
Relativized Succinct Arguments in the ROM Do Not Exist

Annalisa Barbara
annalisa.barbara@studbocconi.it

Bocconi University

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Ziyi Guan
ziyi.guan@epfl.ch

EPFL

May 12, 2024

Abstract

A relativized succinct argument in the random oracle model (ROM) is a succinct argument in the
ROM that can prove/verify the correctness of computations that involve queries to the random oracle. We
prove that relativized succinct arguments in the ROM do not exist. The impossibility holds even if the
succinct argument is interactive, and even if soundness is computational (rather than statistical).

This impossibility puts on a formal footing the commonly-held belief that succinct arguments require
non-relativizing techniques. Moreover, our results stand in sharp contrast with other oracle models, for
which a recent line of work has constructed relativized succinct non-interactive arguments (SNARGs).
Indeed, relativized SNARGs are a powerful primitive that, e.g., can be used to obtain constructions of IVC
(incrementally-verifiable computation) and PCD (proof-carrying data) based on falsifiable cryptographic
assumptions. Our results rule out this approach for IVC and PCD in the ROM.

Keywords: succinct arguments; relativization; random oracle model

1

Contents

1 Introduction 3
1.1 Our results . 3
1.2 Related work . 5

2 Techniques 7
2.1 Review: relativized SNARGs . 7
2.2 Why not reduce relativized arguments to relativized probabilistic proofs? 7
2.3 Prior techniques for oracle separations . 8
2.4 Separation between DTIME and NARG . 9
2.5 Separation between NTIME and NARG . 10
2.6 The case of relativized interactive arguments . 12
2.7 The random oracle model with cryptography . 13
2.8 Limitations in other oracle models? . 14

3 Preliminaries 15
3.1 Languages and relations . 15
3.2 Oracle Turing machines . 15
3.3 Complexity classes with oracles . 16
3.4 Relativized non-interactive arguments in the ROM . 16

4 Separation of DTIME and NARG 18
4.1 Separation for every security parameter . 18
4.2 Proof of Lemma 4.4 . 19
4.3 Proof of Lemma 4.5 . 20

5 Separation of NTIME and NARG 25
5.1 Separation for every security parameter . 25
5.2 Proof of Lemma 5.4 . 26
5.3 Proof of Lemma 5.5 . 27

6 Alternative separation of NTIME and NARG 32
6.1 Separation for every security parameter . 32
6.2 Proof of Lemma 6.3 . 33

7 The case of IARG in the ROM 39
7.1 Relativized interactive arguments in the ROM . 39
7.2 Separation of DTIME and IARG . 40
7.3 Separation of NTIME and IARG . 42
7.4 Alternative separation of NTIME and IARG . 45

Acknowledgments 48

References 48

2

1 Introduction

Succinct non-interactive arguments (SNARGs) are short cryptographic proofs that admit fast verification.
SNARGs of knowledge (SNARKs) can be used to construct incrementally-verifiable computation (IVC)
[Val08] and proof-carrying data (PCD) [CT10], which are powerful cryptographic primitives that enable
efficient verification of distributed computations. Specifically, IVC and PCD can be obtained by proving the
security of recursive proof composition applied to the underlying SNARK.

Unfortunately, the security analysis of recursive proof composition is asymptotically and concretely
expensive. This is due to the fact that the knowledge soundness property of a SNARK is typically established
assuming certain knowledge assumptions in the standard model (with no oracles), which introduce expensive
blowups. The result is that the security analysis works only for a constant number of recursions [BCCT13;
BCTV14; COS20] because each invocation of the underlying SNARK extractor incurs a polynomial blow-up
in size/time relative to the prior invocation (leading to an exponential blowup in the number of recursions).

One way to avoid the inefficiency of knowledge extraction for SNARKs in the standard model is to
consider knowledge extraction for SNARKs in oracle models, where one may hope to explicitly construct a
highly-efficient knowledge extractor (rather than deduce its existence from a conservatively weak knowledge
assumption). For example, in the random oracle model (ROM), the Micali construction [Mic00] yields a
SNARK whose knowledge extractor is straightline [Val08; BCS16; CY24], i.e., the extractor only needs as
input the query-answer trace of a single execution of the malicious SNARK prover. However, since recursive
proof composition uses the underlying SNARK in a non-black-box way, it is not clear how to construct IVC
and PCD from SNARKs in oracle models without first heuristically instantiating the oracles.

Remarkably, several works circumvent these difficulties by constructing relativized SNARKs in various
oracle models, which are SNARKs that can prove computations that themselves involve queries to the oracle
of the model. In particular, [CT10] constructs relativized SNARKs in the signed random oracle model
(SROM); [CCS22] constructs relativized SNARKs in the low-degree random oracle model (LDROM); and
[CCGOS23] constructs relativized SNARKs in the arithmetized random oracle model (AROM). Some of
these models enable highly-efficient knowledge extractors, leading to significant improvements in the security
reduction of recursive proof composition [CGSY23].

The aforementioned oracle models are substantially less efficient and less convenient to instantiate than
the random oracle model, which is notably missing. In fact, the goal of achieving relativized SNARGs in
alternate oracle models was motivated by the belief that relativized SNARGs in the ROM do not exist. While
this belief is supported by circumstantial evidence (relativized PCPs/IOPs in the ROM do not exist [CL20]),
there is no proof that confirms it. In this paper we study this question:

Do relativized SNARGs in the random oracle model exist?

1.1 Our results

In this work we prove that relativized succinct arguments do not exist in the random oracle model (ROM).
This resolves an open question left open in the line of work on relativized SNARGs, and stands in contrast to
the fact that relativized SNARGs are possible in alternative oracle models of interest.

Below we informally recall the notions of relativized relations/languages and the relevant relativized
complexity classes, and then we state our results in more detail. We denote by O the collection of random
oracles: O := {Oℓ}ℓ∈N where each Oℓ is the uniform distribution over functions f : {0, 1}∗ → {0, 1}ℓ.
Relativized relations and languages. A relation R is a set of instance-witness pairs (x,w), and a language
is a set of instances x. Since in this paper we study relativized complexity classes, we recall the relativized

3

analogues of relations and languages. A relativized relation RO is a collection {Rf}f∈O where each Rf is a
relation; similarly, a relativized language LO is a collection {Lf}f∈O where each Lf is a language.

Relativized complexity classes. We consider the relativized analogues of the complexity classes DTIME
(deterministic computations bounded in time) and NTIME (nondeterministic computations bounded in time).
Informally, for a given time-bound function t : N→ N, DTIMEO[t] is the set of relativized languages decid-
able via a t-step deterministic Turing machine with query access to the random oracle (see Definition 3.11),
and NTIMEO[t] is the set of relativized relations decidable via a t-step nondeterministic Turing machine with
query access to the random oracle (see Definition 3.9).

Similarly, we define a relativized complexity class for relativized non-interactive arguments, focusing on
two efficiency metrics, the argument size and the query complexity of the argument verifier to the random
oracle. Informally, NARGO[as, vq] is the set of relativized relations/languages that can be proved/verified via
a relativized non-interactive argument with constant completeness error, constant soundness error against
bounded-query adversaries, argument size as, and verifier query complexity vq to the random oracle (see
Definition 3.14). All other efficiency parameters are polynomially bounded unless otherwise specified.

Separation for DTIME. In the standard model (with no oracles), SNARGs in the ROM enable verifying
any t-step deterministic computation in time that is polylogarithmic in t. In sharp contrast, we prove that, in
the ROM, relativized SNARGs for relativized deterministic computations do not exist.

Theorem 1 (informal). Let O be the random oracle. For every time-constructible function t : N→ N,

DTIMEO[t] ̸⊆ NARGO[vq = o(t)] .

The theorem considers an expressly weak notion of relativized SNARG: a relativized non-interactive
argument for relativized deterministic computations where the “speedup” is that the argument verifier has
query complexity to the random oracle vq = o(t), sublinear in the trivial query complexity of t (incurred
by directly running the original computation); other efficiency parameters, including the argument verifier’s
running time and argument size, can be poly(t). The theorem says that, even when considering this minimal
notion of succinctness, DTIMEO[t] does not have relativized succinct non-interactive arguments.

Separation for NTIME. Next we consider the case of nondeterministic computations, where argument size
is arguably the fundamental efficiency metric. In the standard model (with no oracles), SNARGs in the ROM
enable verifying any t-step nondeterministic computation via arguments whose size is polylogarithmic in t.
We prove that, in the ROM, relativized SNARGs for relativized nondeterministic computations do not exist.

Theorem 2 (informal). Let O be the random oracle. For every time-constructible function t : N→ N,

NTIMEO[t] ̸⊆ NARGO[as = o(t)] .

Similarly to Theorem 1, the theorem above considers an expressly weak notion of relativized SNARG:
a relativized non-interactive argument for relativized nondeterministic computations where argument size
is as = o(t), sublinear in t (the maximum size of a witness); other efficiency parameters, such as the the
argument verifier’s running time and query complexity to the random oracle, can be poly(t). The theorem
says that, even when considering this minimal notion of succinctness, NTIMEO[t] does not have relativized
succinct non-interactive arguments.

The interactive case. So far we have discussed (and ruled out) relativized SNARGs in the ROM. In fact,
our techniques extend to establish similarly strong impossibility results for relativized succinct interactive
arguments (the argument prover and argument verifier may interact across multiple rounds). Informally,

4

IARGO[pc, vq] is the set of relativized languages that can be proved/verified by an interactive argument with
constant completeness error, constant soundness error against bounded-query adversaries, verifier query
complexity vq, and prover communication complexity pc (see Definition 7.4).

Lemma 1 (informal). Let O be the random oracle. For every time-constructible function t : N→ N,

DTIMEO[t] ̸⊆ IARGO[vq = o(t)] and NTIMEO[t] ̸⊆ IARGO[pc = o(t)] .

Computational soundness. All negative results that we discussed so far hold even if the (non-interactive or
interactive) argument is merely computationally sound: the soundness notion is relaxed to apply only for
computationally bounded adversaries (which, in particular, are query bounded). This extension significantly
strengthens our impossibility results, putting them in sharp contrast with positive results that achieve
relativized SNARGs with computational soundness in other oracle models [CT10; CCS22; CCGOS23].

Relativized IVC and PCD in the ROM. Known constructions of IVC and PCD in the standard model
(without oracles) rely on knowledge assumptions or heuristics. On the other hand, IVC and PCD can be
achieved, in various oracle models, based on falsifiable assumptions (by relying on suitable relativized
SNARKs in those models). The most desirable oracle model remains the ROM; however, the belief is that,
regrettably, IVC and PCD in the ROM cannot be achieved based on falsifiable assumptions. A partial negative
result supporting this belief is that zero-knowledge IVC in the ROM does not exist (provided the existence
of a suitable commitment scheme) [HN23]. The results in this paper provide additional results supporting
this belief: our results imply that relativized IVC and PCD in the ROM do not exist. This is because the
existence of relativized IVC (in particular, PCD) in the ROM would imply, via the bootstrapping approach in
[BCCT13], the existence of a relativized SNARG in the ROM (which is ruled out by our results). Ruling out
the existence of standard (non-relativized) IVC and PCD in the ROM remains an open problem.

1.2 Related work

Relativized SNARGs in other oracle models. Several works construct relativized SNARKs (SNARGs of
knowledge) in oracle models of interest. [CT10] constructs relativized SNARKs in the signed random oracle
model (SROM), a model that combines a signature scheme with the random oracle model. [CCS22] constructs
relativized SNARKs in the low-degree random oracle model (LDROM), an oracle model that considers
random low-degree extensions of random oracles. [CCGOS23] constructs relativized SNARKs in the
arithmetized random oracle model (AROM), an idealization of capabilities associated to the arithmetization
of a hash function. In all of these cases, the relativized SNARKs directly imply corresponding black-box
constructions of PCD (proof-carrying data) in the respective oracle model; if the relativized SNARK is
straightline extractable then the security of PCD is particularly efficient [CGSY23].

SNARGs in the ROM. Standard (non-relativized) SNARGs in the ROM are obtained from probabilistic
proofs [Mic00; BCS16; CY24]; the use of probabilistic proofs is, in a precise sense, inherent [CY20].
A SNARG in the ROM can be straightforwardly made a “relativized NARK” in the ROM by sacrificing
succinctness (which is consistent with the impossibility results in this paper); this observation can be used
towards studying the concrete security of hash-based PCD constructions [CGSY23].

Probabilistic proofs do not relativize. Several works establish impossibility results for relativized probabilis-
tic proofs. [For94] constructs a function f such that, for every k ∈ N, NPf ̸⊆ PCPf [q = nk,vt = poly(n)].
[Cha+94] shows that Prf∈O

[
IPf ̸⊆ PSPACEf

]
= 1. [CL20] shows impossibility results for relativized

PCPs and IOPs. The techniques in this paper build on this line of work; we elaborate on this in Section 2.

5

Relativization and other barriers. A line of work studies the limitations of certain proof techniques for
establishing results in structural complexity theory [Dek69; BGS75; Lis86; Hel86; AIV92; For94; Cha+94;
AW09; IKK09; AB18]. For example, the relativization barrier refers to the limitations of proof techniques
that are independent of which “relativized world” they live in. As discussed in Section 2.3, the techniques
used in this work have their origins in works that study the relativization barrier. However, the goal of this
work is different: we show that relativized succinct arguments in the ROM do not exist, regardless of any
underlying techniques that one may attempt to use to construct them.

6

2 Techniques

We outline the main ideas underlying our results. Later sections contain the technical details.

2.1 Review: relativized SNARGs

We informally describe relativized SNARGs in the ROM to facilitate discussions in this technical overview;
formal definitions are provided in Section 3.4. A relativized SNARG in the ROM is a SNARG for relativized
relations/languages in the ROM. Namely, we say that (P,V) is a SNARG for a relativized relation RO if it
satisfies the completeness and soundness properties below. (Since in this work we prove negative results,
both properties are deliberately weak: we allow large completeness and soundness errors.)

• Completeness: For every security parameter λ ∈ N and every adversary A,

Pr

 (x,w) ∈ Rf

∧Vf (x, π) = 0

∣∣∣∣∣∣
f ← Oλ

x← Af

π ← Pf (x,w)

 ≤ 1

3
.

• Soundness: For every security parameter λ ∈ N and every poly(λ)-query adversary P̃ ,

Pr

[
x /∈ L(Rf)
∧Vf (x, π) = 1

∣∣∣∣ f ← Oλ

(x, π)← P̃f

]
≤ 1

3
.

The case of a SNARG for a relativized language LO is the special case where there are no witnesses.1

We shall care about the following efficiency measures: pq denotes the query complexity of the (honest)
prover P; vq denotes the query complexity of the verifier V; and as := |π| denotes the argument size.

In this technical overview, we suppress the security parameter λ for simplicity.

2.2 Why not reduce relativized arguments to relativized probabilistic proofs?

All known SNARG constructions in the ROM are based on probabilistic proofs and, in fact, any non-trivial
SNARG in the ROM implies a non-trivial probabilistic proof [CY20]. This suggests a natural approach: can
we reduce the existence of non-trivial relativized SNARGs in the ROM to non-trivial relativized probabilistic
proofs in the ROM? This may suffice for our goal because [CL20] establishes strong impossibility results for
relativized probabilistic proofs in the ROM.

We explain how this reasonable approach yields some progress but does not suffice for our results.
For concreteness, we recall the limitations for relativized PCPs. Let PCPO[q,vt] be the set of relativized

languages LO for which there exists a PCP verifier V (a probabilistic Turing machine) with oracle access to
the random oracle that runs in time vt and makes q queries to the given PCP string such that

Prf∈O

[
Vf is a PCP verifier for Rf

]
= 1 .

[CL20] shows that, for every time-constructible function t : N → N, NTIMEO[t] and DTIMEO[t] do not
have non-trivial relativized PCPs in the ROM:

DTIMEO[t] ̸⊆ PCPO[vt = o(t)] and NTIMEO[t] ̸⊆ PCPO[q = o(t)] .

