
Challenger: Blockchain-based Massively Multiplayer
Online Game Architecture

Boris Chan Yip Hon1, Bilel Zaghdoudi, Maria Potop-Butucaru, Sébastien Tixeuil, and
Serge Fdida

Sorbonne Universite, CNRS, LIP6, F-75005 Paris, France
Name.Surname@lip6.fr

Abstract. We propose Challenger a peer-to-peer blockchain-based middleware
architecture for narrative games, and discuss its resilience to cheating attacks.
Our architecture orchestrates nine services in a fully decentralized manner where
nodes are not aware of the entire composition of the system nor its size. All these
components are orchestrated together to obtain (strong) resilience to cheaters.
The main contribution of the paper is to provide, for the first time, an architecture
for narrative games agnostic of a particular blockchain that brings together several
distinct research areas, namely distributed ledgers, peer-to-peer networks, multi-
player-online games and resilience to attacks.

Keywords: multiplayer online games, peer-to-peer architecture, blockchain, cheat-
ing resilience

1

1 Introduction

A video game is an electronic game involving human-machine interaction and visual
feedback. Multiplayer games feature players, either competing or collaborating in Player
Versus Player or Player Versus Environment modes. Massively Multiplayer Online
Games (e.g. World of Warcraft) support hundreds to thousands of players online, with
or without direct interaction. Traditionally, these games were designed in a client-server
mode. However, the scalability of this architecture becomes harder and harder to main-
tain because of the bottleneck points at the server level. To prevent this, game editors
provision resources (e.g. bandwidth, hardware, replication facilities) to quickly absorb
spikes in the number of players. To avoid the inherent cost of the provisioning peer-to-
peer architectures have been recently explored. Their major advantage is the distribution
of computational tasks across nodes, with each node serving as both server and client.
Even though this design philosophy seemed to be the holy grail, P2P architectures be-
came quickly the target of various attacks and cheating behaviours [29] and [21] at the
game level, application level, or protocol level. For example, some attacks target the

1Acknowledgements: The work presented in this document has received funding from the EU
Horizon Europe research and innovation Programme under Grant Agreement No. 101070118.

2 Chan Yip Hon et al.

interruption of information dissemination having as a consequence confusing players
about the game’s current stage. Other attacks perform illegal game action hence allow-
ing clients to unfairly manipulate the game state, bypassing its physical laws. Finally,
unauthorized access to information yields to the exploitation of undisclosed informa-
tion. Academic research struggled for decades to study and propose solutions for the
cheating methods reviewed in [29]. Initial publications aim to enhance or devise algo-
rithms for cheating detection, such as dead reckoning [28], area of interest in Emanuele
et al. [5], and secure referee selection problem by Webb et al. [22]. Subsequent works
[28], [19] broaden the platforms including mobile devices. Additionally, advancements
in signature protocols [11] and the introduction of new hybrid architectures (e.g. [28],
[17], [15]) aim to address attack vectors through design improvements like trust be-
tween peers, information disclosure, and pair clustering. Recently, the resurgence of
studies (e.g. [6], [18]) on specific attack vectors has occurred through software utiliza-
tion and artificial neural networks. Despite the prolific work on preventing cheating in
multiplayer online games, cheating still prevails and evolves in online games. The re-
cent advances in distributed ledgers opened a new direction of research interesting to
be explored in the context of cheating detection and prevention in multiplayer online
games. Blockchain technology is a decentralized product of distributed systems, featur-
ing consensus mechanisms, immutability, security, data persistence, transparency, and
scalability.

2 Related Work

Since the publication of the seminal papers in blockchain area [12] (Bitcoin) and [23]
(Ethereum) various works have explored blockchain-based architectures for Massively
Multiplayer Online Games. For example, in [14] the authors introduced GiNA, a blockchain-
based gaming scheme leveraging packet transfer schemes for security and authentic-
ity. The authors of [10] proposed a blockchain-based cheat prevention and robustness
mechanism for Massively Multiplayer Online Game. In [20] the authors presented a
decentralized authoritative multiplayer architecture, focusing on cheat detection at pro-
tocol and architecture levels. The authors of [32] introduced a blockchain consensus
model based on the Bryllite Consensus Protocol, supporting a hyper-connected Mas-
sively Multiplayer Online Game ecosystem and enabling user participation through
Proof of Participation. In [31, 25, 24] the authors proposed Proof of Play, a consen-
sus model for blockchain-based Peer to Peer gaming systems, showcasing a serverless
match-based online blockchain game, Infinity Battle. However, none of these works
proposed a generic architecture for Massively Multiplayer Online Games agnostic to a
specific blockchain and none of them address narrative games.
Blockchain technology is not universally suitable for all Massively Multiplayer Online
Game genres; only a select few meet its requirements [1, 2, 26] due to the discrepancy
between latency requirements for MMOG and validation time needed for each block
publication in blockchains. However, narrative adventure games played in real-time,
where actions are spaced by brainstorming phases, align well with the flow of time in
blockchain architecture. Their latency and Action Per Minute values closely match cur-
rent blockchain metrics like transactions per second (TPS) and block confirmation time.

