1,...,fp(s)
Π,A(z),I (x, s) for denoting the global output in

the hybrid world of covert static adversary model. We use the notation

HY BRID
f1,...,fp(s)
Π,A,I (s, x, z) for making consistent with the use of notation

HY BRIDf1,...,fm
Π,A,Z (s, x, z) for denoting the global output in the hybrid world of adaptive adversary model in

Section 2.5.

Let Πρ1,...,ρp(s) denote protocol Π (which is originally designed for the
(
(f1, ε1) , . . . ,

(
fp(s), εp(s)

))
-hybrid

world) where each ideal evaluation of functionality fi is replaced by a subroutine call to protocol ρi.

Aumann and Lindell [AL10] proved the sequential composition theorem for their security definition
against covert static adversaries. It is presented below.

Theorem 1 ([AL10]). Let p(s) be a polynomial, let f1, . . . , fp(s) be multiparty probabilistic polynomial-time
functionalities and let ρ1, . . . , ρp(s) be protocols that securely compute f1, . . . , fp(s) in the presence of covert
static adversaries with deterrence ε1, . . . , εp(s), respectively. Let g be a multiparty functionality and let Π be

a secure protocol for computing g in the
(
(f1, ε1) , . . . ,

(
fp(s), εp(s)

))
-hybrid world (using a single call to each

fi) in the presence of covert static adversaries with deterrence ε. Then, Πρ1,...,ρp(s) securely computes g in
the presence of covert static adversaries with deterrence ε.

Aumann and Lindell [AL10] proved that active static security implies covert static security with any valid
value of the deterrence factor.

Proposition 1 ([AL10]). Let Π be a protocol that securely computes some functionality f with abort in the
presence of active static adversaries. Then, Π securely computes f in the presence of covert static adversaries
with deterrence ε for every ε such that 0 ≤ ε ≤ 1.

10

Definition 18 ([AL10]). A passive adaptive adversary that is allowed to modify its input before the execu-
tion of the protocol begins is called an augmented passive static adversary.

Aumann and Lindell [AL10] proved that covert static security implies passive static security.

Proposition 2 ([AL10]). Let Π be a protocol that securely computes some functionality f in the presence
of covert static adversaries with deterrence ε for ε(s) ≥ 1/poly(s) where poly(s) denotes polynomial of s.
Then, Π securely computes f in the presence of augmented passive static adversaries.

2.5 Security Definition of MPC Protocols Secure against Adaptive Adversaries

In this section, the security definition of MPC protocols secure in the presence of adaptive adversaries are
presented, following [Can00].

In adaptive adversary model, there is an additional entity called the environment , denoted Z, which
is not present in static adversary model. It represents the external world in this model. It is a non-uniform
probabilistic polynomial time interactive Turing machine. The environment in adaptive adversary model
is a generalization of the auxiliary input in static adversary model. It supplies the auxiliary input to the
adversary before the start of computation. It adaptively releases information to the adversary during the
computation. It also adaptively obtains information from the adversary during the computation and after
the computation.

Let n denote the number of parties. Let f : ({0, 1}∗)n → ({0, 1}∗)n denote an n-party functionality
where f = (f1, . . . , fn). Let S denote the adaptive adversary in the ideal world which is a probabilistic
polynomial-time interactive Turing machine. Let A denote the adaptive adversary in the real world which
is a probabilistic polynomial-time interactive Turing machine. Let Z denote the environment which is a
probabilistic polynomial-time interactive Turing machine.

The Ideal World in Adaptive Adversary Model. The execution in the ideal world proceeds in the
following way.

Input: Each party Pi has an input xi ∈ {0, 1}∗ and the security parameter s. The ideal-world adversary S
has a random input r0 and the security parameter s. The environment Z has an input z, a random
input rz and the security parameter s.

First Corruption Stage: S receives some information from Z. This information corresponds to the
auxiliary input of S in static adversary model. Then, S proceeds in iterations, where in each iteration
S may decide to corrupt some party, based on its random input r0 and the information gathered so
far. If S corrupts a party Pi, then S learns the input xi of Pi, Z learns the identity of Pi, and Z
sends some extra auxiliary information to S. This information represents Pi’s internal data in other
protocols run by Pi.

Computation Stage: Each honest party Pi sends its original input xi to the trusted party. If S is passive,
then each corrupted party Pi sends its original input xi to the trusted party. If S is active, then each
corrupted party may replace its input before sending it to the trusted party. In that case, S decides
what inputs the corrupted parties send to the trusted party based on the information gathered so
far. Let w = (w1, . . . , wn) denote the set of inputs received by the trusted party where wi denotes
the input received by the trusted party from Pi. If S is passive, then w = {x1, . . . , xn}. The trusted
party may select some value uniformly at random for using in the evaluation of the functionality. The
trusted party computes (f1(w), . . . , fn(w)). For each i ∈ {1, . . . , n}, the trusted party sends fi(w) to
Pi.

Second Corruption Stage: S proceeds in another sequence of iterations where in each iteration S may
decide to corrupt some party, based on r0 and the information gathered so far. If S corrupts a party
Pi, then S learns the input and output of Pi, Z learns the identity of Pi, and Z sends some extra
auxiliary information to S, as before.

Output: Each honest party outputs fi(w). Each corrupted party outputs a special symbol ⊥, specifying
that it is corrupted.

11

Definition 19 ([Can00]). The view of the adversary in the ideal world of adaptive adver-
sary model consists of the random input of the adversary, the auxiliary input it receives from the
environment and the inputs and outputs of the corrupted parties.

S outputs an arbitrary (probabilistic polynomial-time computable) function of its view. Without loss
of generality, it can be assumed that the output of S consists of its entire view. Z learns the outputs
of all parties and the output of S.

Post-Execution Corruption Stage: Z and S interact in rounds until Z halts with some output. Each
round proceeds in the following way.

1. Z sends a “Corrupt Pi” request for some Pi to S.
2. S sends Z some auxiliary information based on its view. For this purpose, S may corrupt Pi

following the process described in the second corruption stage. The information sent by S to
Z represents Pi’s internal data during the evaluation of f in the ideal world.

If S is t-limited, then at most t parties are corrupted throughout, even if Z requests to corrupt more
parties. If Z requests to S to corrupt more parties after already t parties have been corrupted, then
S ignores the request of Z.

Security is defined by comparing global output in the ideal world and the real world. The global output for
adaptive adversaries is defined as follows.