1Explicitly: in completeness, the honest prover receives as input only the instance x and the condition x ∈ Lf replaces the
condition (x,w) ∈ Rf ; and, in soundness, the condition x /∈ Lf replaces the condition x /∈ L(Rf).

7

Indeed, for deterministic computation they consider the expressly weak goal of PCP verifier time vt = o(t)
(slightly better than the trivial decision time of t) and for nondeterministic computations they consider the
expressly weak goal of PCP verifier query complexity q = o(t) (slightly better than the trivial witness size).

In fact, their results straightforwardly extend to the case of interactive oracle proofs (IOPs), which are a
multi-round analogue of PCPs:

DTIMEO[t] ̸⊆ IOPO[vt = o(t)] and NTIMEO[t] ̸⊆ IOPO[q = o(t)] . (1)

Ideally, we would like to show that a non-trivial relativized SNARG in the ROM contradicts the above
impossibility results. Towards this end, we recall that [CY20] provides a transformation from any SNARG in
the ROM to a non-trivial IOP (in the standard model without oracles). Given a non-interactive argument in
the ROM with constant completeness error, constant soundness error (against bounded-query adversaries),
argument size as, prover query complexity to the random oracle pq, verifier query complexity to the random
oracle vq, and verifier running time vt, the transformation outputs an IOP with constant completeness error,
constant soundness error, verifier running time O(vt+ vq · pq), and verifier query complexity O(as+ vq) (to
the IOP strings).2

We observe that the transformation in [CY20] can be adapted to the relativized setting with essentially no
losses in parameters: the input to the transformation is a relativized SNARG in the ROM, and the output is a
relativized IOP in the ROM. Thus, we get that if a relativized language LO is in NARGO[pq, as, vq, vt] then
LO is in IOPO[q = as+ vq,vt = vt+ vq · pq]. We can combine this transformation with the impossibility
results for relativized IOPs in Equation (1) as follows.

Consider a relativized non-interactive argument with vt = o(t) and vq · pq = o(t). The transformation
produces a relativized IOP with verifier running time vt = vt+ vq · pq = o(t). Then, by Equation (1), we
conclude that

DTIMEO[t] ̸⊆ NARGO[vt = o(t), vq · pq = o(t)] .

Similarly, the transformation applied to a relativized non-interactive argument with vq = o(t) and as = o(t)
yields a relativized IOP with verifier query complexity q = as + vq = o(t). Then, by Equation (1), we
conclude that

NTIMEO[t] ̸⊆ NARGO[as = o(t), vq = o(t)] .

Both of these statements are strictly weaker than our Theorem 1 and Theorem 2: the DTIME result
imposes considerable unnecessary constraints on the verifier running time vt and (unrealistically) the honest
prover query complexity pq; and the NTIME result imposes an unnecessary constraint on the verifier query
complexity vq. Whether the transformation of [CY20] can be further improved (and adapted to the relativized
setting) remains an open problem; in this paper we take a different, more direct, approach to prove our results.

2.3 Prior techniques for oracle separations

A line of works show the impossibility of probabilistic proofs in relativized worlds. [For94] uses diago-
nalization to construct a function f such that, for every k ∈ N, NPf ̸⊆ PCPf [q = nk,vt = poly(n)].
[Cha+94] shows that IPO ̸⊆ PSPACEO, more precisely, that Prf∈O

[
IPf ̸⊆ PSPACEf

]
= 1. [CL20] shows

the impossibility results for relativized PCPs and IOPs discussed in Section 2.2. The techniques used across
these works are interrelated. As we shall build on these techniques, we find it helpful to review the ideas
underlying, e.g., the separation DTIMEO[t] ̸⊆ PCPO[vt = o(t)] in [CL20].

2The statement also extends to work for any given completeness error and soundness error.

8

The proof consists of identifying a relativized language L⋆
O that is in DTIMEO[t] (easy to prove) but not

in PCPO[vt = o(t)] (the actual challenge).
Consider two oracles f1 : {0, 1}∗ → {0, 1}∗ and f2 : {0, 1}∗ → {0, 1}∗ that differ in a random location

q ∈ {0, 1}t. No o(t)-time algorithm can distinguish f1 and f2 with non-negligible probability. More
generally, if f1 and f2 differ on a small random set Q ⊆ {0, 1}t, no o(t)-time algorithm can tell them apart.
Below we use dist(f1, f2) to denote the (possibly infinite) number of x ∈ {0, 1}∗ such that f1(x) ̸= f2(x).

Using the intuition above, the relativized language L⋆
O is designed such that there exists a special instance

x whose membership in L⋆
O depends on the answers to a set Qx of t different queries to the oracle function.

There is a set of oracle functions F ⊆ {f ∈ O : x ∈ L⋆
f} with non-zero measure such that for every f ∈ F

there is another function f ′ ∈ O for which x /∈ L⋆
f ′ and dist(f, f ′)≪ t.

By the completeness of the PCP, since x ∈ L⋆
f , there exists a PCP proof Πf such that Vf,Πf (x) = 1 with

high probability. On the other hand, since the PCP verifier V makes o(t) queries to the random oracle (V runs
in time o(t)), with high probability V cannot distinguish f and f ′. We deduce that Vf ′,Πf (x) also accepts
with high probability. However, this contradicts the soundness of the PCP since x /∈ L⋆

f ′ . Since the measure
of the set F is non-zero, we deduce that L⋆

O /∈ PCPO[vt = o(t)], as desired.
Informally, we directly prove that relativized SNARGs in the ROM do not exist, by building on the above

ideas. This requires overcoming several challenges, as we discuss in Section 2.4 for the case DTIMEO[t] and
then in Section 2.5 for the (harder) case of NTIMEO[t].

2.4 Separation between DTIME and NARG

The contradiction in Section 2.3 is obtained by finding a set of functions with non-zero measure for which
PCP soundness is not satisfied. From this starting point we encounter two challenges to prove Theorem 1.

Challenge 1: soundness is average-case. The definition of a PCP in the ROM for relativized languages
requires that, with probability 1 over the choice of the random oracle f ∈ O, the PCP verifier V decides Lf

with constant completeness error and constant soundness error. On the other hand, SNARGs are defined so
that the completeness and soundness errors are relative to a random choice of oracle f ∈ O (see Section 2.1).3

Unfortunately, the proof sketch in Section 2.3 fails to work because it focuses on oracles that lie in a small
subset F ⊆ O of measure roughly 2−t, which does not suffice to contradict SNARG soundness, unless the
completeness and the soundness error of the SNARG are exponentially close to each other.4

Challenge 2: soundness is against query-bounded adversaries. The security guarantee of PCPs and
SNARGs are qualitatively different: PCPs are information-theoretically sound, while SNARGs are sound
against bounded-query adversaries.

Recall that in Section 2.3, for every f in the hard set F , one can construct another function f ′ such that
x /∈ L⋆

f ′ and dist(f, f ′)≪ t. Moreover, there exists a PCP string Πf such that the PCP verifier Vf ′,Πf (x)
accepts with high probability over the PCP randomness. In particular, by completeness of the PCP, the PCP
string Πf can be generated by the honest PCP prover P given oracle access to f (since x ∈ L⋆

f).
However, in the context of SNARGs, this approach cannot be directly applied. Let πf be the argu-

ment string generated by the honest argument prover Pf (x). First, we cannot deduce from the SNARG
completeness that Vf (x, πf) accepts with high probability over the private randomness of V (because of

3This is consistent with all prior work on relativized SNARGs, and also with the definitions of completeness and soundness for
standard (non-relativized) SNARGs. In fact, requiring soundness to hold with probability 1 over the choice of random oracle would
be too strong (all known non-relativized SNARGs in the ROM [Mic00; BCS16; CY24] do not satisfy such a strong notion).

4One would need β
1−α

< 2−t where α and β are the completeness error and the soundness error of the non-interactive argument.
This is a restrictive and extremal parameter regime.

9

Challenge 1). Moreover, even if we could conclude that Vf ′
(x, πf) accepts with high probability over the

private randomness of V , this does not contradict the SNARG soundness unless πf can be generated by a
query-bounded adversary with oracle access to f ′ (rather than f).

Solution 1. Some prior work proves stronger statements than needed for random oracle separations. For
example, [CL20] shows an almost-everywhere separation between DTIMEO and PCPO:

Prf∈O

[
DTIMEf ̸⊆ PCPf [vt = o(t)]

]
= 1 .

We cannot hope to show such a strong statement for relativized arguments. Nevertheless, this statement
provides a better starting point for us to reason about the average behavior over f ∈ O. Inspired by the
proof of the almost-everywhere separation, we observe that for every f ∈ O there is a large subset Qf ⊆ Qx
(|Qf | ≥ t − o(t)) where no query-bounded verifier Vf queries any location in Qf with high probability.
Hence, for a randomly sampled f such that x ∈ L⋆

f , one can construct f ′ where x /∈ L⋆
f ′ by flipping the

answers to a random query in Qx without being detected by any query-bounded verifier V . More formally,

Pr

[
V distinguish f and f ′

∣∣∣∣ f ← O
q ← Qx

]
= Pr

[
q ∈ Qf

∣∣∣∣ f ← O
q ← Qx

]
≥ t− o(t)

t
.

This allows us to adapt ideas in Section 2.3 and apply them to every f ∈ O instead of to only a small set F .

Solution 2. We construct a query-efficient argument adversary P̃f ′
that computes the argument string πf

output by the honest argument prover Pf (x) (note the different oracles). The relativized language L⋆
O is

designed so that, for every f ∈ F , there is a special query qf ∈ Qx where one can define f ′ such that x /∈ L⋆
f ′

as follows:

• for every q ̸= qf , f ′(q) := f(q);
• f ′(qf) is the bitwise complement of f(qf).

In fact, there is a one-to-one correspondence between f and f ′. The adversary P̃f ′
(x) is defined as follows.

P̃f ′
(x): Simulate the honest prover P(x) by using f ′(q) to answer queries q ̸= qf and using the bitwise

complement of f ′(qf) to answer the query qf ; this leads to an output π. Output π.

Clearly, P̃f ′
(x) = Pf (x). Moreover, the number of queries made by P̃ to f ′ equals the number of queries

made by P to f . Since P is query efficient so is P̃ , and we get a contradiction to the SNARG soundness.

2.5 Separation between NTIME and NARG

Theorem 1 (separation between DTIMEO and NARGO) rules out relativized SNARGs where the verifier has
query complexity vq = o(t) to the random oracle. Instead, Theorem 2 (separation between NTIMEO and
NARGO) rules out relativized SNARGs with argument size as = o(t), even if the verifier makes vq = poly(t)
queries to the random oracle. The relativized language L⋆

O we discussed in Section 2.4 can be decided by an
argument verifier with poly(t) queries, without any help from the argument prover. Hence, we must consider
languages/relations that cannot be decided with poly(t) queries.

The relativized relation R⋆
O = {R⋆

f}f∈O we use to prove Theorem 2 has the following form:

R⋆
f :=

{
(x,w) ∈ {0, 1}n × {0, 1}t(n) : ∀ q ∈ Sx,w, the first bit of f(q) is 0

}
,

10

where Sx,w is a set of O(t) queries and, for every w′ ̸= w, Sx,w ∩ S
x,w′ = ∅. The relativized relation R⋆

O
can be (straightforwardly) decided by a nondeterministic Turing machine that runs in time O(t). On the other
hand, it is unclear how a poly(t)-query argument verifier V , on input x, can decide whether there exists a
witness w such that (x,w) ∈ R⋆

O; finding the witness alone would take much more than poly(t) queries.
Recall that Theorem 1 relied on the fact that an argument verifier V with small query complexity cannot

distinguish f1 and f2 that differ at few random locations. While now the argument verifier V can make
poly(t) queries, we can nevertheless deduce an upper bound on the maximum total number of distinct queries
that V can make across all possible argument strings. For every random oracle f ∈ O and argument string π,
let N(Vf (x, π)) be the number of distinct queries V(x, π) makes to f . Then, for every f ∈ O,∑

π∈{0,1}o(t)
N(Vf (x, π)) ≤

∑
π∈{0,1}o(t)

poly(t) = 2o(t) · poly(t) = 2o(t) .

Namely, Vf (x, ·) makes at most 2o(t) distinct queries to the random oracle f across all possible argument
strings π ∈ {0, 1}o(t). We do not expect an algorithm to decide the membership of x in the relativized
language L(R⋆

O) with 2o(t) queries.
However, the ideas underlying the proof of Theorem 1, in which random oracles are partitioned via a

one-to-one correspondence, do not seem to extend: the relativized relation RO ∈ NTIMEO[t] does not satisfy
this property (nor do we know of other hard relations that do). Given f ∈ O where x ∈ L(R⋆

f), one has
to find every w ∈ {0, 1}t such that (x,w) ∈ R⋆

f in order to construct f ′ with x /∈ L(R⋆
f ′). On the other

hand, given f ∈ O and x /∈ L(R⋆
f), one can easily construct f ′ such that x ∈ L(R⋆

f ′): choose an arbitrary
w ∈ {0, 1}t and, for every q ∈ Sx,w, set the first bit of f ′(q) to 0. However, this construction is “destructive”:
we cannot revert f ′ back to f . In other words, it is not possible to simulate f with f ′ as in Section 2.4.

The key idea here is that although we cannot hope to have the one-to-one correspondence, it is sufficient
to obtain a one-to-M correspondence for some fixed constant M . In particular, consider an arbitrary f ∈ O
such that x /∈ L(R⋆

f). For every possible witness w ∈ {0, 1}t, we can construct f ′ ∈ O where (x,w) ∈ R⋆
f ′

by setting the first bit of f ′(q) to 0 for every q ∈ Sx,w. Hence, every f with x /∈ L(R⋆
f) corresponds to

M = 2t different f ′ with x ∈ L(R⋆
f ′). The rest of the argument follows similarly as in Section 2.4 with a

careful counting analysis; we refer the readers to Section 5 for more details.

Remark 1. Since DTIMEO[t] ⊆ NTIMEO[t], Theorem 1 implies the following statement

NTIMEO[t] ̸⊆ NARGO[vq = o(t)] . (2)

In other words, NTIMEO[t] does not have relativized non-interactive arguments where the argument verifier
makes vq = o(t) queries to the random oracle, regardless of the argument size.

In Section 6 we provide a “direct” proof of Equation (2), incomparable to the proof of Theorem 1. We
prove that the relativized relation R⋆

O above (used to prove Theorem 2) is also not in NARGO[vq = o(t)].
We outline the proof idea. Similarly to the proof of Theorem 1, if the argument verifier V makes vq = o(t)

queries to the random oracle, then it cannot distinguish between f and f ′ that differ at few random locations.
However, the challenge is to obtain the one-to-one correspondence.

Given f ∈ O with (x,w) ∈ R⋆
f , it is easy to construct f ′ such that (x,w) /∈ R⋆

f ′: set the first bit of f ′(q)
to 1 for all q ∈ Sx,w. However, it still might be the case that x ∈ L(R⋆

f ′) because there could be another
witness w′ ̸= w such that (x,w′) ∈ R⋆

f ′ . We resolve this issue by considering the following set U1 of oracle
instances:

U1 :=
{
f ∈ O : ∃!w s.t. (x,w) ∈ R⋆

f

}
.

11

For every f in the above set, we can construct f ′ by flipping the first bit of f(q) for an arbitrary q ∈ Sx,w to
ensure that x /∈ R⋆

f ′ . Moreover, one can easily simulate f given oracle access to f ′. Since the measure of the
set U1 is a constant, we can adapt the proof for Theorem 1 and get the desired result.

We stress that the above approach does not work when proving Theorem 2, as an argument verifier with
poly(t) queries can distinguish f ∈ U1 and its corresponding f ′ with high probability.

