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Abstract

We show that the adaptive compromise security definitions of Jaeger and Tyagi (Crypto ’20)
cannot be applied in several natural use-cases. These include proving multi-user security from
single-user security, the security of the cascade PRF, and the security of schemes sharing the
same ideal primitive. We provide new variants of the definitions and show that they resolve these
issues with composition. Extending these definitions to the asymmetric settings, we establish the
security of the modular KEM/DEM and Fujisaki-Okamoto approaches to public key encryption
in the full adaptive compromise setting. This allows instantiations which are more efficient and
standard than prior constructions.
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1 Introduction

Definitions lie at the heart of modern cryptography. They allow us to mathematically specify what
should be achieved by a scheme in practice and give modular, proof-based analyses to ensure these
properties are achieved. Studying and understanding definitions is fundamental to the field of
cryptography.

There are multiple desiderata to consider when giving a security definition for a primitive
including: (i.) Is it philosophically sound? Does it meaningfully model the uses and goals of a
primitive in the real world? (ii.) Is it sufficiently strong? Can we prove that this security notion
will imply security of higher-level protocols constructed from the primitive? (iii.) Is it sufficiently
weak? Can we prove that schemes which “should be” secure satisfy the definition?1

In this work, we consider a set of definitions recently introduced by Jaeger and Tyagi [JT20]
for the security of encryption schemes and pseudorandom functions in the “adaptive compromise”
setting. They gave several examples of schemes achieving their definitions as well as higher-level
protocols which can be proven secure based on sub-primitives achieving their definitions, thereby
evidencing that their definitions achieve desiderata (ii.) and (iii.). We provide counter-evidence.
There are natural goals and constructions for which their definitions fail (ii.) and (iii.).2

As an example, it does not seem to be possible to prove that single-user restrictions of their
definitions implies the full multi-user versions. Across a wide variety of definitions, the notion of
multi-user security that is considered “correct” follows from single-user security by a straightforward
hybrid argument. Thus, whether this holds for a definition might be considered a sort of litmus
test. A definition for which this is not possible should be examined carefully to understand why.
Having done so, we propose new variants of Jaeger and Tyagi’s definitions and show that they
resolve these shortcomings, while preserving the positive qualities of the original definitions.

1.1 Adaptive Compromise and SIM-AC security

Before discussing our contributions, let us first briefly recall the adaptive compromise setting
broadly and the specific SIM-AC definitions of Jaeger and Tyagi (simulation security under adaptive
compromise). Roughly speaking, the adaptive compromise setting captures times when there are
multiple users of a system, each of whom have their own secrets. An attacker then interacts with
these users and based on these interactions may adaptively decide to steal some of the secrets.
In applications of these definitions, this description may be somewhat metaphorical. For exam-
ple, in the searchable encryption scheme of CJJJKR [CJJ+14] the “users” are keywords, each
of which are assigned a secret key. The “stealing” of keys occurs because to perform a search
for a particular keyword, the protocol shares the keyword’s secret key. The adaptive compro-
mise setting is widely studied in cryptography and is associated with a variety of terms including
(but not limited to) adaptive corruption/compromise/security [JT20,Pan07], non-committing en-
cryption3 [CFGN96, Nie02, CDG+18, CLNS17], and selective-opening attacks [BDWY12, BHK12,
BHY09,HPW15,HP16,HRW16]. We refer the reader to a systemization of knowledge by Brunetta,

1More nuanced versions of (ii.) and (iii.) ask not just whether these proofs are possible, but also how easy they
are to write. Definitions which are difficult to work with can result in proof errors or cryptographers only loosely
sketching their proofs (potentially hiding errors).

2The examples for which (iii.) fails are “intermediate-level” proofs where both the assumption and desired result
use their definitions. Arguably then, it is only with respect to (ii.) that these definitions have issues.

3This notion of “non-committing” encryption (exploiting ideal model programming) should not be confused as
being the opposite of “committing” encryption notions which require that ciphertexts act as commitments to messages.
Schemes can simultaneously be non-committing (for simulators that program the ideal model) and committing (for
attackers that can only query the ideal model).
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Figure 1: Left: Typically one proves a scheme Π achieves a security notion with random oracle P,
then heuristically assumes it is SEC secure with a particular hash function (e.g. SHA-384). Right:
A scheme Π cannot be SIM-AC-X secure with any standard model hash function [JT20, Nie02].
Instead, one uses SIM-AC-X security of ΠP as an intermediate step to showing that ΠP achieves
some security notion SEC′. Then one heuristically assumes ΠSHA is SEC′ secure.

Heum, and Stam [BHS24] for an in-depth synthesis of the literature on adaptive compromise for
public key encryption.

Jaeger and Tyagi’s work was motivated by various papers that ran into adaptive compromise
issues for symmetric encryption or PRFs and had addressed the issues by fixing particular uses
of random oracles acting like PRFs. They observed that these works all technically required the
same detail-intensive random oracle analysis (which was usually omitted or incorrect). To address
this, they introduced their SIM-AC definitions which allow one to abstract away this detail-intensive
analysis as something that need only be done once at the lowest levels of analysis. They showed that
these notions were achieved by standard efficient schemes in appropriate ideal models, and sufficed
for proving the security of their motivating higher-level applications. Broadly their definitions
were online-simulator based definitions in which the attacker tries to distinguish between a real
world where they interact with the honest algorithms of the scheme and an ideal world where the
simulator provides responses for every oracle query (including ideal primitive queries). Security
requires that for every adversary there is a simulator whose responses it cannot distinguish from
the real world.

Ideal model interpretation. Notably these definitions were defined explicitly for use only with
ideal primitives because techniques of Nielsen [Nie02] show that such definitions cannot be achieved
in the standard model. Arguably this causes issues with desiderata (i.). Consider a scheme ΠH which
expects access to a hash function H. In practice, the might be deployed with the hash function SHA-
384 (giving ΠSHA) under the hope that it achieves some security notion SEC. Towards justifying
this, the scheme may be analyzed when the hash function is replaced with a random oracle P (giving
ΠP). If ΠP is shown to be SEC secure, this may be taken as heuristic evidence that ΠSHA will be
SEC secure. However, this clearly cannot be the case for SEC=SIM-AC-X from the aforementioned
result that SIM-AC notions cannot be achieved in the standard model.

From our perspective, the “correct” interpretation is that the SIM-AC definitions are intention-
ally chosen to be overly strong so that (in ideal models) they imply any other security property
SEC′ one desires. Suppose SEC′ is plausibly achievable in the standard model and one proves
that SIM-AC-X security implies SEC′ security. Then a proof that ΠP is SIM-AC-X secure can be
viewed as part of a longer ideal model proof that it achieves SEC′. Then the proof acts as heuristic
evidence that ΠSHA is a standard model scheme achieving SEC′. We represent this pictorially in
Fig. 1.

A similar viewpoint can be taken to proving that a particular hash function construction is
indifferentiable from a random oracle. It is trivial to show that no standard model hash function
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can achieve this. However, analyzing indifferentiability in ideal models still serves as a convenient
intermediate notion for heuristically justifying the use of the hash function in some contexts.

A note on terminology. As noted earlier, there are a variety of terms used for the general setting
we consider. We use “adaptive compromise” to match the SIM-AC definitions we are directly build-
ing. The terminology “adaptive corruption”, “adaptive security”, or “selective-opening security”
could just as easily have been used. We choose to explicitly avoid the “non-committing encryp-
tion” terminology, to avoid confusion with definitions of “committing encryption” that require a
ciphertext “commit” to the underlying message. It is possible for a scheme to simultaneously be
“non-committing” to a simulator which can program the ideal model, but “committing” to an
adversary that does not program the ideal model.

1.2 Our results

Shortcomings of SIM-AC. After introducing notations and other preliminaries, we start in
Section 3 by recalling the original SIM-AC definitions of Jaeger and Tyagi. In their definitions,
an attacker interacts with either a real world (where oracles are instantiated honestly) or an ideal
world (where oracles are all simulated by a simulator given only some leakage about the queries
being made). The definitions are multi-user and allow the attack to ask that a particular users
secrets be revealed at any time. Then, in the ideal world, the simulator is given all of the suppressed
information about prior queries and must produce a consistent key, lest it be discovered. In the
ideal world, the simulator completely controls the responses of the ideal primitive.

We evidence some shortcomings of these definitions, in that they are seemingly unable to prove
some very natural results.4 One example, which came up in their own work, is that their definitions
cannot be used for proofs wherein the ideal object is used multiple times within a protocol (whether
by multiple different sub-primitives or repeated use of the same sub-primitive). For example, in
the searchable encryption construction of CJJJKR [CJJ+14] the same random oracle was shared
across encryption and a PRF, but for the analysis done by Jaeger and Tyagi they were forced
to use different primitives for the two uses. One can generically solve this problem via oracle
cloning [BDG20], but we find this unsatisfactory. A good definitional framework should allow us
to capture when uses of ideal primitives don’t require domain separation techniques. Furthermore,
while domain separation is relatively fast and efficient for random oracles, we are generally interested
in the use of a variety of ideal primitives and it is much less clear how to do oracle cloning efficiently
with something like an ideal cipher.

Similar and even more subtle issues arise in some “standard” results that one would expect
to hold with a “good” definition. One would expect that it should be possible to prove secure
the cascade construction of a PRF [BCK96b, GGM86] which iteratively applies a smaller PRF,
as well as to prove that for most security notions single-user security implies multi-user security.
The cascade construction underlies several other construction PRFs including AMAC, HMAC, and
NMAC [BBT16, BCK96a, Bel06]. These (and other) issues all stem from a common cause. In
SIM-AC, the simulator completely controls and replaces the ideal primitive. As such the definition
is not robust to proofs which require multiple different applications of security with respect to the
same ideal primitive.

New definition, SIM*-AC. Motivated by these shortcomings, in Section 4 we propose new
variants of these definitions, which we term SIM*-AC. Our new definitions match the prior SIM-

4We use “seemingly” here and similar phrasing elsewhere because, while we have deeply considered these problems
and do not see how SIM-AC could be used to prove these results, we do not have any explicit counterexamples showing
it is impossible.
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AC definitions, but make three crucial modifications. The first is that rather having complete
control of the ideal primitive, we give the simulator access to an oracle for querying the primitive
and which additionally provides the special power of being able to give an input-output pair which
the primitive will program itself to be consistent with, if possible. This modification means that
applications of SIM*-AC in a proof will leave the ideal primitive around for use in further proof
steps. However, these future steps can run into issues where the simulator is supposed to have
programmed the ideal primitive, but a reduction attacker who wants to run the simulator internally
has no way of forcing other parties to use a programmed ideal primitive. This issue is resolved by
our second modification which gives the adversary the ability to program the ideal primitive. The
final modification is aimed at proofs which require a polynomial number of hybrids and, as such,
the reduction adversary needs to depend on the simulator so that it can properly simulate internal
hybrids. We simply reverse the order of quantification so that a universal simulator is quantified
before a specific attacker.

After the introduction of the new definitions we show by example that the modifications suffice
to write the proofs we identified as seemingly not possible with the original SIM-AC definitions.
Namely, we prove that for all of our SIM*-AC definitions (with one exception) single-user security
implies multi-user security5 and that the cascade construction of a large-domain PRF from a small-
domain PRF is secure. Both proofs are hybrid arguments which conceptually resemble such proofs
for most standard indistinguishability-based security notions. For going from single-user to multi-
user security the hybrid is over how many of the users will be honestly run versus emulated by a
copy of the single-user simulator. For the cascade construction (which is a generalization of the
GGM construction of a PRF from a PRG), we think of there being an underlying tree structure
imposed on the internal values of the computation. The proof performs a hybrid over how many
layers of the tree are honestly run versus emulated by a multi-user simulator for the underlying
PRF. Using multi-user security allows us to hybrid one layer at a time, rather than having hybrid
over each node individually.

Asymmetric encryption. The SIM-AC definitions focus on symmetric primitives (encryption
and PRFs) because this is what was required by their applications. However, adaptive compromise
has been studied in detail for public-key encryption, so it is natural to ask how a SIM*-AC notion
for public key encryption would work. We do so in Section 5, providing a definition that captures
the compromise of receiver secret decryption keys and sender randomness. The resulting definition
roughly matches the SIM-FULL definition of Camensich, Lehmann, Neven, and Samelin [CLNS17].6

In their work, they showed that SIM-FULL was stronger than various prior adaptive compromise
definitions [CLNS16,HPW15] and equivalent to a new universal composability definition they in-
troduce.

Casting this definition in SIM*-AC language provides benefits. Where CLNS constructed one
particular secure encryption scheme from one-way trapdoor permutations, the broader context of
SIM*-AC style definitions allows us to follow the example of Jaeger and Tyagi by giving modu-
lar analysis. In particular, we introduce SIM*-AC definitions for key-encapsulation mechanisms
(KEM), then show the KEM/DEM approach [CS03] allows one to combine a KEM with a symmet-
ric encryption scheme to construct public-key encryption. We consider one Fujisaki-Okamoto-style
transformation [FO13] (as modularized by Hofheinz, Hövelmanns, and Kiltz [HHK17]) to show that
it can lift a KEM satisfying a one-wayness security notion to a KEM satisfying our full SIM*-AC-
CCA notion. Thereby we have a more general collection of different options how to construct a
public-key encryption scheme secure against adaptive compromise. We can instantiate this with

5The exception is key-private security which is meaningless with only a single user.
6Their definition is basically a SIM-AC-CCA (not SIM*-AC) definition with labels and using a random oracle.
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well-studied and standardized schemes, improving efficiency because our analysis allows the use of
block-cipher based symmetric encryption for the DEM.

An interesting comparison point for our KEM/DEM analysis is the work of Heuer and Po-
ettering [HP16] who also looked at the KEM/DEM construction. They proved a weaker offline-
simulation notion of security for public key encryption by making a particular concrete assumption
about the DEM being constructed from a blockcipher and having a particular simulatable form.

Heuer, Jager, Kiltz, and Schäge [HJKS15] also showed adaptive compromise security of a
Fujisaki-Okamoto-style transformation. Their result proves a weaker “offline-simulation” style of se-
curity for a public-key encryption scheme obtained by starting with a one-way secure public-key en-
cryption scheme, applying a Fujisaki-Okamoto-style transformation, then applying the KEM/DEM
transform with a specific DEM based on one-time pad.

New definition, old results. Jaeger and Tyagi showed a number positive results in their original
work. These include that random oracles and ideal ciphers make SIM-AC-PRF secure function
families, that various constructions of symmetric encryption achieve SIM-AC security when their
underlying function families are SIM-AC-PRF secure, and that higher-level protocols can be proven
secure assuming the SIM-AC security of their constituent elements. It would be rather disappointing
if our switch to SIM*-AC security required us to re-prove all of these results from scratch.

In Section 6, we dedicate the end of our paper to showing that these results hold with SIM*-
AC security. We roughly divide these pre-existing results into three categories: low-level results
(constructing basic SIM-AC primitives directly from ideal primitives), intermediate-level results
(using one notion of SIM-AC to achieve another), and high-level results (proving secure some
non-SIM-AC protocol). For each we discuss how the existing result can be seen, possibly with
minor modification to the proof, to hold for SIM*-AC security. In some cases we can get minor
improvements along the way, such as allowing the proof to handle when a single ideal primitive is
shared between multiple schemes.

2 Preliminaries

Pseudocode notation. We define security notions using pseudocode-based games. The pseu-
docode “Require bool” is shorthand for “If ¬bool then return ⊥”. Here ¬ denotes negation. If S is
a set, then x←$ S sets x equal to a uniformly random element of S. The notation x(·)←$ S means
that each xu will be sampled according to xu←$ S the first time it is accessed.

The notation y←$ A(x1, x2, · · · : σ) denotes the (randomized) execution of A with state σ.
Deterministic execution uses ←. The state σ is passed by reference, so changes that A makes to σ
are maintained after A’s execution. All other inputs are passed by value. For given x1, x2, . . . and
σ we let [A(x1, x2, · · · : σ)] denote the set of possible outputs of A given these inputs.

The symbol ⊥ is used to indicate rejection or uninitialized variables. The symbol ⋄ is used as
a return value by functions that do not need to return anything. Unless specified otherwise, these
values are assumed not to be contained in sets. Algorithms and oracles will typically assume their
input is from a particular domain (e.g. the message space of an encryption scheme). We implicitly
assume adversaries never provide them with input not in these domains.

A list T of length n ∈ N specifies an ordered sequence of elements T [1], T [2], . . . , T [n]. The
operation T.add(x) appends x to this list by setting T [n+1]← x, so T is now of length n+1. We
let |T | denote the length of T . In pseudocode lists are assumed to be initialized empty (i.e. have
length 0). An empty list or table is denoted by [·]. We sometimes use set notation with a list. For
example, x ∈ T is true if x = T [i] for any 1 ≤ i ≤ |T |. The loop “For x ∈ T” is defined to be
looping “For i = 1, . . . , |T |” and defining x← T [i] in each iteration.
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If T is a list of tuples (x, y) then we index into T like a table where T ⟨x⟩ is the y value of the
last tuple in the list with first component x (or is ⊥ if no such tuple exists). By T.add(x, y) we
mean T.add((x, y)).

We use an asymptotic formalism with security parameter λ. A function f is negligible if for
all polynomials p there exists a λp ∈ N such that f(λ) ≤ 1/p(λ) for all λ ≥ λp. We say it is
super-polynomial if 1/f is negligible and super-logarithmic if 2f is super-polynomial.

Suppose Gsec
x is a game that samples a uniformly random bit b, runs an adversary which guesses

bit b′, and then returns the boolean (b = b′). Then for d ∈ {0, 1}, we let Gsec
x,d be the game with b

hardcoded to have value d and which outputs the boolean (b′ = 1). Standard conditional probability
calculations give that 2Pr[Gsec

x ]− 1 = Pr[Gsec
x,1]− Pr[Gsec

x,0].

Ideal primitives. Most of the definitions we consider are dependent on ideal primitives such as
random oracles or ideal ciphers, so we require a careful formalization of them. An ideal primitive
P specifies (for each λ ∈ N) a distibution Pλ over functions f : Kλ × Dλ → Rλ. When needed to
avoid ambiguity we write P.Pλ, P.Kλ, P.Dλ, and P.Rλ. In the P ideal model, f ←$ Pλ is sampled
at the beginning of any security game and algorithms are given oracle access to f .

It is often important that oracle access to an ideal primitive can be efficiently simulated despite
the fact that each f ∈ Pλ is typically exponential in size. This is referred to as lazy sampling,
which we notate using an algorithm P.Ls. We will think of f as being (partially) specified by a
table σP indexed by Kλ × Dλ. Then the evaluation algorithm has syntax y←$ P.Ls(1λ, k, x : σP).
If σP[k, x] = ⊥, it samples σP[k, x] according to the appropriate distribution conditioned on the
current value of σP.

7 Then it outputs σP[k, x]. We sometimes use AP as shorthand for giving
algorithm A oracle access to P.Ls(1λ, ·, · : σP). We write σP←$ P.Init for initializing this state (i.e.,
setting σP ← [·, ·]).

The standard model is captured by the primitive Psm for which Pλ always returns the function
f defined exactly by f(ε, ε) = ε. A random oracle Prom is captured by Pλ’s output being uniform
over the set of all functions f : Kλ × Dλ → Rλ. An ideal injection Pinj is captured by letting Dλ

consist of tuples (◦, x) for ◦ ∈ {+,−}. Then Pλ returns a uniform f for which f(k, (+, ·)) is an
injection with inverse f(k, (−, ·)) (we define inverse functions to output ⋄ on input a value not in
the image of the original function). An ideal cipher Picm is an ideal injection for which f(k, (+, ·))
is a bijection on the finite set Rλ. Standard techniques allow Ls to be efficiently evaluated for such
functions.

Cryptographic schemes may be constructed from multiple underlying cryptographic schemes,
each expecting its own ideal primitive. Let P′ and P′′ be ideal primitives. We define P = P′ × P′′

via the following algorithms.

P.Init(1λ)

σP
′←$ P′.Init(1λ)

σP
′′←$ P′′.Init(1λ)

Return (σP
′, σP

′′)

P.Ls(1λ, k, x : σP)

(σP
′, σP

′′)← σP
(d, k)← k
If d = 1 then y←$ P′.Ls(1λ, k, x : σP

′)
If d = 2 then y←$ P′′.Ls(1λ, k, x : σP

′′)
σP ← (σP

′, σP
′′)

Return y

In other words, P.Pλ samples f ′←$ P′.Pλ and f ′′←$ P′′.Pλ, then defines f by f((1, k), x) = f ′(k, x)
and f((2, k), x) = f ′′(k, x).

7Concretely, this is the distribution induced by sampling f ←$ Pλ subject to f(k′, x′) = σ[k′, x′] wherever the
latter is not ⊥ and assigning σP[k, x]← f(k, x).
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Programming ideal primitives. For our new security notions we need to make explicit a notion
of “programming” an ideal model. By this we mean allowing some third party to define the output
of ideal model on inputs that have not previously been queried. Let σP be a table indexed by
Kλ × Dλ and let (k, x, y) ∈ Kλ × Dλ × Rλ. We say that σP is compatible with (k, x, y), denoted
σP♡(k, x, y), if there exists f ∈ Pλ such that (i) σP[k

′, x′] = f(k′, x′) wherever σP[k
′, x′] ̸= ⊥ and (ii)

f(k, x) = y. Then we allow programming of an ideal model P using the algorithm P.Prog defined
as follows.

P.Prog(1λ, k, x, y : σP)

If σP♡(k, x, y) then σP[k, x]← y
Return ⋄

This ensures that P cannot be redefined on an input where it was already defined and that an ideal
injection cannot be made to have inconsistent inverses.

Our careful formalizing of ideal primitives in terms of functions, particularly in requiring that
P.Prog maintain consistency, is important for avoiding subtle issues in later proofs. This formaliza-
tion ensures that a deterministic algorithm with oracle access to P always gives consistent outputs
even if P is programmed between executions. Correctness of a scheme with access to P (e.g. that
decryption inverts encryption) is maintained even if P is programmed between executions of dif-
ferent algorithms. Without these properties it would be difficult to avoid erroneous proofs that
implicitly assumed them during typically “straightforward” proof steps.

This is not without cost. The requirement for consistency in programming has the potential to
introduce subtle errors elsewhere in proofs by implicitly assuming an attempt to program an oracle
worked, when in fact it failed because of inconsistency. Additionally, the act of honestly querying
the ideal primitive can be detected by a programming adversary who attempts to program at that
point and then checks if they succeed in this programming. We believe this cost to be worthwhile
because in the analyses we have considered, the places that could cause such proof errors would
anyway need to be analyzed carefully to avoid other errors if we were using a more permissive
notion of programming.8

For generality, we allow the use of non-programmable ideal primitives in games that allow
programming. This is captured by defining P.Prog to immediately return ⋄. When we quantify
over an arbitrary ideal primitive, we allow it to be programmable or non-programmable (or the
combination of multiple ideal primitives – some programmable, some not). When we discuss a
specific ideal primitive, we mean the programmable version unless specified otherwise.

Syntax for cryptographic primitives. We assume familiarity with (randomized) symmetric
encryption, asymmetric encryption, function families (e.g. PRFs), and key encapsulation mecha-
nisms. We use the following syntax.