Definition 20. The global output for adaptive adversaries is defined as the output of the environment.
The environment learns the outputs of all parties. The output of the environment can be assumed to be
consisting of the outputs of all parties and the output of the adversary. In both worlds, the corrupted parties
output a special symbol ⊥. In both worlds, the output of the adversary can be assumed to be the view of the
adversary. For this reason, the global output for adaptive adversaries can be defined as the random variable
consisting of the view of the adversary and the outputs of the honest parties.

Let the global output IDEALf,S,Z(s, x, z, r) denote the output of environment Z on input z, random
input rz, and security parameter s after interacting with parties P1, . . . , Pn, an ideal world adversary S
and a trusted party computing f in the ideal world of the adaptive adversary model, where Pi has input
xi, x = {x1, . . . , xn}, the trusted party uses random input rf for evaluating f , and r = {rz, r0, rf}. Let
IDEALf,S,Z(s, x, z) denote the distribution of IDEALf,S,Z(s, x, z, r) when r is uniformly distributed in its
domain. Let IDEALf,S,Z denote the distribution ensemble {IDEALf,S,Z(s, x, z)}s∈N,〈x,z〉∈{0,1}∗ .

The Real World in Adaptive Adversary Model. Each party Pi has an input xi ∈ {0, 1}∗, a random
input ri ∈ {0, 1}∗ and the security parameter s. The real-world adversary A has a random input r0 and the
security parameter s. The environment Z has an input z, a random input rz and the security parameter s.

Parties execute an n-party protocol Π for evaluating functionality f . There is no trusted party. A sends
all messages on behalf of the corrupted parties and may follow an arbitrary polynomial-time strategy. The
honest parties follow the instructions of Π.

In the real world, the execution proceeds in the following way. First, A receives the auxiliary input from
Z. The computation proceeds in rounds where each round consists of some mini-rounds. In the start of
each mini-round, A corrupts parties one by one in an adaptive way. If A is a t-limited adversary, then A
corrupts at most t parties. If A corrupts a party Pi, then A learns the input xi of Pi, the random input ri of
Pi and the entire history of messages sent and received by Pi. Z learns the identity of the newly corrupted
party Pi and Z sends some extra auxiliary information to A. This information represents Pi’s internal data
in other protocols run by Pi. From this point on, A learns all the messages sent to Pi. Then, A activates
one honest party Pi which has not been activated in current round. After being activated, Pi receives all the
messages sent to it in the previous round and generates its outgoing messages for current round and the next
mini-round begins. A learns the messages sent by Pi to already corrupted parties. Once all the honest parties
are activated, A generates the messages to be sent by the corrupted parties and the next round begins. If A
is passive, then the corrupted parties follow the instructions of Π. If A is active, then the corrupted parties
follow the instructions of A and may violate the protocol.

At the end of the protocol execution, each honest party outputs whatever is specified by protocol Π.
Each corrupted party outputs ⊥.

12

Definition 21 ([Can00]). The view of the adversary in the real world of adaptive adversary
model consists of the random input of the adversary, the auxiliary input that it received from the environment,
the inputs and random inputs of the corrupted parties, and all the messages sent and received by the corrupted
parties during the execution of protocol Π.

A outputs an arbitrary (probabilistic polynomial-time computable) function of its view. Without loss of
generality, it can be assumed that the output of the adversary consists of its entire view. The environment
Z learns all outputs.

After this, a post-execution corruption stage happens which is similar to the post-execution corruption
stage in the ideal world of adaptive adversary model. Without loss of generality, it can be assumed that the
output of Z consists of its entire view of its interaction with S and the parties.

Let the global output REALΠ,A,Z(s, x, z, r) denote the output of environment Z on input z, random
input rz, and security parameter s after interacting with adversary A and parties P1, . . . , Pn running pro-
tocol Π in the real world of the adaptive adversary model, where Pi has input xi, x = {x1, . . . , xn}, and
r = {rz, r0, r1, . . . , rn}. Canetti [Can00] used the notation EXECΠ,A,Z(s, x, z, r) for denoting this. We use
the notation REALΠ,A,Z(s, x, z, r) for ease of understanding and making consistent with the use of no-
tation IDEALf,S,Z(s, x, z, r) for the global output in the ideal world of adaptive adversary model. Let
REALΠ,A,Z(s, x, z) denote the random variable describing REALΠ,A,Z(s, x, z, r) when r is uniformly dis-
tributed in its domain. LetREALΠ,A,Z denote the distribution ensemble {REALΠ,A,Z(s, x, z)}s∈N,〈x,z〉∈{0,1}∗ .

Security of MPC protocols in the presence of adaptive adversaries is defined as follows.

Definition 22 ([Can00]). Let f be an n-party functionality and let Π be a protocol for n parties. Protocol
Π is said to securely compute f in the presence of t-limited adaptive adversaries if, for any proba-
bilistic polynomial-time t-limited adaptive adversary A in the real world and any probabilistic polynomial-time
environment Z, there exists a probabilistic polynomial-time adaptive adversary S in the ideal world such that

IDEALf,S,Z
c≡ REALΠ,A,Z .

Sequential Composition Theorem for Canetti’s Security Definition for Adaptive Adversaries.
Let the global output HY BRIDf1,...,fm

Π,A,Z (s, x, z) denote the output of environment Z on input z, and security
parameter s after interacting with adversary A and parties P1, . . . , Pn running protocol Π in the (f1, . . . , fm)-
hybrid world of the adaptive adversary model, where Pi has input xi, x = {x1, . . . , xn}, and all the necessary
random inputs are selected uniformly at random from the corresponding domains. Canetti [Can00] used the

notation EXECf1,...,fmΠ,A,Z (s, x, z) for denoting this. We use the notation HY BRIDf1,...,fm
Π,A,Z (s, x, z) for ease of

understanding and making consistent with the use of notation IDEALf,S,Z(s, x, z) for denoting the global
output in the ideal world of adaptive adversary model and the use of notation REALΠ,S,Z(s, x, z) for

denoting the global output in the real world of adaptive adversary model. Let HY BRIDf1,...,fm
Π,A,Z denote the

distribution ensemble
{
HY BRIDf1,...,fm

Π,A,Z (s, x, z)
}
s∈N,〈x,z〉∈{0,1}∗

.

Let Πρ1,...,ρm denote protocol Π (which is originally designed for the (f1, . . . , fm)-hybrid world) where
each ideal evaluation of functionality fi is replaced by a subroutine call to protocol ρi.