2.6 The case of relativized interactive arguments

Our discussions so far have focused on (proving the impossibility of) relativized SNARGs in the ROM.
Indeed, relativized SNARGs directly lead to PCD and they have been achieved in various oracle models
beyond the ROM [CT10; CCS22; CCGOS23; CGSY23]. However, from the perspective of an impossibility
result, we find it natural to additionally ask: Do relativized succinct arguments in the ROM exist, if we allow
the succinct argument to be interactive? We explain how, with this relaxation, the answer remains negative.

Why not unroll the interactive argument? A first attempt to prove the impossibility of relativized succinct
interactive arguments may be to reduce the interactive case to the non-interactive case.

Indeed, this is possible in the case of probabilistic proofs: [CL20] establishes the impossibility of
relativized PCPs in the ROM, and subsequently generically reduces relativized IOPs (the multi-round
generalization of PCPs) to the case of relativized PCPs. This reduction is rather straightforward: any IOP
(relativized or not) can be “unrolled” into a (much longer!) corresponding PCP while, crucially, leaving the
efficiency of the verifier intact (the verifier computation and queries remain unaffected). Since the results in
[CL20] depend on the efficiency of the verifier, the impossibility of relativized IOPs in the ROM follows
from the impossibility of relativized PCPs in the ROM.

We can similarly “unroll” an interactive argument to obtain a corresponding non-interactive protocol that
can be viewed as a relaxation of a non-interactive argument where the argument verifier has query access
to the argument string; in other words, a probabilistically-checkable argument [KR09] in the ROM that is
secure against query-bounded adversaries. Given a relativized interactive argument IARG = (P1,V1) for an
relativized relation RO, define a relativized probabilistically-checkable argument PCA = (P2,V2) for RO.

• Pf
2 (x,w):

1. For every possible verifier randomness ρ ∈ {0, 1}vr: simulate the interaction ⟨Pf
1 (x,w),Vf (x, ρ)⟩ and

let (bρ,i)i∈[k] be the list of messages sent by Pf
1 (1

λ,x,w) during the interaction.
2. Output the argument string π := (((bρ,i)i∈[k]))ρ∈{0,1}vr .

• Vf,π2 (x):

1. Sample verifier randomness ρ← {0, 1}vr.
2. Query π at ρ to obtain (bi)i∈[k] := π[ρ].
3. Output the decision bit d := Vf1 (x, ρ, (bi)i∈[k]).

While the argument string π is huge, the argument verifier only reads a small portion of π corresponding to
a single interaction and, moreover, the verifier query complexity to the random oracle is unaffected by the
unrolling. In particular, if IARG = (P1,V1) is succinct then PCA = (P2,V2) is “non-trivial”.

Can we hope to prove impossibility results for interactive arguments (as in our Lemma 1) by: (a) extending
our impossibility results for non-interactive arguments to the case of probabilistically-checkable arguments,
and then (b) relying on the above reduction? The extension can be carried out (the techniques directly
extend); however, there a problem arises in the second step. As discussed in Section 2.4, in the context of

12

relativized arguments, it is important that the honest argument prover queries the random oracle at most
polynomially many times, otherwise the soundness guarantee does not yield any contradiction (it only applies
to query-bounded adversaries). In the transformation above, the query complexity of the honest argument
prover increases by a multiplicative factor of 2vr. Overall, this unrolling approach seems to fail.

Our approach. We take a direct approach to proving Lemma 1. We observe that the ideas that we sketched
in Sections 2.4 and 2.5 can be “lifted” to directly work for interactive arguments, where the prover-to-verifier
communication complexity pc replaces the argument size as (and the argument verifier query complexity to
the random oracle remains the same notion). For example, we rely on the fact that the argument verifier does
not have enough queries to distinguish “close but opposite” oracle functions. In the context of non-interactive
arguments, the number of distinct queries an argument verifier can make for a give instance x depends only
on its query complexity and the argument size. Similarly, in the context of interactive arguments, the number
of distinct queries the verifier can make for a given instance x depends only on its query complexity and the
prover-to-verifier communication complexity. Hence, we can extend the proofs for non-interactive arguments
directly to work for interactive arguments.

In fact, our impossibility results for relativized interactive arguments imply our results for relativized
non-interactive arguments as a special case. Nevertheless, we find it helpful to keep the technical overview
and technical sections focused on the notationally simpler case of non-interactive arguments. Hence, the
technical details underlying our results for non-interactive arguments are in Sections 4 to 6 and, separately,
we explain how to extend them to work for interactive arguments in Section 7.

2.7 The random oracle model with cryptography

We have so far discussed relativized NARGs (and IARGs) in the “pure” ROM, namely, where adversaries are
query bounded but can be computationally unbounded. Here we discuss a relaxation, where the soundness
notion of a relativized SNARG applies only for computationally bounded adversaries (which, in particular,
are query bounded). Informally, (P,V) is a computationally-sound SNARG for a relativized relation RO if it
satisfies the following relaxed notion of soundness:

• Computational soundness: For every security parameter λ ∈ N and every poly(λ)-size adversary P̃ ,

Pr

[
x /∈ L(Rf)
∧Vf (x, π) = 1

∣∣∣∣ f ← Oλ

(x, π)← P̃f

]
≤ 1

3
.

Such a relaxation is essential for all known constructions of relativized SNARGs in other oracle models:
[CT10; CCS22; CCGOS23] all rely on some computational hardness assumption to achieve relativized
SNARGs in their respective oracle models. This raises the question: can we rule out the existence of
relativized SNARGs (and IARGs) that only satisfy computational soundness?

We show that the proof ideas sketched so far extend to rule out relativized SNARGs (and IARGs) with
computational soundness. Intuitively, this is because the argument adversaries outlined in Sections 2.4 and 2.5
preserve the query complexity and the running time of the honest argument prover. Therefore we can still
invoke the computational soundness property to reach a contradiction. The formal definitions, theorem
statements, and proof details in this paper are written to directly rule out relativized succinct arguments with
computational soundness (which for simplicity we just refer to as “soundness”).

Overall, this extension significantly strengthens the impossibility results in this paper, putting them in
sharp contrast with the aforementioned possibility results in other oracle models [CT10; CCS22; CCGOS23].

13

2.8 Limitations in other oracle models?

The results in this paper rule out relativized succinct arguments in the ROM, even with only computational
soundness. The landscape of relativized succinct arguments in other oracle models of interest is not clear.

For example, consider the low-degree random oracle model (LDROM), which is the distribution of
random oracles extended to some given low degree. [CCS22] constructs relativized SNARGs in the LDROM
with computational soundness (the construction relies on a collision-resistant hash function). Hence one
cannot prove impossibility results for the LDROM that are analogous to those we prove for the ROM; at
best, one could hope to rule out relativized succinct arguments in the LDROM with statistical (rather than
computational) soundness.

However, the techniques we used for impossibility results in the ROM do not seem useful for the LDROM.
As sketched in Section 2.3, the “hardness” of a random oracle comes from the fact that two oracles with
small distance may determine differently the membership of a given instance in the relativized language. In
contrast, in the LDROM, oracles are low-degree polynomials, which are far from one another.

This notwithstanding, [CL20] proves that probabilistic proofs in the LDROM do not exist, via a somewhat
different approach: they consider a subset of low-degree random oracles that admits “hardness”. In particular,
they identify a subset of low-degree polynomials that are hard to distinguish from the all-zero polynomial for
any query-bounded algorithm and establish some weaker separation result (somewhere separation instead
of almost-everywhere separation) in the LDROM for NTIME and PCP. We do not see how their approach
could be made to work for SNARGs because the SNARG might fail over the hard subset of oracles but still
behave nicely on average (the hard set has exponentially small measure).

Overall, the case of the LDROM remains not clear, and highlights that the study of relativized probabilistic
proofs and of relativized succinct arguments can lead to completely different answers, from which we learn
that the two research questions are qualitatively different.

A similar open question exists for the arithmetized random oracle model (AROM) in [CCGOS23]: they
construct relativized SNARGs in the AROM with computational soundness, but it is unknown if relativized
SNARGs in the AROM with statistical soundness exist or not.

14

3 Preliminaries

3.1 Languages and relations

Definition 3.1 (Language). A language L is a set of instances x.

Definition 3.2 (Relation). A relation R is a set of tuples of instance and witness (x,w).

Definition 3.3 (Oracle). An oracle is a collection of distributions over functions, with one distribution
per output length. An oracle is a collection U = {Uℓ}ℓ∈N where each Uℓ is a distribution over functions
u : {0, 1}∗ → {0, 1}ℓ.

For each ℓ ∈ N, we write u← Uℓ to denote that u is a sample of the distribution Uℓ. We write u ∈ Uℓ to
denote that u is in the support of the distribution Uℓ.

Each Uℓ induces a corresponding probability measure µUℓ
(X) for a set X of functions from {0, 1}∗ →

{0, 1}ℓ, which is the probability that a sample u from Uℓ belongs to X .

Definition 3.4 (relativized language). Let U be an oracle. An relativized language LU is a collection of
languages indexed by output length ℓ ∈ N and functions u ∈ Uℓ, namely,

LU := {Lu}ℓ∈N,u∈Uℓ
.

Definition 3.5 (relativized relation). Let U be an oracle. An relativized relation RU is a collection of relations
indexed by output length ℓ ∈ N and functions u ∈ Uℓ, namely,

RU := {Ru}ℓ∈N,u∈Uℓ
.

The relativized language corresponding to the relativized relation RU , denoted L(RU), is defined as follows:

L(RU) := {L(Ru)}ℓ∈N,u∈Uℓ
,

where each L(Ru) := {x : ∃w s.t. (x,w) ∈ Ru}.

Definition 3.6. A random oracle O is defined as follows:

O := {Oℓ}ℓ∈N ,

where each Oλ is the uniform distribution over functions f : {0, 1}∗ → {0, 1}ℓ.

3.2 Oracle Turing machines

We consider Turing machines that can query oracles. An oracle machine is a machine that has black-box
access to a function f : {0, 1}∗ → {0, 1}∗ that the machine can query. Each query costs the machine a single
computational step.

Definition 3.7. An oracle Turing machine M is a Turing machine that has two additional special tapes, the
oracle query tape and the oracle answer tape, and two additional special states, the QUERY state and the
ANSWER state. Given input x ∈ {0, 1}∗ and oracle f : {0, 1}∗ → {0, 1}∗, Mf (x) works as follows:

• The input x is written in the input tape.
• The execution of M proceeds as a normal Turing machine computation except when M intends to make a

query to the oracle, then it enters the QUERY state.

15

• In the QUERY state, M writes its query q ∈ {0, 1}∗ in the query tape.
• In the following step, M enters the ANSWER state and the content in the answer tape becomes f(q) ∈
{0, 1}∗.

We consider deterministic oracle Turing machines, nondeterministic oracle Turing machines, and proba-
bilistic oracle Turing machines with the standard definitions of deterministic Turing machines, nondetermin-
istic Turing machines, and probabilistic Turing machines in prior literature.

3.3 Complexity classes with oracles

Nondeterministic time. A nondeterministic machine M is an ND-decider for a relation R if for every
(x,w) it holds that M(x,w) = 1 if and only if (x,w) ∈ R.

Definition 3.8 (NTIME). Let t be a time-constructible function. The complexity class NTIME[t] is the set of
relations R such that there exists a ND-decider that runs in time O(t).

Definition 3.9 (Relativized NTIME). Let U be an oracle. Let t be a time-constructible function. The
complexity class relativized NTIMEU [t] is the set of relativized relations RU = {Ru}ℓ∈N,u∈Uℓ

such that there
exists an oracle nondeterministic machine M that runs in time O(t) and, for every ℓ ∈ N,

Pr [Mu is an ND-decider for Ru | u← Uℓ] = 1 .

Deterministic time. A deterministic machine M is a decider for a language L if for every x it holds that
M(x) = 1 if and only if x ∈ L.

Definition 3.10 (DTIME). Let t be a time-constructible function. The complexity class DTIME[t] is the set
of languages L such that there exists a ND-decider that runs in time O(t).

Definition 3.11 (Relativized DTIME). Let U be an oracle. Let t be a time-constructible function. The
complexity class relativized DTIMEU [t] is the set of relativized relations LU = {Lu}ℓ∈N,u∈Uℓ

such that there
exists an oracle deterministic machine M that runs in time O(t) and, for every ℓ ∈ N,

Pr [Mu is a decider for Lu | u← Uℓ] = 1 .

3.4 Relativized non-interactive arguments in the ROM

A relativized non-interactive argument in the ROM (random oracle model) for an relativized relation RO
is a tuple of algorithms NARG = (P,V) that works as follows: For every λ ∈ N and f ∈ Oλ,

• Pf (1λ,x,w)→ π: Given oracle access to f : {0, 1}∗ → {0, 1}λ, on input the security parameter λ ∈ N,
an instance x and a witness w, the prover P computes an argument string π that attests to the claim that
(x,w) ∈ Rf .

• Vf (1λ,x, π)→ b: Given oracle access to f : {0, 1}∗ → {0, 1}λ, on input the security parameter λ ∈ N,
an instance x and a corresponding argument string π, the verifier V outputs a decision a bit b.

Definition 3.12 (Completeness). For every security parameter λ ∈ N, instance size bound n ∈ N, and
adversary A,

Pr

 |x| ≤ n ∧ (x,w) ∈ Rf

⇓
Vf (1λ,x, π) = 1

∣∣∣∣∣∣
f ← Oλ

(x,w)← Af

π ← Pf (1λ,x,w)

 ≥ 1− α(λ, n) .

16

Definition 3.13 (Soundness). For every security parameter λ ∈ N, instance size bound n ∈ N, adversary
query bound qP̃ ∈ N, adversary time bound tP̃ ∈ N, and qP̃ -query tP̃ -time adversary P̃ ,

Pr

 |x| ≤ n
∧x /∈ L(Rf)
∧Vf (1λ,x, π) = 1

∣∣∣∣∣∣ f ← Oλ

(x, π)← P̃f

 ≤ β(λ, n, qP̃ , tP̃) .

Efficiency measures. We consider several efficiency measures. For every security parameter λ ∈ N,
instance size bound n ∈ N, and oracle function f ∈ Oλ:

• the argument size as(λ, n) is the maximum number of bits in the argument string π;
• the verifier query complexity vq(λ, n) is the maximum number of queries to the oracle by the verifier V;
• the verifier running time vt(λ, n) is the maximum number of operations performed by the verifier V;
• the honest prover query complexity pq(λ, n) is the maximum number of queries to the oracle by the prover
P;

• the honest prover time pt(λ, n) is the maximum number of operations performed by the prover P;
• the verifier randomness complexity vr(λ, n) is the number of bits of randomness used by the argument

verifier V;
• the honest prover randomness complexity pr(λ, n) is the number of bits of randomness used by the

argument prover P .

Definition 3.14 (Relativized NARG in the ROM). Let O be the random oracle. The complexity class

NARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
argument size as = as(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


is the set of relativized relations RO = {Rf}λ∈N,f∈Oλ

that admits a relativized non-interactive argument
(P,V) such that the following holds:

• (P,V) has completeness error α and soundness error β;
• the verifier query complexity is vq;
• the verifier running time is vt;
• the argument size is as;
• the honest prover query complexity is pq;
• the honest prover running time is pt.

17

4 Separation of DTIME and NARG

Theorem 4.1. Let O be the random oracle. For every time-constructible function t : N → N, argument
verifier query bound vq : N× N→ N, argument verifier time bound vt : N× N→ N, argument size bound
as : N×N→ N, argument honest prover query bound pq : N×N→ N, argument honest prover time bound
pt : N×N→ N, argument completeness α : N×N→ [0, 1] and argument soundness β : N×N×N×N→
[0, 1],

DTIMEO [t(n)] ̸⊆ NARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
argument size as = as(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


,

where there exists λ ∈ N, n ∈ N and some function p : N→ (0, 1] such that the following holds:

• 0 ≤ α(λ, n) ≤ 1,

• 0 ≤ β(λ, n, t(n) + pq, t(n) + pt) < (1− α(λ, n)) ·
t(n)− vq(λ,n)

p(n)

t(n) · (1− p(n)), and

• (1− α(λ, n)) ·
t(n)− vq(λ,n)

p(n)

t(n) · (1− p(n)) ≤ 1.