Symmetric encryption

k←$ SE.Kg(1λ)

c←$ SE.EncP(1λ, k,m)

m← SE.DecP(1λ, k, c)

Asymmetric encryption

(ek,dk)←$ PKE.Kg(1λ)

c←$ PKE.EncP(1λ, ek,m)

m← PKE.DecP(1λ,dk, c)

Function Family

k←$ F.KgP(1λ)

y ← F.EvP(1λ, k, x)

x← F.InvP(1λ, k, y)

Key Encapsulation Mechanism

(ek, dk)←$ KEM.Kg(1λ)

(c, k)←$ KEM.EncapsP(1λ, ek)

k ← KEM.DecapsP(1λ,dk, c)

8Subsequent work by Cheng and Jaeger [CJ24] formalizes “consistency” and “undetectability” of ideal primitives,
showing that these two properties are fundamentally at odds and identifying a proof which is seemingly only possible
with an undetectable ideal primitive. More work is needed to understand the tradeoffs between these properties.
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A family of functions F only has inverse algorithm F.Inv if it is a blockcipher. For simplicity, we
assume perfect correctness which holds for all f ∈ P.Pλ. We will make careful note of where proofs
make use of this correctness. To use notions of imperfect correctness in these proofs, one must
choose an imperfect correctness notion that is “robust” to the ideal primitive being programmable.

We additionally will sometimes assume a notion we call query consistency which requires that
if c is produced by encryption/encapsulation/evaluation, then decrypting/decapsulating/inverting
c with the correct key only makes ideal primitive queries that were also made by encryption/
encapsulation/evaluation. This ensures that any querying of the ideal primitive while decrypt-
ing/decapsulating an honest ciphertext cannot be detected by a programming adversary.

3 SIM-AC Definitions and Their Shortcomings

We start by recalling the definitions that Jaeger and Tyagi [JT20] introduced for the simulation
security of symmetric encryption or pseudorandom functions under adaptive compromise. Jaeger
and Tyagi showed that these definition were achieved by very natural encryption/PRF construc-
tions in the random oracle or ideal cipher model and that they moreover sufficed for proving the
security of higher-level constructions (e.g. searchable encryption schemes, asymmetric password-
authenticated key exchange, and self-revocable encrypted cloud storage). In this section, we will
identify ways in which these definitions fall short. Namely, that there are other natural encryp-
tion/PRF constructions and high-level construction which cannot be proven secure using these
definitions.9

3.1 SIM-AC Definitions

All of the SIM-AC definitions have a common structure; they measure the ability of an adversary
to distinguish between a “real” and a “simulated” world. In the real world, the adversary interacts
with multiple “users” that honestly execute the algorithms of scheme. The adversary has access to
an exposure oracle which it can query to be given the secret keys of any users it chooses. Finally,
the adversary has oracle access to the ideal primitive algorithm P.Ls. In the ideal world, the output
of all of these oracles is provided instead by a simulator S. For the definition to be meaningful, the
behavior of the simulator when responding to queries for “unexposed” users is restricted in some
manner. (For example, the simulator may be required to return a uniformly random string or may
only be given partial information about what the query was.)

Pseudorandom function security. We start with the notion of SIM-AC-PRF security for a
function family F. It is captured by the game Gsim-ac-prf

F,S,P,Aprf
shown in Fig. 2. The variable X is used

to track which users have been exposed, so Xu is true when the user has been exposed. The
game hardcodes that random values are returned for evaluation queries to unexposed users in the
simulated world. Inputs and outputs to evaluation are stored in the table Tu which is given to S
when u is exposed. Note that here (and in other SIM-AC definitions) the superscript P given to
oracles of F indicates that it had direct oracle access to P.Ls. If instead it had access to Prim we
would have to modify the game when b = 0 so that honest algorithms of F are not run. Otherwise
S would see the oracle queries made by F, which is clearly not intended.

We define Advsim-ac-prfF,S,P,Aprf
(λ) = 2Pr[Gsim-ac-prf

F,S,P,Aprf
(λ)]− 1 and say that F is SIM-AC-PRF secure with

P if for all PPT Aprf there exists a PPT S such that Advsim-ac-prfF,S,P,Aprf
(·) is negligible. Intuitively, this

definition captures that the outputs of Fk look random to an adversary until they expose k.

9Technically, we do not show that these proofs are impossible. We show why the “natural” proofs fail and
informally argue why it seems difficult to find other proofs.
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Game Gsim-ac-prf
F,S,P,Aprf

(λ)

k(·)←$ F.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEv,Exp,Prim

prf (1λ)

Return (b = b′)

Prim(k, x)

y1←$ P.Ls(1λ, k, x : σP)

y0←$ S.Ls(1λ, k, x : σ)

Return yb

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

y1 ← F.EvP(1λ, ku, x)
If Xu then y0←$ S.Ev(1λ,u, x : σ)

Else y0←$ F.Out(λ)
Tu[x]← yb
Return yb

Exp(u)

k′1 ← ku
k′0←$ S.Exp(1λ,u, Tu : σ)

Xu ← true
Return k′b

Game Gsim-ac-cca
SE,S,P,Acca

(λ)

k(·)←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b = b′)

Prim(k, x)

y1←$ P.Ls(1λ, k, x : σP)

y0←$ S.Ls(1λ, k, x : σ)

Return yb

Enc(u,m)

If ¬Xu then ℓ← |m| else ℓ← m

c1←$ SE.EncP(1λ, ku,m)

c0←$ S.Enc(1λ,u, ℓ : σ)
Mu.add(cb,m); Return cb

Dec(u, c)

If Mu⟨c⟩ ≠ ⊥ then return Mu⟨c⟩
m1 ← SE.DecP(1λ, ku, c)
m0←$ S.Dec(1λ,u, c : σ)
Return mb

Exp(u)

k′1 ← ku; k
′
0←$ S.Exp(1λ,u,Mu : σ)

Xu ← true; Return k′b

Figure 2: Games defining SIM-AC-PRF security of F and SIM-AC-CCA security of SE

Encryption definitions. Next we recall the SIM-AC security notions for a symmetric encryption
scheme SE. Consider the game Gsim-ac-cca

SE,S,P,Acca
(λ) shown in Fig. 2. During encryption queries for

unexposed users, the simulator is only told the length of the message m. The list Mu stores the
messages queried to user u and ciphertexts returned. It is given to the simulator when that user is
exposed. If the attacker forwards challenge ciphertexts from encryption to decryption, this list is
used to respond appropriately.

We define Advsim-ac-ccaSE,S,P,Acca
(λ) = 2Pr[Gsim-ac-cca

SE,S,P,Acca
(λ)] − 1 and say SE is SIM-AC-CCA secure with

P if for all PPT Acca there exists a PPT S such that Advsim-ac-ccaSE,S,P,Acca
(·) is negligible. Intuitively, this

definition captures that an adversary learns nothing (other than the length) about a message m
encrypted with a key k until they expose k. For chosen-plaintext security we restrict attention to
attackers that never query decryption. We then write the superscript sim-ac-cpa.

Stronger notions of security are captured by requiring that S be chosen from some restricted
set. Key-private security (SIM-AC-KP) requires that the CPA simulator respond to encryption
queries for un-exposed users using an algorithm S.Enc1(1

λ, ℓ : σ) which is not given u as input.
Indistinguishable from random security (SIM-AC-$) requires that the CPA simulator respond to
encryption queries for un-exposed users by sampling c uniformly from a set S.Out(λ, ℓ). Authen-
ticated encryption security (SIM-AC-AE) requires that the CCA simulator respond to encryption
queries as in SIM-AC-$ security and to decryption queries for un-exposed users with ⊥.

Simplifying assumptions. Jaeger and Tyagi observed the following simplifying assumptions
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(copied almost verbatim from [JT20]) for their SIM-AC definitions.

• If an oracle is deterministic (and stateless) in the real world, we can assume that the adversary
never repeats a query to this oracle or that the simulator always provides the same output to
repeated queries.

• We can assume the adversary never makes a query to a user it has already exposed or that
for such queries the simulator just runs the code of the real world (replacing calls to P with
calls to S.Ls).

• We can assume the adversary always queries with u ∈ [uλ] = {1, 2, . . . ,uλ} for some polyno-
mial u(·) or that the simulator is agnostic to the particular strings used to reference users.

Looking ahead, we will be able to make the analogous assumptions for the new definitions introduced
in this paper. These assumptions are convenient for proving that a scheme satisfies a given SIM-AC
definition of security. The fact that these assumptions are not hardcoded into the security game
is convenient when proving the security of a higher-level construction assuming that constituent
schemes satisfy some SIM-AC security notion.

3.2 Shortcomings of SIM-AC

Now that we have introduced SIM-AC security notions we can discuss ways that they fall short of
being able to establish the results we would like.

Multiple schemes with the same P. Suppose a higher-level protocol is constructed from
multiple underlying schemes satisfying SIM-AC security notions. We generally will not be able to
prove the security of the protocol if the underlying schemes make use of the same P.10 Performing
a SIM-AC reduction with the first scheme will replace the entirety of P with some S.Ls. With P
being gone, the security of the second scheme with respect to P is of no use.

As a toy example, we might consider function families F0 and F1. Even assuming they are
both SIM-AC-PRF secure with P, it seems impossible to prove F is SIM-AC-PRF secure where
F.EvP(1λ, (k0, k1), (b, x)) = Fb.Ev

P(1λ, kb, x). Several of Jaeger and Tyagi’s proofs were restricted
by this and had to assume underlying schemes used distinct ideal primitives.

Multiple uses of the same scheme. Suppose a higher-level protocol is constructed from an
underlying scheme satisfying a SIM-AC security notion and that this scheme is used in several
distinct ways in the protocol.

If it’s not possible to write a careful reduction that covers all of the uses of the scheme at once,
then we run into a similar issue as the above. The first application of the scheme’s SIM-AC security
will replace its ideal primitive with a simulator, preventing us from applying its security again.

As a toy example, we might consider a function family F. Even assuming F is SIM-AC-PRF
secure with P, it seems impossible to prove that F′ is SIM-AC-PRF secure where F′ is defined by
F′.EvP(1λ, k, (x0, x1)) = F.EvP(1λ,F.EvP(1λ, k, x0), x1).

One of Jaeger and Tyagi’s proofs (for their Theorem D.1) almost ran into issue with this.
However, they seemingly got “lucky” in that for that particular proof they were able to use just
plain PRF security for the first use of the underlying function family.

Single-user security implies multi-user security. With most “standard” security notions
(e.g. PRF, IND-CPA, IND-CCA) single-user security implies multi-user security. These results are

10Note this is the more general result, as we could let P = P1 × P2 × . . . and have the i-th scheme using P only
actually query Pi.
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proven by a “hybrid proof” wherein the single-user attacker picks a user u at random. It externally
simulates u with its own oracle, internally simulates all “prior” users as in the b = 0 world, and
internally simulates all “later” users as in the b = 1 world.

We run into issue if we try to write an analogous proof for SIM-AC definitions. Note that
simulating the b = 0 world for some users requires the attacker to run the given single-user simu-
lator. This creates a circular dependency as in SIM-AC the simulator is allowed to depend on the
adversary.

Even if we changed the order of quantification, we would still run into issues. Each instance
of the single-user simulator expects to already have complete control of the ideal primitive. This
makes it unclear what ideal primitive oracle the single-user adversary should provide the multi-user
adversary it runs internally. Because of these issues, Jaeger and Tyagi directly consider multi-user
SIM-AC definitions and do not discuss single-user variants thereof.

It may seem strange to consider “adaptive compromise” in a single-user setting. Do expose
queries make sense where there is only one user to be exposed? It is useful to compare by first
observing that multi-user SIM-AC notions would be unchanged if we required that the attacker
expose all users before halting. Crucially, these definitions use “online” simulators that are forced
to commit to simulated ciphertexts (without knowledge of the encrypted message) for users that
will later be exposed (at which time the simulator is told the messages). They are thereby capturing
“temporal” properties about security holding before exposures.

4 SIM*-AC Security

We saw in the previous section some ways in which SIM-AC security definitions cannot be used for
proving results which intuitively “should” be possible to prove with a “good” security defintion.
In this section, we will introduce a related class of security definitions which we notate by SIM*-
AC. These new definition will strengthen the power of the attacker (by allowing them to program
the ideal model) and weaken the power of the simulator (by requiring they be explicit about how
they program the ideal model). This allows proving the results that were a challenge for the prior
definitions, while still maintaining the value of the prior definitions. In particular, the results
previously shown by Jaeger and Tyagi with SIM-AC can be shown to hold with SIM*-AC, while
requiring minimal modifications to the proofs. We discuss the details of this in Section 6.

4.1 SIM*-AC Definitions for PRFs and Symmetric Encryption

Pseudorandom function security. We start with PRF security for a function family F. Our
new definition is captured by the game Gsim∗-ac-prf

F,S,P,Aprf
shown in Fig. 3. It differs from Gsim-ac-prf

F,S,P,Aprf
as

described above; namely, Aprf is given oracle PPrim which uses P in both the real and simulated
world.11 In the simulated world, S is also given PPrim to query and program P. Note that the
scheme algorithm F.Ev is still given access only to P.Ls and not to P.Prog. The algorithms of F and
S that can query the primitive are only run for the appropriate value of b, otherwise they would
modify the state of P in undesired ways.

We define Advsim
∗-ac-prf

F,S,P,Aprf
(λ) = 2Pr[Gsim∗-ac-prf

F,S,P,Aprf
(λ)] − 1 and say that F is SIM*-AC-PRF secure

with P if there exists a PPT S such that for all PPT Aprf , the advantage function Advsim
∗-ac-prf

F,S,P,Aprf
(·)

is negligible. Note here that we quantified the simulator before the adversary, unlike in SIM-AC-
PRF security where the simulator is allowed to depend on the adversary. This strengthens the

11Here we are using a notational convention that an algorithm given more inputs than it expects will ignore any
extra inputs, so P.Ls(1λ, k, x, y : σP) is equivalent to P.Ls(1λ, k, x : σP).
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Game Gsim∗-ac-prf
F,S,P,Aprf

(λ)

k(·)←$ F.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEv,Exp,PPrim

prf (1λ)

Return (b = b′)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

If b = 1 then y←$ F.EvP(1λ, ku, x)
If b = 0 then

If Xu then y ← S.EvPPrim(1λ,u, x : σ)

Else y←$ F.Out(λ)
Tu[x]← y

Return y

Exp(u)

If b = 1 then k′ ← ku
If b = 0 then k′←$ S.ExpPPrim(1λ,u, Tu : σ)

Xu ← true; Return k′

Game Gsim∗-ac-cca
SE,S,P,Acca

(λ)

k(·)←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Dec,Exp,PPrim

cca (1λ)

Return (b = b′)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Enc(u,m)

If ¬Xu then ℓ← |m| else ℓ← m

If b = 1 then c←$ SE.EncP(1λ, ku,m)

If b = 0 then c←$ S.EncPPrim(1λ,u, ℓ : σ)
Mu.add(c,m); Return c

Dec(u, c)

If Mu⟨c⟩ ≠ ⊥ then return Mu⟨c⟩
If b = 1 then m← SE.DecP(1λ, ku, c)
If b = 0 then m←$ S.DecPPrim(1λ,u, c : σ)
Return m

Exp(u)

If b = 1 then k′ ← ku
If b = 0 then k′←$ S.ExpPPrim(1λ,u,Mu : σ)

Xu ← true; Return k′

Figure 3: Games defining SIM*-AC-PRF security of F and SIM*-AC-CCA security of SE. We use
highlighting to indicate where the definitions differ from SIM-AC versions.

definition and is necessary for some of our positive results, but for some of our results the weaker
quantification will suffice. We say F is wSIM*-AC-PRF secure with P if for all PPT Aprf there

exists a PPT S such that Advsim
∗-ac-prf

F,S,P,Aprf
(·) is negligible.

Encryption definitions. The SIM*-AC-CCA security of an encryption scheme SE is similarly
captured by the game Gsim∗-ac-cca defined in Fig. 3 which modifies the SIM-AC game to have the
attacker and simulator both use PPrim. We define Advsim

∗-ac-cca
SE,S,P,Acca

(λ) = 2Pr[Gsim∗-ac-cca
SE,S,P,Acca

(λ)]− 1 and
say SE is SIM*-AC-CCA secure with P if there exists a PPT S such that for all PPT Acca, the
advantage function Advsim

∗-ac-cca
SE,S,P,Acca

(·) is negligible. wSIM*-AC-CCA is captured by quantifying the
simulator after the adversary.

Chosen-plaintext security is captured by restricting attention to attackers that do not query
decryption. We then write sim∗-ac-cpa in superscripts. SIM*-AC-X and wSIM*-AC-X security for
X ∈ {KPA, $,AE} security are defined by restricting the behavior of the simulator appropriately.

4.2 Discussing the Definitions

In this section, we discuss the ideas that motivated how we defined SIM*-AC security. In the next
sections we show how the definitions can prove results that seem out of reach for SIM-AC security.
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Motivating the new definition. The starting place for our new definitions partially goes back
to the original explicit proposal of random oracles by Bellare and Rogaway [BR93]. Therein, their
definition of zero knowledge in the random oracle model requires that the (offline) simulator’s final
outputs includes the list of points at which it would like the random oracle to have given values. At
all other points, the oracle is sampled at random. Wee [Wee09] built on this, considering different
levels of how the simulator controls the random oracle and showing that zero-knowledge proofs
are closed under sequential composition when the random oracle is explicitly programmable (or
non-programmable). Sequential composition fails in the “fully programmable” model as applying
the simulator for the first round of execution replaces the random oracle completely, at which point
we cannot use it to reason about further rounds.

There is a second subtle detail allowing Wee’s sequential composition proof to go though with
polynomially many rounds. It is important that (part of) the adversary was quantified after the
simulator. The proof followed a hybrid argument wherein rounds of zero knowledge are switched
from real to simulated, one at a time. To apply security for a particular round, the attacker must
simulate the other (real and simulated) rounds. For a constant number of rounds, we could fix the
attacker for the first round, be given its simulator, use the simulator in the attacker for the second
round, be given its simulator, and so on. When the number of rounds is polynomial, we cannot
fix an attacker for each round. Instead a single attacker must work for all rounds, which requires
knowing the simulator ahead of time so it can properly emulate simulated rounds.

To resolve the issues identified with composition and hybrid arguments for SIM-AC we restrict
the simulator to explicitly program the ideal primitive and require a universal simulator that works
for all attackers. However, this still is not enough! The zero knowledge composition discussed
above is importantly “sequential” in an “offline simulation” setting. The simulator runs once in
isolation, then provides its output to the attacker which runs in isolation. The attacker has complete
control over all code executing with it, so can perfectly emulate the programmed random oracle.
In an “online simulation” setting like SIM-AC, the attacker runs in parallel with the honest scheme
algorithms or the simulator. Our proofs would run into issues when attackers internally run copies
of the simulator which want to program the random oracle, but the attacker is then unable to force
the honest scheme algorithms or simulator it does not control to use this modified random oracle.
We resolve this issue by expanding the power of the adversary and giving it the capacity to program
the ideal primitive.12 We use the prefix SIM*-AC for all definitions we write in this style.

Summarizing, in our SIM*-AC definitions simulators and adversaries can access an oracle
PPrim which allows them to evaluate or explicitly program the ideal primitive. Schemes are still
restricted to not program the ideal primitive. This is a restriction on the simulator and strength-
ening of the attacker. Because of the programmability of P we must write the code so that S is
only run in the ideal world and SE is only run in the real world.

Comparisons to prior definitions. Through this sequence of ideas we have reached the same gen-
eral structure of random oracle modeling proposed by Camenisch, Drijvers, Gagliardoni, Lehmann,
and Neven [CDG+18]. Their work is in the universal composability (UC) setting where they con-
sider several models for global random oracles. In one, simulators and adversaries can explicitly
program the random oracle. They show it allows security proofs that very efficient and natural
random oracle-based constructions of several primitives satisfy the desired security. Our work gen-
eralizes this any ideal primitive (not just random oracles) and considers its application outside the
universal composability framework. That UC and SIM-AC work well with a similar programability
notion is, in hindsight, natural as they both consider online simulation.

12Wee would have run into similar issues had their hybrid tried to switch rounds to simulated from first to last,
rather than the last to first approach they took.
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Our SIM*-AC definitions are not strictly better for cryptographers than the SIM-AC definitions
of Jaeger and Tyagi [JT20]. One benefit of their work was the ease with which existing results could
be ported to the SIM-AC setting (e.g. replacing IND-CPA in a proof with SIM-AC-CPA). This
holds to some extent with the new SIM*-AC definitions as well, but proofs do occasionally run
into additional difficulties because of fragilities caused by the programming of the oracle. Overall
we believe that this cost is worth the benefits provided by our new definitions being able to show
natural and desirable results that are seemingly out of reach of plain SIM-AC.

High-level remarks. There is value in incorporating this explicit programming capacity for
adversaries even into non-simulation definitions. Consider the construction of some high-level
system making use of multiple underlying schemes that use the same ideal primitive, some for SIM*-
AC security and some for non-simulation security notions. (See, e.g., the searchable encryption
proof in [JT20] that involved the standard notion of PRF security in addition to SIM-AC-PRF/KPA
security.) If the proof requires use of the non-simulation security notion after a SIM*-AC notion
has already been applied, this will only be possible if the attacker can program the ideal primitive
in the non-simulation notion.

Allowing the adversary to program the ideal primitive is strange. It does not seem to capture
anything about reality, despite the fact that we allow the adversary to do this programming even
in the “real world”. However, this ability will be crucial to how we can use this new definition to
prove the results that we were unable to with the original SIM-AC definitions. We can view this in
the same paradigm we discussed for SIM-AC-style definitions in general; there is value in studying
very strong definitions which exploit ideal primitives beyond how they can reasonably be thought
to capture something about reality because these notions can then serve as intermediate steps for
proving (in the ideal model) that the scheme satisfies other more “reasonable” security notions.

4.3 Single-user Security Implies Multi-user Security

As with SIM-AC security, we can capture single-user SIM*-AC security by requiring that all of the
attacker’s oracle queries use the same value of u. The following theorem captures that single-user
SIM*-AC-CPA security implies multi-user security. The result would also hold with SIM*-AC-
X security for any X ∈ {PRF,CCA, $,AE}, via the same proof technique. If does not hold for
X = KP. We will discuss why in more detail after the proof.

Theorem 4.1 Single-user SIM*-AC-CPA security implies multi-user SIM*-AC-CPA security.

This proof follows using the ideas from a fairly standard single-user to multi-user proof via a
hybrid argument. Given a single-user simulator S1 and multi-user adversary A, we define single-
user A1 to pick a random t and respond to queries with u < t by encrypting honestly, with u = t
using its own encryption oracle, and with u > t using a copy of S1 specific for that user. The
multi-user simulator we construct runs multiple independent copies of the single-user simulator –
one for each user. Note that this proof critically requires all three of the changes we used to derive
SIM*-AC from SIM-AC: (i) the simulator needs to be quantified before the adversary so that A1

can run S1, (ii) the simulator must not have full control of the ideal primitives output so there is no
ambiguity in which “copy” of the simulator run by A1 should get to respond to primitive queries,
and (iii) the adversary must be able to program the ideal primitive so that A1 is able to correctly
control the primitive when running copies of S1.