The following theorem of Canetti [Can00] describes the general statement of modular composition for
active adaptive adversaries for the cryptographic security model ([Can00], Theorem 15).

Theorem 2 (Adaptive Computational Modular Composition: General Statement ([Can00])).
Let t < n,m ∈ N. Let f1, . . . , fm be n-party functionalities. Let Π be an n-party protocol in the (f1, . . . , fm)-
hybrid world where no more than one ideal evaluation call is made at each round. Let ρ1, . . . , ρm be n-
party protocols such that ρi securely computes functionality fi in the presence of t-limited active adaptive
adversaries according to Definition 22. Then, for any probabilistic polynomial-time t-limited active adaptive
adversary A in the real world of adaptive adversary model and any probabilistic polynomial-time environment
Z, there exists a probabilistic polynomial-time t-limited active adaptive adversary S in the (f1, . . . , fm)-hybrid

13

world of adaptive adversary model such that

HY BRIDf1,...,fm
Π,S,Z

c≡ REALΠρ1,...,ρm ,A,Z .

As mentioned in [Can00], the above theorem does not assume any security properties from protocol Π. It
states that the “input-output functionality” of any protocol Π in the hybrid world is successfully “emulated”
by Πρ1,...,ρm in the real world. This more general statement is relevant for both non-reactive and reactive
functionalities.

Protocols for securely computing a functionality g in the (f1, . . . , fm)-hybrid world in the presence of
t-limited active adaptive adversaries is defined in the following way ([Can00], Definition 16).

Definition 23 ([Can00]). Let f1, . . . , fm, g be n-party functionalities. Let Π be an n-party protocol in
the (f1, . . . , fm)-hybrid world. It is said that Π securely computes g in the (f1, . . . , fm)-hybrid world
in the presence of t-limited active adaptive adversaries if, for any probabilistic polynomial-time t-
limited active adaptive adversary A in the (f1, . . . , fm)-hybrid world of adaptive adversary model and any
probabilistic polynomial-time environment Z, there exists a probabilistic polynomial-time t-limited active
adaptive adversary S in the ideal world of adaptive adversary model such that

IDEALg,S,Z
c≡ HY BRIDf1,...,fm

Π,A,Z .

The following corollary of [Can00] describes the modular composition for secure function evaluation for active
adaptive adversaries for the cryptographic security model ([Can00], Corollary 17).

Corollary 1 (Adaptive Computational Modular Composition: Secure Function Evaluation
([Can00])). Let t < n,m ∈ N. Let f1, . . . , fm, g be n-party functionalities. Let Π be an n-party protocol
in the (f1, . . . , fm)-hybrid world where no more than one ideal evaluation call is made at each round. Let
ρ1, . . . , ρm be n-party protocols such that ρi securely computes functionality fi in the presence of t-limited
active adaptive adversaries according to Definition 22. Then, Πρ1,...,ρm securely computes functionality g in
the presence of t-limited active adaptive adversaries.

3 New Covert Adaptive Adversary Model

In this section we present the new covert adaptive adversary model. We present the security definitions of
MPC protocols secure in the presence of the new covert adaptive adversary model.

The Ideal World in Covert Adaptive Adversary Model
Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, where f = (f1, . . . , fn). There exists an
incorruptible trusted party in the ideal world. Let P1, . . . , Pn denote the parties. Party Pi has input
xi ∈ {0, 1}∗ – no random input is required. Let x = {x1, . . . , xn}. Parties want to evaluate f(x) =
{f1(x), . . . , fn(x)}. Let A denote an adaptive ideal world adversary that is a non-uniform interactive
probabilistic polynomial time Turing machine with random input r0 and security parameter s. Let Z
denote the environment that is a non-uniform interactive probabilistic polynomial time Turing machine
with input z, random input rz and security parameter s. Let ε : N→ [0, 1] be a function.
The execution in the ideal world with ε proceeds as follows.
Inputs:

Each party obtains an input. Let xi denote the input of Pi.
First Corruption Stage:

The adversary A receives auxiliary information from Z. Then A proceeds in iterations. In each
iteration, A may decide to corrupt some party, depending on A’s random input and the information
collected so far. When a party is corrupted, the adversary A gets its input, the environment Z learns
the identity of the corrupted party and sends some extra auxiliary information to A. This information
represents the internal history of the newly corrupted party in other protocol executions. Let I1 denote
the set of corrupted parties at the end of this stage.

14

Computation Stage:

Send inputs to the Trusted Party:

Each honest party Pj sends its received input xj to the trusted party. The corrupted parties, con-
trolled by A, may either send their received input, or send some other input of the same length to
the trusted party. This decision is made by A and may depend on the information gathered so far.
Let w = {w1, . . . , wn} denote the vector of inputs sent to the trusted party.

Abort Options:

If a corrupted party sends wi = aborti to the trusted party as its input, then the trusted party sends
aborti to all of the honest parties and halts. If a corrupted party sends wi = corruptedi to the trusted
party as its input, then the trusted party sends corruptedi to all of the honest parties and halts. If
multiple parties send aborti (respectively, corruptedi), then the trusted party relates only to one of
them (say, the one with the smallest i). If both corruptedi and abortj messages are sent, then the
trusted party ignores the corruptedi message.

Attempted Cheat Option:

If a corrupted party sends wi = cheati to the trusted party as its input, then the trusted party works
as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and all of the honest
parties.

2. With probability (1 − ε), the trusted party sends undetected to the adversary along with the
honest parties’ inputs {xj}j∈[n]\I1 . Following this, the adversary sends the trusted party output
values {yj}j∈[n]\I1 of its choice for the honest parties. Then, for every j ∈ [n] \ I1, the trusted
party sends yj to Pj .

The ideal execution then ends here.

If no wi equals aborti, corruptedi or cheati, then the ideal execution continues below.

Trusted Party Answers Adversary:

The trusted party computes (f1(w), . . . , fn(w)) and sends fi(w) to A, for all i ∈ I1.

Second Corruption Stage:

After learning the outputs of the corrupted parties, A proceeds in another sequence of iterations.
In each iteration, A may decide to corrupt some party, where the decision of A depends on the
information obtained so far. When a party is corrupted, the adversaryA gets its input and output, the
environment Z learns the identity of the corrupted party and sends some extra auxiliary information
to A. This information represents the internal history of the newly corrupted party in other protocol
executions. Let I2 denote the set of corrupted parties at the end of this stage.