The corollary below follows from setting p(n) < 1
2 for all n ∈ N.

Corollary 4.2. Let O be the random oracle. For every time-constructible function t : N × N, λ ∈ N and
n ∈ N,

DTIMEO [t(n)] ̸⊆ NARGO



completeness error α = 1/3

soundness error β =

{
1/3 qP̃ = poly(λ, t(n)), tP̃ = poly(λ, t(n))

1 otherwise
verifier query bound vq = o(t(n))
verifier running time vt
argument size as
honest prover query bound pq = poly(λ, t(n))
honest prover time bound pq = poly(λ, t(n))


.

4.1 Separation for every security parameter

Note that we discuss relations in DTIME in this section, therefore, we only need to focus on the corresponding
languages since the witnesses are always empty. To prove Theorem 4.1, it suffices to find an relativized
language LOλ

that can be decided by an oracle deterministic Turing machine in O(t(n)) time but does not
have a relativized argument system.

Definition 4.3. Let uk,i denote the ⌈log k⌉-bit string that represents i ∈ [k]. For every time-constructible
function t : N× N with t(n) ≥ n for every n ∈ N, n ∈ N and (x, y) ∈ {0, 1}n/2 × {0, 1}n/2, we define

t∗(n) :=
t(n)

n/2
,

18

and for every λ ∈ N and f ∈ Oλ and i ∈ [n/2],

Ff,n(x)i :=
⊕

j∈{(i−1)·t∗(n)+1,(i−1)·t∗(n)+2,··· ,i·t∗(n)}

f(x ∥ ut(n),j)1 .

We define LO = {Lf}λ∈N,f∈Oλ
as follows:

Lf :=
{
(x, y) ∈ {0, 1}n/2 × {0, 1}n/2

∣∣∣ Ff,n(x) = y
}

.

The following two lemmas directly imply Theorem 4.1.

Lemma 4.4. LetO be the random oracle. Let LO be defined as in Definition 4.3. For every time-constructible
function t : N× N:

LO ∈ DTIME[t] .

Lemma 4.5. Let O be the random oracle. Let LO be defined as in Definition 5.3. Fix time-constructible
function t : N → N, argument verifier query bound vq : N × N → N, argument verifier time bound
vt : N×N→ N, argument size bound as : N×N→ N, argument honest prover query bound pq : N×N→ N,
argument honest prover time bound pt : N×N→ N, argument completeness α : N×N→ [0, 1] and argument
soundness β : N× N× N× N→ [0, 1].

There is no relativized argument (P,V) for the relativized language LOλ
with completeness error α,

soundness error β, argument verifier running time vt, argument size as, argument honest prover query bound
pq, and argument honest prover time bound pt if there exists λ ∈ N, n ∈ N and p : N→ {0, 1} such that the
following holds:

• 0 ≤ α(λ, n) ≤ 1,

• 0 ≤ β(λ, n, t(n) + pq, t(n) + pt) < (1− α(λ, n)) ·
t(n)− vq(λ,n)

p(n)

t(n) · (1− p(n)), and

• (1− α(λ, n)) ·
t(n)− vq(λ,n)

p(n)

t(n) · (1− p(n)) ≤ 1.

We prove Lemma 4.4 in Section 4.2 and Lemma 4.5 in Section 4.3.

4.2 Proof of Lemma 4.4

To show that language LO is in DTIME[(t(n)], we construct a deterministic Turing machine M that decides
LO within O(t(n)) time.

Mf ((x, y)):
1. For every i ∈ [n/2]: Query the oracle f at {x ∥ ut(n),j}j∈{(i−1)·t∗(n)+1,··· ,i·t∗(n)} to compute Ff,n(x)i.
2. Check if y = Ff,n(x).

It is obvious that Mf ((x, y)) = 1 if and only if (x, y) ∈ Lf for every λ ∈ N and f ∈ Oλ.
Now we argue that Mf decides Lf within time O(t(n)). On input x := (x, y) ∈ {0, 1}n/2 × {0, 1}n/2

and f ∈ Oλ, Mf writes x on the query tape, which takes time O(n). M then queries the oracle f with
x ∥ ut(n),j for all each i ∈ [n/2] and j ∈ {(i − 1) · t∗(n) + 1, · · · , i · t∗(n)}, which takes amortized time
O(t(n)) in total. Computing Ff,n(x) takes time O(t(n)). Finally, comparing y and Ff,n(x) takes time O(n).

19

4.3 Proof of Lemma 4.5

Assume for the sake of contradiction that LO has such a relativized argument system (P,V) and there exists
λ ∈ N, n ∈ N and p : N→ [0, 1] that satisfy the conditions in Lemma 4.5.

For every i ∈ [n/2] and j ∈ [t∗(n)], let q(i, j) be defined as follows:

q(i, j) := 0n/2 ∥ ut(n),(i−1)·t∗(n)+j .

Consider the set of queries Q:

Q := {q(i, j)}i∈[n/2],j∈[t∗(n)].

Note that |Q| = t(n).
For every f ∈ Oλ and y ∈ {0, 1}n/2, define the set of queries with “low” probability:

Q⋆(f, y) :=

{
q ∈ Q : Pr

[
Vf (1λ, (0n/2, y), π, ρ) queries f at q

∣∣∣∣ π ← Pf (1λ, (0n/2, y))
ρ← {0, 1}vr

]
< p(n)

}
.

Consider the set of queries with “high” probability:

Qc(f, y) :=

{
q ∈ Q : Pr

[
Vf (1λ, (0n/2, y), π, ρ) queries f at q

∣∣∣∣ π ← Pf (1λ, (0n/2, y))
ρ← {0, 1}vr

]
≥ p(n)

}
.

Since V makes at most vq(λ, n) queries to f for every f ∈ Oλ,∑
q∈Q

Pr

[
Vf (1λ, (0n/2, y), π, ρ) queries f at q

∣∣∣∣ π ← Pf (1λ, (0n/2, y))
ρ← {0, 1}vr

]
≤ vq(λ, n) .

Hence,

|Qc(f, y)| ≤
vq(λ, n)

p(n)
.

We can conclude that

|Q⋆(f, y)| = t(n)− |Qc(f, y)| ≥ t(n)− vq(λ, n)

p(n)
. (3)

On the other hand, by definition, for every i ∈ [n/2] and j ∈ [t∗(n)] such that q = q(i, j) ∈ Q⋆(f, y), it
holds that

Pr

[
Vf (1λ, (0n/2, y), π, ρ) queries f at q

∣∣∣∣ π ← Pf (1λ, (0n/2, y))
ρ← {0, 1}vr

]
< p(n) ,

which implies that

Pr

[
Vf (1λ, (0n/2, y), π, ρ) doesn’t query f at q

∣∣∣∣ π ← Pf (1λ, (0n/2, y))
ρ← {0, 1}vr

]
≥ 1− p(n) . (4)

For every f ∈ Oλ, i ∈ [n/2] and j ∈ [t∗(n)], we define Flip(f, i, j) as follows:

Flip(f, i, j):
1. Set f ′ := f .
2. Set f ′(q(i, j))1 = 1− f(q(i, j))1.

20

3. Output f ′.

We define our malicious prover P̃n,i,j :

P̃f
n,i,j :

1. Sample randomness for honest prover P: ζ ← {0, 1}pr.
2. Let x := 0n/2.
3. Query f at x ∥ ut(n),m for all m ∈ [t(n)] to compute y := Ff,n(x).

4. Set yi :=
(⊕

j′∈{(i−1)·t∗(n)+1,··· ,i·t∗(n)}\{(i−1)·t∗(n)+j} f(x ∥ ut(n),j′)1
)
⊕(1−f(x∥ut(n),(i−1)·t∗(n)+j)1).

5. Simulate P(1λ, (x, y), ζ).
6. If P makes a query to x ∥ ut(n),(i−1)·t∗(n)+j :

(a) Let ans := f(x ∥ ut(n),(i−1)·t∗(n)+j).
(b) Let ans′ := ans.
(c) Set ans′1 := 1− ans1.
(d) Answer P’s query by ans′.

7. Let π′ be the proof outputted by P(1λ, (x, y), ζ) with altered oracle query’s answer.
8. Output ((x, y), π′).

Note that P̃n,i,j makes at most t(n) + pq queries to f and runs in time at most t(n) + pt.
Consider the adversary An:

Af
n:

1. Let x := 0n/2.
2. Set y := Ff,n(x).
3. Output (x, y).

For the derivation below, we omit the sampling of the verifier’s randomness ρ and prover’s randomness ζ
in the experiment, they are always sampled as follows:[

ζ ← {0, 1}pr
ρ← {0, 1}vr

]
.

Then, we can deduce the following:

Pr

 (0n/2, y′) /∈ Lf ′

∧Vf ′
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣∣∣∣∣
f ← Oλ

(i, j)← [n/2]× [t∗(n)]
f ′ := Flip(f, i, j)

(0n/2, y′, π̃) := P̃f ′

n,i,j(ζ)



=[1] Pr

 Vf ′
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣∣∣∣∣
f ← Oλ

(i, j)← [n/2]× [t∗(n)]
f ′ := Flip(f, i, j)

(0n/2, y′, π̃) := P̃f ′

n,i,j(ζ)



≥[2] Pr


Vf ′

(1λ, (0n/2, y′), π̃, ρ) = 1
conditioned on
Vf (1λ, (0n/2, y), π, ρ) = 1
∧ q(i, j) ∈ Q⋆(f, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← Oλ

(i, j)← [n/2]× [t∗(n)]
f ′ := Flip(f, i, j)

(0n/2, y′, π̃) := P̃f ′

n,i,j(ζ)

(0n/2, y) := Af
n

π := Pf (1λ, (0n/2, y), ζ)


21

· Pr

 Vf (1λ, (0n/2, y), π, ρ) = 1
∧ q(i, j) ∈ Q⋆(f, y)

∣∣∣∣∣∣∣∣
f ← Oλ

(i, j)← [n/2]× [t∗(n)]

(0n/2, y) := Af
n

π := Pf (1λ, (0n/2, y), ζ)



≥[3] (1− p(n)) · Pr

 Vf (1λ, (0n/2, y), π, ρ) = 1
∧ q(i, j) ∈ Q⋆(f, y)

∣∣∣∣∣∣∣∣
f ← Oλ

(i, j)← [n/2]× [t∗(n)]

(0n/2, y) := Af
n

π := Pf (1λ, (0n/2, y), ζ)

 ,

where

• Equality [1] holds because for every f ∈ Oλ, i ∈ [n] and j ∈ [t∗(n)], P̃Flip(f,i,j)
n outputs instance

(x′, y′) = (0n, Ff,n(0
n)) /∈ LFlip(f,i,j);

• Inequality [2] holds by definition of conditional probability;

• Inequality [3] holds by Eq. (4) and that for every f ∈ Oλ, (i, j) ∈ [n/2]× [t∗(n)], (x, y) ∈ {0, 1}n/2 ×
{0, 1}n/2 and ζ ∈ {0, 1}pr, Pf (1λ, (x, y), ζ) and P̃Flip(f,i,j)

n,i,j (ζ) output the same proof. Moreover,

P̃Flip(f,i,j)
n,i,j (ζ) and Af

n output the same instance.

Moreover,

Pr

 Vf (1λ, (0n/2, y), π, ρ) = 1
∧ q(i, j) ∈ Q⋆(f, y)

∣∣∣∣∣∣∣∣
f ← Oλ

(i, j)← [n/2]× [t∗(n)]

(0n/2, y) := Af
n

π := Pf (1λ, (0n/2, y), ζ)



=
∑

f⋆∈Oλ
i⋆∈[n/2]
j⋆∈[t∗(n)]

y:=Ff⋆,n(0
n/2)

q(i⋆,j⋆)∈Q⋆(f⋆,y)

 Pr

[
f = f⋆

(i, j) = (i⋆, j⋆)

∣∣∣∣ f ← Oλ

(i, j)← [n/2]× [t∗(n)]

]
·Pr
[
Vf⋆

(1λ, (0n/2, y), π, ρ) = 1

∣∣∣∣ (0n/2, y) := Af⋆

n

π := Pf⋆
(1λ, (0n/2, y), ζ)

]


=[1]
1

t(n)
·

∑
f⋆∈Oλ
i⋆∈[n/2]
j⋆∈[t∗(n)]

y:=Ff⋆,n(0
n/2)

q(i⋆,j⋆)∈Q⋆(f⋆,y)

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, (0n/2, y), π, ρ) = 1

∣∣∣∣ (0n/2, y) := Af⋆

n

π := Pf⋆
(1λ, (0n/2, y), ζ)

]

=[2]
1

t(n)
·

∑
f⋆∈Oλ
i⋆∈[n/2]
j⋆∈[t∗(n)]

y:=Ff⋆,n(0
n/2)

q(i⋆,j⋆)∈Q⋆(f⋆,y)

Pr [f = f⋆ | f ← Oλ] · Pr
[
(0n/2, y) /∈ Lf⋆

∨Vf⋆
(1λ, (0n/2, y), π, ρ) = 1

∣∣∣∣ (0n/2, y) := Af⋆

n

π := Pf⋆
(1λ, (0n/2, y), ζ)

]

≥[3]

t(n)− vq(λ,n)
p(n)

t(n)
·
∑

f⋆∈Oλ

Pr [f = f⋆ | f ← Oλ] · Pr
[
(0n/2, y) /∈ Lf⋆

∨Vf⋆
(1λ, (0n/2, y), π, ρ) = 1

∣∣∣∣ (0n/2, y) := Af⋆

n

π := Pf⋆
(1λ, (0n/2, y), ζ)

]

22

=
t(n)− vq(λ,n)

p(n)

t(n)
· Pr

 (0n/2, y) /∈ Lf

∨Vf (1λ, (0n/2, y), π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n/2, y) := Af
n

π := Pf ((0n/2, y), ζ)


≥[4]

t(n)− vq(λ,n)
p(n)

t(n)
· (1− α(λ, n)) ,

where

• Equality [1] holds because for every (i⋆, j⋆) ∈ [n/2]×[t∗(n)], Pr [(i, j) = (i⋆, j⋆) | (i, j)← [n/2]× [t∗(n)]] =
1

t(n) ;

• Equality [2] holds because for every n ∈ N and f ∈ Oλ, Af
n outputs (0n, y) = (0n/2, Ff,n(0

n/2)) ∈ Lf .
Hence, (0n, y) /∈ Lf always happens with probability 0;

• Inequality [3] follows from Eq. (3);

• Inequality [4] follows from Definition 3.12.