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 3

Our contribution. We propose Challenger, a blockchain-based peer-to-peer architec-
ture for narrative games. We detail the API of the necessary services and examine
cheating scenarios to test the resilience of services and the impact of attacks on the
Challenger architecture. Interestingly, our design is agnostic to particular blockchains.
Any blockchain that supports smart contracts can be used as an underlying layer.

3 Challenger: Modular Decentralized Blockchain-Based
Architecture for Narrative Games

3.1 Narrative online games

Narrative adventure games resemble interactive movies and visual novels, presenting
real-time, pre-scripted scenes that change based on player interaction. These games
feature branching narratives, where player choices influence events, creating a person-
alized story. Gameplay elements, such as conversation trees, puzzles, and Quick Time
Events, support story immersion. In a narrative game context, inspired by Detroit: Be-
come Human [7], the player assumes a detective role, investigating a crime scene. The
crime scene serves as the level, with evidence found representing progress items. Ex-
ploring the crime scene and finding evidence moves the investigation forward, with dif-
ferent story branches based on the evidence found. The DAG (directed acyclic graph) in
figure 1 shows a level with various possible scenarios. The player starts at the left end,
with starting points at nodes a, b, or c, depending on in-level actions. The level ends at
the right, with different realization scenarios represented by leaves i, l, m, q, r, and s.

b

a

c

e

d

g

i

j

f h l

k

m

n

o

p

q

r

s

Fig. 1: Chapter scheme for a narrative game

Intermediate nodes between start and end nodes represent interactive game se-
quences where the player interacts with the game. These interactions may include
quest resolution, research periods, action sequences, or multiple-choice discussions.
The player’s actions and choices alter the level’s outcome. For instance, leaf i is an end
scenario accessible only if the player started at node a or b. The node chain to access
leaf i is either a, d, g, i or b, e, g, i. It is impossible to activate leaf i from starting node c.
Choosing a leaf on the DAG selects a possible scenario end for the current level. Players
can return to a previous level to unlock actions for other scenarios on subsequent levels.
Once an action or scenario is completed, it cannot be revisited unless the Recovery ser-
vice is called following a path block identified by the Conflict service. This means the

4 Chan Yip Hon et al.

user must restart at a specific previous level to begin the next level as desired, having
made the correct choices to achieve the desired starting node (a, b, or c).

The game state saved in the blockchain represents a path from the beginning of
the level to a leaf of the DAG (Figure 1) (e.g., a, d, g, i or a, d, g, j, k, n, p, r or c, f,
h, j, k, o, s). The distributed ledger monitors the game, detects wrong behaviour, and
provides a global log for analyzing behaviour and adapting the game experience. Each
verification service call is recorded on the blockchain. The storage service saves local
progress within the level, focusing on level-up information from a to b.

3.2 Challenger architecture

This architecture relies on blockchain technology, utilizing its data structure to re-
trieve the history of operations recorded on the blockchain. In narrative games, this
means game states and transitions are written on the blockchain. Unlike traditional
client-server architectures, where game progress is stored either on the server or the
client—both imposing computational burdens that can impact client-side performance
and server scalability—the Challenger architecture uses the blockchain for storage and
employs a peer-to-peer network for more scalable exchanges. This decentralized ap-
proach enhances both scalability and surveillance. Decentralization eliminates single
points of failure, enhancing resilience and security. Peer-to-peer networks can handle
larger volumes of data without centralized bottlenecks, and blockchain’s immutable
ledger provides a transparent record of operations. However, designing and maintaining
decentralized systems can be more complex than traditional architectures, and blockchain
operations can be slower and more resource-intensive, leading to higher costs. Non-
blockchain alternatives include Trusted Execution Environments (TEEs), which are se-
cure areas in processors that run code in an isolated environment, offering high security
and reducing the need for extensive cryptographic proofs. However, they have limited
scalability and depend on hardware. Distributed consensus protocols, which are algo-
rithms ensuring agreement among distributed systems, offer enhanced fault tolerance
and flexibility in design but can result in slower consensus times and complex imple-
mentation. Cryptographic methods, such as zero-knowledge proofs and secure multi-
party computation, provide strong privacy guarantees and reduced trust assumptions,
but they come with high computational overhead and complexity in integration.

The Challenger architecture (Figure 2) consists of nine essential services. Each peer
provides all essential services, but some services are local, while others are distant. Lo-
cal services include Membership (Algorithm 1), Publication (Algorithm 3), Conflict
(Algorithm 4), Storage (Algorithm 7), Anomaly (Algorithm 9), and Orchestration. Dis-
tant services are Verification (Algorithm 2), Recovery (Algorithm 6), Choice (Algo-
rithm 5), and Misbehaviour (Algorithm 8).