Trusted Party Answers Honest Parties:

After the second corruption stage, the adversary sends either aborti for some i ∈ I2, or continue to
the trusted party.

If the trusted party receives aborti for some i ∈ I2, then it sends aborti to all honest parties and
halts.

If the trusted party receives continue, then it sends fj(w) to party Pj , for each j ∈ [n] \ I2.

Outputs:

An honest party always outputs the message it obtained from the trusted party. The corrupted parties
output nothing. The adversary A outputs any arbitrary (probabilistic polynomial-time computable)
function of the information gathered during the computation in the ideal world. The environment Z
learns all outputs.

Post-Execution Corruption Stage:

The environment Z and the adversary A interacts in rounds. In each round, Z generates a “Corrupt
Pi” request for some Pi to A. After receiving this request, A sends Z some arbitrary information. This
information represents the internal history of Pi pertaining to the evaluation of f . For this purpose,
A may corrupt more parties as described in the second corruption stage. The interaction continues
until Z halts, with some output. Without loss of generality, the output of Z can be defined as the
entire view of Z during its interaction with A and the parties. Let I3 denote the set of corrupted
parties at the end of this stage. The global output is defined to be the output of Z. The output of
Z may include the outputs of all parties and the output of the adversary A.

15

Definition 24. Let IDEALCAεf,A,Z (s, x, z, r) denote the output of the environment Z after parties
P1, . . . , Pn performing an evaluation of f with deterrence ε in the ideal world of covert adaptive adversary
model in the presence of adversary A where party Pi has input xi, the adversary A has random input r0,
the environment Z has input z and random input rz, the input vector is x = {x1, . . . , xn}, the vector of
random inputs is r = {rz, r0}, and s is the security parameter. Let IDEALCAεf,A,Z (s, x, z) denote the
random variable describing the distribution of IDEALCAεf,A,Z (s, x, z, r) where r is selected uniformly
at random from its domain.

The Real World in Covert Adaptive Adversary Model
The real world in the covert adaptive adversary model is the same as the real world in the active adaptive
adversary model. For completeness, we describe the real world here.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, where f = (f1, . . . , fn). Let Π be an n-party
protocol that evaluates f . There is no trusted party. The adversary A sends all messages in place of
the corrupted parties and may follow an arbitrary polynomial-time strategy. The honest parties follow
the instructions of Π. Each party Pi has input xi ∈ {0, 1}∗, random input ri ∈ {0, 1}∗ and the security
parameter s. Let x = {x1, . . . , xn}. Let A denote an adaptive real world adversary that is a non-uniform
interactive probabilistic polynomial time Turing machine with random input r0 and security parameter
s. Let Z denote the environment that is a non-uniform interactive probabilistic polynomial time Turing
machine with input z, random input rz and security parameter s.

At first the adversary A receives some auxiliary information from the environment Z. The computation
proceeds in rounds. Each round proceeds in a series of mini-rounds. At the start of each mini-round, the
adversary A may corrupt parties one by one in an adaptive way, depending on the information gathered
so far. Then A selects an honest party Pi that has not been activated in this round, and activates it.
When activated, Pi receives the messages sent to it in the previous round and generates its messages for
this round – then the mini-round ends. A learns all messages sent by Pi to the corrupted parties. When
all the honest parties have been activated, A generates the messages to be sent by the corrupted parties
that were not activated in this round, and the next round begins.

When a party is corrupted, A learns the party’s input, random input, and the entire history of the
messages sent and received by the party. Z learns the identity of the corrupted party and sends some
additional auxiliary information to A. This information represents the party’s internal data from other
protocol executions. From this point on A learns all the messages received by the party and the party
behaves according to the instruction of A.

At the end of the protocol execution, the honest parties output whatever is specified by the protocol.
The corrupted parties output nothing. The adversary A outputs some arbitrary (probabilistic polynomial
time computable) function computed from its view. The environment Z learns all outputs.

Then a “Post-Execution Corruption Stage” begins. In this stage, Z and A interacts in rounds. In each
round, Z generates a “Corrupt Pi” request to A. Then A sends Z some arbitrary information. This
information represents the internal data of Pi during the execution of protocol Π. The interaction
continues until Z halts, with some output. The output of Z is defined to be its entire view during its
interaction with A. The global output is defined to be the output of Z.

Below we describe the definition of the execution in the real world of the active adaptive adversary model
which we obtain by plugging in the active adversary model in the generic definition of the execution in
the real world of the adaptive adversary model.

Definition 25. Let REALΠ,A,Z (s, x, z, r) denote the output of the environment Z after parties P1, . . . , Pn
running protocol Π in the real world of active adaptive adversary model in the presence of adversary A
where party Pi has input xi and random input ri, the adversary A has random input r0, the environment
Z has input z and random input rz, the input vector is x = {x1, . . . , xn}, the vector of random inputs
is r = {rz, r0, r1, . . . , rn}, and s is the security parameter. Let REALΠ,A,Z (s, x, z) denote the random
variable describing the distribution of REALΠ,A,Z (s, x, z, r) where r is selected uniformly at random
from its domain.

Security of MPC protocols in the presence of covert adaptive adversaries with deterrence ε is defined as
follows.

16

Definition 26. (Security in the presence of Covert Adaptive Adversaries

A protocol Π is said to securely compute f in the presence of covert adaptive adversaries with deterrence
ε if for any non-uniform probabilistic polynomial-time adaptive adversary A for the real world and any
environment Z, there exists a non-uniform probabilistic polynomial-time adaptive adversary S for the ideal
world such that the following holds for every balanced vector x{

IDEALCAεf,S,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

4 Security Relationship of the New Covert Adaptive Adversary Model with
Existing Adversary Models

In this section, we prove security relations of the new covert adaptive adversary model with active adaptive
adversary model, passive adaptive adversary model and covert static adversary model.

We prove that active adaptive security implies covert adptive security.

Proposition 3. Let Π be a protocol that securely computes some functionality f with abort in the presence
of active adaptive adversaries. Then, Π securely computes f in the presence of covert adaptive adversaries
with deterrence ε for every ε such that 0 ≤ ε ≤ 1.

Proof. Let A be a non-uniform probabilistic polynomial-time adaptive adversary for the real world and let Z
be the environment. Since Π securely computes f with abort in the presence of active adaptive adversaries,
by definition, there exists a simulator §AA such that the following holds for any balanced vector x

{IDEALf,§AA,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N
c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

The only difference between an active adaptive adversary and a covert adaptive adversary is that a covert
adaptive adversary may send corruptedi or cheati in the input stage for some i ∈ I1 while an active adaptive
adversary never sends such an input.