On the other hand,

Pr

 (0n/2, y′) /∈ Lf ′

∧Vf ′
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣∣∣∣∣
f ← Oλ

(i, j)← [n/2]× [t∗(n)]
f ′ := Flip(f, i, j)

(0n/2, y′, π̃) := P̃f ′

n,i,j(ζ)



=
∑

f⋆∈Oλ
(i⋆,j⋆)∈[n/2]×[t∗(n)]
f ′:=Flip(f⋆,i⋆,j⋆)

 Pr

[
f = f⋆

∧ (i, j) = (i⋆, j⋆)

∣∣∣∣ f ← Oλ

(i, j)← [n/2]× [t∗(n)]

]
·Pr
[
(0n/2, y′) /∈ Lf ′

∧Vf ′
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣ (0n/2, y′, π̃) := P̃f ′

n,i⋆,j⋆(ζ)

]


=[1]

∑
(i⋆,j⋆)∈[n/2]×[t∗(n)]

f⋆∈Oλ

 Pr

[
f = f⋆

∧ (i, j) = (i⋆, j⋆)

∣∣∣∣ f ← Oλ

(i, j)← [n/2]× [t∗(n)]

]
·Pr
[
(0n/2, y′) /∈ Lf⋆

∧Vf⋆
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣ (0n/2, y′, π̃) := P̃f⋆

n,i⋆,j⋆(ζ)

]


=
1

t(n)

∑
(i⋆,j⋆)∈[n/2]×[t∗(n)]

f⋆∈Oλ

 Pr [f = f⋆ | f ← Oλ]

·Pr
[
(0n/2, y′) /∈ Lf⋆

∧Vf⋆
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣ (0n/2, y′, π̃) := P̃f⋆

n,i⋆,j⋆(ζ)

] 

≤ 1

t(n)
· t(n) max

(i⋆,j⋆)∈[n/2]×[t∗(n)]

 ∑
f⋆∈Oλ

 Pr [f = f⋆ | f ← Oλ]

·Pr
[
(0n/2, y′) /∈ Lf⋆

∧Vf⋆
(1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣ (0n/2, y′, π̃) := P̃f⋆

n,i⋆,j⋆(ζ)

] 
= max

(i⋆,j⋆)∈[n/2]×[t∗(n)]

{
Pr

[
(0n/2, y′) /∈ Lf

∧Vf (1λ, (0n/2, y′), π̃, ρ) = 1

∣∣∣∣∣ f ← Oλ

(0n/2, y′, π′) := P̃f
n,i⋆,j⋆(ζ)

]}
≤[2] β(λ, n, t(n) + pq, t(n) + pt) ,

where

23

• Equality [1] holds because for every f ∈ Oλ, i ∈ [n] and j ∈ [t∗(n)], Flip(Flip(f, i, j), i, j) = f .
Therefore, for every (i⋆, j⋆) ∈ [n/2]× [t∗(n)], summing over f ′ := Flip(f⋆, i∗, j∗) for every f⋆ ∈ Oλ is
equivalent to summing over f⋆ for every f⋆ ∈ Oλ.

• Inequality [2] follows from Definition 3.13.

Therefore, we can conclude that

(1− α(λ, n)) ·
t(n)− vq(λ,n)

p(n)

t(n)
· (1− p(n)) ≤ β(λ, n, t(n) + pq, t(n) + pt) ,

a contradiction.

24

5 Separation of NTIME and NARG

Theorem 5.1. Let O be the random oracle. For every time-constructible function t : N → N, argument
verifier query bound vq : N× N→ N, argument verifier time bound vt : N× N→ N, argument size bound
as : N×N→ N, argument honest prover query bound pq : N×N→ N, argument honest prover time bound
pt : N×N→ N, argument completeness α : N×N→ [0, 1] and argument soundness β : N×N×N×N→
[0, 1],

NTIMEO [t(n)] ̸⊆ NARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
argument size as = as(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


,

where there exists λ ∈ N, n ∈ N and some function p : N→ (0, 1] such that the following holds:

• 0 ≤ β(λ, n, pq, pt) <
(
1− 1

2t(n)

)2t(n)

,

• 0 ≤ 2t(n)−1
2t(n) · α(λ, n) < (1 − t(n) · p(n)) ·

2t(n)− 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
,

and

• (1− t(n) · p(n)) ·
2t(n)− 2O(as(λ,n))·vq(λ,n)

p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
≤ 1.

The corollary below follows by setting p(n) < 1
2t(n) for all n ∈ N in Theorem 5.1.

Corollary 5.2. Let O be the random oracle. For every time-constructible function t : N × N, λ ∈ N and
n ∈ N,

NTIMEO [t(n)] ̸⊆ NARGO



completeness error α = 1/3

soundness error β =

{
1/3 qP̃ = poly(λ, t(n)), tP̃ = poly(λ, t(n))

1 otherwise
verifier query bound vq = poly(λ, t(n))
verifier running time vt
argument size as = o(t(n))
honest prover query bound pq = poly(λ, t(n))
honest prover time bound pq = poly(λ, t(n))


.

5.1 Separation for every security parameter

To prove Theorem 5.1, it is enough to find one relativized relation RO that can be decided by an oracle
nondeterministic Turing machine within O(t(n)) time but does not have a relativized argument system.

We first define the relativized relation we investigate.

25

Definition 5.3. Let uk,i denote the ⌈log k⌉-bit string that represents i ∈ [k]. For every time-constructible
function t : N× N with t(n) ≥ n for every n ∈ N, we define RO = {Rf}λ∈N,f∈Oλ

as follows:

Rf :=

{
(x,w) ∈ {0, 1}n × {0, 1}t(n)

∣∣∣∣ x = 0n

∧∀i ∈ [t(n)], f(w ∥ ut(n),i)1 = 0

}
.

The following two lemmas directly imply Theorem 5.1.

Lemma 5.4. LetO be the random oracle. Let RO be defined as in Definition 5.3. For every time-constructible
function t : N× N:

RO ∈ NTIME[t] .

Lemma 5.5. Let O be the random oracle. Let RO be defined as in Definition 5.3. Fix time-constructible
function t : N → N, argument verifier query bound vq : N × N → N, argument verifier time bound
vt : N×N→ N, argument size bound as : N×N→ N, argument honest prover query bound pq : N×N→ N,
argument honest prover time bound pt : N×N→ N, argument completeness α : N×N→ [0, 1] and argument
soundness β : N× N× N× N→ [0, 1].

There is no relativized argument (P,V) for the relativized relation RO with completeness error α,
soundness error β, argument verifier running time vt, argument size as, argument honest prover query bound
pq, and argument honest prover time bound pt if there exists λ ∈ N, n ∈ N and p : N→ [0, 1] such that the
following holds:

• 0 ≤ β(λ, n, pq, pt) <
(
1− 1

2t(n)

)2t(n)

,

• 0 ≤ 2t(n)−1
2t(n) · α(λ, n) < (1 − t(n) · p(n)) ·

2t(n)− 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
,

and

• (1− t(n) · p(n)) ·
2t(n)− 2O(as(λ,n))·vq(λ,n)

p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
≤ 1.

We prove Lemma 5.4 in Section 5.2 and Lemma 5.5 in Section 5.3.

5.2 Proof of Lemma 5.4

To show that the relation RO is in NTIME[t], we construct a nondeterministic Turing machine M that decides
RO within O(t(n)) time.

Mf (x,w):
1. If x ̸= 0n, reject.
2. For every i ∈ [t(n)]:

(a) If f(w ∥ ut(n),i)1 = 1, reject.
3. Accept.

It is easy to argue that for every λ ∈ N and f ∈ Oλ, Mf (x,w) = 1 if and only if (x,w) ∈ Rf .
Now we argue that Mf decides Rf within time t(n). Checking whether x = 0n takes O(n) time. Each

query to f incurs a time cost of O(1), and M makes t(n) such invocations. Writing the initial query tape
necessitates O(t(n)) steps, and each subsequent query tape update requires amortized O(1) steps. Thus, M
decides the relation RO in O(t(n)) time.

26

5.3 Proof of Lemma 5.5

Assume for the sake of contradiction that RO has such a relativized argument system (P,V) and there exists
λ ∈ N, n ∈ N and p : N→ [0, 1] that satisfy the conditions in Lemma 5.5.

For every f ∈ Oλ, we define the set Q⋆(f) as the following set:w ∈ {0, 1}t(n)
∣∣∣∣∣∣ ∀i ∈ [t(n)],

∑
π∈{0,1}≤as

Pr
[
Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i

∣∣∣ ρ← {0, 1}vr
]
< p(n)

 .

Intuitively, Q⋆(f) is the set of strings w ∈ {0, 1}t(n) for which Vf queries all of {w ∥ ut(n),i}i∈[t(n)] with
low probability.

We first argue that size of Q⋆(f) is large. Consider the set Qc(f) of string w ∈ {0, 1}t(n) that Vf queries
with high probability:w ∥ u ∈ {0, 1}t(n)+⌈log t(n)⌉

∣∣∣∣∣∣
∑

π∈{0,1}≤as

Pr
[
Vf (1λ, 0n, π, ρ) queries f at w ∥ u

∣∣∣ ρ← {0, 1}vr
]
≥ p(n)

 .

Since Vf can make at most vq(λ, n) queries to f and |π| ≤ as(λ, n),∑
w∥u∈{0,1}t(n)+⌈log t(n)⌉

∑
π∈{0,1}≤as

Pr
[
Vf (1λ, 0n, π, ρ) queries f at w ∥ u

∣∣∣ ρ← {0, 1}vr
]
≤ 2O(as(λ,n))·vq(λ, n) .

Hence,

|Qc(f)| ≤
2O(as(λ,n)) · vq(λ, n)

p(n)
.

Therefore,

|Q⋆(f)| ≥ 2t(n) − |Qc(f)| ≥ 2t(n) − 2O(as(λ,n)) · vq(λ, n)
p(n)

. (5)

Moreover, by definition of Q⋆(f), we can say that for every w ∈ Q⋆(f),

∀π ∈ {0, 1}≤as,∀i ∈ [t(n)],Pr
[
Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i

∣∣∣ ρ← {0, 1}vr
]
< p(n) .

We can deduce that

∀π ∈ {0, 1}≤as,Pr
[
∃i ∈ [t(n)],Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i

∣∣∣ ρ← {0, 1}vr
]

≤
∑

i∈[t(n)]

Pr
[
Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i

∣∣∣ ρ← {0, 1}vr
]

< t(n) · p(n) ,

which implies that for every π ∈ {0, 1}≤as,

Pr
[
∀i ∈ [t(n)],Vf (1λ, 0n, π, ρ) doesn’t query f at w ∥ ut(n),i

∣∣∣ ρ← {0, 1}vr] ≥ 1− t(n) · p(n) . (6)

For every f ∈ Oλ and w ∈ {0, 1}t(n), we define the operation SetZero(f, w) as follows:

27

SetZero(f, w):
1. Initialize f ′ := f .
2. For all i ∈ [t(n)]: f ′(w ∥ ut(n),i)1 := 0.
3. Output f ′.

For every w ∈ {0, 1}t(n), we define the following malicious prover P̃n,w:

P̃f
n,w:

1. Set (x,w) := (0n, w).
2. Sample the randomness for honest argument prover: ζ ← {0, 1}pr.
3. Simulate P(1λ, (x,w), ζ).
4. For any i ∈ [t(n)], if P makes a query to w ∥ ut(n),i:

(a) Let ans := f(w ∥ ut(n),i).
(b) Set ans′ := ans.
(c) Set ans′1 := 0.
(d) Give ans′ as answer to the query w ∥ ut(n),i.

5. Let π̃′ be the output of P(1λ, (x,w), ζ) with the altered answer.
6. Output (x, π̃′).

Note that P̃ has the same query complexity and running time as P . Moreover, for every argument prover
randomness ζ ∈ {0, 1}pr and w ∈ {0, 1}t(n), (0n,PSetZero(f,w)(1λ, (0n, w), ζ)) = P̃f

n,w(ζ). We also define
the completeness adversary An,w for every w ∈ {0, 1}n:

Af
n,w: Output (x,w) := (0n, w).

Moreover, we define An as follows:

Af
n:

1. Let (x,w) := (0n, 0t(n)).
2. If there exists w ∈ {0, 1}t(n) such that for all i ∈ [t(n)], f(w ∥ ut(n),i)1 = 0, set w := w.
3. Output (x,w).

For the derivation below, we omit the sampling of the verifier’s randomness ρ and prover’s randomness ζ
in the experiment, they are always sampled as follows:[

ζ ← {0, 1}pr
ρ← {0, 1}vr

]
.

Moreover, for every f ∈ Oλ and w ∈ {0, 1}t(n), we define the predicate ϕ(f, w) as follows:

ϕ(f, w) :=

{
1 if ∀i ∈ [t(n)], f(w ∥ ut(n),i)1 = 0

0 otherwise
.

Pr

 0n /∈ L(Rf)

∧Vf ′
(1λ, 0n, π, ρ) = 0

∣∣∣∣∣∣∣∣∣∣

f ← Oλ

w ← {0, 1}t(n)
f ′ := SetZero(f, w)

(0n, w) := Af
n,w

π := Pf ′
(1λ, (0n, w), ζ)


28

=
∑

f⋆∈Oλ
0n /∈L(Rf⋆)

w⋆∈{0,1}t(n)

f ′:=SetZero(f⋆,w⋆)

Pr

[
f = f⋆

∧w = w⋆

∣∣∣∣ f ← Oλ

w ← {0, 1}t(n)
]
· Pr

[
Vf ′

(1λ, 0n, π, ρ) = 0

∣∣∣∣∣ (0n, w⋆) := Af⋆

n,w⋆

π := Pf ′
(1λ, (0n, w⋆), ζ)

]

=
1

2t(n)
·

∑
f⋆∈Oλ

0n /∈L(Rf⋆)

w⋆∈{0,1}t(n)

f ′:=SetZero(f⋆,w⋆)

Pr [f = f⋆ | f ← Oλ] · Pr

[
Vf ′

(1λ, 0n, π, ρ) = 0

∣∣∣∣∣ (0n, w⋆) := Af⋆

n,w⋆

π := Pf ′
(1λ, (0n, w⋆), ζ)

]

=
1

2t(n)

∑
w⋆∈{0,1}t(n)

f⋆∈Oλ
0n /∈L(Rf⋆)

f ′:=SetZero(f⋆,w⋆)

Pr [f = f⋆ | f ← Oλ] · Pr

[
Vf ′

(1λ, 0n, π, ρ) = 0

∣∣∣∣∣ (0n, w⋆) := Af⋆

n,w⋆

π := Pf ′
(1λ, (0n, w⋆), ζ)

]

=[1]
2t(n) − 1

2t(n)

∑
w⋆∈{0,1}t(n)

f ′∈Oλ
ϕ(f ′,w⋆)=1

∀w ̸=w⋆,ϕ(f ′,w)=0

Pr
[
f = f ′ ∣∣ f ← Oλ

]
· Pr

[
Vf ′

(1λ, 0n, π, ρ) = 0

∣∣∣∣∣ (0n, w⋆) := Af ′

n,w⋆

π := Pf ′
(1λ, (0n, w⋆), ζ)

]

=
2t(n) − 1

2t(n)

∑
w⋆∈{0,1}t(n)

f⋆∈Oλ
ϕ(f⋆,w⋆)=1

∀w ̸=w⋆,ϕ(f⋆,w)=0

Pr [f = f⋆ | f ← Oλ] · Pr

[
Vf⋆

(1λ, 0n, π, ρ) = 0

∣∣∣∣∣ (0n, w⋆) := Af⋆

n,w⋆

π := Pf⋆
(1λ, (0n, w⋆), ζ)

]

=
2t(n) − 1

2t(n)

∑
f⋆∈Oλ

∃!w∈{0,1}t(n),ϕ(f⋆,w)=1

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, 0n, π, ρ) = 0

∣∣∣∣ (0n, w) := Af⋆

n

π := Pf⋆
(1λ, (0n, w), ζ)

]

≤ 2t(n) − 1

2t(n)

∑
f⋆∈Oλ

∃w∈{0,1}t(n),ϕ(f⋆,w)=1

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, 0n, π, ρ) = 0

∣∣∣∣ (0n, w) := Af⋆

n

π := Pf⋆
(1λ, (0n, w), ζ)

]

=[2]
2t(n) − 1

2t(n)

∑
f⋆∈Oλ

∃w∈{0,1}t(n),(0n,w)∈Rf⋆

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, 0n, π, ρ) = 0

∣∣∣∣ (0n, w) := Af
n

π := Pf⋆
(1λ, (0n, w), ζ)

]

=
2t(n) − 1

2t(n)
· Pr

 (0n, w) ∈ Rf

∧Vf (1λ, 0n, π, ρ) = 0

∣∣∣∣∣∣
f ← Oλ

(0n, w) := Af
n

π := Pf (1λ, (0n, w), ζ)


≤[3]

2t(n) − 1

2t(n)
· α(λ, n) ,

where

• Equality [1]: By definition of the relation RO (Definition 5.3), for every f ∈ Oλ such that 0n /∈ Lf , for
every w ∈ {0, 1}n, there exists some i ∈ [t(n)] such that f(w ∥ ut(n),i)1 = 1. For every w ∈ {0, 1}n, let

29

fw ∈ Oλ be a function where w is the only witness such that fw(w ∥ ut(n),i)1 = 0 for all i ∈ [t(n)]. There
are exactly 2t(n) − 1 many f ∈ Oλ where 0n /∈ Lf such that SetZero(f, w) = fw;

• Equality [2] follows from definition of RO in Definition 5.3;

• Inequality [3] follows from Definition 3.12.