Challenger presents seven different scenarios, which describe the basic exchange
between Orchestration and the architecture. The different use cases and their respective
within the services presented in Figure 2 are :

– Process for registering : 1a, 2a, 3a, 4a
– Process for altering the game state

• Conflict (Algorithm 4): 5b, 6b, 7b, 8b, 9b, 10b, 11b

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 5

Fig. 2: Architecture Major component

• Choice (Algorithm 5) : 5c, 6c, 7c, 8c, 9c, 10c, 11c, 12c, 13c, 14c, 15c, 16c, 17c
• Recovery (Algorithm 6)

* request by Conflict service (5d, 6d, 7d, 8d, 9d, 10d, 11d, 12d, 13d, 14d,
15d, 16d)

* request by the user (Algorithm 6) : 5f, 6f, 7f, 8f, 9f, 10f
– Process for reporting misconduct (Algorithm 8)

• request by Conflict service (5e, 6e, 7e, 8e, 9e, 10e, 11e, 12e, 13e, 14e, 15e)
• request by a user (5g, 6g, 7g, 8g)

4 Challenger services in detail

We discuss the implementation of the services, Figure 2. For each service, we provide
a pseudocode representation of the service’s implementation, an overview of its archi-
tecture, and a sequence diagram demonstrating a specific use case. This approach helps
to clearly illustrate the functionality and operation of each service.

4.1 Process for registering

Membership service Membership service facilitates the initial user connection to the
game by assigning a unique user identifier (id user) and game identifier (id game) in
exchange for the client identifier. These IDs are necessary for game participation and
are generated using the client identifier as a seed. The user follows steps 1a, 2a, 3a, and

6 Chan Yip Hon et al.

Algorithm 1 Membership Service
1: Local variable :
2: IDENTIFICATION a table of (id user, id game) clients register
3: Function :
4: - generate (integer): based on integer generates a random integer
5: - add (integer 1, integer 2): add a row of arguments in the IDENTIFICATION table
6: - remove (integer 1, integer 2): remove the row including arguments of IDENTIFICATION table
7:
8: Upon receiving Join(id client) from Orchestration do
9: if id client not in IDENTIFICATION then :
10: id user = Hash(generate(id client)) ▷ generate id user based on id client, this allow a mapping between

id client and id user, in order to be able to identify user’s id client
11: add(id user, id game) ▷ add id user and id game to the table of register
12: deliver (id user, id game) to Orchestration
13: deliver (id user, id game) to Publication service
14: else :
15: deliver (id user, id game) to Orchestration
16: endif
17: enddo
18: Upon receiving Unsubscribe(id user, id game) from Orchestration do :
19: if (id user, id game) in IDENTIFICATION then :
20: remove (id user, id game)
21: else :
22: deliver NO EXISTENT USER ID to Orchestration
23: endif
24: enddo

4a (Figure 2) to utilize the Membership service and obtain the IDs. Once the IDs are
generated, Orchestration service informs the user of its assigned IDs. These IDs can
either be stored locally or queried each time the user connects to the game. For this
service, we assume that each tuple of (id user, id game) is stored locally in the user
application.

– membership.join(id client): join is called, and the client’s ID (id client) is used as
a seed to generate the user ID (id user).

– publication.submission((id user, id user, current level, next level): submission is
called to submit the newly generated player IDs to the ledger.

– orchestration.notification(new publication on ledger): the user receives a notifica-
tion to update the local storage of users with the new IDs.

– orchestration.update() : the user updates his local storage

Once the IDs have been successfully verified and sent to the Publication service, the
user’s Orchestration receives a notification from both services. This allows other users
to update their available user table and informs them of the new client’s IDs, ensuring
that all users are up-to-date with the latest information.

Verification service Verification service ensures the validity of a user’s request to
progress to the next level by evaluating if the transition from the current level meets
specific conditions. It utilizes local storage to retain game state headers and minimal-
level information for this purpose. The primary objective of the Verification service is
to filter legitimate requests from illegitimate ones. If the progression from one game
state to another is recorded as a local variable and follows the logical path of the game’s
different states, progression is considered legitimate. Conversely, if the progression de-
viates from the logical path, it may be indicative of misbehaviour or a cheating attack.

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 7

The verification service is designed to detect and prevent such instances, ensuring that
all level advancements are valid and adhere to the game’s established rules.

We analyze the verification process and its various scenarios, assuming that the
Verification call made by Orchestration will be successful and that all components are
functioning correctly. We examine different conflict cases, such as when a user faces
multiple choices when a user delegates a choice to Choice service, and when a user is
blocked and must recover an anterior stage of the game to proceed.

The verification process involves three services, as depicted in Algorithm 2:

– verification.verify path((id user, id user, current level, next level): verify path is
called to determine the legitimacy of the level-up by examining the different game
states. The call to verification.verify path can be made by :
• conflict.find path(id user, id game, current level, targeted level)
• choice.choose path (id game, current level)
• recovery.recovery checkpoint (recovery checkpoint location)

– publication.submission((id user, id user, current level, next level): submission is
called to write the change of level from the current one to the next as proof of
level-up.

– orchestration.notification(new publication on ledger) : notification is called to up-
date the new local level of the user.

– orchestration.update() : the user updates his local storage

The verification service reads the blockchain to assess the legitimacy of the level-up
between the different game states. A comparison is made between the requested game
state and the one found within the blockchain. If not, a local comparison is performed
between the game states stored locally within the Verification service and the requested
level. The verification process algorithm, as illustrated in Algorithm 2, has a Verifica-
tion service that first evaluates the legitimacy of the current level of the user requesting
a level-up. Based on the result, users can either advance to the next level or call the
Conflict service to find a path from their current level. This scenario indicates that the
user’s current position is legitimate, but the next level is unreachable due to insufficient
game progress.