For adversary A and environment Z, we construct a simulator §CA for active adaptive security definition
(Definition 22), from the simulator §AA as follows.

– §CA starts with its input.

– If §CA receives corruptedi for some i ∈ I1 from A, then §CA sends corruptedi to the trusted party and
A. Then §CA halts.

– If §CA receives cheati for some i ∈ I1 from A, then §CA sends cheati to the trusted party.

– If the trusted party replies with corruptedi, then §CA sends corruptedi to A and halts.

– If the trusted party replies with undetected and the set of inputs of the honest parties, then §CA sends
them to A. Then §CA receives the set of outputs of the adversary’s choice for the honest parties from A.
§CA sends this set to the trusted party and halts.

– If no input equals corruptedi or cheati, then §CA stops this execution and invokes §AA from the start.
§CA follows whatever §AA does and at the end, outputs whatever §AA outputs.

– In the case where there is no corruptedi or cheati input, security in the covert adaptive model follows
from the security in the active adaptive model. For the remaining cases, §CA simulates the ideal world
according to Definition 22.

Definition 27. A passive adaptive adversary that is allowed to modify its input before the execution of the
protocol begins is called an augmented passive adaptive adversary.

We prove that covert adaptive security implies passive adptive security.

17

Proposition 4. Let Π be a protocol that securely computes some functionality f in the presence of covert
adaptive adversaries with deterrence ε and for ε(s) ≥ 1/poly(s). Then, Π securely computes f in the presence
of augmented passive adaptive adversaries.

Proof. Let A be a non-uniform probabilistic polynomial-time adaptive adversary for the real world and let Z
be the environment. Since Π securely computes f with abort in the presence of covert adaptive adversaries
with deterrence ε, by definition, there exists a simulator §CA such that the following holds for any balanced
vector x {

IDEALCAεf,§CA,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

The difference between a passive adaptive adversary and a covert adaptive adversary are as follows.

1. A covert adaptive adversary may replace the inputs of the corrupted parties. A passive adaptive adversary
never replace the inputs of the corrupted parties.

2. A covert adaptive adversary may send corruptedi or cheati in the input stage for some corrupted party
Pi, i ∈ I1. A passive adaptive adversary never sends such an input.

That means, the simulator §CA for covert adaptive adversary model can be used as the simulator for the
passive adaptive adversary model in the passive adaptive security definition (Definition 22). In the ideal
world of the passive adaptive adversary model, the adversary never sends the input corruptedi or cheati
for any corrupted party Pi, so the events supposed to happen if those inputs are sent for some corrupted
party never occur in the ideal world of the passive adaptive adversary model. Then, the indistinguishability
of global outputs in the two worlds of the passive adaptive adversary model is maintained followed by the
indistinguishability of global outputs in the two worlds of the covert adaptive adversary model. Then, Π
securely computes f in the presence of passive adaptive adversaries.

We first define a transformation.

Definition 28. Let Π be a protocol that securely computes some functionality f in the presence of covert
adaptive adversaries with deterrence ε. Let ToActive() denote the transformation of Π to a protocol Π ′ such
that if an honest party is supposed to output corruptedi in Π, then it outputs aborti in Π ′.

Proposition 5. Let Π be a protocol and µ(s) be a negligible function of s. Let Π ′ = ToActive(Π). Then
Π securely computes some functionality f in the presence of covert adaptive adversaries with deterrence
ε(s) = 1−µ(s) if and only if Π ′ securely computes f with abort in the presence of active adaptive adversaries.

Proof. Let Π be a protocol that securely computes some functionality f in the presence of covert adaptive
adversaries with deterrence ε(s) = 1− µ(s). Let A be a non-uniform probabilistic polynomial-time adaptive
adversary for the real world and let Z be the environment.

If A does not send cheati, then the ideal world and the real world execution are the same. If A sends
cheati, then the corrupted party gets caught with probability negligibly close to 1, so Π ′ outputs aborti with
probability negligibly close to 1.

For active or passive adversary models, Canetti [Can00] proved that adaptive security implies static or
nonadaptive security. Using the same idea as Canetti’s proof, we prove that covert adaptive security implies
covert static security.

Proposition 6. Let Π be a protocol that securely computes functionality f in the presence of covert adaptive
adversaries with deterrence ε. Then, Π securely computes f in the presence of covert static adversaries with
deterrence ε. Furthermore, assuming the presence of homomorphic public key encryption schemes, there exists
protocols that are secure in the presence of covert static adversaries, but not secure in the presence of covert
adaptive adversaries.

18

Proof. Let Π be a protocol that securely computes functionality f in the presence of covert adaptive adver-
saries with deterrence ε. Let x be a balanced vector of inputs for f .

Let ACS be a static probabilistic polynomial time real world adversary. We construct a probabilistic
polynomial time simulator or ideal world adversary SCS for adversary ACS such that the requirement of
security definition of covert static adversary model with deterrence ε is satisfied.

Let ACA be the adaptive probabilistic polynomial time real world adversary, defined as follows. ACA
receives a value z = (C, δ) from its environment where C is the set of corrupted parties. ACA corrupts the
parties in C and invokes ACS with auxiliary input δ and setting the set of corrupted parties to C. Then

{REALΠ,ACA,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N = {REALΠ,ACS (s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

Define Z to be the environment that, on input z, sends z to the adversary at the start of the execution
and remains inactive from that time. Since Π securely computes functionality f in the presence of covert
adaptive adversaries with deterrence ε, it holds that there exists a simulator SCA such that the following
holds {

IDEALCAεf,SCA,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,ACA,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

Then SCA eventually corrupts the parties in set C.

The simulator SCS works as follows. Given a set C of corrupted parties and auxiliary input δ, SCS invokes
SCA. SCS acts as the environment for SCA and sends z = (C, δ) to SCA. Whenever SCA corrupts a party in
C, SCS sends SCA the input of that party for functionality f . SCS outputs whatever SCA outputs. Then{

IDEALCAεf,SCA,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N =

{
IDEALCSεf,SCS (s, x, z)

}
x,z∈({0,1}∗)n+1;s∈N ,

implying that{
IDEALCSεf,SCS (s, x, z)

}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,ACA,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N

= {REALΠ,ACS (s, x, z)}x,z∈({0,1}∗)n+1;s∈N

Therefore Π securely computes f in the presence of covert static adversaries with deterrence ε.