On the other hand, we can also obtain the following:

Pr

 0n /∈ L(Rf)

∧Vf ′
(1λ, 0n, π, ρ) = 0

∣∣∣∣∣∣∣∣∣∣

f ← Oλ

w ← {0, 1}t(n)
f ′ := SetZero(f, w)

(0n, w) := Af
n,w

π := Pf ′
(1λ, (0n, w), ζ)



≥[1] Pr


Vf ′

(x, π, ρ) = 0
conditioned on
w ∈ Q⋆(f)
∧ 0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← Oλ

w ← {0, 1}t(n)
f ′ := SetZero(f, w)

(0n, w) := Af
n,w

π := Pf ′
(1λ, (0n, w), ζ)

(0n, π̃) := P̃f
n,w(ζ)


· Pr

 w ∈ Q⋆(f)
∧ 0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 0

∣∣∣∣∣∣
f ← Oλ

w ← {0, 1}t(n)

(0n, π̃) := P̃f
n,w(ζ)



≥[2] (1− t(n) · p(n)) · Pr

 w ∈ Q⋆(f)
∧ 0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 0

∣∣∣∣∣∣
f ← Oλ

w ← {0, 1}t(n)

(0n, π̃) := P̃f
n,w(ζ)

 ,

where

• Inequality [1] follows from definition of conditional probability;

• Inequality [2] follows from Eq. (6) and that for every f ∈ Oλ, w ∈ {0, 1}t(n), and ζ ∈ {0, 1}pr, P̃f
n,w(ζ)

and PSetZero(f,w)(1λ, (0n, w), ζ) output the same proof.

Moreover,

Pr

 w ∈ Q⋆(f)
∧ 0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 0

∣∣∣∣∣∣
f ← Oλ

w ← {0, 1}t(n)

(0n, π̃) := P̃f
n,w(ζ)


=

∑
w⋆∈{0,1}t(n)

f⋆∈Oλ
w⋆∈Q⋆(f⋆)

Pr

[
w = w⋆

∧ f = f⋆

∣∣∣∣ w ← {0, 1}t(n)
f ← Oλ

]
· Pr

[
0n /∈ L(Rf⋆)
∧Vf⋆

(1λ, 0n, π̃, ρ) = 0

∣∣∣∣ (0n, π̃) := P̃f⋆

n,w⋆(ζ)

]

=
1

2t(n)

∑
w⋆∈{0,1}t(n)

∑
f⋆∈Oλ

w⋆∈Q⋆(f⋆)

Pr [f = f⋆ | f ← Oλ] · Pr
[
0n /∈ L(Rf⋆)
∧Vf⋆

(1λ, 0n, π̃, ρ) = 0

∣∣∣∣ (0n, π̃) := P̃f⋆

n,w⋆(ζ)

]

≥[1]

2t(n) − 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n)

30

· min
w⋆∈{0,1}t(n)

 ∑
f⋆∈Oλ

Pr [f = f⋆ | f ← Oλ] · Pr
[
0n /∈ L(Rf⋆)
∧Vf⋆

(1λ, 0n, π̃, ρ) = 0

∣∣∣∣ (0n, π̃) := P̃f⋆

n,w⋆(ζ)

]
=

2t(n) − 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n)
· min
w⋆∈{0,1}t(n)

{
Pr

[
0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 0

∣∣∣∣ f ← Oλ

(0n, π̃) := P̃f
n,w⋆(ζ)

]}

=[2]

2t(n) − 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n)

· min
w⋆∈{0,1}t(n)

{
Pr

[
0n /∈ L(Rf)

∣∣∣∣ f ← Oλ

(0n, π̃) := P̃f
n,w⋆(ζ)

]
− Pr

[
0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 1

∣∣∣∣ f ← Oλ

(0n, π̃) := P̃f
n,w⋆(ζ)

]}

=[3]

2t(n) − 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n)
· min
w⋆∈{0,1}t(n)

{(
1− 1

2t(n)

)2t(n)

− Pr

[
0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃, ρ) = 1

∣∣∣∣ f ← Oλ

(0n, π̃) := P̃f
n,w⋆(ζ)

]}

≥[4]

2t(n) − 2O(as(λ,n))·vq(λ,n)
p(n)

2t(n)
·

((
1− 1

2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
,

where

• Inequality [1] follows from Eq. (5);

• Equality [2] follows from the law of total probability;

• Equality [3] holds: Let Fn,0 := {f ∈ Oλ : 0n /∈ L(Rf)}, then the measure µOλ
(Fn,0) =

(
1− 1

2t(n)

)2t(n)

because the probability measure of Oλ is uniform;

• Inequality [4] follows from Definition 3.13.

We can conclude that

(1− t(n) · p(n)) ·
2t(n) − 2O(as(λ,n))·vq(λ,n)

p(n)

2t(n)
·

((
1− 1

2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
≤ 2t(n) − 1

2t(n)
·α(λ, n) ,

a contradiction to our assumption.

31

6 Alternative separation of NTIME and NARG

Theorem 6.1. Let O be the random oracle. For every time-constructible function t : N → N, argument
verifier query bound vq : N× N→ N, argument verifier time bound vt : N× N→ N, argument size bound
as : N×N→ N, argument honest prover query bound pq : N×N→ N, argument honest prover time bound
pt : N×N→ N, argument completeness α : N×N→ [0, 1] and argument soundness β : N×N×N×N→
[0, 1],

NTIMEO [t(n)] ̸⊆ NARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
argument size as = as(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


,

where there exists λ ∈ N, n ∈ N and some function p : N→ (0, 1] such that the following holds:

• 0 ≤ α(λ, n) <
(
1− 1

2t(n)

)2t(n)−1
,

• 0 ≤ β(λ, n, pq, pt) < (1− p(n)) · (t(n)− vq(λ,n)
p(n)) ·

((
1− 1

2t(n)

)2t(n)−1
− α(λ, n)

)
, and

• (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) ·
((

1− 1
2t(n)

)2t(n)−1
− α(λ, n)

)
≤ 1.

The corollary below follows by setting p(n) < 1
2 for all n ∈ N in Theorem 6.1.

Corollary 6.2. Let O be the random oracle. For every time-constructible function t : N × N, λ ∈ N and
n ∈ N,

NTIMEO [t(n)] ̸⊆ NARGO



completeness error α = 1/3

soundness error β =

{
1/3 qP̃ = poly(λ, t(n)), tP̃ = poly(λ, t(n))

1 otherwise
verifier query bound vq = o(t(n))
verifier running time vt
argument size as
honest prover query bound pq = poly(λ, t(n))
honest prover time bound pq = poly(λ, t(n))


.

6.1 Separation for every security parameter

Similar to Section 5, to prove Theorem 6.1, it is enough to find one relativized relation RO that can be decided
by an oracle nondeterministic Turing machine within O(t(n)) time but does not have a relativized argument
system. In fact, we consider the same relativized relation RO defined in Definition 5.3.

The following lemma and Lemma 5.4 directly imply Theorem 6.1.

32

Lemma 6.3. Let O be the random oracle. Let RO be defined as in Definition 5.3. Fix time-constructible
function t : N → N, argument verifier query bound vq : N × N → N, argument verifier time bound
vt : N×N→ N, argument size bound as : N×N→ N, argument honest prover query bound pq : N×N→ N,
argument honest prover time bound pt : N×N→ N, argument completeness α : N×N→ [0, 1] and argument
soundness β : N× N× N× N→ [0, 1].

There is no relativized argument (P,V) for the relativized relation RO with completeness error α,
soundness error β, argument verifier running time vt, argument size as, argument honest prover query bound
pq, and argument honest prover time bound pt if there exists λ ∈ N, n ∈ N and p : N→ [0, 1] such that the
following holds:

• 0 ≤ α(λ, n) <
(
1− 1

2t(n)

)2t(n)−1
,

• 0 ≤ β(λ, n, pq, pt) < (1− p(n)) · (t(n)− vq(λ,n)
p(n)) ·

((
1− 1

2t(n)

)2t(n)−1
− α(λ, n)

)
, and

• (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) ·
((

1− 1
2t(n)

)2t(n)−1
− α(λ, n)

)
≤ 1.

We prove Lemma 6.3 in Section 6.2.

6.2 Proof of Lemma 6.3

Assume for the sake of contradiction that RO has such a relativized argument system (P,V) and there exists
λ ∈ N, n ∈ N and p : N→ [0, 1] that satisfy the conditions in Lemma 6.3.

We define the following sets:

• Fn,1 := {f ∈ Oλ : 0n ∈ L(Rf)};

• Fn,0 := {f ∈ Oλ : 0n /∈ L(Rf)};

• UFn :=
{
f ∈ Oλ : ∃!w ∈ {0, 1}t(n), (0n, w) ∈ Rf

}
;

• For every w ∈ {0, 1}t(n), UFn,w := {f ∈ Oλ : f ∈ UFn ∧ (0n, w) ∈ Rf}.

For every f ∈ Oλ and w ∈ {0, 1}t(n), we define the set Q⋆(f, w) as the following set:{
i ∈ [t(n)]

∣∣∣∣ Pr [Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i
∣∣∣∣ π ← Pf (0n, w)

ρ← {0, 1}vr
]
< p(n)

}
.

Consider the set Qc(f, w) that Vf queries with high probability:{
i ∈ [t(n)]

∣∣∣∣ Pr [Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i
∣∣∣∣ π ← Pf (0n, w)

ρ← {0, 1}vr
]
≥ p(n)

}
.

Since Vf makes at most vq(λ, n) queries,

∑
i∈[t(n)]

Pr

[
Vf (1λ, 0n, π, ρ) queries f at w ∥ ut(n),i

∣∣∣∣ π ← Pf (0n, w)
ρ← {0, 1}vr

]
≤ vq(λ, n) .

33

Hence,

|Qc(f, w)| ≤
vq(λ, n)

p(n)
.

Therefore,

|Q⋆(f, w)| = t(n)− |Qc(f, w)| ≥ t(n)− vq(λ, n)

p(n)
. (7)

Moreover, by definition of Q⋆(f, w), we can say that for every i ∈ Q⋆(f, w),

Pr

[
Vf (1λ, 0n, π, ρ) doesn’t query f at w ∥ ut(n),i

∣∣∣∣ π ← Pf (0n, w)
ρ← {0, 1}vr

]
≥ 1− p(n) . (8)

For every f ∈ Oλ, w ∈ {0, 1}t(n), and i ∈ [t(n)], we define the operation Flip (f, w, i) as follows:

Flip (f, w, i):
1. Initialize f ′ := f .
2. Set f ′(w ∥ ut(n),i)1 := 1− f(w ∥ ut(n),i)1.
3. Output f ′.

We define the completeness adversary An,w as follows:

Af
n,w: Output (0n, w).

Moreover, we define An as follows:

Af
n:

1. Let (x,w) := (0n, 0t(n)).
2. If there exists w ∈ {0, 1}t(n) such that for all i ∈ [t(n)], f(w ∥ ut(n),i)1 = 0, set w := w.
3. Output (x,w).

We define the argument adversary P̃n,w,i:

P̃f
n,w,i:

1. Set (x,w) := (0n, w).
2. Sample the randomness for the honest argument prover: ζ ← {0, 1}pr.
3. Simulate P(1λ, (x,w), ζ).
4. If P makes a query to w ∥ ut(n),i:

(a) Let ans := f(w ∥ ut(n),i).
(b) Set ans′ := ans.
(c) Let ans′1 := 1− ans1.
(d) Give ans′ as the answer to the query w ∥ ut(n),i.

5. Let π̃′ be the output of P(1λ, (x,w), ζ) with the altered answer.
6. Output (x, π̃′).

Note that P̃n,w,i has the same query complexity and running time as P .
For the derivation below, we omit the sampling of the verifier’s randomness ρ and prover’s randomness ζ

in the experiment, they are always sampled as follows:[
ζ ← {0, 1}pr
ρ← {0, 1}vr

]
.

34

We can deduce:

∑
w∈{0,1}t(n)

Pr

 f ∈ UFn,w
∧Vf ′

(1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣∣∣∣∣

f ← Oλ

(0n, w)← Af
n,w

i← [t(n)]
f ′ := Flip (f, w, i)
π := Pf ((0n, w), ζ)


=

∑
w∈{0,1}t(n)

∑
f⋆∈UFn,w

∑
i⋆∈[t(n)]

Pr

[
i = i⋆

∧ f = f⋆

∣∣∣∣ f ← Oλ

i← [t(n)]

]
· Pr

Vf ′
(1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
(0n, w)← Af⋆

n,w

f ′ := Flip (f⋆, w, i⋆)
π := Pf⋆

((0n, w), ζ)


=[1]

1

t(n)

∑
w∈{0,1}t(n)

∑
f⋆∈UFn,w

∑
i⋆∈[t(n)]

Pr [f = f⋆ | f ← Oλ] · Pr

Vf ′
(1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
(0n, w)← Af⋆

n,w

f ′ := Flip (f⋆, w, i⋆)
π := Pf⋆

((0n, w), ζ)


=

1

t(n)

∑
w∈{0,1}t(n)

∑
i⋆∈[t(n)]

∑
f⋆∈UFn,w

f ′:=Flip(f⋆,w,i⋆)

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf ′

(1λ, 0n, π, ρ) = 1

∣∣∣∣ (0n, w)← Af⋆

n,w

π := Pf⋆
((0n, w), ζ)

]

=
1

t(n)

∑
w∈{0,1}t(n)

∑
i⋆∈[t(n)]

∑
f⋆∈UFn,w

f ′:=Flip(f⋆,w,i⋆)

Pr [f = f⋆ | f ← Oλ] · Pr

Vf ′
(1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣∣
(0n, w)← Af⋆

n,w

π := Pf⋆
((0n, w), ζ)

(0n, π̃′) := P̃f ′

n,w,i⋆(ζ)


=[2]

1

t(n)

∑
w∈{0,1}t(n)

∑
i⋆∈[t(n)]

∑
f⋆∈UFn,w

f ′:=Flip(f⋆,w,i⋆)

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf ′

(1λ, 0n, π̃′, ρ) = 1
∣∣∣ (0n, π̃′) := P̃f ′

n,w,i⋆(ζ)
]

≤[3]
1

t(n)
max

w∈{0,1}t(n)

i⋆∈[t(n)]

 ∑
f ′∈Fn,0

Pr
[
f = f ′ ∣∣ f ← Oλ

]
· Pr

[
Vf ′

(1λ, 0n, π̃′, ρ) = 1
∣∣∣ (0n, π̃′) := P̃f ′

n,w,i⋆(ζ)
]

=
1

t(n)
max

w∈{0,1}t(n)

i⋆∈[t(n)]

 ∑
f⋆∈Fn,0

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, 0n, π̃′, ρ) = 1
∣∣∣ (0n, π̃′) := P̃f⋆

n,w,i⋆(ζ)
]

=
1

t(n)
max

w∈{0,1}t(n)

i⋆∈[t(n)]

{
Pr

[
f ∈ Fn,0
∧Vf (1λ, 0n, π̃′, ρ) = 1

∣∣∣∣∣ f ← Oλ

(0n, π̃′) := P̃f
n,w,i⋆(ζ)

]}

=[4]
1

t(n)
max

w∈{0,1}t(n)

i⋆∈[t(n)]

{
Pr

[
0n /∈ L(Rf)
∧Vf (1λ, 0n, π̃′, ρ) = 1

∣∣∣∣∣ f ← Oλ

(0n, π̃′) := P̃f
n,w,i⋆(ζ)

]}

≤[5]
β(λ, n, pq, pt)

t(n)
,

where

• Equality [1] holds because for every i⋆ ∈ [t(n)], Pr [i = i⋆ | i← [t(n)]] = 1
t(n) ;

• Equality [2] holds because for every prover randomness ζ ∈ {0, 1}pr, f ∈ Oλ, w ∈ {0, 1}t(n), and
i ∈ [t(n)], (0n,Pf ((0n, w), ζ)) = P̃Flip(f,w,i)

n,w,i (ζ);

35

• Inequality [3] holds: Let S := [f ′ := Flip (f, w, i) : w ∈ {0, 1}t(n), i ∈ [t(n)], f ∈ UFn,w] (S is a
multiset). Let [Fn,0] be the multiset casting of Fn,0. We know that S ⊆ [Fn,0];

• Equality [4] follows from definition of Fn,0;

• Inequality [5] follows from Definition 3.13.