Proof: Let SE be single-user SIM*-AC-CPA secure with P and S1 be the simulator that is guaran-
teed to exist. We show that SE is SIM*-AC-CPA secure with P via the following simulator which
runs independent copies of S1 for each user.
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Hybrid Hi(λ), 0 ≤ i ≤ uλ

For u ∈ [uλ] do

ku←$ SE.Kg(1λ)
σu←$ S1.Init(1

λ)

σP←$ P.Init(1λ)
b′←$AEnc,Exp,PPrim(1λ)

Return (b′ = 1)

Enc(u,m)

If u ≤ i then d← 0

Else d← 1

c← Encd(u,m)

Return c

Exp(u)

If u ≤ i then d← 0

Else d← 1

k ← Expd(u)

Return k

Encd(u,m)

If ¬Xu then ℓ← |m| else ℓ← m

If d = 1 then c←$ SE.EncP(1λ, ku,m)

Else c←$ S1.Enc
PPrim(1λ,u, ℓ : σu)

Mu.add(c,m)

Return c

Expd(u)

If d = 1 then k ← ku
Else k←$ S1.Exp

PPrim(1λ,u,Mu : σu)

Xu ← true
Return k

Adversary AEnc,Exp,PPrim
1 (λ)

For u ∈ [uλ] do

ku←$ SE.Kg(1λ)
σu←$ S1.Init(1

λ)

t←$ {1, . . . ,uλ}
b′←$AEncSim,ExpSim,PPrim(1λ)

Return b′

Encd(u,m), Expd(u)

//Unchanged from above

EncSim(u,m)

If u < t then c← Enc0(u,m)

Else if u = t then c← Enc(u,m)

Else c← Enc1(u,m)

Return c

ExpSim(u)

If u < t then k ← Exp0(u)

Else if u = t then k ← Exp(u)

Else k ← Exp1(u)

Return k

Figure 4: Hybrids and adversary showing single-user security implies multi-user

S.Init(1λ)

σ(·)←$ S1.Init(1
λ)

Return σ(·)

S.EncPPrim(1λ,u, ℓ : σ(·))

c←$ S1.Enc
PPrim(1λ,u, ℓ : σu)

Return c

S.ExpPPrim(1λ,u,Mu : σ(·))

k←$ S1.Exp
PPrim(1λ,u,Mu : σu)

Return k

Let A be a SIM*-AC-CPA adversary. It will be notationally convenient to assume that it only
queries users with identifiers u ∈ [uλ] = {1, . . . ,uλ} where u(·) is a polynomial. This assumption is
without loss of generality.

Now, consider the hybrid games Hi for i = 0, . . . ,uλ defined in Fig. 4. For u ≤ i, the game uses
Enc0 and Exp0 to respond to encryption and exposure queries as in the b = 0 simulated world
of Gsim∗-ac-cpa using S. Otherwise, it uses Enc1 and Exp1 to respond as in the b = 1 real world.
Each hybrid game returns true whenever A outputs 1. When i = uλ, it always holds that u ≤ i so
this game is identical to the b = 0 simulated world (except that the output boolean is flipped). In
the other extreme, when i = 0, it never holds that u ≤ i so this game is identical to the b = 1 real
world. Then (by standard conditional probability calculation) we have

Advsim
∗-ac-cpa

SE,S,P,A (λ) = Pr[H0]− Pr[Huλ ] =

uλ∑
i=1

Pr[Hi−1]− Pr[Hi].

We construct a single-user adversary A1 that obtains advantage 1/uλ times the above. It samples
an index t ∈ {1, . . . ,uλ} at random. Then it runs A, simulating their oracle queries. When u < t,
it responds as in the simulated world of Gep-sim-ac-cpa using S1. When u = t it forwards the query
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to its own oracle. Otherwise, it responds to Enc and Exp queries as in the real world. Let b denote
the bit in the game A1 is being run in and t be the random value picked by A1. Then in the view
of A, the oracles for the first t− b users are simulated and the rest are real – this is identical to its
view in the hybrid game Ht−b.

Then the following calculations complete the proof.

Advsim
∗-ac-cpa

SE,S1,P,A1
(λ) = Et[Pr[Ht−1]]−Et[Pr[Ht−0]]

= (1/uλ)

uλ∑
t=1

Pr[Ht−1]− (1/uλ)

uλ∑
t=1

Pr[Ht]

= (1/uλ)

uλ∑
i=1

Pr[Hi−1]− Pr[Hi]

= (1/uλ)Adv
sim∗-ac-cpa
SE,S,P,A (λ).

Here Et denotes expectation over t←$ {1, . . . , uλ}.

We can note in the above proof that for A1 to be able to correctly run Enc0 and Exp0 it needed
to run S1. This means that we needed the stronger quantification where the adversary can depend
on the simulator and that the adversary needed to have the ability to program the random oracle.

Key-private security. Among the various SIM*-AC security notions we consider here, the only
variant for which single-user security does not imply multi-user security is SIM*-AC-KPA security.
Here, the simulator may not make use of its input u when replying to encryption queries for un-
exposed users (beyond checking if they are exposed). Note that in the hybrid argument above,
the multi-user simulator S uses the user identifier u to decide which state σu to use. Hence this is
incompatible with SIM*-AC-KPA security. Taking a step back, we can notice that this issue with
the proof is unsurprising and inherent. The issue is that that single-user SIM*-AC-KPA does not
meaningfully capture any notion of key-privacy because the restriction on the simulator’s behavior
is trivially achievable when the attacker will only every query a single user. This is nicely captured
by the following result.

Theorem 4.2 Single-user SIM*-AC-KPA security is equivalent to SIM*-AC-CPA security, which
is weaker than SIM*-AC-KPA security.

Proof: Note that single-user SIM*-AC-KPA security implies single-user SIM*-AC-CPA security
trivially. Then, by Theorem 4.1 this implies SIM*-AC-CPA security. In the other direction, we can
create a single-user SIM*-AC-KPA simulator from a SIM*-AC-CPA simulator by always running
the latter on, say, u = 1. Hence the first claim of the theorem holds.

We can see that SIM*-AC-CPA security is weaker than SIM*-AC-KPA security by constructing a
contrived scheme. Given some scheme SE, we define a new scheme which adds a random bit d to
its keys and then appends d to every ciphertext produced. It is straightforward to show this new
scheme is SIM*-AC-CPA secure if SE was, but that is is not SIM*-AC-KPA secure.

4.4 Cascade PRF Construction

If F : F.K×F.Inp→ F.K is a function family and n is a polynomial, then the n-cascade construction
Fn : F.K × F.Inpn → F.K is defined by the evaluation algorithm Fn.Ev(1λ, k0, x⃗) which computes
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ki ← F.Ev(1λ, ki−1, x⃗i) for i = 1, . . . , n(λ) and then outputs kn(λ). Here x⃗i denotes the i-th entry
of vector x⃗. This is a “domain extension” technique for building a PRF with a large domain from
one with a small domain. It was originally defined and analyzed in [BCK96b].13 Fn generalizes
the GGM construction of a PRF from a PRG [GGM86]. It underlies several other constructions of
PRFs including AMAC, HMAC, and NMAC [BBT16,BCK96a,Bel06].

Theorem 4.3 If F is SIM*-AC-PRF secure with P, then Fn is as well.

The proof of this result is given in Appendix A. Intuitively, we can think of the possible keys
generated by Fn existing in a tree structure. Our proof does a hybrid argument over the layers of
the tree, starting from the root, where we one at a time switch the layers to being simulated. The
simulator for a given layer treats all of the keys at its layer as being multiple F “users”. This proof
requires the “strong” quantification, the simulator to not completely replacing the ideal primitive,
and the adversary having the ability to program the ideal primitive so that it can internally run
the simulator for layers that have been switched already.

Jaeger and Tyagi [JT20, ePrint, p.22-23] said, “It is often useful to construct a PRF H with large
input domains from a PRF F with smaller input domains [. . . ] one can often [use our techniques] to
lift a PRF security proof for H to a SIM-AC-PRF security proof for H whenever F is SIM-AC-PRF
secure.” The cascade construction is one choice of H for which this is not possible with SIM-AC,
but becomes possible with SIM*-AC.

5 Asymmetric Encryption

In this section, we provide our treatment for the security of asymmetric cryptographic primitives
against adaptive compromise. We start by providing our security definitions for public-key encryp-
tion (PKEs) and key-encapsulation mechanisms (KEMs). Then we discuss how our definitions com-
pare to prior definitions, in particular those of Camensich, Lehmann, Neven, and Samelin [CLNS17].
We show that the KEM/DEM approach to constructing a PKE scheme works with these definitions
and that standard ways of constructing CPA/CCA secure KEMs from one-way secure primitives
and a random oracle are secure.

5.1 Definitions

Public-key encryption. The SIM*-AC-CCA security of a public-key encryption scheme PKE is
captured by the game Gsim∗-ac-cca shown in Fig. 5. It differs from the SIM*-AC-CCA definition
for symmetric encryption (Fig. 2) in that it introduces an encryption key oracle (Ek) that the
adversary can call to learn the public encryption key for a user and it has oracles for two different
kinds of exposure. The receiver exposure oracle (RExp) is like the exposure oracles from prior
games, returning a user’s secret decryption key. The sender exposure oracle (SExp) allows the
attacker to ask for the randomness underlying the ciphertexts that were returned by encryption.
We use PKE.Rand to denote the set from which this randomness is sampled.

We define Advsim
∗-ac-cca

PKE,S,P,Acca
(λ) = 2Pr[Gsim∗-ac-cca

PKE,S,P,Acca
(λ)]− 1 and say PKE is SIM*-AC-CCA secure

with P if there exists a PPT S such that for all PPT Acca, the advantage function Advsim
∗-ac-cca

PKE,S,P,Acca
(·)

is negligible. wSIM*-AC-CCA is captured by quantifying the simulator after the adversary. We
capture xSIM*-AC-CPA by ignoring the decryption oracle. Security considering only compromise

13Technically, they considered a more general construction where the number of iterations was not a priori fixed
and so the adversary was restricted to make only prefix-free queries. Our proof would extend to this setting as well.
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Game Gsim∗-ac-cca
PKE,S,P,Acca

(λ)

(ek(·),dk(·))←$ PKE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEk,Enc,Dec,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Game Gsim∗-ac-cca
KEM,S,P,Acca

(λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Ek(u)

If b = 1 then ek′ ← eku

If b = 0 then ek′←$ S.EkPPrim(1λ,u : σ)

Return ek′

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Enc(u,m)

If ¬Xu then ℓ← |m| else ℓ← m

r←$ PKE.Rand(λ)
If b = 1 then c← PKE.EncP(1λ, eku,m; r)

If b = 0 then c←$ S.EncPPrim(1λ,u, ℓ : σ)
Mu.add(c,m); Ru.add(r)
Return c

Dec(u, c)

If Mu⟨c⟩ ≠ ⊥ then return Mu⟨c⟩
If b = 1 then m← PKE.DecP(1λ,dku, c)

If b = 0 then m←$ S.DecPPrim(1λ,u, c : σ)
Return m

SExp(u, i)

If b = 1 then r ← Ru[i]

If b = 0 then r←$ S.SExpPPrim(1λ,u, i,Mu[i] : σ)

Return r

RExp(u)

If b = 1 then dk′ ← dku

If b = 0 then dk′←$ S.RExpPPrim(1λ,u,Mu : σ)

Xu ← true
Return dk′

Encaps(u)

r←$ KEM.Rand(λ)
If b = 1 then (c, k)← KEM.EncapsP(1λ, eku; r)

If b = 0 then

(c, k)←$ S.EncapsPPrim(1λ,u : σ)

If ¬Xu then k←$ KEM.K(λ)
Mu.add(c, k); Ru.add(r)
Return (c, k)

Decaps(u, c)

If Mu⟨c⟩ ≠ ⊥ then return Mu⟨c⟩
If b = 1 then k ← KEM.DecapsP(1λ,dku, c)

If b = 0 then k←$ S.DecapsPPrim(1λ,u, c : σ)
Return k

Figure 5: Games defining the SIM*-AC-CCA security of PKE and KEM

of the receiver/sender can be captured by ignoring the appropriate oracle. Then we write SIM*-rAC
or SIM*-sAC.

Key encapsulation mechanism. We also give definitions for key encapsulation mechanisms
(KEM). Our SIM*-AC definitions are highly analogous to the corresponding public-key encryption
definition. They are formally specified by the game Gsim-ac-cca shown in Fig. 5. Therein, the
Enc and Dec oracles have been replaced with Encaps and Decaps oracles. The encapsulation
oracle returns a ciphertext along with the corresponding encapsulated key. In the ideal world, the
simulator provides the ciphertext and the encapsulated key is chosen at random from the key space
KEM.K by the game for unexposed users.

We define Advsim
∗-ac-cca

KEM,S,P,Acpa
(λ) and the notions xSIM*-yAC-X for x ∈ {ε,w}, y ∈ {ε, r, s}, and

X ∈ {CCA,CPA} as for PKE.
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5.2 Comparisons to Prior Definitions

Brunetta, Heum, and Stam [BHS24] systematized a large number of definitions of security for the
adaptive compromise of asymmetric encryption. The strongest definition they consider (NCE-CCA)
is roughly equivalent to a SIM-AC variant of our definition and is thus implied by SIM*-AC-CCA.

FULL-SIM Security of PKE.Our SIM*-AC-CCA definition for PKE is similar to the FULL-SIM
security definition introduced by Camensich, Lehmann, Neven, and Samelin (CLNS) [CLNS17]. We
quickly summarize the differences. There are two dimensions in which their definition is stronger
than ours. First, their definition considers PKE with labels, while we have decided not consider
labels. Labels can easily be added. Likely, the best way to incorporate labels in constructions would
be to use a symmetric encryption scheme that accepts associated data as part of the KEM/DEM
transform (discussed momentarily). Second, in FULL-SIM the randomness used by key generation
is revealed rather than the decryption key. SIM-AC* can be used to reason over this case by
simply modify the scheme to use said randomness as its decryption key (and recompute the actual
decryption key during decryption).

Our definition strengthens theirs in several dimension. Theirs is more closely analogous to SIM-
AC than SIM*-AC as the simulator is given complete control of the random oracle, the adversary
is not able to modify it, and the “weak” quantification is used. Resultantly, their single-user
definition is seemingly unable to prove that a corresponding multi-user definition holds.14 We are
not restrictive in the type of ideal primitive considered where they specifically assume a random
oracle is used.

CLNS provide a specific FULL-SIM construction in which they basically used a trapdoor permu-
tation generator as a KEM and then hand-crafted a symmetric encryption scheme using a random
oracle.15 We will momentarily show that the task of building SIM*-AC secure PKE can be broken
down into constructing KEMs and symmetric encryption. This is modular, allowing numerous
instantiation and allowing the symmetric encryption to be instantiated by well-studied and stan-
dardized schemes based on blockciphers rather than using less efficient hash functions throughout.

CLNS showed that FULL-SIM implied a variety of prior definitions considering compromise
scenarios for PKE. Appropriate analogs of these implications will carry over to our definition as
well. Further, CLNS considered a UC secure notion and proved it to be essentially equivalent
to FULL-SIM. Camenisch, Drijvers, Gagliardoni, Lehmann, and Nevin [CDG+18] considered this
in the UC programmable random oracle model, proving the same construction secure. Likely
SIM*-AC-CCA is equivalent to this notion and so our result will give modular, standard, efficient
instantiations of UC secure public key encryption secure under adaptive compromise.

NCKE Security of KEMs. Our KEM SIM*-AC definitions are similar to the NCKE definitions
of Jager, Kiltz, Riepel, and Schäge [JKRS21]. Their definition is roughly equivalent to a SIM-AC
variant which only considers receiver corruptions and assumes there is a separate random oracle for
each user. The definition can be viewed as placing some additional restrictions on the simulator,
including that it must commit ahead of time to the secret keys for each user and cannot store any
state beyond specific information stored for it by the game in unordered sets.16 Simulators for the

14CLNS claim (their Proposition 2) that FULL-SIM security implies a weaker multi-user definition called RSIM-SO,
but the proof is incomplete and seems to be erroneous. SIM*-AC-CPA security should suffice for this implication.

15Speaking loosely, they basically use a random input to the trapdoor permutation as a “symmetric key” with
which they perform counter mode encryption, using the random oracle as a pseudorandom function and then perform
a MAC over all of the relevant variables, again using the random oracle as a pseudorandom function.

16Technically, as written, the KEM encapsulation algorithm is run even in the “simulated” world of their definition.
This can modify the state of the random oracle but is clearly unintended, as later use of the definition does not account
for this. In general, care is needed with stateful ideal primitives as subtleties abound.
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schemes we consider can follow these restrictions.
Having separate random oracles for every user allowed using two separate reductions to NCKE

in their high-level proofs (for key exchange protocols built from KEMs). It seems likely NCKE
could be replaced by SIM*-AC in these proofs, removing the need for separate random oracles.

5.3 KEM/DEM Hybrid Encryption.

A common technique for building public key encryption is KEM/DEM hybrid encryption in which
a key encapsulation mechanism produces a key which is then used to encrypt the message with a
symmetric encryption scheme (i.e. “data encapsulation mechanism”). This was originally proven
secure by Cramer and Shoup [CS03].

Let KEM be a key encapsulation mechanism and SE be a symmetric encryption scheme (i.e.
data encapsulation mechanism) where SE.Kg samples uniformly from KEM.K. We denote the
KEM/DEM scheme as KD[KEM, SE] and provide the algorithms KD.Enc and KD.Dec below, where
we assume KEM and SE expect access to ideal primitive P. Then KD expects access to P. It key
generation algorithm is defined by KD[KEM, SE].Kg = KEM.Kg.

KD[KEM, SE].EncP(1λ, ek,m)

(cKEM, k)←$ KEM.EncapsP(1λ, ek)

cSE←$ SE.EncP(1λ, k,m)
c← (cKEM, cSE)
Return c

KD[KEM,SE].DecP(1λ,dk, c)

(cKEM, cSE)← c

k ← KEM.DecapsP(1λ, dk, cKEM)

m← SE.DecP(1λ, k, cSE)
Return m

It is assumed that SE.Dec immediately halts and returns ⊥ if k = ⊥. Next, we show that given
the appropriate adaptive compromise security for the underlying KEM scheme and encryption
scheme, the composed KEM/DEM scheme is also secure against adaptive compromise.

Exposure of encryption randomness is not captured by our definitions for symmetric encryp-
tion. Rather than introduce a new security definition, in these cases we restrict attention to coin
extractable schemes for which there exists a coin extraction algorithm SE.CExt which always satis-
fies SE.CExtP(1λ, k, SE.EncP(1λ, k,m; r)) = r. Typical symmetric encryption schemes satisfy this.
For technical reasons, we require that SE.CExt is query consistent by which we mean that it does
not make any ideal primitive queries that were not made by the execution of SE.Enc that produced
its input.

Theorem 5.1 Let x ∈ {ε,w}, y ∈ {ε, r, s}, and X ∈ {CPA,CCA}. If KEM is xSIM*-yAC-X secure
with P and SE is xSIM*-AC-X secure with P (and coin extractable if y ∈ {ε, s}), then KD[KEM, SE]
is xSIM*-yAC-X secure with P.

In fact, for the DEM we need only “single-challenge” security wherein the attacker makes at
most one encryption query per user. This allows the use of deterministic DEMs. The proof of this
theorem is given in Appendix B. The general flow of the proof is what one would expect, first we
replace honest use of the KEM with simulated use that outputs uniformly random keys. We think
of the i-th key generated for user u as correspond to a DEM user (u, i) and replace the DEM with
simulation.

5.4 Hashed KEM

We consider a simple, standard way to construct a CPA secure KEM from a one-way secure KEM
and a random oracle. Conceptually, this construction follows from the CPA secure PKE scheme
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considered in [BR93]. Let KEM be a key encapsulation mechanism. Then the hashed KEM scheme
which outputs the hash of a key generated by KEM is denoted as HKEM[KEM]. Its algorithms are
defined as follows. Its key generation algorithm is defined by HKEM[KEM].Kg = KEM.Kg.

HKEM[KEM].EncapsP×Prom(1λ, ek)

(c, kKEM)←$ KEM.EncapsP(1λ, ek)
k ← Prom(kKEM, ε); Return (c, k)

HKEM[KEM].DecapsP×Prom(1λ, dk, c)

kKEM ← KEM.DecapsP(1λ,dk, c)
k ← Prom(kKEM, ε); Return k

If the KEM expects access to P, then HKEM expects access to P×Prom. Note that the random
oracle must be “new” and cannot be queried by KEM. This is necessary as the KEM could otherwise
query the random oracle on the key it will output and include that as part of the ciphertext. Oracle
cloning [BDG20] can create multiple random oracles from a single random oracle.

Intuitively, CPA security is achieved if the attacker cannot predict kKEM and query it to the
random oracle, i.e., as long as the KEM is one-way secure.

Theorem 5.2 If KEM is OW* secure with P, then HKEM[KEM] is SIM*-AC-CPA secure with
respect to P× Prom.

The full proof (and the formal definition of OW*) are given in Appendix C. The proof works
as one would expect. The simulator produces ciphertexts by using KEM honestly. On exposures,
it returns the keys/randomness it used and attempts to reprogram the random oracle to map keys
encapsulated by KEM to the keys that were randomly sampled by the encapsulation oracle.

5.5 A Fujisaki-Okamoto-Style Transform

Finally, we consider a way to construct a CCA secure KEM from a one-way secure KEM. In
particular, we look at part of one version of the Fujisaki-Okamoto transformation [FO13]. We work
from the modular treatment of Hofheinz, Hövelmanns, and Kiltz [HHK17] (HHK), in particular
showing that the transformation which they refer to as U̸⊥ achieves SIM*-AC-CCA security. This
should extend to the other variants as well, but we have focused on one for simplicity. Slightly
corrected versions of HHK’s proofs can be found in [Höv21, Sec. 2.1-2.2].

Let KEM be a key encapsulation mechanism and F be a function family. Then we consider
the scheme U̸⊥[KEM,F] defined as follows. The key generation algorithm U̸⊥[KEM,F].Kg generates
keys (ek, dk)←$ KEM.Kg(1λ) and fk←$ F.Kg(1λ), then outputs (ek, (dk, fk)).

U̸⊥[KEM,F].Encaps
P×Prom

(1λ, ek)

(c, kKEM)←$ KEM.EncapsP(1λ, ek)
k ← Prom(kKEM, c); Return (c, k)

U ̸⊥[KEM,F].Decaps
P×Prom

(1λ, (dk, fk), c)

kKEM ← KEM.DecapsP(1λ,dk, c)
If kKEM ̸= ⊥ then k ← Prom(kKEM, c)

Else k ← F.EvP×Prom(1λ, fk, c)
Return k

Here U̸⊥[KEM,F].K(λ) = F.Out(λ) = Prom.Rλ. Note that if KEM expects access to P, then
U̸⊥[KEM,F] expects access to P × Prom. We allow F to have access to P × Prom. It is important
that KEM not have access to the random oracle used by the transform (otherwise it could, for
example, ensure that it always produces output for which the first bit of Prom(kKEM, c) is 0 and
thus distinguishable from random).

However, our results show there is no issue with F having access to the same random oracle used
by U̸⊥. Indeed, HHK actually used the specific construction F.Ev(1λ, fk, c) = Prom(fk, c). Consider-
ing an arbitrary F is more general. We emphasize the proof with this generality only works because
we are using our new SIM*-AC security definitions. Moreover, given that caveat, this supports
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Jaeger and Tyagi’s motivation for introducing SIM-AC definitions because this modularity allows
our proof to avoid the details of the random oracle analysis required to prove that Prom(kKEM, c) is
secure.

Additionally HHK use a public-key encryption scheme applied to a random message in place of
KEM. Again, U̸⊥[KEM,F] is a generalization of this as the security they assume of the encryption
scheme implies that the KEM obtained by encrypting a randome message satisfies the security we
require.

HHK showed that the construction is IND-CCA secure as long as the underlying scheme achieves
a variant of one-way security which provides to the attacker a plaintext checking oracle which
decrypts a given ciphertext and returns a boolean indicating whether the result is the same as a
given message. We show the same for our security definition.

Theorem 5.3 If KEM is OW*-PCA secure with P and F is SIM*-AC-PRF secure with P× Prom,
then U̸⊥[KEM,F] is SIM*-AC-CCA secure with P× Prom.

The full proof (and the formal definition of OW*) are given in Appendix C. HHK gave a transform
T which transforms a OW secure PKE scheme into a OW-PCA secure PKE scheme. Interpreting
this as a KEM in the natural manner gives a OW-PCA secure KEM.

6 Recovering Prior Results

Finally, we conclude by showing that the positive results Jaeger and Tyagi [JT20] established
regarding various notions of SIM-AC security also hold with respect to our analogous SIM*-AC
notions. For this, we divide the results of Jaeger and Tyagi into three general categories. This first
category covers results where (non-SIM-AC) security of some “high-level” construction is shown
assuming its constituent elements satisfy SIM-AC security. The second category covers results
where SIM-AC security of some “intermediate-level” construction is shown assuming its constituent
elements satisfy SIM-AC security. The final category covers results where SIM-AC security of some
“low-level” primitive is shown by direct ideal model analysis.