Publication service Publication service holds the exclusive right to write on the
blockchain and is thereby the sole service capable of updating the game’s stage within
the ledger. This service records the outcome of user requests, which could be derived
from various services such as verification, conflict, choice, misbehaviour, or anomaly.
It is important to note that the Publication Service is responsible only for publishing
the outcome; all verification procedures to confirm the information’s accuracy must be
completed beforehand. Upon publication by the Publication service and the subsequent
ledger update, users can access the blockchain to refresh their local cache. Algorithm 3
illustrates the Publication service algorithm, which outlines several scenarios where the
submission is invoked to publish.

4.2 Process for altering the game state

Conflict service Conflict service is employed to resolve two primary issues: scenario
ambiguity and a blocked scenario.

8 Chan Yip Hon et al.

Algorithm 2 Verification service
1: Local variable :
2: ALL GAME STATE table of all game states inside the game, it is used to verify the validity of the stage of the game

when a client initiates a request to level up to the next level.
3: Function :
4: - check(game state) :
5: verify if all actions done until the current state of the game is legit
6: - advance(game state 1, game state 2) :
7: verify if the level up from game state 1 to game state 2 is legit.
8:
9: Upon receiving Verify path(id user, id game, current level, next level) from the Conflict, Choice, Recovery, application

do :
10: if check(current level) == SUCCESS and advance(current level, next level) == SUCCESS then :
11: deliver submission(current level, next level) to Publication service
12: elif check(current level) == SUCCESS and advance(current level, next level) == FAILURE then :
13: deliver find path(id user, id game, current level) to Conflict service
14: elif check(current level) == FAILURE and advance(current level, next level) == SUCCESS then :
15: deliver Report(id user, id game, current level, next level) to Misbehaviour service
16: else :
17: deliver Report(id user, id game, current level, next level) to Misbehaviour service
18: endif
19: enddo
20:
21: check(current level): The idea is to use a recursive function to verify from the last block to the block where id user and

id game of the client appear for the first time. The condition to stop the function and to unstuck it is to find the block
where the client initialized its game.

22: check(current level) will call check(precedent level before (current level)), and this one will call
check(precedent level before (precedent level before (current level))) and so on, until check calls id user and
id game.

23: The process of stacking is the verification itself. If the stack goes without any issues, the current stage of the game is
legit.

24: advance(current level, next level): Verify if the request to level up from current level to next level is within the
ALL GAME STATE table. If this is the case, the request is legit; otherwise, there is a call to Conflict service.

– Scenario ambiguity can be addressed in two ways:
• The first approach involves presenting the choice to the user and requesting his

decision.
• The second approach entails deciding an algorithm that selects a path for the

user.
– In the case of a blocked scenario, the only solution is to recover a previous game

stage, specifically one where the scenario is ambiguous. This intersection of sce-
narios allows the player to alter the outcome of the blocked scenario.

A scenario intersection can be understood as a game state where multiple scenarios
are possible, and a change in gameplay can occur if all requirements for a specific sce-
nario are fulfilled. The conflict resulting from multiple choices is resolved by the user’s
decision, following sequence 5b, 6b, 7b, 8b, 9b, 10b, 11b in Figure 2. This scenario
illustrates a case study where a user encounters a choice of path and selects one when
prompted by the Conflict service. The user’s choice is authenticated using their private
key and submitted to Publication.

During the Conflict process (Algorithm 4), all potential paths the user can take are
calculated. This step serves as a preventive measure for Recovery service or Choice
service, as (a) The user may be on a path leading to a dead-end, in which case Recovery
is immediately initiated from a level offering more choices. (b) The user opts to use
Choice, and these paths represent the possible directions the user can take within the

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 9

Algorithm 3 Publication Service
1: Function :
2: - write (object) :
3: writes in the distributed ledger object
4:
5: Upon receiving submission(id user, id game, current level, next level) from Verification service do :
6: write(id user, id game, current level, next level) ▷ write the progression of id user in id game from current level to

next level
7: deliver Notification (New publication on ledger) to Orchestration service
8: enddo
9: Upon receiving submission(id user, id game, current level, sign client choice) from Conflict service do :
10: write(id user, id game, current level, sign client choice)
11: deliver Notification (New publication on ledger) to Orchestration service
12: enddo
13: Upon receiving submission(id user, id game, current level, Recovered path) from Conflict service do :
14: write(id user, id game, current level, Recovered path)
15: deliver Notification (New publication on ledger) to Orchestration service
16: enddo
17: Upon receiving submission(id user, id game, current level, Chosen path) from Choice service do :
18: write(id user, id game, current level, Chosen path)
19: deliver Notification (New publication on ledger) to Orchestration service
20: enddo
21: Upon receiving submission(Log anomaly) from Anomaly service do :
22: write(Log anomaly)
23: enddo
24:
25: write(id user, id game, current level, Result path): write what is given in argument in the blockchain. The argument

of function write() can be the level up from current level to next level, the decision sign by the client, a recovered path
proposed by Conflict service, or a path randomly drawn by the blockchain.