Next we prove the furthermore part. Aumann and Lindell [AL10] designed a protocol ΠOT for oblivious
transfer secure with deterrence 1

2 in the presence of covert static adversaries. Protocol ΠOT is secure in the
presence of covert static adversaries assuming that homomorphic public key encryption scheme exists. Here
we do not describe the protocol and its security proof due to space. The full protocol ΠOT and its security
proof are available in [AL10].

We describe why protocol ΠOT is not secure in the presence of covert adaptive adversaries. In case of
static adversaries, the adversary corrupts the parties before the execution of the protocol starts and this
set remains fixed throughout the execution of protocol. In case of adaptive adversaries, the adversary can
corrupt the parties before, during and after the execution of the protocol. Here we are considering adaptive
adversaries without erasure. That means the adversary learns the full history of a party after corrupting it.

There are 8 steps in protocol ΠOT . Let SIMS denote the simulator described in the security proof (
for covert static adversaries) by Aumann and Lindell for the case where the sender S is corrupted. In order
to work in the presence of covert adaptive adversaries, the simulators designed for the case of covert static
adversaries need to be modified so that the new simulator works when the adversary can corrupt a party
even after the protocol started and after the protocol finishes its execution. We try to modify the simulator
SIMS for the covert adaptive adversary model.

Consider the adaptive probabilistic polynomial time adversary A that corrupts the sender S before the
execution of ΠOT starts and corrupts the receiver R after step 3 of ΠOT .

In step 3 of protocol ΠOT , the receiver R performs the following actions.

1. R chooses two random bits α, β.

19

2. R computes

c10 = Epk1(α), c20 = Epk1(1− α),

c11 = Epk2(β), c21 = Epk2(1− β)

using random coins r10, r
2
0, r

1
1 and r21, respectively.

3. R sends (c10, c
2
0) and (c11, c

2
1) to S.

Let a valid pair of ciphertexts be a pair of ciphertext such that one of them encrypts zero and the other one
encrypts one. In step 3(b), R sends two vaild pair of ciphertexts, but the order of these ciphertexts in each
pair is selected at random by R.

Up to the end of step 3, the adversary A corrupted only S. So the simulator SIMS has to produce the
message sent by honest R in the ideal world. SIMS simulates step 3 as follows.

1. SIMS chooses two random bits b, α.
2. SIMS computes

c1b = Epk1(α), c2b = Epk1(1− α),

c11−b = Epk2(1), c21−b = Epk2(1).

3. SIMS sends (c10, c
2
0) and (c11, c

2
1) to A.

In step 3(b), SIMS prepares one valid pair of ciphertexts and one invalid pair of ciphertexts. For the invalid
pair of ciphertexts, both ciphertexts encrypt one. SIMS works in this way so that in a later step (step 6),
SIMS can learn the input (x0, x1) of the corrupted sender S and send (x0, x1) to the trusted party. This
part is necessary for the security of ΠOT against covert static adversaries.

When the adaptive adversary A corrupts the honest receiver R after step 3, A gets to know the full
history of R. A is supposed to learn the pair of public key (pk2, sk2) since this key pair was generated by the
receiver R is step 1. From this secret key sk2, A can decrypt the ciphertexts c11−b and c21−b provided by R
in step 3. Then A learns that the pair (c11−b, c

2
1−b) is an invalid pair ciphertexts as both of these ciphertexts

encrypt one. In the real world, the honest receiver R supplies two valid pair of ciphertexts in step 3. In the
ideal world, the simulator provides one valid pair and one invalid pair of ciphertexts in step 3. Then the
adaptive adversary A can distinguish the ideal world from the real world in polynomial time.

There is no other way to modify SIMS so that the modified simulator works in the presence of a covert
adaptive adversary.

Therefore, protocol ΠOT is not secure against covert adaptive adversaries.

5 Sequential Composition Theorem for Covert Adaptive Adversaries

We prove sequential composition theorem for covert adaptive adversary model. We prove this theorem in
a similar way following the method by which Aumann and Lindell [AL10] proved sequential composition
theorem for covert static adversaries.

The Hybrid World.
We first define the hybrid world where the parties run an n-party protocol Π that contains ideal eval-
uations of some n-party functionalities f1, . . . , fp(s). To evaluate these ideal functionalities, parties have
access to a trusted party. The trusted party is called in special rounds, determined by protocol Π. In
each such round, a functionality fi (out of f1, . . . , fp(s)) is specified. The trusted party computing fi
acts as the trusted party in the ideal world of the covert adaptive adversary model with deterrence εi.
First the adversary adaptively corrupts parties, and learns the internal data of corrupted parties. For
each newly corrupted party, the adversary receives information from the environment. Then each honest

20

party Pj sends its input for fi to the trusted party. The input of an honest party Pj for functionality
fi depends on protocol Π. The adversary sends the inputs of the corrupted parties for fi to the trusted
party. The honest parties all send their inputs for fi to the trusted party in the same round. The honest
parties do not communicate among themselves until they receive their output of fi from the trusted
party. The reason for this is that we are considering sequential composition where the ideal evaluation of
a functionality fi is fully finished before the start of the next ideal evaluation of functionality fi+1. The
trusted party computes functionality fi on the received inputs and then sends the respective outputs
of fi to each party. Then the adversary can again adaptively corrupt more parties. After receiving the
outputs for fi from the trusted party, the parties resume the execution of protocol Π. Such a hybrid
world is called the (f1, ε1), . . . , (fp(s), εp(s))-hybrid world.

Definition 29. Let HY BRID
(f1,ε1),...,(fp(s),εp(s))
Π,A,Z (s, x, z, r) denote the output of the environment Z after

parties P1, . . . , Pn performing an execution of protocol Π in the
(f1, ε1), . . . , (fp(s), εp(s))-hybrid world in the presence of adversary A where party Pi has input xi and
random input ri, the adversary A has random input r0, the environment Z has input z and random input
rz, the input vector is x = {x1, . . . , xn}, the vector of random inputs is r = {rz, r0, r1, . . . , rn}, and s is

the security parameter. Let HY BRID
(f1,ε1),...,(fp(s),εp(s))
Π,A,Z (s, x, z, r) denote the random variable describing

the distribution of HY BRID
(f1,ε1),...,(fp(s),εp(s))
Π,A,Z (s, x, z, r) where r is selected uniformly at random from

its domain.