6.1 High-level Proofs

The first category is the easiest in which to replace SIM-AC with SIM*-AC. In particular Jaeger and
Tyagi showed: (1) SIM-AC-CPA secure encryption suffices for a version of the OPAQUE password-
authenticated key exchange protocol of Jarecki, et al. [JKX18] (because the latter was proven
secure assuming “equivocable encryption” which is a weaker notion than SIM-AC-CPA security),
(2) SIM-AC-PRF secure PRFs and SIM-AC-KP secure encryption suffice for a searchable symmetric
encryption scheme of Cash, et al. [CJJ+14], and (3) SIM-AC-CPA secure encryption suffices for
the self-revocable cloud storage scheme of Tyagi, et al. [TMRM18]. We can recover these results
with wSIM*-AC in place of SIM-AC by noting that our new notion is strictly stronger.

Lemma 6.1 For X ∈ {PRF,CPA,KPA, $,CCA,AE}, wSIM*-AC-X security implies SIM-AC-X
security. The converse does not hold.

This result follows from the fact that wSIM*-AC security strengthens adversaries (by allowing
them to program the ideal primitive) and weakens simulators (by restricting them to explicitly
program the ideal primitive rather than having complete control of it). For the converse, note
that a SIM*-AC adversary can, e.g., break the one-way function or collision-resistance security of a
random oracle by programming it appropriately. Hence, one can modify a SIM-AC secure scheme
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to be trivially insecure (e.g. reveal its secret key) when a collision in the random oracle is known.
SIM-AC security will be maintained, but the modified scheme will not be SIM*-AC secure.

In each of the searchable symmetric encryption and BurnBox proof, Jaeger and Tyagi had
to assume that the constituent elements each used separate ideal primitives. Using SIM*-AC
definitions we could reproduce these results without the assumption of separate ideal primitives
using the proof modifications we discussion for intermediate-level proofs.

6.2 Intermediate-level Proofs

In the second category, Jaeger and Tyagi gave security results for several encryption schemes. There
is no general way to prove that these result carry over from SIM-AC to SIM*-AC security notions.17

However, by examining the details of the proofs used for each of these result we can see that we
are in luck. In each, the ideal primitive was used as a black-box. Constructed SIM-AC reduction
adversaries provided the given SIM-AC adversaries with direct access to their own Prim oracle.
The S.Ls algorithm of any constructed SIM-AC simulators S just ran the corresponding algorithms
of the given SIM-AC simulators.

As such, modifying these proofs for SIM*-AC (or wSIM*-AC) requires only syntactic change to
treat the ideal primitive as a black-box. Reduction adversaries provide their given adversaries with
direct access to PPrim. Rather than having a S.Ls algorithm, SIM*-AC simulators will provide
their given underlying simulators with direct access to PPrim. Otherwise the analysis follows as
given.

In fact, in places where multiple SIM-AC primitive had to use separate ideal primitives, this
black-box use of the primitives allow them to share the same primitive for SIM*-AC security without
any extra effort.

Moreover, the only way in which constructed simulators depended on adversaries was through
dependance on given simulators for the constituent algorithms (which were allowed to depend on the
adversary per SIM-AC security). As such, there is no issue when using the order of quantification
required for SIM-AC rather than wSIM*-AC security. Hence the following results hold.

Lemma 6.2 Let x ∈ {ε, w}. Then the following hold.

• If SE is xSIM*-AC-CPA and INT-CTXT* secure with P, then SE is xSIM*-AC-CCA secure
with P.

• If SE is xSIM*-AC-CPA secure with P and F is UF-CMA* secure with P, then (SE,F) encrypt-
then-mac is xSIM*-AC-CCA secure with P.

• If SE[·] is IND-AC-EXT secure and F is xSIM*-AC-PRF secure with P, then SE[F] is xSIM*-
AC-$ secure with P.

This last result covers modes of operation such as counter (CTR), cipher-block chaining (CBC),
cipher feedback (CFB), and output feedback (OFB) mode.

The asterisks added to INT-CTXT and UF-CMA indicate that we need these security notions
to hold even for adversaries who are able to program the ideal primitive. We note, for example,
that UF-CMA* security is implied by SIM*-AC-PRF security. We similarly expect that schemes
which are known to achieve INT-CTXT security when constructed from a PRF secure function
family can be shown by essentially the same proof to achieve INT-CTXT* security when using a
SIM*-AC-PRF secure function family.

17This follows from the counter-example described above where we construct a scheme which is trivially insecure
if a collision in the random oracle is known.
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6.3 Low-level Proofs

For the third category, Jaeger and Tyagi used information theoretic analysis to show that random
oracles are SIM-AC-PRF secure, ideal ciphers are SIM-AC-PRF secure, and the ideal encryption
model [TMRM18] is SIM-AC-AE secure.18 To re-establish these results one technically has to re-
write the proofs. We will sketch how to modify the SIM-AC proofs for the first two of these (formal
proofs are given in the appendices).

Lemma 6.3 Random oracles are SIM*-AC-PRF secure (assuming |Kλ| is super-polynomial) and
ideal ciphers are SIM*-AC-PRF secure (assuming |Kλ| and |Dλ| are super-polynomial).

The simulators given for both work by honestly simulating the ideal primitive except whenever
a new users is exposed they sample the key at random and then program the primitive to be
consistent with the random values returned by earlier evaluation queries. This can done with the
more restricted SIM*-AC syntax for simulators. These simulators do not depend on the adversary.

If F : Kλ ×Dλ → Rλ, the analysis of Jaeger and Tyagi showed that

Advsim
∗-ac-prf

F,Sprf ,Prom,A(λ) ≤
u2λ
|Kλ|

+
uλpλ
|Kλ|

and

Advsim
∗-ac-prf

F,Sprf ,Picm,A(λ) ≤
u2λ
|Kλ|

+
uλpλ
|Kλ|

+
q2λ

2|Dλ|
.

Here uλ is the number of distinct users A interacts with, pλ is the number of ideal primitive queries
it makes, and qλ is the number of evaluation queries it makes. Each summand represents a bound
of the probability that a bad event occurs which could let an adversary distinguish the real and
simulated worlds. The first corresponds to distinct users choosing the same random key. The
second corresponds to the attacker making an ideal primitive query with an unexposed user’s key.
The third corresponds to random outputs of Ev colliding.

For SIM*-AC-PRF/PRP security of these constructions the only additional bad event we will
have to analyze is that of the attacker happening to make an ideal model programming query using
an unexposed user’s key. If p′λ denotes the number of programming queries the attacker makes,
this just adds an additional term of uλp

′
λ/|Kλ| to either bound. Alternatively, we could leave the

bound unchanged and redefine pλ to include programming queries as well.

In Appendix D, we give (a generalization of) the proof for random oracles. In Appendix E, we
give the proof for ideal ciphers. We first introduce a notion of SIM*-AC-PRP security and prove
that it is achieved by an ideal cipher (this proof is also a special case of the general proof given in
Appendix D). Then, naturally, SIM*-AC-PRP and SIM*-AC-PRF security are equivalent up to a
birthday bound.
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A Cascade Proof (Theorem 4.3)

Proof: We will, without loss of generality, restrict attention to attackers that never makes queries
to Ev or Exp for a user that has already been exposed and that never makes queries to Exp for
a user without having first made Ev queries to that user. It will be convenient to introduce some
notation. If x⃗ = (x⃗1, . . . , x⃗m) is a vector, then x⃗≤i = (x⃗1, . . . , x⃗i) is its length i prefix and x⃗ ∥x is
the vector (x⃗1, . . . , x⃗m, x). It will be convenient to think of the following notation for Fn.

Fn.Ev(1λ, ku,(), x⃗)

For i = 0, . . . , n(λ)− 1 do
ku,x⃗≤i+1

← F.Ev(1λ, ku,x⃗≤i
, x⃗i+1)

Return ku,x⃗

Here all the (sub-)keys used by Fn are indexed by a user and the prefix of the input which has been
processed prior to the use of that key. Note then that ku,() is the user’s starting key (which would
normally be called ku) because () is the empty vector. For each z⃗ of length at most n, we will think
of ku,z⃗ as a key belonging to a user (u, z⃗).

We can think of there being an underlying forest of rooted trees of keys where each tree corresponds
to some u. A node of a tree is labelled by (u, z⃗) and (if |z⃗| < n) has an edge connecting to (u, z⃗ ∥x)
for each x ∈ F.Inp. We refer to the former node at the parent of the latter, which is its child. This
edge represents that fact that (in the real world) (u, z⃗ ∥x)’s key is derived using (u, z⃗)’s key. An
attacker’s Ev oracle allows it to request the keys of leaf nodes. Its Exp oracle allows it to request
the key of the root of a tree. In the real world, it could then compute forward along the paths
to each of the queried leaf nodes in this tree to see that it does indeed compute the same keys it
saw earlier. In the ideal world, leaf node keys are picked at random (because u is unexposed). We
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need to construct a simulator which (given the keys of the leaf nodes the attacker has previously
requested) is able to produce a consistent key for the root node.

Let SF be the simulator that is guaranteed to exist by the security of F. We will define a simulator
S for Fn, that internally runs n(λ) copies of SF (using states σ0, . . . , σn(λ)−1). The n − 1 copy of
this simulator (using σn(λ)−1) will be given the keys of the queried leaf nodes of the tree (which
have depth n) and use them to produce the depth n − 1 keys. Specifically, consider the subtree
consisting of all the paths from the root to the queried leaves. For each depth n−1 node (u, x⃗≤n−1)
in this subtree, S will give the n− 1 copy of SF the keys of all the child leaf nodes (u, x⃗≤n−1 ∥x) so
that it can produce a key for this node. Once we’ve computed the keys for every depth n− 1 node
in the subtree, we continue propagating toward the root using the n − 2 copy of the simulator to
produce keys for the nodes at depth n− 2 from the keys of their children nodes at depth n− 1. We
continue similarly until we’ve computed the root node key.

Formal pseudocode for our simulator is as follows.

S.Init(1λ)

σ(·)←$ SF.Init(1
λ)

Return σ(·)

S.ExpPPrim(1λ,u, Tu : σ(·))

For x⃗ ∈ { x⃗ : Tu[x⃗] ̸= ⊥ } do
ku,x⃗ ← Tu[x⃗]

For i = n(λ)− 1, n(λ)− 2, . . . , 0 do
For z⃗ ∈ { x⃗≤i : Tu[x⃗] ̸= ⊥ } do
Tu,z⃗[·]← ku,z⃗ ∥ (·)
ku,z⃗ ←$ SF.Exp

PPrim(1λ, (u, z⃗), Tu,z⃗ : σi)
Return ku,()

Note that we do not specify S.Ev because by our assumption the adversary never queries Ev with
a user that has previously been exposed and so S.Ev is never used. The first loop of S.Exp extracts
the keys ku,x⃗ for each leaf node from the table Tu. Then the second for loop iterates through the
subtree from leaves to root, with iteration i being used to simulate the keys of the depth i nodes.
The inner for loop iterates over each node (u, z⃗) at depth i by looking at all z⃗ that are of the form
x⃗≤i for some x⃗ such that Tu[x⃗] ̸= ⊥. It uses the i copy of the simulator to simulate the key of this
node. The table Tu,z⃗ given as input to this copy of the simulator is defined so that Tu,z⃗[z] = ku,z⃗ ∥ z
for each z ∈ F.Inp. From earlier iterations, this is non-⊥ iff z⃗ ∥ z is the prefix of some x⃗ for which
Tu[x⃗] ̸= ⊥.

Now let Aprf be an adversary attacking Fn. We will reduce its advantage against S to that of a
related attacker AF against SF simulating for F. This reduction will following a typical hybrid
argument form, where we hybrid over layers of the tree at different depths.

In particular, we define the hybrids Hl for 0 ≤ l ≤ n as shown in Fig. 6. In hybrid Hl, all keys at
depth l are sampled at random by the game. Decedent nodes (depth greater than l) are computed
from these using F and ancestors nodes (depth less than l) are simulated from these using SF. So
then H0 perfectly matches the real world of Gsim∗-ac-prf and Hn perfectly matches the ideal world
using simulator S. Noting that these hybrids return whether b′ = 1, standard calculations give

Advsim
∗-ac-prf

F,S,P,Aprf
(λ) = Pr[H0(λ)]− Pr[Hn(λ)(λ)] =

∑n(λ)
l=1 Pr[Hl−1(λ)]− Pr[Hl(λ)].

Now the attacker AF, is shown in Fig. 6. It samples t between 1 and n, then simulates the view
of A. Its goal in this simulation is if the secret bit in the game it is playing is b, then the view it
provides to A perfectly matches that from hybrid Ht−b.

It achieves this as follows. In simulating the evaluation oracle it uses its own Ev oracle to obtain
the depth t key, then uses F to compute deeper keys. In simulating the exposure oracle it uses its
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Hybrids Hl(λ), 0 ≤ l ≤ n(λ)

For z⃗ ∈ F.Inp(λ)l do
k(·),z⃗ ←$ F.K(λ)

σP←$ P.Init(1λ)
For i = 0, . . . , l − 1 do

σi←$ SF.Init(1
λ)

b′←$AEv,Exp,PPrim
prf (1λ)

Return (b′ = 1)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Ev(u, x⃗)

For i = l, l + 1, . . . , n(λ)− 1 do

ku,x⃗≤i+1
← F.Ev(1λ, ku,x⃗≤i

, x⃗i+1)

Tu[x⃗]← ku,x⃗
Return ku,x⃗

Exp(u)

For i = l − 1, l − 2, . . . , 0 do

For z⃗ ∈ { x⃗≤i : Tu[x⃗] ̸= ⊥ } do
Tu,z⃗[·]← ku,z⃗ ∥ (·)

ku,z⃗ ←$ SF.Exp
PPrim(1λ, (u, z⃗), Tu,z⃗ : σi)

Return ku,()

Adversary AEv,Exp,PPrim
F (λ)

t←$ {1, . . . , n(λ)}
For i = 0, . . . , t− 2 do

σi←$ SF.Init(1
λ)

b′←$AEvSim,ExpSim,PPrim(1λ)

Return b′

EvSim(u, x⃗)

ku,x⃗≤t
← Ev((u, x⃗≤t−1), x⃗t)

For i = t, . . . , n(λ)− 1 do

ku,x⃗≤i+1
← F.Ev(1λ, ku,x⃗≤i

, x⃗i+1)

Tu[x⃗]← ku,x⃗
Return ku,x⃗

ExpSim(u)

For z⃗ ∈ { x⃗≤t−1 : Tu[x⃗] ̸= ⊥ } do
ku,z⃗ ← Exp((u, z⃗))

For i = t− 2, . . . , 0 do

For z⃗ ∈ { x⃗≤i : Tu[x⃗] ̸= ⊥ } do
Tu,z⃗[·]← ku,z⃗ ∥ (·)

ku,z⃗ ←$ SF.Exp
PPrim(1λ, (u, z⃗), Tu,z⃗ : σi)

Return ku,()

Figure 6: Left: Hybrid games used for proving security of Fn. In H0’s oracle Exp, the for loop is
skipped as i starts with a value less than zero. Right: Adversary against F for proof that Fn is
secure

own Exp to obtain the depth t − 1 keys, then uses its internal copies of SF to compute shallower
keys. When b = 1 the depth t − 1 keys are chosen at random and the depth t keys are computed
from F. When b = 0 the depth t keys are chosen at random and the depth t− 1 keys are chosen by
SF.

Hence Advsim
∗-ac-prf

F,SF,P,AF
(λ) = Et[Pr[Ht−1(λ)]] − Et[Pr[Ht(λ)]] = (1/n(λ)) · Advsim

∗-ac-prf
F,S,P,Aprf

(λ), where Et

denotes expectation over t←$ {1, . . . , n(λ)}, completing the proof.

B KEM/DEM Proof (Theorem 5.1)

We consider SIM*-AC-CCA security. Other notions follow by ignoring the appropriate oracle(s).
Let KEM, SE, and adversary Acca be given. We will assume that Acca never queries encryption for
an exposed user and never queries challenge ciphertexts to decryption. We will prove the security
of KD[KEM,SE] using a sequence of four hybrid games (G0 through G3).

KEM reduction. Consider the first two hybrid games, shown in Fig. 7, and in particular game
G0 which contains the boxed but not the highlighted code. This game was created by inserting
the code of KD into the real world of the SIM*-AC-CCA game, then making some minor code
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Games G0(λ) ,G1(λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)

σP←$ P.Init(1λ)
σK←$ SK.Init(1

λ)

b′←$AEk,Enc,Dec,SExp,RExp,PPrim
cca (1λ)

Return (b′ = 1)

Ek(u)

ek′ ← eku

ek′←$ SK.Ek
PPrim(1λ,u : σK)

Return ek′

RExp(u)

dk′ ← dku

dk′←$ SK.RExp
PPrim(1λ,u,Ku : σK)

Return dk′

SExp(u, i)

rK ← Ru[i]

rK←$ SK.SExp
PPrim(1λ,u, i,Ku[i] : σK)

(·, k)← Ku[i]; cD ← Cu[i]

rD ← SE.CExtP(1λ, k, cD)
Return rK ∥ rD

Enc(u,m)

r←$ KEM.Rand(λ)

(cK, k)← KEM.EncapsP(1λ, eku; r)

(cK, ·)←$ SK.Encaps
PPrim(1λ,u : σK)

k←$ KEM.K(λ)
cD←$ SE.EncP(1λ, k,m)

Ru.add(r); Ku.add(cK, k); Cu.add(cD)
Return (cK, cD)

Dec(u, (cK, cD))

If Ku⟨cK⟩ ≠ ⊥ then k ← Ku⟨cK⟩
Else k ← KEM.DecapsP(1λ,dku, cK)

Else k←$ SK.Decaps
PPrim(1λ,u, cK : σK)

If k = ⊥ then return ⊥
m← SE.DecP(1λ, k, cD)
Return m

Adversary AEk,Encaps,Decaps,SExp,RExp,PPrim
K

b′←$AEk,EncSim,DecSim,SExpSim,RExp,PPrim
cca (1λ)

Return b′

SExpSim(u, i)

rK ← SExp(u, i)

(·, k)← Ku[i]; cD ← Cu[i]

rD ← SE.CExtP(1λ, k, cD)
Return rK ∥ rD

EncSim(u,m)

(cK, k)← Encaps(u)

cD←$ SE.EncP(1λ, k,m)

Ku.add(cK, k); Cu.add(cD)
Return (cK, cD)

DecSim(u, (cK, cD))

k ← Decaps(u, cK)

If k = ⊥ then return ⊥
m← SE.DecP(1λ, k, cD)
Return m

Figure 7: First two hybrids and corresponding reduction in security proof for the KEM/DEM
construction. Oracle PPrim is omitted as it is unchanged from the SIM*-AC-CPA/CCA security
game. Giving P as an oracle means access to PPrim(Ls, ·, ·, ·).

simplifications.19 This included making explicit the logic that decryption returns ⊥ if the decap-
sulation algorithm does. We added a list Ku to the encryption and decryption oracles. It stores
lists of challenge KEM ciphertexts and the underlying keys. In decryption, if Ku has a key for the
KEM ciphertext, we use that rather than recovering the key through decapsulation. Under the
assumption that KEM is perfectly correct and query consistent, this does not change the behavior
of the game. The former is used to ensure that decapsulation would give the same key obtained by
encapsulation and the later is used to ensure that decapsulation would not make any ideal primitive

19Our assumption that the attacker does not make encapsulation queries for exposed users let us remove the list X
and simplify logic around it. Our assumption that the attacker never forwards challenge ciphertexts from encryption
to decryption let us remove the list Mu and simplify logic around it.
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queries that were not previously made (so that the attacker cannot detect that decapsulation is not
being run and making queries). Finally, rather than remembering the randomness used by SE, we
remembered the ciphertext in table Cu and extracted the randomness inside of the exposure oracle.
The assumed query consistency of SE.CExt ensures this does not make any additional primitive
queries and so is undetectable. Hence, Pr[G0(λ)] = Pr[Gsim∗-ac-cca

KD,S,P,Acca,1
(λ)].

Now consider the hybrid game G1 which contains the highlighted, but not the boxed code.
The changes from G0 switch from using honest values generated by the KEM to using simulation
by a simulator SK. Unsurprisingly then, the difference between these games can be bounded by
the security of the KEM. This is captured by adversary AK, shown in the same figure, which uses
its own oracles to simulate the view of Acca in these hybrids (notice it gives direct access to Ek,
RExp, and PPrim). We used dashed boxes to indicate where its code was modified from the
hybrid games. When the bit in its underlying game is b, it perfectly simulates G1−b and hence we
have that Advsim

∗-ac-cca
KEM,SK,P,AK

(λ) = Pr[G0(λ)]− Pr[G1(λ)].

DEM reduction. Now consider the final two hybrid games, shown in Fig. 8, and in particular
game G2 which contains the boxed but not the highlighted code. It was created by making syntactic
changes to G1 that do not change the behavior of the game, so Pr[G2(λ)] = Pr[G1(λ)].

The main changes concern the random keys the were sampled from KEM.K inside encryption.
The key that would be sampled in the i-th query to user u is now referred to as k(u,i). The code to
sample it is at the beginning of the game (using SE.Kg rather than KEM.K, which we assumed to be
the same thing). Per user counters iu track how many encryption queries have been made. Rather
than storing keys in Ku⟨cK⟩ we store the appropriate counter value in Iu⟨cK⟩. If Iu⟨cK⟩ = i, then
we know that Ku⟨cK⟩ would have stored k(u,i). We’ve changed the code inside of decapsulation to
match this and we copied the code that occurred after the if statement to instead occur inside of
both branches (and then simplified slightly).

There is one place, however, where we still need Ku, which is to give it as input to SK in RExp.
So, inside of RExp we use a for loop to iterate over all queries to this user so far and recreate Ku.
We set Ku back to an empty table afterwards so a fresh Ku is used each time. (This resetting is
omitted in our coming simulator, as it is implicit from that fact it does not store the table as part
of its state.) A smaller change we made is to store both cK and cD in Cu. These are used in SExp
for recreating values Ku[i] for SK and extracting randomness from cD in RExp.

For the next transition, we will think of the key k(u,i) as belonging to a DEM user known
as (u, i). Consider the hybrid game G3 which contains the highlighted, but not the boxed code.
The changes from G2 switch so that honest values generated by the DEM with k(u,i) are instead
simulated by a simulator SD told to simulate user (u, i). Unsurprisingly then, the difference between
these games can be bounded by the security of the DEM. This is captured by adversary AD, shown
in the same figure, which uses its own oracles to simulate the view of Acca in these hybrids (notice
it gives direct access to PPrim). We used dashed boxes to indicate where its code was modified
from these hybrid games. When the bit in its underlying game is b, it perfectly simulates G3−b and
hence we have that Advsim

∗-ac-cca
SE,SD,P,AD

(λ) = Pr[G2(λ)]− Pr[G3(λ)].