26: write(Log anomaly): update player’s IDs that are designed as cheaters.

current level. These paths are forwarded to the Choice service to randomly select one
based on the user’s current level and paths already in the blockchain through user sub-
missions.

Choice service Choice service is invoked when a user decides to allow the blockchain
to determine the path they will take. The set of paths from which one will be selected
for the user, known as SET OF PATH, depends on the paths already present in the
blockchain for the current level. Within the Choice service, the blockchain is read, and
all paths previously taken by other users to level up from the current level are gath-
ered in a set called BLOCKCHAIN PATH. A new set of paths, INTERESTING PATH,
is created by subtracting BLOCKCHAIN PATH from SET OF PATH. Choice service
then selects a path for the user from this INTERESTING PATH set. Choice process fol-
lows the sequence 5c, 6c, 7c, 8c, 9c, 10c, 11c, 12c, 13c, 14c, 15c, 16c, 17c Figure 2 and
involves the following services: Verification requests level up post and initiates Conflict
service; Conflict detects multiple paths and seeks a decision from the user; Orchestra-
tion signs the user’s decision using their private key; Choice chooses a random path
from the blockchain; Publication submits level up with the proposed Choice path; Or-
chestration updates the user’s local level.

Recovery service The recovery service is responsible for restoring a previous state
of the game. It receives instructions on which game stage to recover to proceed with the
recuperation. There are two ways to invoke the Recovery service:

10 Chan Yip Hon et al.

Algorithm 4 Conflict Service
1: Service Conflict is called when a problem is detected, the purpose of this service is to determine the type of the problem

and send it to the right service for a specific treatment.
2: Local variable :
3: ALL GAME STATE STEP BY STEP table of all the game states step by step and arranged by hierarchically level.
4: LOG ORCHESTRATION table of all requests to orchestration service
5: Function :
6: - following (current level) :
7: returns a set of all possible following paths starting from current level
8: - find (current level) :
9: find a past branching from current level, where an over scenario can be made
10:
11: Upon receiving find path (id user, id game, current level, next level) from Verification service do :
12: set of path = following (current level) ▷ return a set of all the possible following paths starting from current level
13: if set of path is empty then : ▷ there is no path starting from the current level, call of Recovery service to recover

at a precedent level
14: find (current level) ▷ find the branching from where an over scenario can be made
15: deliver location recovery checkpoint to Recovery service
16: else : ▷ there is a at least one path
17: if set of path == 1 then: ▷ there is only one and unique path which derives from the current level
18: if unique path == next level then: ▷ the path the client wishes to follow is the same as the one he is

allowed to take
19: deliver submission (id user, id game, current level, unique path) to Publication service
20: else: ▷ this means that the unique path the user has is different from the one he is currently on
21: if submission(id user, id game, current level, unique path) in LOG ORCHESTRATION :
22: deliver submission(id user, id game, current level, unique path) to Misbehaviour service
23: else
24: deliver submission(id user, id game, current level, unique path) to Orchestration service
25: endif
26: if set of path > 1 then: ▷ this mean that the client can choose between at least 2 different paths,
27: ▷ the first solution is to ask the point of view of the user and the second solution is to call Choice service

which will choose randomly a path for the client
28: deliver get peer choice (id user, id game, current level, set of path or random choice) to Orchestration ▷

the user is free to make the choice he wishes to follow
29: ▷ the user has only access to the set of path paths without knowing the rest of the possible scenario
30: endif
31: endif
32: enddo
33:
34: Upon receiving get peer choice (unknow decision) from Orchestration do :
35: if unknow decision == CLIENT CHOICE then :
36: deliver submission (id user, id game, current level, CLIENT CHOICE) to Publication service
37: elif unknow decision == RANDOM CHOICE then :
38: deliver Choose path (id user, id game, current level, RANDOM CHOICE) to Choice service
39: elif unknow decision == CONTINUE then: ▷ client continues on the same scenario until he will be blocked to

call Recovery service
40: deliver submission (id user, id game, current level, CONTINUE : next level) to Publication service
41: elif unknow decision == RECOVERY then: ▷ client calls Recovery service to find a branch from where he will be

able to change the current level he currently is on
42: deliver location recovery checkpoint to Recovery service
43: endif
44: enddo
45:
46: following (current level): The objective is to locate all the leaf nodes in a Directed Acyclic Graph (DAG). Starting from

an arbitrary node in the DAG, the function aims to identify all the leaves based on the current position of the node in the
scenario. A depth-first search algorithm can be employed to find all the leaf nodes.

47: finds (current level): The function finds searches for an intersection of the scenario that is anterior to the current node. In
other words, it identifies a parent node of the current node with more than one child node. These child nodes represent the
intersection within the scenario that determines the ending storyline of the client. To find all specific nodes, a breadth-first
search algorithm can be used.

– Direct call by users: In case they have forgotten their last level and want to recover
the entire level without considering any progress.