On the other hand,

∑
w∈{0,1}t(n)

Pr

 f ∈ UFn,w
∧Vf ′

(1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣∣∣∣∣

f ← Oλ

(0n, w)← Af
n,w

i← [t(n)]
f ′ := Flip (f, w, i)
π := Pf ((0n, w), ζ)



≥[1]

∑
w∈{0,1}t(n)



Pr


Vf ′

(1λ, 0n, π, ρ) = 1
conditioned on
i ∈ Q⋆(f, w)
∧ f ∈ UFn,w
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣∣∣∣∣

f ← Oλ

(0n, w)← Af
n,w

i← [t(n)]
f ′ := Flip (f, w, i)
π := Pf ((0n, w), ζ)



·Pr

 i ∈ Q⋆(f, w)
∧ f ∈ UFn,w
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n,w

i← [t(n)]
π := Pf ((0n, w), ζ)





≥[2] (1− p(n)) ·
∑

w∈{0,1}t(n)

Pr

 i ∈ Q⋆(f, w)
∧ f ∈ UFn,w
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n,w

i← [t(n)]
π := Pf ((0n, w), ζ)


= (1− p(n)) ·

∑
w∈{0,1}t(n)

f⋆∈UFn,w

i⋆∈[t(n)]
i⋆∈Q⋆(f,w)

Pr

[
i = i⋆

∧ f = f⋆

∣∣∣∣ f ← Oλ

i← [t(n)]

]
· Pr

[
Vf⋆

(1λ, 0n, π, ρ) = 1

∣∣∣∣ (0n, w)← Af⋆

n,w

π := Pf⋆
((0n, w), ζ)

]

=[3] (1− p(n)) · 1

t(n)
·

∑
w∈{0,1}t(n)

f⋆∈UFn,w

i⋆∈[t(n)]
i⋆∈Q⋆(f,w)

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, 0n, π, ρ) = 1

∣∣∣∣ (0n, w)← Af⋆

n,w

π := Pf⋆
((0n, w), ζ)

]

≥[4] (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n)
·

∑
w∈{0,1}t(n)

f⋆∈UFn,w

Pr [f = f⋆ | f ← Oλ] · Pr
[
Vf⋆

(1λ, 0n, π, ρ) = 1

∣∣∣∣ (0n, w)← Af⋆

n,w

π := Pf⋆
((0n, w), ζ)

]

= (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n)
·

∑
w∈{0,1}t(n)

Pr

 f ∈ UFn,w
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n,w

π := Pf ((0n, w), ζ)

 ,

where

36

• Inequality [1] follows from definition of conditional probability;

• Inequality [2] follows from Eq. (8);

• Equality [3] holds because every i⋆ ∈ [t(n)], Pr [i = i⋆ | i← [t(n)]] = 1
t(n) ;

• Inequality [4] follows from Eq. (7).

Moreover,

∑
w∈{0,1}t(n)

Pr

 f ∈ UFn,w
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n,w

π := Pf ((0n, w), ζ)


=[1] Pr

 f ∈ UFn
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n

π := Pf ((0n, w), ζ)


=[2] Pr

 f ∈ Fn,1
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n

π := Pf ((0n, w), ζ)

− Pr

 f ∈ Fn,1 \ UFn
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n

π := Pf ((0n, w), ζ)


≥ Pr

 f ∈ Fn,1
∧Vf (1λ, 0n, π, ρ) = 1

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n

π := Pf ((0n, w), ζ)

− Pr [f ∈ Fn,1 \ UFn | f ← Oλ]

=[3] Pr [f ∈ Fn,1 | f ← Oλ]− Pr

 f ∈ Fn,1
∧Vf (1λ, 0n, π, ρ) = 0

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n

π := Pf ((0n, w), ζ)

− Pr [f ∈ Fn,1 \ UFn | f ← Oλ]

= Pr [f ∈ UFn | f ← Oλ]− Pr

 f ∈ Fn,1
∧Vf (1λ, 0n, π, ρ) = 0

∣∣∣∣∣∣
f ← Oλ

(0n, w)← Af
n

π := Pf ((0n, w), ζ)


≥[4] Pr [f ∈ UFn | f ← Oλ]− α(λ, n)

=[5]

(
1− 1

2t(n)

)2t(n)−1

− α(λ, n) ,

where

• Equality [1] holds because for every w,w′ ∈ {0, 1}t(n) where w ̸= w′, UFn,w ∩ UFn,w′ = ∅. Moreover,
∪w∈{0,1}t(n)UFn,w = UFn;

• Equality [2] follows from the law of total probability;

• Equality [3] follows from the law of total probability;

• Inequality [4] follows from Definition 3.12;

• Equality [5] holds because µOλ
(UFn) =

(
1− 1

2t(n)

)2t(n)−1
· 1
2t(n) · 2t(n) =

(
1− 1

2t(n)

)2t(n)−1
.

37

We can conclude that

(1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n)
·

((
1− 1

2t(n)

)2t(n)−1

− α(λ, n)

)
≤ β(λ, n, pq, pt)

t(n)
,

a contradiction.

38

7 The case of IARG in the ROM

We discuss how to generalize results in Sections 4 to 6 to interactive arguments. The proofs follow the same
ideas with slight twist to work for interactive setting.

7.1 Relativized interactive arguments in the ROM

Definition 7.1. A relativized interactive argument relative to the random oracle O for an relativized
relation RO is a tuple of algorithms IARG = (P,V) that works as follows: For every λ ∈ N and f ∈ Oλ,
Pf (1λ,x,w) and Vf (1λ,x) interact with each other, at the end of the interaction, V outputs a decision
d ∈ {0, 1}.

Definition 7.2 (Completeness). For every security parameter λ ∈ N, instance size bound n ∈ N, and
adversary A,

Pr

 |x| ≤ n ∧ (x,w) ∈ Rf

⇓
d = 1

∣∣∣∣∣∣
f ← Oλ

(x,w)← Af

d← ⟨Pf (1λ,x,w),Vf (1λ,x)⟩

 ≥ 1− α(λ, n) .

Definition 7.3 (Soundness). For every security parameter λ ∈ N, instance size bound n ∈ N, adversary
query bound qP̃ ∈ N, adversary time bound tP̃ ∈ N, and qP̃ -query tP̃ -time adversary P̃ ,

Pr

 |x| ≤ n
∧x /∈ L(Rf)
∧ d = 1

∣∣∣∣∣∣
f ← Oλ

(x, aux)← P̃f

d← ⟨P̃f (aux),Vf (1λ,x)⟩

 ≤ β(λ, n, qP̃ , tP̃) .

Efficiency measures. We consider several efficiency measures of IARG: for every security parameter λ ∈ N,
instance size bound n ∈ N, and oracle function f ∈ Oλ,

• the round complexity k is the maximum number of rounds the prover P and the verifier V is allowed to
interact;

• the prover communication pc(λ, n) is the maximum number of bits the prover P is allowed to send to the
verifier V;

• the verifier communication vc(λ, n) is the maximum number of bits the verifier V is allowed to send to the
prover P;

• the verifier query complexity vq(λ, n) is the maximum number of queries to the oracle by the verifier V;
• the verifier running time vt(λ, n) is the maximum number of operations performed by the verifier V;
• the honest prover query complexity pq(λ, n) is the maximum number of queries to the oracle by the prover
P;

• the honest prover time pt(λ, n) is the maximum number of operations performed by the prover P;
• the verifier randomness complexity vr(λ, n) is the number of bits of randomness used by the argument

verifier V;
• the honest prover randomness complexity pr(λ, n) is the number of bits of randomness used by the

argument prover P .

39

Definition 7.4 (Relativized IARG in the ROM). Let O be the random oracle. The complexity class

IARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
prover communication pc = pc(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


is the set of relativized relations RO = {Rf}λ∈N,f∈Oλ

that admits a relativized interactive argument (P,V)
such that the following holds:

• (P,V) has completeness error α and soundness error β;
• the verifier query complexity is vq;
• the verifier running time is vt;
• the prover communication is pc;
• the honest prover query complexity is pq;
• the honest prover running time is pt.

7.2 Separation of DTIME and IARG

Theorem 7.5. Let O be the random oracle. For every time-constructible function t : N → N, argument
verifier query bound vq : N × N → N, argument verifier time bound vt : N × N → N, argument prover
communication complexity pc : N × N → N, argument honest prover query bound pq : N × N → N,
argument honest prover time bound pt : N × N → N, argument completeness α : N × N → [0, 1] and
argument soundness β : N× N× N× N→ [0, 1],

DTIMEO [t(n)] ̸⊆ IARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
prover communication pc = pc(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


,

where there exists λ ∈ N, n ∈ N and some function p : N→ (0, 1] such that the following holds:

• 0 ≤ α(λ, n) ≤ 1,

• 0 ≤ β(λ, n, t(n) + pq, t(n) + pt) < (1− α(λ, n)) · (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) , and

• (1− α(λ, n)) · (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) ≤ 1.

The corollary below follows by setting p(n) < 1
2 for all n ∈ N in Theorem 6.1.

40

Corollary 7.6. Let O be the random oracle. For every time-constructible function t : N × N, λ ∈ N and
n ∈ N,

DTIMEO [t(n)] ̸⊆ IARGO



completeness error α = 1/3

soundness error β =

{
1/3 qP̃ = poly(λ, t(n)), tP̃ = poly(λ, t(n))

1 otherwise
verifier query bound vq = o(t(n))
verifier running time vt
prover communication pc
honest prover query bound pq = poly(λ, t(n))
honest prover time bound pt = poly(λ, t(n))


.

To prove Theorem 7.5, it suffices to prove the following lemma:

Lemma 7.7. Let O be the random oracle. Let LO be defined as in Definition 4.3. Fix time-constructible
function t : N → N, argument verifier query bound vq : N × N → N, argument verifier time bound
vt : N × N → N, argument prover communication complexity pc : N × N → N, argument honest prover
query bound pq : N× N→ N, argument honest prover time bound pt : N× N→ N, argument completeness
α : N× N→ [0, 1] and argument soundness β : N× N× N× N→ [0, 1].

There is no relativized interactive argument (P,V) for the relativized language LO with completeness
error α, soundness error β, argument verifier running time vt, argument prover communication complexity
pc, argument honest prover query bound pq, and argument honest prover time bound pt if there exists λ ∈ N,
n ∈ N and p : N→ [0, 1] such that the following holds:

• 0 ≤ α(λ, n) ≤ 1,

• 0 ≤ β(λ, n, t(n) + pq, t(n) + pt) < (1− α(λ, n)) · (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) , and

• (1− α(λ, n)) · (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) ≤ 1.

Proof of Lemma 7.7. We adapt the proof of Lemma 4.4.
Consider the set of queries Q:

Q := {q(i, j)}i∈[n/2],j∈[t∗(n)].

Note that |Q| = t(n). For every f ∈ Oλ and y ∈ {0, 1}n/2, define the set Q⋆(f, y) as follows:

Q⋆(f, y) :=


q ∈ Q : Pr


q ∈ tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}vr
ζ ← {0, 1}pr
For i ∈ [k] :

ai
tri←− Vf (1λ, (0n/2, y), ρ, (bj)j<i)

bi := Pf (1λ, (0n/2, y), ζ, (aj)j≤i)

d
trk←− Vf (1λ, (0n/2, y), ρ, (bi)i∈[k])

tr := tr1 ∥ · · · ∥ trk


< p(n)


.

We can show that

|Q⋆(f, y)| ≥ t(n)− vq(λ, n)

p(n)
. (9)

For every f ∈ Oλ, i ∈ [n/2] and j ∈ [t∗(n)], we define Flip(f, i, j) as in the proof of Lemma 4.5. We
define P̃n,i,j as follows:

41

P̃f
n,i,j :

1. Set x := 0n/2.
2. Every time a query is made to f at x ∥ ut(n),(i−1)·t∗(n)+j , use the answer of Flip(f, i, j) instead.
3. Compute y := Ff,n(x).
4. Set x := (x, y).
5. Simulate the honest prover P(1λ, (x, y)) with the altered answer and interact with V .

Then, we can deduce from Eq. (9) and Definitions 7.2 and 7.3 that

(1− α(λ, n)) ·
t(n)− vq(λ,n)

p(n)

t(n)
· (1− p(n))

≤ Pr


(0n/2, y′) /∈ Lf ′

∧ d′ = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← Oλ

(i, j)← [n/2]× [t∗(n)]
ρ← {0, 1}vr
ζ ← {0, 1}pr
f ′ := Flip(f, i, j)

((0n/2, y′), aux) := P̃f ′

n,i,j(ζ)

d′ := ⟨P̃f ′

n,i,j(aux),Vf
′
(1λ, (0n/2, y′), ρ)⟩


≤ β(λ, n, t(n) + pq, t(n) + pt) ,

a contradiction.

7.3 Separation of NTIME and IARG

Theorem 7.8. Let O be the random oracle. For every time-constructible function t : N → N, argument
verifier query bound vq : N × N → N, argument verifier time bound vt : N × N → N, argument prover
communication complexity pc : N × N → N, argument honest prover query bound pq : N × N → N,
argument honest prover time bound pt : N × N → N, argument completeness α : N × N → [0, 1] and
argument soundness β : N× N× N× N→ [0, 1],

NTIMEO [t(n)] ̸⊆ IARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
prover communication pc = pc(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


,

where there exists λ ∈ N, n ∈ N and some function p : N→ (0, 1] such that the following holds:

• 0 ≤ β(λ, n, pq, pt) <
(
1− 1

2t(n)

)2t(n)

,

• 0 ≤ 2t(n)−1
2t(n) · α(λ, n) < (1 − t(n) · p(n)) ·

2t(n)− 2O(pc(λ,n))·vq(λ,n)
p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
,

and

42

• (1− t(n) · p(n)) ·
2t(n)− 2O(pc(λ,n))·vq(λ,n)

p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
≤ 1.

The corollary below follows by setting p(n) < 1
2t(n) for all n ∈ N in Theorem 7.8.

Corollary 7.9. Let O be the random oracle. For every time-constructible function t : N × N, λ ∈ N and
n ∈ N,

NTIMEO [t(n)] ̸⊆ IARGO



completeness error α = 1/3

soundness error β =

{
1/3 qP̃ = poly(λ, t(n)), tP̃ = poly(λ, t(n))

1 otherwise
verifier query bound vq = poly(λ, t(n))
verifier running time vt
prover communication pc = o(t(n))
honest prover query bound pq = poly(λ, t(n))
honest prover time bound pt = poly(λ, t(n))


.