Defining the simulator. Finally we define our simulator S. Naturally, this simulator is defined
so that Pr[Gsim∗-ac-cca

KD,S,P,Acca,0
(λ)] = Pr[G3(λ)]. It is defined as follows. Mostly the code is copied directly

from G3. The one interesting change arises in encryption because it does not know the message
and so cannot fill M(u,i) appropriately. The simulator will create this later on exposures when it is
given Mu. Therein it iterates over the entries of Mu in order, which correspond to the encryption
queries made to u. It uses the i-th entry to fill M(u,i).
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Games G2(λ) ,G3(λ)

i(·) ← 0

k(·,·)←$ SE.Kg(λ)

σP←$ P.Init(1λ)
σK←$ SK.Init(1

λ)

σD←$ SD.Init(1
λ)

b′←$AEk,Enc,Dec,SExp,RExp,PPrim
cca (1λ)

Return (b′ = 1)

Ek(u)

ek′←$ SK.Ek
PPrim(1λ,u : σK)

Return ek′

RExp(u)

For (cK, i) ∈ Iu do

k ← k(u,i)

k←$ SD.Exp
PPrim(1λ, (u, i),M(u,i) : σD)

Ku.add(cK, k)
dk′←$ SK.RExp

PPrim(1λ,u,Ku : σK)

Ku ← [·]; Return dk′

SExp(u, i)

(cK, cD)← Cu[i]

k ← k(u,i)

k←$ SD.Exp
PPrim(1λ, (u, i),M(u,i) : σD)

rK←$ SK.SExp
PPrim(1λ,u, i, (cK, k) : σK)

rD ← SE.CExtP(1λ, k, cD)
Return rK ∥ rD

Enc(u,m)

(cK, ·)←$ SK.Encaps
PPrim(1λ,u : σK)

iu ← iu + 1; Iu.add(cK, iu)

cD←$ SE.EncP(1λ, k(u,iu),m)

cD←$ SD.Enc
PPrim(1λ, (u, iu), |m| : σD)

M(u,iu).add(cD,m)

Cu.add(cK, cD)
Return (cK, cD)

Dec(u, (cK, cD))

If Iu⟨cK⟩ ≠ ⊥ then

i← Iu⟨cK⟩
m← SE.DecP(1λ, k(u,i), cD)

m←$ SD.Dec
PPrim(1λ, (u, i), cD : σD)

Else

k←$ SK.Decaps
PPrim(1λ,u, cK : σK)

If k = ⊥ then return ⊥
m← SE.DecP(1λ, k, cD)

Return m

Adversary AEnc,Dec,Exp,PPrim
D (1λ)

i(·) ← 0

σK←$ SK.Init(1
λ)

b′←$AEkSim,EncSim,DecSim,SExpSim,RExpSim,PPrim
cca (1λ)

Return (b′ = 1)

EkSim(u)

ek′←$ SK.Ek
PPrim(1λ,u : σK)

Return ek′

RExp(u)

For (cK, i) ∈ Iu do

k ← Exp((u, i))

Ku.add(cK, k)
dk′←$ SK.RExp

PPrim(1λ,u,Ku : σK)

Ku ← [·]; Return dk′

SExp(u, i)

(cK, cD)← Cu[i]

k ← Exp((u, i))

rK←$ SK.SExp
PPrim(1λ,u, i, (cK, k) : σK)

rD ← SE.CExtP(1λ, k, cD)
Return rK ∥ rD

EncSim(u,m)

(cK, ·)←$ SK.Encaps
PPrim(1λ,u : σK)

iu ← iu + 1; Iu.add(cK, iu)
cD←$ Enc((u, iu),m)

Cu.add(cK, cD)
Return (cK, cD)

DecSim(u, (cK, cD))

If Iu⟨cK⟩ ≠ ⊥ then

i← Iu⟨cK⟩
m← Dec((u, i), cD)

Else

k←$ SK.Decaps
PPrim(1λ,u, cK : σK)

If k = ⊥ then return ⊥
m← SE.DecP(1λ, k, cD)

Return m

Figure 8: Last two hybrids and corresponding reduction in security proof for the KEM/DEM
construction. Oracle PPrim is omitted as it is unchanged from the SIM*-AC-CPA/CCA security
game. Giving P as an oracle means access to PPrim(Ls, ·, ·, ε).
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S.Init(1λ)

i(·) ← 0
σK←$ SK.Init(1

λ)
σD←$ SD.Init(1

λ)
Return (i(·), I(·), σK, σD)

S.EkPPrim(1λ,u : (i(·), I(·), σK, σD))

ek′←$ SK.Ek
PPrim(1λ,u : σK)

Return ek′

S.RExpPPrim(1λ,u,Mu : (i(·), I(·), σK, σD))

For i = 1, . . . , |Mu| do
((cK, cD),m)←Mu[i]
M(u,i).add(cD,m)

k←$ SD.Exp
PPrim(1λ, (u, i),M(u,i) : σD)

Ku.add(cK, k)

dk←$ SK.RExp
PPrim(1λ,u,Ku : σK)

Return dk

S.SExpPPrim(1λ,u, i,Mu[i] : (i(·), I(·), σK, σD))

((cK, cD),m)←Mu[i]; M(u,i).add(cD,m)

k←$ SD.Exp
PPrim(1λ, (u, i),M(u,i) : σD)

rK←$ SK.SExp
PPrim(1λ,u, i, (cK, k) : σK)

rD ← SE.CExtP(1λ, k, cD)
Return rK ∥ rD

S.EncPPrim(1λ,u, ℓ : (i(·), I(·), σK, σD))

(cK, ·)←$ SK.Encaps
PPrim(1λ,u : σK)

iu ← iu + 1; Iu.add(cK, iu)

cD←$ SD.Enc
PPrim(1λ, (u, iu), ℓ : σD)

Return (cK, cD)

S.DecPPrim(1λ,u, (cK, cD) : (i(·), I(·), σK, σD))

If Iu⟨cK⟩ ≠ ⊥ then
i← Iu⟨cK⟩
m←$ SD.Dec

PPrim(1λ, (u, i), cD : σD)
Else

k←$ SK.Decaps
PPrim(1λ,u, cK : σK)

If k = ⊥ then return ⊥
m← SE.DecP(1λ, k, cD)

Return m

Putting together the equalities we have shown gives that Advsim
∗-ac-cpa

KD,S,P,Acca
(λ) = Advsim

∗-ac-cca
KEM,SK,P,AK

(λ)+

Advsim
∗-ac-cca

SE,SD,P,AD
(λ). Note that AD and S depends on SK, and that S depends on SD. This limited

chain of dependencies (as well as the efficiency of all algorithms we provided), then gives the result
for both the “weak” and “strong” quantifications.

C Hashed KEM and Fujisaki-Okamoto Transform Proofs

In this section, we provide the deferred proofs of security for Hashed KEM (Theorem 5.2, proof in
C.3) and the Fujisaki-Okamoto Transform (Theorem 5.3, proof in C.4). Before starting those we
give a useful lemma for formalizing such proofs (C.1) and actually formally define the one-wayness
definition we use (C.2).

C.1 Deferred Programming Lemma

We introduce a lemma that we found useful for analysis of some “low-level” SIM*-AC proofs more
precise. This lemma captures how difficult it is to distinguish between honestly querying a random
oracle versus sampling a purported output from the query at random and then later attempting to
program the random oracle to be consistent with output.

As an example, consider running one of the two following sequences of code.

• σP ← [·, ·]; (k, x, σG)←$ GProm
1 ; y ← Prom.Ls(1

λ, k, x : σP); GProm
2 (y : σG); GProm

3 (σG)

• σP ← [·, ·]; (k, x, σG)←$ GProm
1 ; y←$ P.Rλ; GProm

2 (y : σG); Prom.Prog(1
λ, k, x, y : σP); GProm

3 (σG)

The view of G can only differ between these sequence if G1 or G2 queries Prom on (k, x). We will
generalize this to consider multiple instances of deferred programming.
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Game Gdef-prog
Prom,G (λ)

σP←$ Prom.Init(1
λ)

b←$ {0, 1}
b′←$ GQuery,DefProg,PPrim(1λ)

bad← bad0 ∨ bad1 ∨ bad2
Return (b = b′)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
If Y ⟨k, x⟩ ≠ ⊥ then bad2 ← true
y←$ Prom.Op(1

λ, k, x, y : σP)

Return y

Query(k, x)

If Y ⟨k, x⟩ ≠ ⊥ then bad0 ← true
If σP[k, x] ̸= ⊥ then bad1 ← true
If b = 1 then y←$ Prom.Ls(1

λ, k, x : σP)

If b = 0 then y←$ Prom.Rλ

Y.add((k, x), y)
Return y

DefProg(t)

Require Y [t] ̸= ⊥
((k, x), y)← Y [t]

Y [t]← ⊥
If b = 0 then Prom.Prog(1

λ, k, x, y : σP)

Return ⋄

Figure 9: Game for analyzing deferred programming of a random oracle

Consider the game Gdef-prog
Prom,G shown in Fig. 9. In it, the adversary G interacts with Prom through

three oracles. The PPrim oracle is the same as the similarly named oracle we have seen before.
The deferred programming happens between the Query and DefProg oracles. In the real world
(b = 1), the oracle Query(k, x) evaluates the random oracle on (k, x) and returns the result y.
The DefProg oracle does nothing. In the ideal world (b = 0), the result y is picked uniformly at
random. This value is not shared with Prom, so a PPrim(Ls, k, x, ε) query would not return y. On
input t, the oracle DefProg tries to patch this up by programming Prom with the (k, x, y) values
from the t-th query to Query.

We define the advantage of G by Advdef-progProm,G (λ) = 2Pr[Gdef-prog
Prom,G (λ)] − 1. It is easy to define a

G which has advantage 1 (e.g., make the same query to Query twice in a row). When we use
deferred programming, we will restrict our attention to restricted classes of G (typically of the form
that G is emulating some other game to an adversary A that it runs internally) and show that this
advantage is small for G in that class.

The game sets three bad flag when queries are made which will allow the adversary to detect
the deferred programming. This is formalized in the following result.

Lemma C.1 (Deferred Programming Lemma) For all G, it holds that

Advdef-progProm,G (λ) ≤ Pr[Gdef-prog
Prom,G,0(λ) sets bad] = Pr[Gdef-prog

Prom,G,1(λ) sets bad].

To understand why this is the case, let’s think through the different bad flags that make up bad.
The flags bad1 and bad2 together capture the case that a query PPrim(·, k, x, ·) is made for some
(k, x) that was queried to Query, before the corresponding query to DefProg was made. The
two flags differ in whether the PPrim query was made before (bad1) or after (bad2) the Query
query. The flags bad0 and bad1 capture the case that two queries to Query are make with the
same (k, x). The two flags differ in whether the DefProg query corresponding to the first Query
query was made before (bad1) or after (bad0) the second Query query.

This argument could have been embedded in our later proofs without requiring this separate
formalization. We found this modularization convenient so that we can extract analysis of the
detectability of deferred programming from the complicated games in which we will need it.
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C.2 One-way Security Definitions for KEMs

We define one-wayness of key encapsulation scheme KEM by the game given in Fig. 10. The ad-
versary can query Encaps to get challenge ciphertexts under an unknown decapsulation key. The
adversary can also learn the decapsulation key by querying RExp or the underlying randomness
used by querying SExp. The adversary wins if they guess a key associated with a challenge cipher-
text for an unexposed user. We define the advantage function Advow

∗
KEM,P,Aow

(λ) = Pr[Gow∗
KEM,P,Aow

(λ)].

We say KEM is OW* secure with P if for all PPT Aow, the advantage Advow
∗

KEM,P,Aow
(·) is negligible.

Our results using one-wayness work whether P is programmable or non-programmable.

Game Gow∗

KEM,P,Aow
(λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
σP←$ P.Init(1λ)
AEk,Encaps,SExp,RExp,Guess,PPrim

ow (1λ)

Return win

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Ek(u)

Return eku

SExp(u, i)

Xu,i ← true
Return (Ru[i], Tu[i])

RExp(u)

Xu ← true
Return (dku, Tu)

Encaps(u)

r←$ KEM.Rand(λ)
(c, k)← KEM.EncapsP(1λ, eku; r)

coll← coll ∨ (¬Xu ∧ ∃u′ : k ∈ Tu′)

early← early ∨ (¬Xu ∧ k ∈ K)

Tu.add(k); Ru.add(r)
Return c

Guess(k)

K.add(k)
correct← ∃u, i : ¬Xu ∧¬Xu,i ∧ (k = Tu[i])

win← win ∨ correct

Figure 10: Game defining one-wayness of KEM

Stronger variants. To capture stronger variants of one-wayness, we add additional oracles to the
above game. We consider a plaintext-checking oracle Pc and a decryption-consistency oracle Dc
defined by the following pseudocode.

Pc(u,K, c)

Require ⊥ ̸∈ K

k ← KEM.DecapsP(1λ,dku, c)
If k ∈ K then return k
Return ⊥

Dc(u,V, c)

Require u ̸∈ V

k ← KEM.DecapsP(1λ,dku, c)
For v ∈ V do

k′ ← KEM.DecapsP(1λ,dkv , c)
If k = k′ ̸= ⊥ then return (v , k)

Return ⊥

The plaintext-checking oracle takes a set of keys K and a ciphertext c for a user u and tells
which, if any, of the given keys is encrypted by that ciphertext. The require statement emphasizes
that the oracle cannot be used for simply checking if the ciphertext is valid for u. A more common
definition of the oracle only allows checking one key at a time; this version can be emulated by
calling such an oracle |K| times. We denote by Gow∗-pca the game obtained by adding Pc and

define Advow
∗-pca

KEM,P,Aow
(λ) = Pr[Gow∗-pca

KEM,P,Aow
(λ)]. We say KEM is OW*-PCA secure with P if for all

PPT Aow, the advantage Advow
∗-pca

KEM,P,Aow
(·) is negligible.

The decryption consistency oracle takes a user u, ciphertext c, and set of other users V. It
checks if any of these other users decrypt the ciphertext to the same (non-⊥) key as u. We

denote by Gow∗-pcdca the game obtained by adding both Pc and Dc and define Advow
∗-pcdca

KEM,P,Aow
(λ) =

Pr[Gow∗-pcdca
KEM,P,Aow

(λ)]. We say KEM is OW*-PCDCA secure with P if for all PPT Aow, the advantage

Advow
∗-pcdca

KEM,P,Aow
(·) is negligible.

Single query security. Our one-wayness definitions allow for multiple users, challenges, and
guesses. They allow for the exposure of receiver keys and sender randomness. All of these def-
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initional choices were made to simplify the security proofs that use one-wayness. However, we
emphasize that a standard argument shows that this is implied by a version with a single user,
single challenge, a single guess, and no exposures. Given an adversary Aow, one can build an adver-
sary A1 that guesses which user, encapsulation query, and guess query will result in Aow winning.
The corresponding queries are forwarded to A1’s oracles while A1 itself locally simulates all other
users and queries. If Aow would expose one of the guessed queries, A1 can halt early.

In the case of OW*-PCDCA, A1 will need to use the Pc oracle to simulate the Dc oracle. It
can perform the decapsulations in Dc for all of the users it internally simulates. Then a Pc query is
used to compare a key obtained in this manner to one that should be obtained by decapsulating the
ciphertext with the user that A1 is trying to attack. As consequence of this, we can also conclude
that OW*-PCDCA security is implied by OW*-PCA security.20

Related quantities (key collisions and early guessing). There are two other related quantities
we will want to measure about an adversary A playing the one-wayness games. In the games, coll
is set in the event that the same key k is sampled in two different queries to Encaps (where the
user in the second query is unexposed at the time of the query) and early is set in the event that
Encaps for an unexposed user samples a key k that has already been queried to Guess by the
attacker. For a given scheme KEM expecting ideal primitive P and security parameter λ, we define
the key min-entropy of KEM, denoted HKEM

∞ (λ), to be the largest real value satisfying

Pr[k = k∗ : (·, k)←$ KEM.Encapsf (1λ, ek)] ≤ 2−HKEM
∞ (λ)

for all k∗, ek, and f ∈ P.Pλ. Then we can bound the probability of either event using key min-
entropy or one-wayness itself.

Lemma C.2 Let X ∈ {OW*,OW*-PCA,OW*-PCDCA} and A be a PPT attacker against the X
security of KEM. If HKEM

∞ is super-logarithmic or KEM is X secure with P, then the probability
Pr[Gx

KEM,P,A(·) sets coll or early] is negligible.

Proof: Let qEncaps denote the number of encapsulation queries A makes and qGuess denote the
number of guess queries it makes (both implicitly at most polynomial in λ). Union bounds give

Pr[Gx
KEM,P,A(λ) sets coll] ≤

(
qEncaps

2

)
· 2−HKEM

∞ (λ) and

Pr[Gx
KEM,P,A(λ) sets early] ≤ qEncapsqGuess · 2−HKEM

∞ (λ).

Let A′ pick a random number t between 1 and qEncaps, then run A up until immediately after the
t-th encapsulation query. Then A′ re-queries Guess on all values of k previously queried to Guess.
Then for each encapsulation query that happened before the t-th, A′ calls SExp and queries the
key it returns to Guess. The adversary A′ will succeed at the one-wayness game if either event
was triggered by the t-th encapsulation query of A. Hence we have that

Pr[Gx
KEM,P,A(λ) sets coll or early] ≤ qEncaps · Advow

∗
KEM,P,A′(λ),

completing the proof.

20The Dc oracle only returns anything meaningful if the attacker can produce a ciphertext that is decrypted
identically by two different users. Proving that this is hard for a particular KEM can give a tighter connection
between OW*-PCDCA and OW*-PCA security without going through single-user security. Consider, e.g., modifying
a given KEM to replace k with eku ∥ k.
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Related quantity (ciphertext early guessing). For one proof it will also be useful to argue
that an attacker cannot guess a ciphertext before it is output by encapsulation. We will show that
one-wayness implies this must be hard. Define Gcguess∗-x to be identical to Gow∗-x except for the
following changes:

• Oracle Guess is replaced with CGuess which on input c performs C.add(c).

• Oracle Encaps also computes cguess← cguess ∨ (¬Xu ∧ c ∈ C).

• The game returns cguess rather than win.

We define Advcguess
∗-x

KEM,P,A(λ) = Pr[Gcguess∗-x
KEM,P,A(λ)] and say KEM is CGUESS-X secure with P if for all

PPT A, the advantage Advcguess
∗-x

KEM,P,A(·) is negligible.
We can use key min-entropy or one-wayness to imply CGUESS* security as follows.

Lemma C.3 If HKEM
∞ is super-logarithmic or KEM is OW*-X secure with P, then KEM is CGUESS*-

X secure.

Proof: For this proof, we make use of perfect correctness of KEM.

Let A against CGUESS*-X be given. Let qEncaps denote the number of encapsulation queries
A makes and qCGuess denote the number of CGuess queries it makes (both implicitly at most
polynomial in λ). If two ciphertexts are equal, then their decapsulations under a fixed decapsulation
key will be equal so a union bound gives

Advcguess
∗-x

KEM,P,A(λ) ≤ qEncapsqCGuess · 2−HKEM
∞ (λ).

By picking random queries to Encaps and CGuess, we can build an adversary A′ which makes at
most one query to each and for which Advcguess

∗-x
KEM,P,A(λ) ≤ qEncapsqCGuess · Advcguess

∗-x
KEM,P,A′(λ). Assume,

without loss of generality, that the Encaps query is made for an unexposed user and after the
CGuess query, then A′ halts.

Next we build a related one-wayness adversary Aow. It will run A′ until it halts, forwarding all
queries. After that Aow will query (r, k) ← SExp(u, 1), make a second Encaps(u) query, then
query Guess(k). If both Encaps queries return the ciphertext c∗ in Cu, then correctness ensures
they had the same key and so A′ would win.

For the analysis, think of P being fully defined before the final query of A′. Let Φ denote a random
variable denoting all the randomness used by A′ or the game until before its Encaps query. Let c
and c′ denote the ciphertexts output by the two Encaps queries. Then

Advcguess
∗-x

KEM,P,A′(λ) = EΦ[Pr[c = c∗ | Φ]] and

Advow∗-xKEM,P,Aow
(λ) ≥ EΦ[Pr[c = c′ = c∗ | Φ]].

Here EΦ denotes an expectation over a random choice of Φ. Once Φ is fixed, c∗ is fixed and the
only randomness remaining in the choice of c and c′ is the randomness sampled by encapsulation
so they are independent when conditioned on Φ. Hence Pr[c = c′ = c∗ | Φ] = Pr[c = c∗ | Φ] ·Pr[c′ =
c∗ | Φ] = Pr[c = c∗ | Φ]2. Then because squaring is a convex function, Jensen’s Inequality gives

Advow∗-xKEM,P,Aow
(λ) ≥ Advcguess

∗-x
KEM,P,A′(λ)2. Thus,

Advcguess
∗-x

KEM,P,A(λ) ≤ qEncapsqCGuess ·
√
Advow∗-xKEM,P,Aow

(λ).

completing the proof.
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C.3 Hashed KEM Proof (Theorem 5.2)

This section provides a proof of Theorem 5.2 from Section 5. It establishes the SIM*-AC-CPA
security of the hashed KEM construction built from a OW* secure KEM when the hash function
is modeled as a random oracle.

Proof: Let Acpa be an adversary against the SIM-AC-CPA security of HKEM. For notational
convenience, we assume without loss of generality that it does not make any oracle queries for users
that have already been exposed or make SExp queries corresponding to Encaps queries that have
not been made yet. We construct adversary Aow (in Fig. 11) and simulator S such that

Advsim-ac-cpaHKEM[KEM],S,P×Prom,Acpa
(λ) ≤ Advow

∗
KEM,P,Aow

(λ) + Pr[Gow∗
KEM,P,Aow

(λ) sets coll or early] .

It will be clear from examination that the new algorithms we introduce are PPT. As shown by
Lemma C.2, the assumed OW* security of the KEM implies that the latter probability term is
negligibile. Thus, the theorem follows by the OW* security of KEM.

Our simulator S is defined as follows. It honestly samples keys for KEM and uses them for encapsu-
lation, remembering the randomness that it used. During exposures, when it learns the key k that
is supposed to be the output of some earlier HKEM[KEM] encapsulation, it tries to program the
random oracle to match.21 In its code, we write P to mean oracle access to PPrim(Ls, (1, ·), ·, ⋄).

S.Init(1λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
Return (ek(·),dk(·), R(·), T(·))

S.EkPPrim(1λ,u : (ek(·),dk(·), R(·), T(·)))

Return eku

S.EncapsPPrim(1λ,u : (ek(·),dk(·), R(·), T(·)))

r←$ KEM.Rand(λ)

(c, kKEM)← KEM.EncapsP(1λ, eku; r)
Ru.add(r); Tu.add(kKEM)
Return (c, ⋄)

S.SExpPPrim(1λ,u, i,Mu[i] : (ek(·),dk(·), R(·), T(·)))

(c, k)←Mu[i]; kKEM ← Tu[i]
PPrim(Prog, (2, kKEM), ε, k)
Return Ru[i]

S.RExpPPrim(1λ,u,Mu : (ek(·),dk(·), R(·), T(·)))

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Tu[i]
PPrim(Prog, (2, kKEM), ε, k)

Return dku

To analyze this simulator, consider the game G1(λ) defined in Fig. 11. It includes the boxed code,
but not the highlighted code. It was obtained by plugging the code of S and HKEM[KEM] into
Gsim∗-ac-cpa. Then we simplified by combining places where the same code was run whether b = 0
or b = 1 (such as the code running KEM.Encaps inside of Encaps). We removed code tracking
which users and queries have been exposed, using our assumption that Acpa does not make queries

for exposed users. By is construction, we have Pr[Gsim∗-ac-cpa
HKEM[KEM],S,P×Prom,Acpa

(λ)] = Pr[G1(λ)].