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 11

Algorithm 5 Choice Service
1: Local variable :
2: BLOCKCHAIN PATH all paths registered so far given the current level within the blockchain
3: Function :
4: - which path (current level) :
5: returns all possible paths to leaves given the location within the current level
6: - random choice path (current level) :
7: returns randomly a path not taken by most of the users
8: Upon receiving Choose path (id user, id game, current level, next level) from Conflict service do :
9: load BLOCKCHAIN PATH
10: SET OF PATH = which path (current level)
11: random choice path (current level)
12:
13: deliver submission (id user, id game, current level, random blockchain drawn) to Publication service
14: enddo
15:
16: which path (current level): is the same function as following in Conflict service, see algorithm 4
17: random choice path (current level) :
18: SET OF PATH are all paths give recoveryrrent level
19: BLOCKCHAIN PATH are paths explored within the blockchain for a given current level
20: INTERESTING PATH = SET OF PATH minus BLOCKCHAIN PATH
21: return random choice within INTERESTING PATH

– Call by Conflict service: When no path is found during the Conflict service’s path-
finding process. In this case, Conflict reads the blockchain to find a path ambiguity
and saves its location as a checkpoint for Recovery to execute.

We focus on the second scenario involving Conflict, Recovery process follows se-
quence 5d, 6d, 7d, 8d, 9d, 10d, 11d, 12d, 13d, 14d, 15d, 16d of Figure 2 and involves
the following services: Verification requests level-up verification and initiates Conflict
service; Conflict: No potential path is found, so a checkpoint is determined to recover
a previous game state. The conflict then calls Recovery to recover the checkpoint loca-
tion and submits the level recovery location to Publication for Orchestration; Publica-
tion submits the change of level from the current one to the recovered one; Recovery
locates the level to recover and sends it to Orchestration; Orchestration updates both
the recovered level and its location for potential future Recovery calls due to the same
player judgment error.

In the Recovery Algorithm 6 process, a log of recovery requests made by users
and Conflict service is maintained. This log, known as CHECKPOINT LOG, is used
to monitor users’ level-up progress during their game. This service helps to create a
challenging game-play experience based on the requests made by Conflict to unlock
users’ progression. The location of the recovered game state (recovered level) can be
stored within the Storage service, but for our purposes, we assume that the game state
can be stored locally by users.

Storage sercive Storage service, Algorithm 7, enables the saving and retrieval of
the current level of a user and its progression without requiring Recovery service every
time. At present, Storage service is optional, as we assume that a stage of the game can
be loaded and saved within the local cache of the Orchestration service. However, if the
game stage can no longer be saved locally within Orchestration, Storage service will
become a critical component of this architecture.

12 Chan Yip Hon et al.

Algorithm 6 Recovery Service
1: Local variable :
2: CHECKPOINT LOG table of all recovered locations demanded by id user on id game and by Conflict service to.
3: Function :
4: - add (id user, id game, current level):
5: add the request in CHECKPOINT LOG
6: - extract (level to recover location) :
7: recover level to recover thanks to level to recover location from the distributed ledger
8:
9: Upon receiving Choose path (id user, id game, current level, next level) from Conflict service do :
10: add (id user, id game, recovery location)
11: extract (id user, id game, current level, recovery location)
12: enddo
13:
14: add (id user, id game, current level):
15: Recovery service uses a local table to store the player’s IDs who request to recover a state of the game. The information

stored are Players IDs and the stage of the game to recover
16:
17: extract (id user, id game, current level, requested level) :
18: recover the requested level of id user on id game. Read the blockchain at current level and search for requested level

at position recovery location

Algorithm 7 Storage Service
1: Local variable :
2: LOCAL local storage of the client
3: Function :
4: - save (id user, id game, current level):
5: save the current progression
6: - get (id user, id game) :
7: get the last game state progression saved
8:
9: Upon receiving Retrieve local progression (id user, id game) from Orchestration service do :
10: get (id user, id game)
11: deliver Recovered local progression
12: enddo
13:
14: Upon receiving Save local progression (id user, id game, current level) from Orchestration service do :
15: save (id user, id game, current level)
16: deliver Notification (state game saved) to Orchestration service
17: enddo
18:
19: save (id user, id game, current level) : locally save the progress of id user on id game at current level game state
20: get (id user, id game) : retrieve last game state saved of id user on id game

4.3 Process for reporting misconduct

Misbehaviour service The Misbehaviour service is responsible for compiling all be-
haviour requests made by users or the Conflict service. Its main purpose is to collect
a log of requests without any filtering. Misbehaviours can range from a stubborn user
repeatedly making the same mistake to trigger a Recovery service, to a user reporting
another for tampering with their client code to alter a service’s functionality.
The detection process is primarily carried out by Conflict service, which prioritizes mis-
behaviour collections to ensure none are overlooked. The selection of bad behaviour is
done in two steps: (1) Collect misbehaviour reports from users and detection reports
from Conflict; (2) Filter by the Anomaly service to differentiate between cheating be-
haviour and false positives. Conflict service detects suspicious behaviour, such as re-