To prove Theorem 7.8, it suffices to show the following lemma:

Lemma 7.10. Let O be the random oracle. Let RO be defined as in Definition 5.3. Fix time-constructible
function t : N → N, argument verifier query bound vq : N × N → N, argument verifier time bound
vt : N × N → N, argument prover communication complexity pc : N × N → N, argument honest prover
query bound pq : N× N→ N, argument honest prover time bound pt : N× N→ N, argument completeness
α : N× N→ [0, 1] and argument soundness β : N× N× N× N→ [0, 1].

There is no relativized interactive argument (P,V) for the relativized relation RO with completeness
error α, soundness error β, argument verifier running time vt, argument prover communication complexity
pc, argument honest prover query bound pq, and argument honest prover time bound pt if there exists λ ∈ N,
n ∈ N and p : N→ [0, 1] such that the following holds:

• 0 ≤ β(λ, n, pq, pt) <
(
1− 1

2t(n)

)2t(n)

,

• 0 ≤ 2t(n)−1
2t(n) · α(λ, n) < (1 − t(n) · p(n)) ·

2t(n)− 2O(pc(λ,n))·vq(λ,n)
p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
,

and

• (1− t(n) · p(n)) ·
2t(n)− 2O(pc(λ,n))·vq(λ,n)

p(n)

2t(n) ·
((

1− 1
2t(n)

)2t(n)

− β(λ, n, pq, pt)

)
≤ 1.

Proof of Lemma 7.10. The proof follows the same idea as the proof of Lemma 5.5.
For interactive arguments, we measure the prover communication complexity instead of the argument

size. In particular, for every f ∈ Oλ, we can define the set Q⋆(f) the set of w ∈ {0, 1}t(n) that satisfies the
following:

∀i ∈ [t(n)],
∑

(b1,...,bk)∈{0,1}≤pc

Pr

w ∥ ut(n),i ∈ tr

∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}vr
For i ∈ [k] :

ai
tri←− Vf (1λ, 0n, ρ, (bj)j<i)

d
trk←− Vf (1λ, 0n, ρ, (bi)i∈[k])

tr := tr1 ∥ · · · ∥ trk

 < p(n) ,

43

where (·) tr←− Af (·) means tr is the set of all queries made by algorithm A to the oracle f .
Similarly, we can define the set Qc(f) as the set of w ∥ u ∈ {0, 1}t(n)+⌈log t(n)⌉ such that

∑
(b1,...,bk)∈{0,1}≤pc

Pr

w ∥ u ∈ tr

∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}vr
For i ∈ [k] :

ai
tri←− Vf (1λ, 0n, ρ, (bj)j<i)

d
trk←− Vf (1λ, 0n, ρ, (bi)i∈[k])

tr := tr1 ∥ · · · ∥ trk

 ≥ p(n) .

Since Vf can make at most vq(λ, n) queries to f :

∑
w∥u∈{0,1}t(n)+⌈log t(n)⌉

∑
(b1,...,bk)∈{0,1}≤pc

Pr

w ∥ u ∈ tr

∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}vr
For i ∈ [k] :

ai
tri←− Vf (1λ, 0n, ρ, (bj)j<i)

d
trk←− Vf (1λ, 0n, ρ, (bi)i∈[k])

tr := tr1 ∥ · · · ∥ trk

 ≤ 2O(pc)·vq(λ, n) .

Hence,

|Qc(f)| ≤
2O(pc) · vq(λ, n)

p(n)
,

which implies that

|Q⋆(f)| ≥ 2t(n) − |Qc(f)| ≥ 2t(n) − 2O(pc) · vq(λ, n)
p(n)

. (10)

Moreover, we can deduce from definition of Q⋆(f) that, for every (b1, . . . , bk) ∈ {0, 1}≤pc,

Pr

∀i ∈ [t(n)], w ∥ ut(n),i /∈ tr

∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}vr
For i ∈ [k] :

ai
tri←− Vf (1λ, 0n, ρ, (bj)j<i)

d
trk←− Vf (1λ, 0n, ρ, (bi)i∈[k])

tr := tr1 ∥ · · · ∥ trk

 ≥ 1− t(n) · p(n) . (11)

For every f ∈ Oλ and w ∈ {0, 1}t(n), we define An,w as follows:

Af
n,w: Output (0n, w).

We define SetZero(f, w) as in the proof of Lemma 5.5.
We can deduce from Eqs. (10) and (11) and Definitions 7.2 and 7.3 as in the proof of Lemma 5.5 that

(1− t(n) · p(n)) ·
2t(n) − 2O(pc(λ,n))·vq(λ,n)

p(n)

2t(n)
·

((
1− 1

2t(n)

)2t(n)

− β(λ, n, pq, pt)

)

≤ Pr


0n /∈ L(Rf)
∧ d′ = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← Oλ

w ← {0, 1}t(n)
f ′ := SetZero(f, w)

(0n, w) := Af
n,w

ρ← {0, 1}vr
ζ ← {0, 1}pr
d′ := ⟨Pf ′

(1λ, (0n, w), ζ),Vf ′
(1λ, 0n, ρ)⟩


44

≤ 2t(n) − 1

2t(n)
· α(λ, n) ,

a contradiction.

7.4 Alternative separation of NTIME and IARG

Theorem 7.11. Let O be the random oracle. For every time-constructible function t : N → N, argument
verifier query bound vq : N × N → N, argument verifier time bound vt : N × N → N, argument prover
communication complexity pc : N × N → N, argument honest prover query bound pq : N × N → N,
argument honest prover time bound pt : N × N → N, argument completeness α : N × N → [0, 1] and
argument soundness β : N× N× N× N→ [0, 1],

NTIMEO [t(n)] ̸⊆ IARGO



completeness error α = α(λ, n)
soundness error β = β(λ, n, qP̃ , tP̃)
verifier query bound vq = vq(λ, n)
verifier running time vt = vt(λ, n)
prover communication pc = pc(λ, n)
honest prover query bound pq = pq(λ, n)
honest prover time bound pt = pt(λ, n)


,

where there exists λ ∈ N, n ∈ N and some function p : N→ (0, 1] such that the following holds:

• 0 ≤ α(λ, n) <
(
1− 1

2t(n)

)2t(n)−1
,

• 0 ≤ β(λ, n, pq, pt) < (1− p(n)) · (t(n)− vq(λ,n)
p(n)) ·

((
1− 1

2t(n)

)2t(n)−1
− α(λ, n)

)
,

• (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) ·
((

1− 1
2t(n)

)2t(n)−1
− α(λ, n)

)
≤ 1.

The corollary below follows by setting p(n) < 1
2 for all n ∈ N in Theorem 6.1.

Corollary 7.12. Let O be the random oracle. For every time-constructible function t : N× N, λ ∈ N and
n ∈ N,

NTIMEO [t(n)] ̸⊆ IARGO



completeness error α = 1/3

soundness error β =

{
1/3 qP̃ = poly(λ, t(n)), tP̃ = poly(λ, t(n))

1 otherwise
verifier query bound vq = o(t(n))
verifier running time vt
prover communication pc
honest prover query bound pq = poly(λ, t(n))
honest prover time bound pt = poly(λ, t(n))


.

To prove Theorem 7.11, it suffices to prove the following lemma:

45

Lemma 7.13. Let O be the random oracle. Let RO be defined as in Definition 5.3. Fix time-constructible
function t : N → N, argument verifier query bound vq : N × N → N, argument verifier time bound
vt : N × N → N, argument prover communication complexity pc : N × N → N, argument honest prover
query bound pq : N× N→ N, argument honest prover time bound pt : N× N→ N, argument completeness
α : N× N→ [0, 1] and argument soundness β : N× N× N× N→ [0, 1].

There is no relativized interactive argument (P,V) for the relativized relation RO with completeness
error α, soundness error β, argument verifier running time vt, argument prover communication complexity
pc, argument honest prover query bound pq, and argument honest prover time bound pt if there exists λ ∈ N,
n ∈ N and p : N→ [0, 1] such that the following holds:

• 0 ≤ α(λ, n) <
(
1− 1

2t(n)

)2t(n)−1
,

• 0 ≤ β(λ, n, pq, pt) < (1− p(n)) · (t(n)− vq(λ,n)
p(n)) ·

((
1− 1

2t(n)

)2t(n)−1
− α(λ, n)

)
,

• (1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n) ·
((

1− 1
2t(n)

)2t(n)−1
− α(λ, n)

)
≤ 1.

Proof of Lemma 7.13. We adapt the proof of Lemma 6.3.
For every f ∈ Oλ and w ∈ {0, 1}t(n), we can define the set Q⋆(f, w) as the set of i ∈ [t(n)] such that

Pr


w ∥ ut(n),i ∈ tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}vr
ζ ← {0, 1}pr
For i ∈ [k] :

ai
tri←− Vf (1λ, 0n, ρ, (bj)j<i)

bi := Pf (1λ, 0n, ζ, (aj)j≤i)

d
trk←− Vf (1λ, 0n, ρ, (bi)i∈[k])

tr := tr1 ∥ · · · ∥ trk


< p(n) .

We can show that

|Q⋆(f, w)| ≥ t(n)− vq(λ, n)

p(n)
. (12)

We define the completeness adversary An,w as follows:

Af
n,w: Output (0n, w).

We define UFn,w := {f ∈ Oλ : f ∈ UFn ∧ (0n, w) ∈ Rf}. We define Flip (f, w, i) as in the proof of
Lemma 6.3.

Then, we can deduce from Eq. (12) and Definitions 7.2 and 7.3 that

(1− p(n)) ·
t(n)− vq(λ,n)

p(n)

t(n)
·

((
1− 1

2t(n)

)2t(n)−1

− α(λ, n)

)

≤
∑

w∈{0,1}t(n)

Pr


f ∈ UFn,w
∧ d′ = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← Oλ

(0n, w)← Af
n,w

i← [t(n)]
f ′ := Flip (f, w, i)
ρ← {0, 1}vr
ζ ← {0, 1}pr
d′ := ⟨Pf (1λ, (0n, w), ζ),Vf ′

(1λ, 0n, ρ)⟩


46

≤ β(λ, n, pq, pt)

t(n)
,

a contradiction.

47

Acknowledgments

Ziyi Guan thanks Mika Göös and Dmitry Sokolov for pointing out relevant references. Ziyi Guan thanks
Wenna Qin for helpful discussions at the early stage of this work. The authors thank Zijing Di, Giacomo
Fenzi, Burcu Yıldız, and Zihan Yu for helpful comments on earlier drafts of this paper. Alessandro Chiesa
and Ziyi Guan are partially supported by the Ethereum Foundation.

References
[AB18] Bariş Aydinlioğlu and Eric Bach. “Affine Relativization: Unifying the Algebrization and Relativization

Barriers”. In: ACM Transactions on Computation Theory 10.1 (2018).

[AIV92] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrelativizing techniques:
The role of local checkability. Unpublished manuscript. 1992.

[AW09] Scott Aaronson and Avi Wigderson. “Algebrization: A New Barrier in Complexity Theory”. In: ACM
Transactions on Computation Theory 1.1 (2009), 2:1–2:54.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive Composition and Boot-
strapping for SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the
Theory of Computing. STOC ’13. 2013, pp. 111–120.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceedings
of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowledge via
Cycles of Elliptic Curves”. In: Proceedings of the 34th Annual International Cryptology Conference.
CRYPTO ’14. Extended version at http://eprint.iacr.org/2014/595. 2014, pp. 276–294.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. “Relativizations of the P =? NP Question”. In: SIAM
Journal on Computing 4.4 (1975), pp. 431–442.

[CCGOS23] Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor, and Nicholas Spooner. “Proof-Carrying
Data from Arithmetized Random Oracles”. In: Proceedings of the 42nd Annual International Conference
on Theory and Application of Cryptographic Techniques. EUROCRYPT ’23. 2023, pp. 379–404.

[CCS22] Megan Chen, Alessandro Chiesa, and Nicholas Spooner. “On Succinct Non-interactive Arguments
in Relativized Worlds”. In: Proceedings of the 41st Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’22. 2022, pp. 336–366.

[CGSY23] Alessandro Chiesa, Ziyi Guan, Shahar Samocha, and Eylon Yogev. Security Bounds for Proof-Carrying
Data from Straightline Extractors. Cryptology ePrint Archive, Paper 2023/1646. 2023.

[CL20] Alessandro Chiesa and Siqi Liu. “On the Impossibility of Probabilistic Proofs in Relativized Worlds”.
In: Proceedings of the 11th Innovations in Theoretical Computer Science Conference. ITCS ’20. 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum and Transparent Recursive
Proofs from Holography”. In: Proceedings of the 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature
Cards”. In: Proceedings of the 1st Symposium on Innovations in Computer Science. ITCS ’10. 2010,
pp. 310–331.

[CY20] Alessandro Chiesa and Eylon Yogev. “Barriers for Succinct Arguments in the Random Oracle Model”.
In: Proceedings of the 17th Theory of Cryptography Conference. TCC ’20. 2020, pp. 47–76.

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions. 2024. URL:
https://github.com/hash-based-snargs-book.

48

http://eprint.iacr.org/2014/595
https://github.com/hash-based-snargs-book

[Cha+94] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan Håstad, Desh Ranjan, and Pankaj
Rohatgi. “The random oracle hypothesis is false”. In: Journal of Computer and System Sciences 49.1
(1994), pp. 24–39.

[Dek69] Michael Dekhtyar. “On the impossibility of eliminating exhaustive search in computing a function
relative to its graph”. In: Doklady Akademii Nauk SSSR 14 (1969), pp. 1146–1148.

[For94] Lance Fortnow. “The Role of Relativization in Complexity Theory”. In: Bulletin of the European
Association for Theoretical Computer Science 52 (1994), pp. 229–244.

[HN23] Mathias Hall-Andersen and Jesper Buus Nielsen. “On Valiant’s Conjecture: Impossibility of Incremen-
tally Verifiable Computation from Random Oracles”. In: Proceedings of the 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’23. 2023.

[Hel86] Hans Heller. “On relativized exponential and probabilistic complexity classes”. In: Information and
Control 71.3 (1986), pp. 231–243.

[IKK09] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. “An axiomatic approach to alge-
brization”. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing. STOC ’09.
2009, pp. 695–704.

[KR09] Yael Tauman Kalai and Ran Raz. “Probabilistically Checkable Arguments”. In: Proceedings of the 29th
Annual International Cryptology Conference. CRYPTO ’09. 2009, pp. 143–159.

[Lis86] Gerhard Lischke. “Oracle-Constructions to Prove All Possible Relationships Between Relativizations of
P, NP, EL, NEL, EP and NEP.” In: Mathematical Logic Quarterly 32.17-18 (1986), pp. 257–270.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000). Prelimi-
nary version appeared in FOCS ’94., pp. 1253–1298.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Effi-
ciency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–18.

49

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 Review: relativized SNARGs
	2.2 Why not reduce relativized arguments to relativized probabilistic proofs?
	2.3 Prior techniques for oracle separations
	2.4 Separation between DTIME and NARG
	2.5 Separation between NTIME and NARG
	2.6 The case of relativized interactive arguments
	2.7 The random oracle model with cryptography
	2.8 Limitations in other oracle models?

	3 Preliminaries
	3.1 Languages and relations
	3.2 Oracle Turing machines
	3.3 Complexity classes with oracles
	3.4 Relativized non-interactive arguments in the ROM

	4 Separation of DTIME and NARG
	4.1 Separation for every security parameter
	4.2 Proof of Lemma 4.4
	4.3 Proof of Lemma 4.5

	5 Separation of NTIME and NARG
	5.1 Separation for every security parameter
	5.2 Proof of Lemma 5.4
	5.3 Proof of Lemma 5.5

	6 Alternative separation of NTIME and NARG
	6.1 Separation for every security parameter
	6.2 Proof of Lemma 6.3

	7 The case of IARG in the ROM
	7.1 Relativized interactive arguments in the ROM
	7.2 Separation of DTIME and IARG
	7.3 Separation of NTIME and IARG
	7.4 Alternative separation of NTIME and IARG

	Acknowledgments
	References