When b = 1, the key k is chosen with Prom while when b = 0 it is chosen at random and then
later programmed into Prom on exposures. Naturally, we want to analyze this with our deferred
programming lemma. The game G2 starts this process by adding the table Y and corresponding
bad flags to match the deferred programming game. It includes the highlighted code, but not the
boxed code. Note that Y is set up to store the values that were previously in Mu and Tu. We use
I to store the mapping from (u, i) values used to index into M and T to the counter value used
to map into Y . The only difference occurs in that values are erased from Y and in later exposures

21Our simulator remembers the points at which the random oracle will be programmed, kKEM, in a table Tu. It could
have instead recovered kKEM by decrypting the ciphertext under consideration. Correctness and query consistency of
KEM would ensure this is equivalent.
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Game G1(λ) , G2(λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
σP←$ P.Init(1λ)
σProm ←$ Prom.Init(1

λ)

b←$ {0, 1}
b′←$AEk,Encaps,SExp,RExp,PPrim

cpa (1λ)

bad← bad0 ∨ bad1 ∨ bad2
Return (b = b′)

Ek(u)

Return eku

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
(d, kKEM)← k

If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

If Y ⟨kKEM, x⟩ ≠ ⊥ then bad2 ← true
y←$ Prom.Op(1

λ, kKEM, x, y : σProm)

Return y

Encaps(u)

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, eku; r)

If Y ⟨kKEM, ε⟩ ≠ ⊥ then bad0 ← true
If σProm [kKEM, ε] ̸= ⊥ then bad1 ← true
If b = 1 then k←$ Prom.Ls(1

λ, kKEM, ε : σProm)

If b = 0 then k←$ Prom.Rλ

Y.add((kKEM, ε), k); t← t+ 1; I.add((u, |Ru|+ 1), t)

Mu.add(c, k); Tu.add(kKEM); Ru.add(r)
Return (c, k)

SExp(u, i)

If true Y [I⟨u, i⟩] ̸= ⊥ then

(c, k)←Mu[i]; kKEM ← Tu[i]

(kKEM, ·, k)← Y [I⟨u, i⟩]; Y [I⟨u, i⟩]← ⊥
If b = 0 then Prom.Prog(1

λ, kKEM, ε, k : σProm)

Return Ru[i]

RExp(u)

For i = 1, . . . , |Ru| do
If true Y [I⟨u, i⟩] ̸= ⊥ then

(c, k)←Mu[i]; kKEM ← Tu[i]

(kKEM, ·, k)← Y [I⟨u, i⟩]; Y [I⟨u, i⟩]← ⊥
If b = 0 then Prom.Prog(1

λ, kKEM, ε, k : σProm)

Return dku

Adversary GQuery,DefProg,PPrim(1λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
σP←$ P.Init(1λ)
b′←$AEk,Encaps,SExp,RExp,PPrimSim

cpa (1λ)

Return b′

Ek(u)

Return eku

PPrimSim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
(d, kKEM)← k

If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then y ← PPrim(Op, kKEM, x, y)
Return y

Encaps(u)

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, eku; r)

k ← Query(kKEM, ε)

t← t+ 1; I.add((u, |Ru|+ 1), t)

Ru.add(r)
Return (c, k)

SExp(u, i)

DefProg(I⟨u, i⟩) ; Return Ru[i]

RExp(u)

For i = 1, . . . , |Ru| do DefProg(I⟨u, i⟩)
Return dku

Adversary AEk,Encaps,SExp,RExp,Guess,PPrim
ow

σProm ←$ Prom.Init(1
λ)

b′←$AEk,EncapsSim,SExpSim,RExpSim,PPrimSim
cpa (1λ)

Return ⋄
PPrimSim(Op, k, x, y)
(d, kKEM)← k

If d = 1 then y ← PPrim(Op, kKEM, x, y)
If d = 2 then

Guess(kKEM)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Return y

EncapsSim(u)

c← Encaps(u); k←$ Prom.Rλ

Mu.add(c, k); Return (c, k)

SExpSim(u, i)

(c, k)←Mu[i]; (r, kKEM)← SExp(u, i)

Prom.Prog(1
λ, kKEM, ε, k : σProm)

Return r

RExpSim(u)

(dku, Tu)← RExp(u)

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Tu[i]

Prom.Prog(1
λ, kKEM, ε, k : σProm)

Return dku

Figure 11: Games and adversaries used for proof of security for Hashed KEM
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the programming is skipped places where Y has been erased. But then anyway the programming
would have had no effect, so Pr[G1(λ)] = Pr[G2(λ)].

The adversary G makes explicit the reduction to deferred programming. It simulates the game G2

using its own oracle (as shown by the boxes) to simulate the deferred programming of the random

oracle. This gives us that Pr[G2(λ)] = Pr[Gdef-prog
Prom,G (λ)]. Then applying the Deferred Programming

Lemma (Lemma C.1) with the calculations so far we get that Advsim-ac-cpaHKEM[KEM],S,P×Prom,Acpa
(λ) ≤

Pr[Gdef-prog
Prom,G,0(λ) sets bad]. This bad event perfectly matches the one shown explicitly in G2.

Now finally, consider the adversary Aow. It simulates the view of A in Gdef-prog
Prom,G,0 (equivalently, in

G2 when b = 0). At the time of encapsulation, it does not know kKEM so it uses Mu and Tu as in
G1, rather than Y . By the logic from before, this does not change the correctness of its simulation.
Whenever Acpa makes a query to the random oracle, Aow guesses the key to its own oracle. We will
argue that whenever bad would be set in G2(λ), one of win, coll, or early would be set in Gow∗

KEM,P,Aow
.

This implies Pr[Gdef-prog
Prom,G,0(λ) sets bad] ≤ Advow

∗
KEM,P,Aow

(λ)+Pr[Gow∗
KEM,P,Aow

(λ) sets coll or early], com-
pleting the proof.

Suppose G2(λ) would set bad0. Then the current kKEM value must have also been sampled in an
earlier encapsulation query, so coll would be set in Gow∗

. If G2(λ) would set bad1, then one of
two cases holds. If σProm [kKEM, ε] was set in an earlier exposure query, then the current kKEM value
must have also been sampled in an earlier encapsulation query, so coll would be set in Gow∗

. If
σProm [kKEM, ε] was set in an earlier PPrim query, then Aow would have guessed kKEM so early would
be set in Gow∗

. For both coll and early we use the assumption that queries are only made for
unexposed users so ¬Xu must hold. Finally, if G2(λ) would set bad2, then the attacker will guess
this kKEM which comes from an unexposed encapsulation query and so win would be set in Gow∗

.

C.4 Fujisaki-Okamoto Style Transform Proof (Theorem 5.3)

Now we will prove the SIM*-AC-CCA security of U̸⊥[KEM,F] under the assumption that KEM is
OW*-PCA secure and F is SIM*-AC-PRF secure. By our observations in Appendix C.2 we can use
OW*-PCDCA and CGUESS*-PCDCA security as needed because they are implied by OW*-PCA
security.

In our proof we start with a game transition based on SIM*-AC-PRF security. Then we complete
the rest of the proof twice, giving both a single-user proof based on OW*-PCA and CGUESS*-PCA
security and a direct multi-user proof based on OW*-PCDCA and CGUESS*-PCDCA security.
Asymptotically, a SIM*-AC hybrid argument (similar to the one in Theorem 4.1) and the rela-
tionship between single- and multi-user one-wayness discussed in Appendix C.2 ensures that the
two proofs are asymptotically equivalent. The multi-user variant likely provides better concrete
bounds, but does so at the cost of a more complicated proof because the proof has to account for
distinct users happening to query the random oracle on the same input.

Proof: Let Acca be a SIM*-AC-CCA adversary. To simplify notation, assume that it never makes
oracle queries to an exposed u, never queries challenge ciphertexts to Decaps, and never repeats
oracle queries to Decaps.

Simulator. We will start by presenting pseudocode for our simulator S which is given below. It
honestly samples key for KEM and F, then uses them for honestly running the expected algorithms.
The only difference from an honest execution is that it does not query kKEM to the random oracle in
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encapsulation, but instead when an exposure occurs it reprograms the random oracle to consistently
match kKEM to k.22

In the code, it provides a P oracle to KEM with the meaning it appropriately forwards queries to
the oracle to PPrim(Ls, (1, ·), ·, ⋄). Its query to Prom during decapsulation is shorthand for querying
PPrim(Ls, (2, kKEM), c, ⋄). For each of its algorithms we implicitly parse σ into (ek(·),dk(·), fk(·),
σF, R(·),K(·)).

S.Init(1λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
fk(·)←$ F.Kg(1λ)
Return (ek(·), dk(·), fk(·), σF, R(·),K(·))

S.EkPPrim(1λ,u : σ)

Return eku

S.EncapsPPrim(1λ,u : σ)

r←$ KEM.Rand(λ)

(c, kKEM)← KEM.EncapsP(1λ, eku; r)
Ru.add(r); Ku.add(kKEM)
Return (c, ⋄)

S.DecapsPPrim(1λ,u, c : σ)

kKEM ← KEM.DecapsP(1λ,dku, c)
If kKEM ̸= ⊥ then k ← Prom(kKEM, c)

Else k ← F.EvP×Prom(1λ, fku, c)
Return k

S.SExpPPrim(1λ, u, i,Mu[i] : σ)

(c, k)←Mu[i]; kKEM ← Ku[i]
PPrim(Prog, (2, kKEM), c, k)
Return Ru[i]

S.RExpPPrim(1λ,u,Mu : σ)

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Ku[i]
PPrim(Prog, (2, kKEM), c, k)

Return (dku, fku)

Main ideas. We will use the Deferred Programming Lemma (Lemma C.1) to formalize the general
idea that the only way to distinguish simulation from the real world is to query an honestly generated
kKEM to the random oracle before a corresponding exposure occurs. Intuitively then, we want to
show this is implied by one-wayness by showing that a one-wayness adversary can simulate Acca’s
view and then use every key queried to the random oracle as a guess. The main challenge to this
is that decapsulation uses a secret key which the one-wayness adversary does not know.

To allow simulation without knowing the decapsulation key, we first switch F’s output to be random.
Then we will respond to some decapsulation queries with randomness without knowing whether
the given ciphertext decrypts at all. This could be detected if the attacker knows the encapsulated
key and makes the corresponding query to the random oracle. To avoid this detection we use the
plaintext-checking oracle on ciphertext-key pairs that are queried to the random oracle; if they
match, we force consistency between decapsulation and the random oracle.

These general ideas have the same conceptual core as the proof for IND-CCA security of (PKE-
based) U̸⊥ by HHK [HHK17, Thm. 3.4] and Hövelmanns [Höv21, Thm. 2.1.5]. Beyond the com-
plexities introduced by allowing randomness and key exposures, there are also additionally subtle
“bad” events we have to handle because our proof allows multiple users, multiple challenges, and
other queries to be made before encapsulation queries (the cited proofs were single-user, single-
challenge, and the challenge was sampled at the start of the game). These differences introduce
additional challenges in ensuring consistency of the random oracle and detection of ways that a
challenge (c, kKEM) might be indirectly queried to the random oracle. For example, we introduced
CGUESS* to modularly bound the probability of querying a ciphertext to decapsulation that later

22For exposed users it would make this random oracle query. Because the random oracle is consistent, it is important
we not the query for unexposed users so we can program it later.
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Games G0(λ) , G1(λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
(σP, σProm)←$ P× Prom.Init(1

λ)

fk(·)←$ F.Kg(1λ)

σF←$ SF.Init(1
λ)

b←$ {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Ek(u)

Return eku

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P× Prom.Op(1

λ, k, x, y : (σP, σProm))

Return y

Encaps(u)

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, eku; r)

If b = 1 then k ← Prom.Ls(1
λ, kKEM, c : σProm)

If b = 0 then k←$ Prom.Rλ

Mu.add(c, k); Ru.add(r); Ku.add(kKEM)
Return (c, k)

Decaps(u, c)

kKEM ← KEM.DecapsP(1λ,dku, c)

If kKEM ̸= ⊥ then k ← Prom.Ls(1
λ, kKEM, c : σProm)

Else k ← F.EvP×Prom(1λ, fku, c)

Else k←$ F.Out(λ); Tu[c]← k

Return k

SExp(u, i)

If b = 0 then

(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return Ru[i]

RExp(u)

If b = 0 then

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

fku←$ SF.Exp
PPrim(1λ,u, Tu : σF)

Return (dku, fku)

Figure 12: Games for PRF transition in the U̸⊥ security proof

becomes a challenge ciphertext, and we introduced the Dc oracle to help detect different ways that
random oracle queries of different users might overlap.

PRF game transition. Now consider the game G0 shown in Fig. 12. It was obtained by plugging
the code of U̸⊥ and S into Gsim∗-ac-cca. Then it was simplified by, e.g., moving code that appears
in both branches of a conditional to instead occur outside of the conditional. Additionally, we
made some simplifications based on our assumptions about the attacker. We assumed the attacker
does not query encapsulation for exposed users and so always return a random key when b = 0.
We also replaced S’s query to PPrim with direct access to Prom.Prog. We removed the check for
whether challenge ciphertexts were forwarded to Decaps. As these modifications do not change
the behavior of the game, we have that Advsim

∗-ac-cca
U ̸⊥[KEM,F],S,P×Prom,Acca,

(λ) = 2Pr[G0(λ)]− 1.

Now G1 is identical to G0 except the use of F inside of Decaps is replaced with sampling a random
value and fk is produced by SF in RExp. Here we use the assumption that the attacker does not
make decapsulation queries to exposed users or make repeated queries to avoid the need to check if
the user is exposed or if the query is a repeat, in which case this would not be sampled at random.

It is straightforward to construct an efficient adversary Aprf such that Pr[G0(λ)] − Pr[G1(λ)] =

Advsim
∗-ac-prf

F,SF,P×Prom,Aprf
(λ). We describe it in terms of how we would modify the code of G0/G1 to obtain

it. First, remove the boxed/grey code everywhere. Replace the return statement with returning 1
if b = b′ and 0 otherwise. In Decaps, when kKEM ̸= ⊥ it queries its evaluation oracle to pick k in
an else branch. Finally, in RExp it queries its own expose oracle to obtain fk. It queries PPrim
when P or Prom are needed.
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Games G2(λ) , G3(λ)

(ek,dk)←$ KEM.Kg(1λ)
(σP, σProm)←$ P× Prom.Init(1

λ)

σF←$ SF.Init(1
λ)

b←$ {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Ek()

Return ek

PPrim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

If D[x] ̸= ⊥ and Pc(ε, {kKEM}, x) ̸= ⊥ then

Prom.Prog(1
λ, kKEM, x,D[x] : σProm)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Kx.add(kKEM)
Return y

Encaps()

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, ek; r)
If D[c] ̸= ⊥ then bad∗ ← true
If b = 1 then k ← Prom.Ls(1

λkKEM, c : σProm)

If b = 0 then k←$ Prom.Rλ

M.add(c, k); R.add(r); K.add(kKEM)
Return (c, k)

Decaps(c)

kKEM ← Pc(ε,Kc, c)

If kKEM ̸= ⊥ then

Return PPrim(Ls, (2, kKEM), c)
kKEM ← KEM.DecapsP(1λ,dk, c)
If kKEM ̸= ⊥ then

D[c]← Prom.Ls(1
λ, kKEM, c : σProm)

D[c]←$ F.Out(λ)
Else D[c]←$ F.Out(λ)
Return D[c]

SExp(i)

If b = 0 then

(c, k)←M [i]; kKEM ← K[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return R[i]

RExp()

If b = 0 then

For i = 1, . . . , |M | do
(c, k)←M [i]; kKEM ← K[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

T ← []

For c ∈ D if KEM.DecapsP(1λ,dk, c) = ⊥ then

T [c]← D[c]

fk←$ SF.Exp
PPrim(1λ, ε, T : σF)

Return (dk , fk)

Figure 13: Games for single-user U̸⊥ security proof

C.4.1 Single-user Proof

From here, we split into the single-use and multi-user (Section C.4.2) versions of the proof. So in
this section, we assume that Acca only makes queries for a single user.

Transition to game G2. We start with G2, shown in Fig. 13. To simply notation, almost
everywhere that the variable u was used, we removed the variable including as input to functions.
Anywhere that a user variable is expected by functions or algorithms not defined within the figure,
we use the empty string ε as the name.

We will claim that G2 is equivalent to G1 (restricted to a single user ε). Oracle Ek and SExp
have not been changed. Oracle Encaps has an additional if statement which merely sets a bad flag
which is not used elsewhere. The main modifications were made to move us toward a game where
decapsulation can be simulated without knowledge of the decapsulation key.

First, in PPrim, when Prom would be called on a pair (kKEM, c) we store kKEM in Kc. Now at the
beginning of Decaps(c), we use Pc to check if any of the keys in Kc are consistent with c. If so, we
use this key without directly running KEM.Decaps. The code of Pc is not explicitly defined in the
figure; it is to be understood as being the same as the oracle defined in Section C.2. Here we called
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PPrim rather than just calling Prom directly because we found it makes later arguments easier to
write, but the proof should work either way. Oracle PPrim additionally added an if statement
which does nothing because the highlighted code is not included in this game.

At the end of Decaps we stop using the table T to store outputs when kKEM ̸= ⊥ and instead
use a table D to store outputs irrespective of whether kKEM is ⊥. Then in RExp we recover T by
decapsulating each ciphertext in D to see if the corresponding kKEM was ⊥.

Recall that P is “detectable”, so we have to be careful that we do not add or remove detectable
queries when compared to G1. The oracle Pc adds additional queries by running KEM.DecapsP,
but in Decaps decapsulation is anyway run on the same input in G1. In PPrim, the oracle is only
run when D[x] ̸= ⊥ in which case the same decapsulation was already run in Decaps. (We assume
“If A and B” does not evaluate B if A evaluates to false.) We additionally add oracle queries by
running decapsulation in RExp, but again this is only done for ciphertexts that are in D and hence
were already queried to decapsulation.

By the above arguments, Pr[G1(λ)] = Pr[G2(λ)].

Transition to game G3. The decapsulation oracle in G2 still needs to use dk to check whether
kKEM = ⊥ at the end. We want to instead simulate this by sampling the output at random in
either case. In the case that the output should have come from Prom we will attempt to program
the random output back into the random oracle should it ever be needed.

Consider game G3 from Fig. 13. It is identical to G2, except the use of Prom is replaced with
random sampling in Decaps and inside PPrim if we are given inputs for which Decaps previously
randomly sampled then we try to program Prom with this. Now both branches of the if statement
at the end of Decaps are identical, so later in the proof we can simulate it without running
decapsulation by always picking D[c] at random. (Note that decapsulation is being run on the
same inputs inside Pc, so we do not have issues with the detectability of P.)

To analyze the difference between games G2 and G3 we use arguments based on the Deferred
Programming Lemma (Lemma C.1) to claim that Pr[G2(λ)] − Pr[G3(λ)] ≤ Pr[G3(λ) sets bad

∗].
The bad flag gets set only if a ciphertext is sampled inside of Encaps that was previously queried
to Decaps. We bound the probability of this by the CGUESS*-PCA security of KEM, getting
Pr[G3(λ) sets bad

∗] ≤ Advcguess
∗-pca

KEM,P,Acguess∗
(λ).

The relevant adversaries are defined in Fig. 14. Let us start with Acguess∗ as it is relatively straight-
forward. It runs Acca, using its own oracles to simulate most uses of KEM and P. It simulates
decapsulation without KEM.Decaps as discussed above. To simulate encapsulation it needs to
know kKEM when b = 1, which it obtains by a call to SExp (which does not affect setting cguess).
It queries CGuess with each ciphertext added to D, so the claim follows because cguess will be set
in Gcguess∗-pca whenever bad∗ would be set in G3. (Recall that by assumption Encaps will only be
called for exposed users.)

Now consider the deferred programming adversary G1 from the same figure. It was obtained by
copying the code of G2 and G3, but replacing all uses of Prom with queries to its oracles. In
particular, the difference between the games in Decaps and PPrim are replaced with Query and
DefProg respectively. All other uses are replaced with PPrim queries. If Acca outputs the correct
bit it outputs 1, otherwise it outputs 0.

We naturally then have Pr[G2(λ)] = Pr[Gdef-prog
Prom,G1,1

(λ)] and Pr[G3(λ)] = Pr[Gdef-prog
Prom,G1,0

(λ)]. Hence

Lemma C.1 gives Pr[G2(λ)] − Pr[G3(λ)] ≤ Pr[Gdef-prog
Prom,G1,0

(λ) sets bad]. So to justify our claim, we
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Adversary GQuery,DefProg,PPrim
1 (1λ)

(ek ,dk)←$ KEM.Kg(1λ)
σP←$ P.Init(1λ); σF←$ SF.Init(1

λ)

b← {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrimSim

cca (1λ)

Return ⋄
Ek(): Return ek

PPrimSim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

If D[x] ̸= ⊥ and Pc(ε, {kKEM}, x) ̸= ⊥ then

DefProg(I⟨kKEM, x⟩)
y ← PPrim(Op, kKEM, x, y)
Kx.add(kKEM)

Return y

Encaps()

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, ek; r)
If D[c] ̸= ⊥ then bad∗ ← true
If b = 1 then k ← PPrim(Ls, kKEM, c)
If b = 0 then k←$ Prom.Rλ

M.add(c, k); R.add(r); K.add(kKEM)
Return (c, k)

Decaps(c)

kKEM ← Pc(ε,Kc, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
kKEM ← KEM.DecapsP(1λ,dk, c)
If kKEM ̸= ⊥ then

t← t+ 1; I.add((kKEM, c), t)
D[c]← Query(kKEM, c)

Else D[c]←$ F.Out(λ)
Return D[c]

SExp(i)

If b = 0 then

(c, k)←M [i]; kKEM ← K[i]

PPrim(Prog, kKEM, c, k)
Return R[i]

RExp()

If b = 0 then

For i = 1, . . . , |M | do
(c, k)←M [i]; kKEM ← K[i]

PPrim(Prog, kKEM, c, k)
T ← []

For c ∈ D s.t. KEM.DecapsP(1λ,dk, c) = ⊥:
T [c]← D[c]

fk←$ SF.Exp
PPrimSim(1λ, ε, T : σF)

Return (dk , fk)

Adversary AEk,Encaps,SExp,RExp,CGuess,Pc,PPrim
cguess∗

σProm ←$ Prom.Init(1
λ); σF←$ SF.Init(1

λ)

b←$ {0, 1}
b′←$AEk,EncapsSim,DecapsSim,...

cca (1λ)

If (b = b′) then return 1 else return 0

PPrimSim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ PPrim(Op, kKEM, x, y)
If d = 2 then

If D[x] ̸= ⊥ and Pc(ε, {kKEM}, x) ̸= ⊥ then

Prom.Prog(1
λ, kKEM, x,D[x] : σProm)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Kx.add(kKEM)
Return y

EncapsSim()

c← Encaps(ε)

(r, kKEM)← SExp(ε, |R|+ 1)

If b = 1 then k ← Prom.Ls(1
λ, kKEM, c : σProm)

If b = 0 then k←$ Prom.Rλ

M.add(c, k); R.add(r); K.add(kKEM)
Return (c, k)

DecapsSim(c)

kKEM ← Pc(ε,Kc, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
CGuess(c)

D[c]←$ F.Out(λ)
Return D[c]

SExpSim(i)

If b = 0 then

(c, k)←M [i]; kKEM ← K[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return R[i]

RExpSim()

(dk, ·)← RExp(ε)

If b = 0 then

For i = 1, . . . , |M | do
(c, k)←M [i]; kKEM ← K[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

For c ∈ D s.t. KEM.DecapsP(1λ,dk, c) = ⊥:
T [c]← D[c]

fk←$ SF.Exp
PPrimSim(1λ, ε, T : σF)

Return (dk , fk)

Figure 14: Deferred programming and ciphertext guessing adversaries used to transition from G2

to G3 in the single-user U̸⊥ security proof

46



Adversary GQuery,DefProg,PPrim
2 (1λ)

(ek ,dk)←$ KEM.Kg(1λ)
σP←$ P.Init(1λ)
σF←$ SF.Init(1

λ)

b′←$AEk,Encaps,Decaps,SExp,RExp,PPrimSim
cca (1λ)

Return b′

Ek()

Return ek

PPrimSim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

If D[x] ̸= ⊥ and Pc(ε, {kKEM}, x) ̸= ⊥ then

PPrim(Prog, kKEM, x,D[x])

y ← PPrim(Op, kKEM, x, y)
Kx.add(kKEM)

Return y

Encaps()

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, ek ; r)
k ← Query(kKEM, c)

R.add(r)
Return (c, k)

Decaps(c)

kKEM ← Pc(ε,Kc, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
D[c]←$ F.Out(λ)
Return D[c]

SExp(i)

DefProg(i) ; Return Ru[i]

RExp()

For i = 1, . . . , |R| do DefProg(i)

T ← []

For c ∈ D s.t. KEM.DecapsP(1λ,dk, c) = ⊥:
T [c]← D[c]

fk←$ SF.Exp
PPrimSim(1λ, ε, T : σF)

Return (dk , fk)

Adversary AEk,Encaps,SExp,RExp,Guess,Pc,PPrim
ow

σProm ←$ Prom.Init(1
λ)

σF←$ SF.Init(1
λ)

b′←$AEk,EncapsSim,DecapsSim,...
cca (1λ)

Return ⋄
PPrimSim(Op, (d, kKEM), x, y)
If d = 1 then y ← PPrim(Op, kKEM, x, y)
If d = 2 then

Guess(kKEM)

If D[x] ̸= ⊥ and Pc(ε, {kKEM}, x) ̸= ⊥ then

Prom.Prog(1
λ, kKEM, x,D[x] : σProm)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Kx.add(kKEM)
Return y

EncapsSim(u)

c← Encaps(u); k←$ Prom.Rλ

M.add(c, k); Return (c, k)

DecapsSim(c)

kKEM ← Pc(ε,Kc, c)

If kKEM ̸= ⊥ then return PPrim(Ls, (2, kKEM), c)
D[c]←$ F.Out(λ)
Return D[c]

SExpSim(i)

(c, k)←M [i]; (r, kKEM)← SExp(ε, i)

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return r

RExpSim()

(dk ,K)← RExp(ε)

For i = 1, . . . , |M | do
(c, k)←M [i]; kKEM ← K[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

For c ∈ D s.t. KEM.DecapsP(1λ,dk, c) = ⊥:
T [c]← D[c]

fk←$ SF.Exp
PPrimSim(1λ, ε, T : σF)

Return (dk , fk)

Figure 15: Deferred programming and one-wayness adversaries used to analyze G3 in the single-user
U̸⊥ security proof
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argue that bad∗ will be set in G3 whenever bad would be set in Gdef-prog
Prom,G1,0

.