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 13

Algorithm 8 Misbehaviour Service
1: Local variable :
2: LOG behaviour table of all misbehaviour detected by Conflict service or reported by users
3: function :
4: - add (id user, id game, object of misbehaving, current level, next level):
5: register report
6:
7: Upon Receiving Report (id user, id game, object of misbehaving, current level, next level) from Conflict service do :
8: add (id user, id game, object of misbehaving, current level, next level)
9: deliver Detection (LOG behaviour) to Anomaly service
10: enddo
11:
12: Upon Receiving Report (id user, id game, id user reported, object of misbehaving) from Orchestration service do :
13: add (id user, id game, id user reported, object of misbehaving)
14: deliver Detection (LOG behaviour) to Anomaly service
15: enddo
16:
17: add (id user, id game, id user reported, object of misbehaving) :
18: and
19: add (id user, id game, object of misbehaving, current level, next level) :
20: compiles the table of misbehaviour, the process focuses on collecting the report, and filtering processing will be done

by Anomaly service.

Algorithm 9 Anomaly Service
1: Local variable :
2: LOG ANOMALY table of all anomalies detected
3: Function :
4: - detection (log behaviour):
5: filter log behaviour to determine cheating behaviour
6:
7: Upon receiving Detection (log behaviour) from Misbehaviour service do :
8: detection (log behaviour)
9: update LOG ANOMALY
10: deliver submission (LOG ANOMALY) to Publication service
11: enddo
12:
13: detection (log behaviour) :
14: analysis of the misconduct to determine real cheating behaviour from stubborn or unwise game-play. LOG ANOMALY

works as a reference for cheating attacks, the log helps to identify behaviour that seems to be a cheat. LOG ANOMALY
must be constantly updated to predict potential cheating scheme

dundancy, back and forth, or cycles within submission requests.

We describe misbehaviour detection by Conflict service. The collection process of
the log follows sequence e, 6e, 7e, 8e, 9e, 10e, 11e, 12e, 13e, 14e, 15e of Figure 2 and
involves the following services: Verification request path verification; Conflict: Detects
of misbehaviour process; Misbehaviour: Collection of behaviour log; Anomaly filters
cheating behaviour from other types; Publication submits log of anomalies; Application
updates the local cache with a log of anomalies to deter users from calling the services
of users identified as cheaters.
The Misbehaviour Algorithm 8 collects reports made by users or Conflict service to
target misbehaviour, referred to as the object of misbehaviour or the reported user ID
in cases where a user succeeds in tampering with the client code. The Misbehaviour
algorithm serves to collect and deliver the log of misbehaviour for further processing
by the Anomaly service.

14 Chan Yip Hon et al.

Anomaly service Anomaly service acts as a filter to differentiate between genuine
cheating attacks and false positives. It utilizes a reference dataset, LOG ANOMALY, to
identify and classify behaviour, which represents cheating behaviour exhibited by users.
After filtering, LOG ANOMALY is submitted to Publication, and an updated log of
cheating users is maintained to prevent others from experiencing suspicious outcomes
when calling their services.

In the case where a user directly reports misbehaviour to another user, there is a trust
issue that must be addressed. The Anomaly process, as depicted in Figure 2, involves
the following services: Misbehaviour reports misbehaviour; Anomaly filters cheating
attacks from false positives; Publication submits the anomaly log; Application updates
and avoids cheating users.

Anomaly filter detection Algorithm 9, takes a log of misbehaviour collected by
trusted Conflict services and legitimate reports from altruistic users as input. To filter
the misbehaviour log, Anomaly uses a local table of cheating behaviour and reads the
blockchain to detect suspicious activity. However, the table of the cheating log used as a
reference is biased towards identifying specific patterns. An alternative approach to the
filtering problem is to consider the distance between altruistic and rational users from
cheating users, shifting the focus from patterns to behavioural distance.

4.4 Challenger Resilience to Cheating

The attacks originate from a combination of studies by Yahyavi et al. and Webb et
al. on the classification of cheating attacks. Yahyavi et al. categorize attacks based on
their nature, such as interruption of information dissemination, illegal game actions,
and unauthorized access to information. Webb et al. classify attacks based on the level
at which they occur: game level, application level, protocol level, and infrastructure
level. Initially, we draw inspiration from these classifications to determine Challenger’s
resilience, then examine cheating vectors specific to the Challenger architecture. Ta-
ble 1 summarizes the cheats for which Challenger is resilient. Challenger is designed
to be resilient against a range of cheating attacks by leveraging its blockchain-based
architecture and decentralized approach. Cheating attacks can include interruption of
information dissemination, illegal game actions, unauthorized access to information,
and attacks occurring at various levels (game, application, protocol, infrastructure). The
Challenger architecture uses blockchain to maintain an immutable record of game states
and transitions, ensuring that all actions are transparent and verifiable by any user in the
network. This transparency and decentralization make it difficult for malicious users
to alter game states without detection. The system assumes ideal communication con-
ditions, where peer-to-peer communication links are reliable and not compromised by
malicious users. However, it does consider the potential malicious behavior of players,
including attempts to corrupt services or exploit the blockchain. Challenger’s resilience
is further enhanced by service separation, requiring user requests to be validated by
another user, and decentralized surveillance, which allows any user to verify another
user’s actions through the game state history provided by the blockchain. In summary,
Challenger’s architecture provides robust resilience against a wide range of cheating
attacks by using a combination of blockchain technology and decentralized peer-to-