Replacing an ideal evaluation with a subroutine call.
Now we describe how to replace an ideal evaluation of a functionality fi with a protocol ρi within the
execution of protocol Π. Let `i denote the round at which protocol ρi is invoked within protocol Π.
At the start of round `i, each party Pj saves its internal state relevant to protocol Π in a special tape.
Let σj,i denote this state. The call to the trusted party for evaluation of fi is replaced by the execution
of protocol ρi. Let xj,i denote the input of Pj for functionality fi according to protocol Π. Pj sets its
input for execution of ρi to xj,i and sets its random input for ρi to a uniform random element of the
appropriate domain. No honest party resumes execution of protocol Π before the execution of ρi is
finished. All honest parties finish the execution of ρi at the same round. When Pj completes execution of
protocol ρi with output yj,i, Pi resumes the execution of Π starting from state σj,i as if yj,i is the value
that Pj received as its output for fi from the trusted party. If Pj gets corruptedk as its output from
the execution of ρi, then Pj acts as per the instruction of protocol Π. Let Πρ1,...,ρp(s) denote protocol
Π (which is initially designed for the (f1, . . . , fp(s)-hybrid world) where each ideal evaluation call to fi
is replaced by a subroutine call to protocol ρi.

We first describe some terms following [Can00].

An execution of a functionality f in the ideal world is the process of evaluating f in the ideal world with a
given adversary and a given environment on given inputs for the parties, the adversary and the environment,
and given random inputs for the adversary and the environment.

An execution of a protocol Π in the real world is the process of running Π with a given adversary and a
given environment on given inputs and random inputs for the parties, the adversary and the environment.

The internal state of an honest party Pi at a given round ` consists of the following elements:

1. The contents of all tapes of Pi and the head position and the control state at the end of round `.
2. The message received by Pi at round `.
3. The entire random input of Pi (which includes the part of the random input which has not yet been

used).

The internal history of an honest party Pi at a given round ` is the concatenation of the internal states
of of Pi from the beginning of the execution up to round `.

The internal state of the adversary is defined similar to the internal state of a party.

21

The global state at a given round ` is defined to be the concatenation of the internal histories of the honest
parties, the internal state of the adversary and the state of the environment at round `. This definition ensures
that the global state at a given round uniquely determines the rest of the execution of the protocol. The
global state is extended to rounds after the execution of the protocol completes, up to the time when the
environment halts.

Let GSf,A,Z(`, s, x, z, r) denote the global state at round ` of an execution of functionality f in the ideal
world with adversary A, environment Z, security parameter s, input vector x for the parties, input z for the
environment, and vector of random inputs r. Let GSΠ,A,Z(`, s, x, z, r) denote the global state at round ` of
an execution of protocol Π in the real world with adversary A, environment Z, security parameter s, input
vector x for the parties, input z for the environment, and vector of random inputs r.

Lemma 1. Let f be an n-party functionality. Let Π be an n-party protocol to compute f . Define h to be
the reactive functionality such that h acts like the trusted party computing f with deterrence ε in the covert
adaptive adversary model. Then Π securely computes f with deterrence ε in the covert adaptive adversary
model if and only if Π securely computes h in the active adaptive adversary model.

Proof. We first prove the “if” part.

Let Π be a protocol that securely computes f with deterrence ε in the covert adaptive adversary model.
Let A be a probabilistic polynomial time adversary. Let Z be a probabilistic polynomial time environment.
Then there exists a probabilistic polynomial time simulator SCA such that the following holds for every
balanced vector x{

IDEALCAεf,SCA,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N . (1)

For a given adversary A and environment Z, we construct a simulator SAA for functionality h in the
active adaptive adversary model, from the simulator SCA as follows.

Let rf = {rfz , r
f
0 , r

f
1} denote the vector of random inputs of the environment, the adversary and the

trusted party for functionality f . Here rfz is the random input of the environment, rf0 is the random input

of the adversary, and rf1 is the random input of the trusted party. Similarly we define rh = {rhz , rh0 , rh1} as
the vector of random inputs of the environment, the adversary and the trusted party for functionality h.

Let rΠ = {rΠz , rΠ0 , rΠ1 , . . . , rΠn } denote the vector of random inputs of the environment, the adversary
and the parties for protocol Π. Here rΠz is the random input of the environment, rΠ0 is the random input of
the adversary, and rΠi is the random input of party Pi.

Let `er denote the round at which the environment Z halts in the real world. Let `ei denote the round
at which the environment Z halts in the ideal world.

We fix an input vector x, an environment Z with input z, and the security parameter s. We fix the vector
rf . Since h is defined in a way such that it mimics the trusted party computing f , the vector rf works as
the vector rh of random inputs for h. We set rh to be equal to rf . We fix the vector rΠ .

SAA invokes SCA on input A,Z, r0, rz, s where r0 is the random input of A, rz is the random input of Z
and s is the security parameter.

The first corruption stage in the ideal worlds in two definitions are identical. So SAA follows whatever
SCA does.

The set I1 of corrupted parties (the set of parties that are corrupted before the evaluation of functionality
starts in the ideal world or the set of parties that are corrupted before the execution of protocol starts in
the real world) are identical in both executions.

In the computation stage, SAA receives the inputs of the corrupted parties for functionality h from A.
Then SAA sends these inputs to SCA.

If SCA replies with aborti, then SAA sends aborti to A and halts.

If SCA replies with corruptedi, then SAA sends corruptedi to A and halts.

22

If SCA replies with undetected and the inputs of the honest parties, then SAA sends them to A. Then
SAA receives the output vector of the adversary’s choice for the honest parties from A. SAA sends this vector
to SCA and halts.

If SCA replies with the outputs of the corrupted parties, then SAA sends these outputs to A and halts.

By definition, h is a reactive functionality that acts like the trusted party computing f with deterrence
ε in the covert adaptive adversary model.

If A sends aborti as input of a corrupted party Pi, then h sends aborti to the honest parties and halts.

If A sends corruptedi as input of a corrupted party Pi, then h sends corruptedi to the honest parties and
halts.

If A sends cheati as input of a corrupted party Pi, then h acts as follows.

With probability ε, h sends corruptedi to the honest parties and A, and then halts.

With probability (1− ε), h sends undetected and the inputs of the honest parties to A. Then h receives
the vector of outputs of the adversary’s choice for the honest parties from A. Then h sends these outputs to
the corresponding honest parties and halts.