By our discussion in Section C.1 the deferred programming bad flag corresponds to either two calls
to Query being made with the same input or Query and PPrim being called with the same
(kKEM, c) before the corresponding DefProg query is made. By our assumption that Acca never
repeats Decaps queries, the first case will not occur. For analyzing the second case, there are four
different place PPrim is queried.

• PPrimSim: If the Query query happens first (inside Decaps) then c will be added to D
and the DefProg query (inside PPrimSim) prevents bad being set. If the PPrim query
happens first (inside PPrimSim), then kKEM is added to Kc and the check at the beginning
of Decaps prevents the Query query from being made.

• Encaps, SExp, or RExp: Each of these oracles only query PPrim on ciphertexts that
were sampled by Encaps. By our assumption that the adversary does not forward challenge
ciphertexts to Decaps, the corresponding Query query can only occur before the Encaps
query, in which case bad∗ would be set.

Analysis of game G3. Now the decapsulation oracle can be simulated without use of the de-
capsulation key (except via Pc) and the proof concludes in a manner quite similar to the security
proof from Hashed KEM given in Section C. Considering G3, we can see that the way its behavior
depends on the bit b is by either directly using Prom inside Encaps to set k or sampling k at
random and then later attempting to program it into Prom when exposures happen. This is exactly
the distinction that deferred programming analyzes.

In particular, consider the deferred programming adversary G2 in Fig. 15. It simulates G3 for
Acca using its oracles for any calls to Prom, in particular using Query and DefProg where the
behavior of G3 depends on b. It uses the previously discussed shorthand for simulating Decaps
and outputs the same guess that Acca does. Consequently, 2Pr[G3(λ)] − 1 = Advdef-progProm,G2

(λ) ≤
Pr[Gdef-prog

Prom,G2,0
(λ) sets bad].

We will use the OW*-PCA adversary Aow from the same figure to bound the probability of this
bad flag. It simulates the b = 0 case of G3, using its oracles to simulate most uses of KEM and P
while locally simulating the behavior of Prom. It makes a guess for each key that is queried to Prom.
We analyze the different ways bad could be set by G2 and show each results in Aow setting win, coll,
or early. Hence Pr[Gdef-prog

Prom,G2,0
(λ) sets bad] ≤ Advow

∗-pca
KEM,P,Aow

(λ) + Pr[Gow∗-pca
KEM,P,Aow

(λ) sets coll or early].

Clearly, if G2 calls Query on the same inputs twice, then coll will be set by Aow. If G2 calls PPrim
on some (kKEM, c), then Aow will guess this key. A later Query call for these values will result
in early being set. If the Query call happened before the PPrim call (and the corresponding
DefProg call has not happened yet), then the key guess will set win.

Putting all of our bounds together gives

Advsim
∗-ac-cca

U ̸⊥[KEM,F],S,P×Prom,Acca,
(λ) ≤2

(
Advsim

∗-ac-prf
F,SF,P×Prom,Aprf

(λ) + Advcguess
∗-pca

KEM,P,Acguess∗
(λ)

)
+ Advow

∗-pca
KEM,P,Aow

(λ) + Pr[Gow∗-pca
KEM,P,Aow

(λ) sets coll or early].

C.4.2 Multi-user Proof

We provide an alternate proof for when Acca is a multi-user adversary. Much of the analysis remains
the same, but now we have to account for Prom query collisions between different users.
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Games G′
2(λ) , G

′
3(λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
(σP, σProm)←$ P× Prom.Init(1

λ)

σF←$ SF.Init(1
λ)

b←$ {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Ek(u)

Return eku

PPrim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

U← { u : Du[x] ̸= ⊥ }
For u ∈ U if Pc(u, {kKEM}, x) ̸= ⊥ then

Prom.Prog(1
λ, kKEM, x,Du[x] : σProm)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Kx.add(kKEM)
Return y

Encaps(u)

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, eku; r)

If ∃v : Dv [c] ̸= ⊥ then bad∗ ← true
If b = 1 then k ← Prom.Ls(1

λ, kKEM, c : σProm)

If b = 0 then k←$ Prom.Rλ

Mu.add(c, k); Ru.add(r); Ku.add(kKEM)
Return (c, k)

Decaps(u, c)

kKEM ← Pc(u,Kc, c)

If kKEM ̸= ⊥ then

Return PPrim(Ls, (2, kKEM), c)
V← { v : Mv⟨c⟩ ≠ ⊥ }
(·, kKEM)← Dc(u,V, c)

If kKEM ̸= ⊥ then

Return PPrim(Ls, (2, kKEM), c)
V← { v : Dv [c] ̸= ⊥ }
(v , ·)← Dc(u,V, c)

If v ̸= ⊥ then return Dv [c]

kKEM ← KEM.DecapsP(1λ,dku, c)

If kKEM ̸= ⊥ then

Du[c]← Prom.Ls(1
λ, kKEM, c : σProm)

Du[c]←$ F.Out(λ)
Else Du[c]←$ F.Out(λ)
Return Du[c]

SExp(u, i)

If b = 0 then

(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return Ru[i]

RExp(u)

If b = 0 then

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

For c ∈ Du if KEM.DecapsP(1λ,dku, c) = ⊥ then

Tu[c]← Du[c]

fku←$ SF.Exp
PPrim(1λ,u, Tu : σF)

Return (dku, fku)

Figure 16: Games for multi-user U̸⊥ security proof

Transition to game G′
2. We start with game G′

2, shown in Fig. 16. We claim that this game is
equivalent to G1. Oracles Ek and SExp remain unchanged. In PPrim we added the set K to store
keys that were queried to Prom and we added a for loop which does nothing because the highlighted
code is omitted.

Oracle Decaps starts by checking three ways it can correctly respond to the query without directly
decrypting the ciphertext. First, we use Pc to check if the ciphertext was previously queried to
PPrim with the correct kKEM. Next, via M , it uses Dc to learn if the ciphertext was returned
by a prior Encaps query for a different user that happens to to decapsulate it to the same kKEM.
If either of these checks succeed, the oracle uses Prom honestly (via PPrim) to respond to the
query. Finally, it checks if c was previously queried to Decaps for a different user that happens to
decapsulate it to the same kKEM and if so uses that user’s D to respond to the query.

If these all fail, then the oracle resorts to performing decapsulation and responding in the correct
way. In this case, we store the result in a table D which is parameterized by the user. It is used in
RExp to recompute Tu when needed.
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Adversary HQuery,DefProg,PPrim
1 (1λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
σP←$ P.Init(1λ); σF←$ SF.Init(1

λ)

b←$ {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrimSim

cca (1λ)

Return ⋄
Ek(u)

Return eku

PPrim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

U← { u : Du[x] ̸= ⊥ }
For u ∈ U if Pc(u, {kKEM}, x) ̸= ⊥ then

DefProg(I⟨u, kKEM, x⟩)
y ← PPrim(Op, kKEM, x, y)
Kx.add(kKEM)

Return y

Encaps(u)

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, eku; r)

If ∃v : Dv [c] ̸= ⊥ then bad∗ ← true
If b = 1 then k ← PPrim(Ls, kKEM, c)
If b = 0 then k←$ Prom.Rλ

Mu.add(c, k); Ru.add(r); Ku.add(kKEM)
Return (c, k)

Decaps(u, c)

kKEM ← Pc(u,Kc, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
V← { v : Mv⟨c⟩ ≠ ⊥ }
(·, kKEM)← Dc(u,V, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
V← { v : Dv [c] ̸= ⊥ }
(v , ·)← Dc(u,V, c)

If v ̸= ⊥ then return Dv [c]

kKEM ← KEM.DecapsP(1λ,dku, c)

If kKEM ̸= ⊥ then

t← t+ 1; I.add((u, kKEM, c), t)
Du[c]← Query(kKEM, c)

Else Du[c]←$ F.Out(λ)
Return Du[c]

SExp(u, i)

If b = 0 then

(c, k)←Mu[i]; kKEM ← Ku[i]

PPrim(Prog, kKEM, c, k)
Return Ru[i]

RExp(u)

If b = 0 then

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Ku[i]

PPrim(Prog, kKEM, c, k)

For c ∈ Du if KEM.DecapsP(1λ,dku, c) = ⊥ then

Tu[c]← Du[c]

fku←$ SF.Exp
PPrim(1λ,u, Tu : σF)

Return (dku, fku)

Figure 17: Deferred programming adversary used to transition from G′
2 to G′

3 in the multi-user U̸⊥

security proof

Extra queries to P are added by the calls to Pc and Dc in PPrim and Decaps, as well as the use
of KEM.DecapsP in RExp. In almost all cases these queries were already made inside of Decaps
in G1 and so cannot be detected. The exception is the first call to Dc in Decaps. This instead
relies on the fact that the ciphertext was produced in Encaps and that KEM is query consistent.

Transition to game G′
3. Next we switch to G′

3 wherein the KEM.DecapsP is no longer needed
because the value put in Du will be uniformly random whether or not kKEM is ⊥. Note that G′

3

is identical to G′
2 except that use of Prom is replaced with random sampling in Decaps and inside

of PPrim if we are given inputs for which Decaps previously randomly sampled then we try to
program Prom to be consistent. This difference is exhibited by the deferred programming adversary
H1 shown in Fig. 17 for which we claim Pr[G′

2(λ)] − Pr[G′
3(λ)] ≤ Pr[Gdef-prog

Prom,H1,0
(λ) sets bad] ≤

Pr[G′
3 sets bad

∗]. The reasoning for this follows analogously to that used in the single-user case,
with some additional subtleties that required the addition of the two uses of Dc in Decaps.
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Adversary BEk,Encaps,SExp,RExp,CGuess,Pc,Dc,PPrim
cguess∗

σProm ←$ Prom.Init(1
λ)

σF←$ SF.Init(1
λ)

b←$ {0, 1}
b′←$AEk,EncapsSim,DecapsSim

cca (1λ)

If (b = b′) then return 1 else return 0

PPrimSim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ PPrim(Op, kKEM, x, y : σP)

If d = 2 then

U← { u : Du[x] ̸= ⊥ }
For u ∈ U if Pc(u, {kKEM}, x) ̸= ⊥ then

Prom.Prog(1
λ, kKEM, x,Du[x] : σProm)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Kx.add(kKEM)
Return y

EncapsSim(u)

c← Encaps(u)

(r, kKEM)← SExp(u, |Ru|+ 1)

If b = 1 then k ← Prom.Ls(1
λ, kKEM, c : σProm)

If b = 0 then k←$ Prom.Rλ

Mu.add(c, k); Ru.add(r); Ku.add(kKEM)
Return (c, k)

DecapsSim(u, c)

kKEM ← Pc(u,Kc, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
V← { v : Mv⟨c⟩ ≠ ⊥ }
(·, kKEM)← Dc(u,V, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
V← { v : Dv [c] ̸= ⊥ }
(v , ·)← Dc(u,V, c)

If v ̸= ⊥ then return Dv [c]

CGuess(c)

Du[c]←$ F.Out(λ)
Return Du[c]

SExpSim(u, i)

If b = 0 then

(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return Ru[i]

RExpSim(u)

(dku, ·)← RExp(u)

If b = 0 then

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

For c ∈ Du if KEM.DecapsP(1λ,dku, c) = ⊥ then

Tu[c]← Du[c]

fku←$ SF.Exp
PPrimSim(1λ,u, Tu : σF)

Return (dku, fku)

Figure 18: Ciphertext guessing adversary used to transition from G′
2 to G′

3 in the multi-user U̸⊥

security proof

Recall that the deferred programming bad flag corresponds to either two calls to Query being
made with the same input or Query and PPrim being called with the same (kKEM, c) before the
corresponding DefProg query is made. In the single-user case, our assumption that Acca never
repeats Decaps queries implied that the first case will not occur. In the multi-user case, we have
to consider the case that Acca queried the same c to two different users. The second use of Dc in
Decaps ensures that if this occurs (and the same kKEM underlies the ciphertext both times) then
the repeat query to Query is avoided because we respond early using Dv during the second query.
For analyzing the second case, there are four different place PPrim is queried.

• PPrimSim: If the Query query happens first (inside Decaps) then c will be added to Du

and the DefProg query (inside PPrimSim) prevents bad being set. Here it is import that
we checked all users to which c has been queried. If the PPrim query happens first (inside
PPrimSim), then kKEM is added to Kc and the check at the beginning of Decaps prevents
the Query query from being made.

• Encaps, SExp, or RExp: Each of these oracles only query PPrim on ciphertexts that were
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Adversary HQuery,DefProg,PPrim
2 (1λ)

(ek(·),dk(·))←$ KEM.Kg(1λ)
σP←$ P.Init(1λ)
σF←$ SF.Init(1

λ)

b′←$AEk,Encaps,Decaps,SExp,RExp,PPrimSim
cca (1λ)

Return b′

Ek(u)

Return eku

PPrimSim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ P.Op(1λ, kKEM, x, y : σP)

If d = 2 then

U← { u : Du[x] ̸= ⊥ }
For u ∈ U if Pc(u, {kKEM}, x) ̸= ⊥ then

PPrim(Prog, kKEM, x,Du[x])

y ← PPrim(Op, kKEM, x, y)
Kx.add(kKEM)

Return y

Encaps(u)

r←$ KEM.Rand(λ)
(c, kKEM)← KEM.EncapsP(1λ, eku; r)

If ∃v : Dv [c] ̸= ⊥ then bad∗ ← true
k ← Query(kKEM, c)

t← t+ 1; I.add((u, |Ru|+ 1), t)

Mu.add(c, k); Ru.add(r); Ku.add(kKEM)
Return (c, k)

Decaps(u, c)

kKEM ← Pc(u,Kc, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
V← { v : Mv⟨c⟩ ≠ ⊥ }
(·, kKEM)← Dc(u,V, c)

If kKEM ̸= ⊥ then

Return PPrimSim(Ls, (2, kKEM), c)
V← { v : Dv [c] ̸= ⊥ }
(v , ·)← Dc(u,V, c)

If v ̸= ⊥ then return Dv [c]

Du[c]←$ F.Out(λ)
Return Du[c]

SExp(u, i)

DefProg(I⟨u, i⟩)
Return Ru[i]

RExp(u)

For i = 1, . . . , |Mu| do DefProg(I⟨u, i⟩)
For c ∈ Du if KEM.DecapsP(1λ,dku, c) = ⊥ then

Tu[c]← Du[c]

fku←$ SF.Exp
PPrimSim(1λ,u, Tu : σF)

Return (dku, fku)

Figure 19: Deferred programming adversary used to analyze G′
3 in the multi-user U̸⊥ security proof

sampled by Encaps. In the single-user case, our assumption that the adversary does not
forward challenge ciphertexts to Decaps implied that the corresponding Query query can
only occur before the Encaps query, in which case bad∗ would be set. Now we must also
consider the case that the challenge ciphertext was forwarded to a different user’s decapsula-
tion oracle. The first use of Dc will prevent this from resulting in a matching call to Query
because it instead recovers kKEM and computes the output directly.

The above analysis covers the bulk of why the game transitions needed to be modified in the multi-
user case. These differences are mostly “carried along” in the rest of the proof without significant
difference in analysis from the single-user case.

Now we bound the probability of this bad flag using the CGUESS*-PCDCA security of KEM,
getting Pr[G′

3(λ) sets bad
∗] ≤ Advcguess

∗-pca
KEM,P,Bcguess∗

(λ) where Bcguess∗ is defined in Fig. 18. It runs Acca,

using its own oracles to simulate most uses of KEM and P. It simulates decapsulation without
KEM.Decaps. To simulate encapsulation it needs to know kKEM when b = 1, which it obtains by a
call to SExp (which does not affect setting cguess). It queries CGuess with each ciphertext added
to a table Du, so the claim follows because cguess will be set in Gcguess∗-pcdca whenever bad∗ would
be set in G′

3.
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Adversary BEk,Encaps,SExp,RExp,Guess,Pc,Dc,PPrim
ow

σProm ←$ Prom.Init(1
λ)

σF←$ SF.Init(1
λ)

b′←$AEk,EncapsSim,DecapsSim,...
cca (1λ)

Return ⋄
PPrimSim(Op, (d, kKEM), x, y)
Require Op ∈ {Ls,Prog}
If d = 1 then y←$ PPrim(Op, kKEM, x, y)
If d = 2 then

Guess(kKEM)

U← { u : Du[x] ̸= ⊥ }
For u ∈ U if Pc(u, {kKEM}, x) ̸= ⊥ then

Prom.Prog(1
λ, kKEM, x,Du[x] : σProm)

y←$ Prom.Op(1
λ, kKEM, x, y : σProm)

Kx.add(kKEM)
Return y

EncapsSim(u)

c← Encaps(u)

k←$ Prom.Rλ

Mu.add(c, k)
Return (c, k)

DecapsSim(u, c)

kKEM ← Pc(u,Kc, c)

If kKEM ̸= ⊥ then

Return PPrim(Ls, (2, kKEM), c)
V← { v : Mv⟨c⟩ ≠ ⊥ }
(·, kKEM)← Dc(u,V, c)

If kKEM ̸= ⊥ then

Return PPrim(Ls, (2, kKEM), c)
V← { v : Dv [c] ̸= ⊥ }
(v , ·)← Dc(u,V, c)

If v ̸= ⊥ then return Dv [c]

Du[c]←$ F.Out(λ)
Return Du[c]

SExpSim(u, i)

(c, k)←Mu[i]; (r, kKEM)← SExp(u, i)

Prom.Prog(1
λ, kKEM, c, k : σProm)

Return r

RExpSim(u)

(dku,K)← RExp(u)

For i = 1, . . . , |Mu| do
(c, k)←Mu[i]; kKEM ← Ku[i]

Prom.Prog(1
λ, kKEM, c, k : σProm)

For c ∈ Du if KEM.DecapsP(1λ,dku, c) = ⊥ then

Tu[c]← Du[c]

fku←$ SF.Exp
PPrim(1λ,u, Tu : σF)

Return (dku, fku)

Figure 20: One-wayness adversary used to analyze G′
3 in the multi-user U̸⊥ security proof

Analysis of game G′
3. Now the decapsulation oracle can be simulated without use of the de-

capsulation key (except via Pc and Dc). Considering G′
3, we can see that the way its behavior

depends on the bit b is by either directly using Prom inside Encaps to set k or sampling k at
random and then later attempting to program it into Prom when exposures happen. This is exactly
the distinction that deferred programming analyzes.

In particular, consider the deferred programming adversary H2 in Fig. 19. It simulates G′
3 for Acca

using its oracles for any calls to Prom, in particular using Query and DefProg where the behavior
of G3 depends on b. It outputs the same guess that Acca does. Consequently, 2 Pr[G′

3(λ)] − 1 =

Advdef-progProm,H2
(λ) ≤ Pr[Gdef-prog

Prom,H2,0
(λ) sets bad].

We will use the OW*-PCDCA adversary Bow from Fig. 20 to bound the probability of this bad
flag. It simulates the b = 0 case of G′

3, using its oracles to simulate most uses of KEM and P while
locally simulating the behavior of Prom. It makes a guess for each key that is queried to Prom. We
analyze the different ways bad could be set by G2 and show each results in Aow setting win, coll, or
early. Hence Pr[Gdef-prog

Prom,H2,0
(λ) sets bad] ≤ Advow

∗-pcdca
KEM,P,Bow

(λ) + Pr[Gow∗-pcdca
KEM,P,Bow

(λ) sets coll or early].

Clearly, if H2 calls Query on the same inputs twice, then coll will be set by Bow. If H2 calls PPrim
on some (kKEM, c), then Bow will guess this key. A later Query for these values will result in early
being set. If the Query call happened before the PPrim call (and the corresponding DefProg
call has not happened yet), then the key guess will set win.
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Putting all of our bounds together gives

Advsim
∗-ac-cca

U̸⊥[KEM,F],S,P×Prom,Acca,
(λ) ≤2

(
Advsim

∗-ac-prf
F,SF,P×Prom,Aprf

(λ) + Advcguess
∗-pcdca

KEM,P,Bcguess∗
(λ)

)
+ Advow

∗-pcdca
KEM,P,Bow

(λ) + Pr[Gow∗-pcdca
KEM,P,Bow

(λ) sets coll or early].

Combining this bound with Lemma C.2 and Lemma C.3 gives the desired relationship between the
SIM*-AC-CCA security of U̸⊥ and the SIM*-AC-PRF security of F and the OW*-PCA security of
KEM.

D (Generalized) Pseudorandom Functions

In this section we provide the details of the ideas sketched in Section 6 for proving that a random
oracle gives a good SIM*-AC-PRF secure function family. For generality, we will actually prove
as more general pseudorandomness result that (up to a change of notation) also gives an alternate
proof of Theorem E.2, which claims that ideal ciphers give SIM*-AC-SPRP secure blockciphers.

Game Gsim∗-ac-pr
F,F,S,P,Apr

(λ)

k(·)←$ F.Kg(1λ)
g(·)←$ Fλ

σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEv,Exp,PPrim

pr (1λ)

Return (b = b′)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

If b = 1 then y ← F.EvP(1λ, ku, x)
If b = 0 then

If Xu then y←$ S.EvPPrim(1λ,u, x : σ)

Else y ← gu(x)

Tu[x]← y

Return y

Exp(u)

If b = 1 then k′ ← ku
If b = 0 then k′←$ S.ExpPPrim(1λ,u, Tu : σ)

Xu ← true
Return k′

Figure 21: Game defining SIM*-AC-PR[F ] security of function family F

Pseudorandom security. Let Fλ be a distribution over functions g : Dλ → Rλ and F be a
function family. We will consider a SIM*-AC definition which asks whether oracle access to F with
an unknown key looks like oracle access to a random function chosen according to g. Appropriate
choices of F captures SIM*-AC-PRF, SIM*-AC-PRP, or SIM*-AC-SPRP security (up to minor

notational changes). Then consider the game Gsim∗-ac-pr
F ,F,S,P,Apr

shown in Fig. 21. It works similarly

to the SIM*-AC-PRF game, except that for notational simplicity we sample the entire random
function gu for user u all at once. Note it is still the case that the table Tu (and hence the view of
S) only depends on the values of this function that correspond to the queries made by Apr.