If no input is aborti, corruptedi or cheati, then h computes functionality f and sends each party its
output.

The inputs of the corrupted parties are identical in both executions. The inputs of the honest parties are
identical in both executions.

That means the global state after the execution of f in the computation stage in the ideal world of
the covert adversary model is identically distributed to the global state after the execution of h in the
computation stage in the ideal world of the active adaptive adversary model.

For the remaining stages, SAA follows whatever SCA does.

Therefore

GSh,SAA,Z(`ei, s, x, z, r
h) = GSf,SCA,Z(`ei, s, x, z, r

f). (2)

From (1), we have

GSf,SCA,Z(`ei, s, x, z, r
f)

c≡ GSΠ,A,Z(`er, s, x, z, r
Π). (3)

The real worlds are the same in the active adaptive adversary model and the covert adaptive adversary
model.

From (2) and (3), we have

GSh,SAA,Z(`ei, s, x, z, r
h)

c≡ GSΠ,A,Z(`er, s, x, z, r
Π). (4)

By letting vectors rf and rΠ to be chosen uniformly at random from their domain, from (4), we can say
that the following holds for every balanced vector x

{IDEALh,SAA,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N
c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

That means Π securely computes h in the active adaptive adversary model.

Next we prove the “only if” part.

Let Π be a protocol that securely computes h in the active adaptive adversary model.

LetA be a probabilistic polynomial time adversary. Let Z be a probabilistic polynomial time environment.
Then there exists a probabilistic polynomial time simulator SAA such that the following holds for every

23

balanced vector x

{IDEALf,SAA,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N
c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N . (5)

For a given adversary A and environment Z, we construct a simulator SCA for computing functionality f
with deterrence ε in the covert adaptive adversary model, from the simulator SAA as follows.

We fix an input vector x, an environment Z with input z, and the security parameter s. We fix the vector
rh. Since h is defined in a way such that it mimics the trusted party computing f , the vector rh works as
the vector rf of random inputs for f . We set rf to be equal to rh. We fix the vector rΠ .

SCA invokes SAA on input A,Z, r0, rz, s where r0 is the random input of SAA, rz is the random input of
Z and s is the security parameter.

The first corruption stage in the two definitions are identical. So SCA follows whatever SAA does.

In the computation stage, SCA receives the inputs of the corrupted parties for functionality f from A.
Then SCA sends these inputs to SAA.

For the remaining stages, SCA follows whatever SAA does.

By definition, h is a reactive functionality that acts like the trusted party computing f with deterrence
ε in the covert adaptive adversary model.

Therefore

GSf,SCA,Z(`ei, s, x, z, r
f) = GSh,SAA,Z(`ei, s, x, z, r

h). (6)

From (5), we have

GSh,SAA,Z(`ei, s, x, z, r
h)

c≡ GSΠ,A,Z(`er, s, x, z, r
Π). (7)

From (6) and (7), we have

GSf,SCA,Z(`ei, s, x, z, r
f)

c≡ GSΠ,A,Z(`er, s, x, z, r
Π). (8)

By letting vectors rh and rΠ to be chosen uniformly at random from their domain, from (8), we can say
that the following holds for every balanced vector x{

IDEALSCεf,SCA,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

Therefore Π securely computes f with deterrence ε in the covert adaptive adversary model.

Canetti [Can00] proved sequential composition theorem for the active adaptive adversary model. The se-
quential composition theorem for active adaptive adversaries states that if protocols ρ1, . . . , ρp(s) securely
compute functionalities f1, . . . , fp(s) respectively in the presence of active adaptive adversaries, and protocol
Π securely computes functionality g in the f1, . . . , fp(s)-hybrid world, then Πρ1,...,ρp(s) securely computes
g in the presence of active adaptive adversaries (in the real model) [Can00]. Canetti [Can00] proved the
sequential composition theorem for standard, non-reactive functionalities. As described in Section 2.5, the
proof of Canetti [Can00] can be extended to reactive functionalities.

Theorem 3 (Sequential Composition Theorem for Covert Adaptive Adversary Model.).

Let p(s) be a polynomial. Let f1, . . . , fp(s) be n-party probabilistic polynomial-time functionalities. Let
ρ1, . . . , ρp(s) be protocols that securely compute functionalities f1, . . . , fp(s) in the presence of covert adaptive
adversaries with deterrence ε1, . . . , εp(s), respectively. Let g be an n-party functionality. Let Π be a protocol
that securely computes g in the (f1, ε1), . . . , (fp(s), εp(s))-hybrid world (using a single call to each fi in such
a way that no more than one ideal evaluation of a functionality is made at each round) in the presence of
covert adaptive adversaries with deterrence ε. Then Πρ1,...,ρp(s) securely computes g in the presence of covert
adaptive adversaries with deterrence ε.

24

Proof. For functionality fi, define hi to be the reactive functionality such that it acts as the trusted party
computing fi in the presence of covert adaptive adversaries with deterrence εi. By Lemma 1, protocol ρi
securely computes fi in the presence of covert adaptive adversaries with deterrence εi if and only if ρi securely
computes the reactive functionality hi in the presence of active adaptive adversaries. Then we can apply the
sequential composition theorem for active adaptive adversary model of [Can00] for reactive functionalities
to the functionality Π with a subroutine call to protocol ρi, and thereby obtain the sequential composition
theorem for covert adaptive adversaries.

References

AL10. Yonatan Aumann and Yehuda Lindell. Security Against Covert Adversaries: Efficient Protocols for Realistic
Adversaries. Journal of Cryptology, 23(2):281–343, 2010.

Can00. Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology,
13(1):143–202, 2000.

Can01. Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proceed-
ings, 42nd IEEE Symposium on Foundations of Computer Science — FOCS ’01, pages 136–145, Washing-
ton, DC, USA, 2001. IEEE Computer Society. Full version available at http://eprint.iacr.org/2000/067.

GM84. Shari Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof-
Systems. In Proceedings, 17th Annual ACM Symposium on Theory of Computing — STOC ’85, pages
291–304, New York, NY, USA, 1985. ACM.

Gol06. Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Techniques. Cambridge University Press,
New York, NY, USA, 2006.

Gol09. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press,
New York, NY, USA, 1st edition, 2009.

HL10. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols: Techniques and Constructions.
Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

	Covert Adaptive Adversary Model: A New Adversary Model for Multiparty Computation