We define Advsim
∗-ac-pr

F ,F,S,P,Apr
(λ) = 2Pr[Gsim∗-ac-pr

F ,F,S,P,Apr
(λ)]− 1 and say that F is SIM*-AC-PR[F ] secure

with P if there exists a PPT S such that for all PPT Apr, the advantage function Advsim
∗-ac-pr

F ,F,S,P,Apr
(·)

is negligible. We say that F is wSIM*-AC-PR[F ] secure with P if for all PPT Apr there exists a

PPT S such that Advsim
∗-ac-pr

F ,F,S,P,Apr
(·) is negligible.

Random keyed F functions are secure. For a given F , let PF denote an efficient ideal primitive
for which the distribution P.Pλ samples functions f where the induced functions f(k, ·) for all keys
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k ∈ PF .Kλ are independently distributed according to Fλ. From such a P, we can naturally
construction a function family F as follows.

F.Kg(1λ)

k←$ PF .Kλ

Return k

F.EvPF (1λ, k, x)

y ← PF (k, x)
Return y

Generalizing the ideas from Section 6 we get the following result.

Theorem D.1 Function family F is SIM*-AC-PR[F ] secure as long as |PF .Kλ| is super-polynomial.

Proof: We will define a simulator S for which we prove that

Advsim
∗-ac-pr

F ,F,S,P,Apr
(λ) ≤

uλ(0.5uλ + pλ + p′λ)

|PF .Kλ|

holds for all Apr making queries for at most uλ distinct users, at most pλ lazy sampling queries
to P, and at most p′λ programming queries to P. If uλ > |PF .Kλ| the bound holds vacuously, so
assume this is not the case. Because Apr makes a polynomial number of queries and |PF .Kλ| is
super-polynomial, this bound is negligible.

The simulator S is as follows. It picks keys for exposed users uniformly at random and then
programs the ideal primitive at that key to be consistent with the table Tu that it was given.

S.Init(1λ)

k(·) ← [·]
Return k(·)

S.EvPPrim(1λ,u, x : k(·))

y ← PPrim(Ls, ku, x, ⋄)
Return y

S.ExpPPrim(1λ,u, Tu : k(·))

If ku = ⊥ then
ku←$ PF .Kλ

For x s.t. Tu[x] ̸= ⊥ do
PPrim(Prog, ku, x, Tu[x])

Return ku

We analyze this simulator by considering the games defined in Fig. 22. To simplify notation in these
games, we assume that Apr only queries users with identifiers u ∈ [uλ] = {1, . . . ,uλ}. Intuitively,
we use them to show that the only way to detect the simulation is if two

Of these games, we will prove the following bounds from which the bound claimed above follows.

1. Pr[Gsim∗-ac-pr
F ,F,S,P,Apr,1

(λ)] = Pr[G′
1(λ)]

2. Pr[G′
1(λ)] = Pr[G1(λ)]

3. Pr[G1(λ)] ≤ Pr[G0(λ)] + uλ(pλ + p′λ)/|PF .Kλ|
4. Pr[G0(λ)] = Pr[G′

0(λ)]

5. Pr[G′
0(λ)] ≤ Pr[Gsim∗-ac-pr

F ,F,S,P,Apr,0
(λ)] + 0.5u2λ/|PF .Kλ|

Claims 1 and 5. We compare the games G′
b to the original security games Gsim∗-ac-pr

F ,F,S,P,Apr,b
. First let

us consider games G′′
b defined identically to G′

b except that the highlighted code is removed. We
claim these games are equivalent to the original security games. They were created by plugging
the code of F and S into the original security games and then making some simplifying notational
changes. Using the assumption that u ∈ [uλ] always holds, we sample all user keys explicitly at
the beginning of the game. Rather than sampling an entire function g for each gu for each u,
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Game G′
b(λ) for b ∈ {0, 1}

For u = 1, . . . ,uλ do

ku←$ PF .Kλ

If ku ∈ { ki : 1 ≤ i < u } then
badcoll ← true
ku←$ PF .Kλ \ { ki : 1 ≤ i < u }

σg,(·)←$ PF .Init(1
λ)

σP,(·)←$ PF .Init(1
λ)

b′←$AEv,Exp,PPrim
pr (1λ)

Return (b′ = 1)∨badcoll
PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ PF .Op(1

λ, k, x, y : σP,k)

Return y

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

If b = 1 then y←$ PF .Ls(1
λ, ku, x : σP,ku

)

If b = 0 then

If Xu then y←$ PF .Ls(1
λ, ku, x : σP,ku

)

Else y←$ PF .Ls(1
λ, ku, x : σg,u)

Tu[x]← y

Return y

Exp(u)

If b = 0 then

If ¬Xu then

For x s.t. Tu[x] ̸= ⊥ do

PF .Prog(1
λ, ku, x, Tu[x] : σP,ku)

Xu ← true
Return ku

Game G0(λ), G1(λ)

For u = 1, . . . ,uλ do

ku←$ PF .Kλ

If ku ∈ { ki : 1 ≤ i < u } then
badcoll ← true
ku←$ PF .Kλ \ { ki : 1 ≤ i < u }

σg,(·)←$ PF .Init(1
λ)

σP,(·)←$ PF .Init(1
λ)

b′←$AEv,Exp,PPrim
pr (1λ)

Return (b′ = 1) ∨ badcoll

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
u← min{ u : ku = k }
If u ̸= ⊥ and ¬Xu then

badguess ← true
For x′ s.t. σg,u[k, x

′] ̸= ⊥ do

σP,k[k, x
′]← σg,u[k, x

′]

y←$ PF .Op(1
λ, k, x, y : σP,k)

Return y

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

If Xu then y←$ PF .Ls(1
λ, ku, x : σP,ku)

Else

If σP,ku ̸= [·, ·] then
badguess ← true
For x′ s.t. σg,u[k, x

′] ̸= ⊥ do

σg,u[ku, x
′]← σP,ku

[ku, x
′]

y←$ PF .Ls(1
λ, ku, x : σg,u)

Tu[x]← y

Return y

Exp(u)

If ¬Xu then

For x s.t. Tu[x] ̸= ⊥ do

PF .Prog(1
λ, ku, x, Tu[x] : σP,ku

)

Xu ← true
Return ku

Figure 22: Games used to prove Theorem D.1, that random keys F functions are secure
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we instead lazily sample the function using PF applied to the state σg,u. For the ideal primitive
accessed through PPrim, rather than using a single σP we use separate σP,k for each k (recall the
functions for each k were anyway independent when using a single σP). Note that σg,u is only ever
accessed in the form σg,u[ku, ·] and σP,k is only ever accessed in the form σP,k[k, ·]. The ku = ⊥
check in S.Exp was used to check if the user was previously exposed, so we replace this with ¬Xu.
These changes do not modify the overall behavior of the game, so Pr[Gsim∗-ac-pr

F ,F,S,P,Apr,b
(λ)] = Pr[G′′

b (λ)].

Now consider adding back the highlighted code to obtain G′
b. This code only ever changes behavior

after the flag badcoll is set. It is set if there is a collision between the keys sampled by two different
users. Then the key is resampled to ensure all user keys are distinct and furthermore the game
will necessarily output true. Clearly, this can only increase the probability the game outputs
true, so Pr[G′′

b (λ)] ≤ Pr[G′
b(λ)] giving claim 1. For claim 5, we use that the games G′′

b and G′
b are

identical until the badcoll flag is set, so Pr[G′
b(λ)] ≤ Pr[G′′

b (λ)]+Pr[G′′
b (λ) sets badcoll] ≤ Pr[G′′

b (λ)]+(
uλ
2

)
/|PF .Kλ|. The last term follows from a union bound over all pairs of users.

Claims 2 and 4. We wish to argue that the games G′
b are hard to distinguish from each other.

Note that the map u → ku is now an injection. In G′
1, a single state σP,ku is used to respond to

all queries associated with ku whether they come through PPrim or Ev. In G′
0, there are two

separated states σP,ku and σg,u that are used (for PPrim and Ev respectively) until an Exp query
is made, at which point the game attempts to program σP,ku to be consistent with the values chosen
with σg,u. Henceforth, only σP,ku is used. The games G0 and G1 rewrite these games to make them
more similar so we can precisely exam the difference.

The easier to consider is G0 which does not include the highlighted code. Comparing it to G′
0 we

can see that it is basically line-for-line identical, except that in G0 we have added if statements
to PPrim and Ev which set the flag badguess. Because the highlighted code is omitted, neither if
statement modifies the behavior of the game, so Pr[G0(λ)] = Pr[G′

0(λ)] holds, giving claim 4.

The more interesting comparison is with G1 which does include the highlighted code. Compared
to G′

1, it now uses separate σP,ku and σg,u before exposures. For an unexposed user, if one of these
tables is about to be used, we first copy into it any values that are currently stored in its “partner”
table.23 Consequently, at any point in time, the most recently accessed table associated with u and
ku will exactly match what the current value of σP,ku would be in G′

1. The “partner” table will be
defined consistently except by being ⊥ in some entries where the more recently accessed table was
defined. In the first Exp query for u, the table σP,ku is updated to be what it would have been in
G′

1 (note that Tu[·] exactly matches σg,u[ku, ·] at this time). Henceforth, only it is used (as in G′
1).

So Pr[G′
1(λ)] = Pr[G1(λ)] holds, giving claim 2.

Claim 3. The point of rewriting into the games G0 and G1 was to make them more similar. In par-
ticular, they are identical until the badguess is set, so Pr[G1(λ)] ≤ Pr[G0(λ)]+Pr[G0(λ) sets badguess].

In Ev, the flag is set if ¬Xu and σP,ku ̸= [·, ·] hold. These condition require the attacker to have
queried PPrim using the key ku of an unexposed user. Similarly, the checks before setting the flag
in PPrim check if this is a query for the key ku of an unexposed user. For an unexposed user, the
oracles Ev and PPrim never used ku in a manner that effects the distributions of their output.24

So the view of Apr only depends on unexposed users’ keys from the fact that they are sample to
be distinct from any other keys (some of which may have been exposed). Consider a PPrim made

23For the line u← min{u : ku = k } note that the set on the right has size either 0 or 1 because u→ ku is injective.
This line of code sets u to be the user which has key k, unless none exist in which case u = ⊥.

24Note, this is false in G1. (Where the value of ku effects the output in the event that the bad flag is set.)
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with key k at a time where KX is the set of keys corresponding to users that have been exposed
so far. Then from the perspective of Apr, the set of unexposed users’ keys {k1, . . . , kuλ} \ KX is
uniformly (without repetition) distributed in PF .Kλ \ KX . Thus the probability this particular
query uses the key of an unexposed user is bounded by

Pr[k ∈ {k1, . . . , kuλ} \ KX ] ≤ |{k1, . . . , kuλ} \ KX |
|PF .Kλ \ KX |

=
uλ − |KX |

|PF .Kλ| − |KX |
≤ uλ
|PF .Kλ|

.25

Applying a union bound over the pλ+p′λ) queries to PPrim gives Pr[G0(λ) sets badguess] ≤ uλ(pλ+
p′λ)/|PF .Kλ| to establish claim 3.

E Pseudorandom Permutations

In this section we give SIM*-AC security definitions for pseudorandom permutations and show the
expected result that pseudorandom permutation security implies pseudorandom function security
(up to the birthday bound).

Game Gsim∗-ac-prp
B,S,P,Aprp

(λ)

k(·)←$ B.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEv,Inv,Exp,PPrim

prp (1λ)

Return (b = b′)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Exp(u)

If b = 1 then k′ ← ku
If b = 0 then k′←$ S.ExpPPrim(1λ,u, Tu : σ)

Xu ← true
Return k′

Ev(u, x)

If b = 1 then y ← B.EvP(1λ, ku, x)
If b = 0 then

If Xu then y←$ S.EvPPrim(1λ,u, x : σ)

Else

If Tu[x] = ⊥ then y←$ B.Out(λ) \ { y : T−1
u [y] ̸= ⊥}

Else y ← Tu[x]

Tu[x]← y ; T−1
u [y]← x

Return y

Inv(u, y)

If b = 1 then x← B.InvP(1λ, ku, y)
If b = 0 then

If Xu then x←$ S.InvPPrim(1λ,u, y : σ)

Else

If T−1
u [y] = ⊥ then x←$ B.Out(λ) \ {x : Tu[x] ̸= ⊥}

Else x← T−1
u [y]

Tu[x]← y ; T−1
u [y]← x

Return x

Figure 23: Game defining SIM*-AC-PRP and SIM*-AC-SPRP security of blockcipher B

Pseudorandom permutation security. Let B be a blockcipher (a function family for which
B.Ev(1λ, k, ·) is a permutation with efficient inverse B.Inv(1λ, k, ·)). Our pseudorandom permutation

(PRP) security definition is captured by the game Gsim∗-ac-prp
B,S,P,Aprp

shown in Fig. 23. It differs from

Gsim∗-ac-prf
B,S,P,Aprp

in that random responses to a particular user are sampled without repetition in Ev and
the attacker has access to an inverse oracle Inv which is analogous to Ev.

We define Advsim
∗-ac-prp

B,S,P,Aprp
(λ) = 2Pr[Gsim∗-ac-prp

B,S,P,Aprp
(λ)] − 1 and say that B is SIM*-AC-PRP secure

with P if there exists a PPT S such that for all PPT Aprp that never query Inv, the advantage

function Advsim
∗-ac-prp

B,S,P,Aprp
(·) is negligible. We say B is wSIM*-AC-PRP secure with P if for all PPT

Aprp there exists a PPT S such that Advsim
∗-ac-prp

B,S,P,Aprp
(·) is negligible.

25Here we use that (x− n)/(y − n) ≤ x/y whenever y ≥ x and y > n ≥ 0.
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Strong pseudorandom function security (SIM*-AC-SPRP/wSIM*-AC-SPRP) is defined as above
except the adversary is not required to ignore its Inv oracle.

PRPs are good PRFs. A classic result tells us that PRP security implies PRF security. By the
same reasoning, this holds with SIM*-AC variants of these definitions.

Lemma E.1 For x ∈ {ε,w}, xSIM*-AC-PRP security of B and xSIM*-AC-PRF security of B are
equivalent if |B.Inp(·)| is super-polynomial.

Proof: The games Gsim∗-ac-prp and Gsim∗-ac-prf differ only in the existence of Inv (which is never
queried) and whether the outputs of Ev for unexposed users are uniformly random with or without
replacement when b = 0. Hence if qλ is the number of oracles made by an adversary A, we have
that |Advsim

∗-ac-prp
B,S,P,A (λ)− Advsim

∗-ac-prf
B,S,P,A (λ)| ≤ 0.5q2λ/|B.Inp(λ)|.

Ideal ciphers are Strong PRPs. Fix an ideal cipher Picm and define blockcipher B as follows,
expecting access to Picm.

B.Kg(1λ)

k←$ Picm.Kλ

Return k

B.EvPicm(1λ, k, x)

y ← Picm(k, (+, x))
Return y

B.InvPicm(1λ, k, y)

x← Picm(k, (−, y))
Return x

Using ideas from Section 6 (namely by tweaking the analysis Jaeger and Tyagi [JT20] did for ideal
ciphers being SIM-AC-PRF secure and then accounting as well for programming queries) we get
the following result. Below we write a direct proof of this. It also can be shown to follow from
Theorem D.1.

Theorem E.2 Blockcipher B is SIM*-AC-SPRP secure as long as |Picm.Kλ| is super-polynomial.

Proof: We will define a simulator S for which we prove that

Advsim
∗-ac-prp

B,S,Picm,Aprp
(λ) ≤

uλ(uλ + pλ + p′λ)

|Picm.Kλ|

holds for all Aprp making queries for at most uλ distinct users, at most pλ lazy sampling queries to
Picm, and at most p′λ programming queries to Picm. If uλ > |Picm.Kλ| the bound holds vacuously, so
assume this is not the case. Assuming that Aprp makes a polynomial number of queries and that
|Picm.Kλ| is super-polynomial gives us that this bound is negligible, as desired.

The simulator S is as follows. It picks keys for exposed users uniformly at random and then
programs the ideal cipher at that key to be consistent with the table Tu that it was given.

S.Init(1λ)

k(·) ← [·]
Return k(·)

S.EvPPrim(1λ,u, x : k(·))

y ← PPrim(Ls, ku, (+, x), ⋄)
Return y

S.InvPPrim(1λ,u, y : k(·))

y ← PPrim(Ls, ku, (−, y), ⋄)
Return y

S.ExpPPrim(1λ,u, Tu : k(·))

If ku = ⊥ then
ku←$ Picm.Kλ

For x s.t. Tu[x] ̸= ⊥ do
PPrim(Prog, ku, (+, x), Tu[x])

Return ku
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Games G1(λ), G2(λ)

For u = 1, . . . ,uλ do

ku←$ Picm.Kλ \ { ki : 1 ≤ i < u }
b′←$AEv,Inv,Exp,PPrim

prp (1λ)

Return (b′ = 1)

PPrim(Op, k, x, y)
Require Op ∈ {Ls,Prog}
(◦, x)← x; u← min{ u : ku = k }
If u ̸= ⊥ and ¬Xu then

bad← true
For x′ s.t. T+

u [x′] ̸= ⊥ do

σ+[k, x′]← T+
u [x′]

If Op = Prog then

If σ◦[k, x] = ⊥ and σ◦[k, y] = ⊥ then

σ◦[k, x]← y

Return ⋄
If σ◦[k, x] = ⊥ then

σ◦[k, x]←$ B.Out(λ) \ { y : σ◦[k, y] ̸= ⊥ }
Return σ◦[k, x]

Exp(u)

If ¬Xu then

For x s.t. T+
u [x] ̸= ⊥ do

If σ+[k, x] = ⊥ and σ−[k, T+
u [x]] = ⊥ then

σ+[k, x]← T+
u [x]

Xu ← true
Return ku

Ev(u, x)

If Xu then return PPrim(Ls, ku, (+, x), ⋄)
If σ+[ku, ·] ̸= [·] then

bad′ ← true
For x′ s.t. σ+[ku, x

′] ̸= ⊥ do

T+
u [x′]← σ+[ku, x

′]

If T+
u [x] = ⊥ then

y←$ B.Out(λ) \ { y : T−
u [y] ̸= ⊥ }

Else

y ← T+
u [x]

T+
u [x]← y

Return y

Inv(u, y)

If Xu then return PPrim(Ls, ku, (−, y), ⋄)
If σ−[ku, ·] ̸= [·] then

bad′ ← true
For y′ s.t. σ−[ku, y

′] ̸= ⊥ do

T−
u [y′]← σ+[ku, y

′]

If T−
u [y] = ⊥ then

x←$ B.Out(λ) \ { x : T+
u [x] ̸= ⊥ }

Else

x← T−
u [y]

T−
u [y]← x

Return x

Figure 24: Games used to prove SIM*-AC-SPRP security of ideal cipher

We analyze the success of this simulator via the pair of games shown in Fig. 24. To simplify notation
in these games, we assume that Aprp only queries users with identifiers u ∈ [uλ] = {1, . . . ,uλ}. We
additionally define tables σ+ and T+ so that for all k the map x 7→ σ+[k, x] has no collisions and
for all u the map x 7→ T+

u [x] has no collisions. Then we define σ−[k, ·] and T−
u [·] to have the inverse

map. Updating σ+ or T+ should be interpreted as also updating the corresponding σ− or T− and
vice versa. If ◦ ∈ {+,−}, we let ◦ denote the element contained in {+,−} \ {◦}.

Of these games, we will prove the following bounds from which the bound claimed above follows.

1. Pr[Gsim∗-ac-prp
B,S,P,Aprp,1

(λ)] ≤ Pr[G1(λ)] +
(
uλ
2

)
/|Picm.Kλ|

2. Pr[G1(λ)] ≤ Pr[G2(λ)] + uλ(pλ + p′λ)/|Picm.Kλ|
3. Pr[G2(λ)] = Pr[Gsim∗-ac-prp

B,S,P,Aprp,0
(λ)] +

(
uλ
2

)
/|Picm.Kλ|

Claim 1. We will establish the claimed bound by arguing that G1(λ) is completely equivalent to
the real SIM*-AC-SPRP world except for the fact that the user keys are sampled without replace-
ment. The statistical distance between sampling with or without replacement can be bounded by(
uλ
2

)
/|Picm.Kλ|.

Note that G1(λ) includes all of the highlighted code. For unexposed users, the game stores a table
T+
u for each user which is used for the lazy sampling of the permutation returned by Ev and Inv.
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In the real SIM*-AC-SPRP world, the oracles would instead have called PPrim. To match this
behavior, game G1(λ) maintains consistency between T+

u and σ+[ku, ·]. Whenever a PPrim query is
made for an unexposed ku, we first copy values from T+

u into σ+[ku, ·]. For Ev and Inv queries, we
copy in the opposite direction. At any point in time, T+

u may contain values not stored in σ+[ku, ·]
or vice versa. However both cannot be the case, so the way new entries are added maintains the
fact that these are supposed to define a permutation. Note that distinct users cannot share a key,
so we do not need to maintain any consistency between the T tables for different users. When a
user is exposed for the first time, we copy values from T+

u into σ+[ku, ·] and will henceforth never
again user Tu. This copying checks that the values being added to σ are consistent with it defining
a permutation. These checks are unnecessary in this game, but will matter when we transition to
the next game.

Claim 2. Now we compare the game G2(λ) to the game G1(λ). They differ only in that G2(λ)
omits the highlighted code which happens after one of the bad flags is set. The flag bad is set if the
adversary ever makes a PPrim query with a key ku belonging to an unexposed user u. The flag bad′

in Ev or Inv is set only when they are queries for an unexposed user u such that ku has previously
been queried to PPrim (filling corresponding entries of σ). Note then that bad′ can only occur if
bad has already occurred, giving us that Pr[G1(λ)] ≤ Pr[G2(λ)] + Pr[G2(λ) sets bad]. Consider a
particular point in time when Aprp queries PPrim(Op, k, x, y). If k is equal to a previously exposed
user key, then this query will definitely not set the flag. Otherwise, it sets the flag if k is included in
the set {ku : ¬Xu} which is a uniformly random subset of Picm.Kλ\{ku : Xu} of size uλ−n where n
denotes the number of currently exposed users. Hence the probability that this query sets the bad
flag is bounded by |{ku : ¬Xu}|/|Picm.Kλ\{ku : Xu}| ≤ (uλ−n)/(|Picm.Kλ|−n) ≤ uλ/|Picm.Kλ|.26
Applying a union bound over the pλ + p′λ queries to PPrim gives the claimed bound.

Claim 3. For claim 3, we argue that the game G2(λ) is equivalent to the ideal SIM*-AC-SPRP
world with simulator S, except for the fact that the keys are sampled without repetition. Note
that (for unexposed users) the table Tu is now used by Ev and Inv to lazily sample a permutation
which is completely separate from σ. The oracle PPrim honestly uses σ as the state for an ideal
cipher. On the exposure of a user u, σ+[ku, ·] is reprogrammed to match Tu anywhere that the two
are not inconsistent. Unlike in G1(λ), such inconsistencies are possible. This matches what would
be achieved by S’s programming queries on exposures. After exposure, Ev and Inv honestly call
PPrim as S would. Hence, the claim follows because the statistical distance between sampling with
or without replacement can be bounded by

(
uλ
2

)
/|Picm.Kλ|.27

26Here we use that (x− n)/(y − n) ≤ x/y whenever y ≥ x and y > n ≥ 0.
27Tweaking the proof would allow us to avoiding adding this term twice. See badcoll in the proof of Theorem D.1.

Alternatively, we could define the simulator to pick keys without replacement.
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