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 15

Cheat description Cheating vector Type of cheat Altruism required to counter cheating

Impersonation :
steal credentials of valuable account

Generate ID client to match
id user and id game
or steal
id user and id game

(in game layer ; unauthorized
information access)

none required : secure by design,
the pair (id user,id game) is unique
for each id client. A common issue
would be to have already someone
using the id user for the same game with a
different value of id game

Theft of a personal item :
steal item of id user on id game

Extract for the ledger
information on personal items

(ledger layer, unauthorized
information access)

none required: secure by design,
every game state is sign with
id user and id game of the user’s
id user who is playing id game

Replay cheat :
replay a previous state of the game

target verification.verify path to
break Verification during the comparison
between the current state and
the previous one of the user

(protocol layer, interruption
information dissemination)

none required : secure by design,
every change in state of game
is writing with in the ledger,
verification service detect any
discontinuity in change of game state

Consistency cheat :
a Cheating user act between
Byzantine and Altruist to blur the lines
of his behaviour

target misbehaviour.report and
verification.verify path in order to publish
invalid information on the ledger

(protocol layer, interruption
information dissemination)

at least 1 altruist is needed
to filter with anomaly.detection()
if one user is a real Cheater or not

Suppress correct cheat :
suppress a correct state of game once
written on the ledger

target publication.submission to break
Publication after writing on the ledger

(protocol layer, interruption
information dissemination)

none required : secure by design,
once a game state, verified or not,
is written on the ledger the
information is immutable. The case
where a game state is not verified
will be study in the following
attack : corrupt the ledger

Undo :
repudiation of a game state

target publication.submission
to damage the verification’s algorithm

(protocol layer, interruption
information dissemination)

None required : secure by design,
a state of game can’t be cancel,
once written by publication.submission,
it’s stay immutable on the ledger

time cheating :
lying at the time a game state is made

target verification.verify path
to ruin Verification during the comparison
between the current state and the tampered
time level one

(protocol layer, interruption
information dissemination

at least 1 Altruist is need
to deny verification path
call made by Cheaters

Escaping :
cut internet link or shut down
IT equipment

target recovery.recovery checkpoint()
to damage the process of retrieving the
previous state of game

(infrastructure layer, interruption
information dissemination)

non required : secure by design,
recovery.recovery checkpoint()
read the ledger
to find the latest valid game state
writing by publication.submission().
Every state is writing from
membership request, to change
game state, to misbehaviour,
to recovery

Information exposure :
information which are not supposed
to be disclosed are available due
to the transparency on the ledger

exploit the transparency of the ledger
to extract useful information

(ledger layer, unauthorized
information access)

none required : secure by design,
information are available because of
the transparency of the ledger.
However, only the state of the
game and by whom can be read
from the ledger, the requirement
to unlock such state of game
are not disclosed.

Table 1: Vector of cheats ineffective against Challenger

peer verification. This approach ensures that game states are secure, transparent, and
verifiable, mitigating the risk of malicious behavior affecting the integrity of the game.

5 Conclusion

In this paper, we propose a modular blockchain-based architecture for peer-to-peer nar-
rative games implementing services using smart contracts. The modular architecture
addresses specific functions such as membership, publication, anomaly detection, and
game state recovery. We focus on narrative games due to their compatibility with the
blockchain’s current performance in transactions per second and validation blocks. Our
architecture is resilient to a broad range of cheating behaviours.

16 Chan Yip Hon et al.

References

[1] Seyed Mojtaba Hosseini Bamakan, Amirhossein Motavali, and Alireza Babaei
Bondarti. “A survey of blockchain consensus algorithms performance evaluation
criteria”. In: Expert Systems with Applications 154 (2020), p. 113385.

[2] Rafael Belchior et al. “A survey on blockchain interoperability: Past, present,
and future trends”. In: ACM Computing Surveys (CSUR) 54.8 (2021), pp. 1–41.

[3] Glen Berseth and Ravjot Singh. “Asynchronous Real-time Multiplayer Game
With Distributed State”. In: (2015).

[4] binance whitepaper. URL: https://whitepaper.io/document/10/
binance-whitepaper (visited on 08/22/2023).

[5] Emanuele Carlini, Laura Ricci, and Massimo Coppola. “Integrating centralized
and P2P architectures to support interest management in distributed virtual en-
vironments”. In: Istituto di Scienza e Tecnologie dell’Informazione (ISTI), CNR,
Pisa, Italy, Tech. Rep (2012).

[6] Subhrajit Chanda, Shaun Star, et al. “Contouring E-doping: A menace to sports-
manship in E-sports”. In: Turkish Online Journal of Qualitative Inquiry 12.8
(2021), pp. 966–981.

[7] detroit becom human. URL: https://www.quanticdream.com/fr/
detroit-become-human (visited on 08/22/2023).

[8] Stefano Ferretti, Marco Roccetti, and Roberta Zioni. “A statistical approach to
cheating countermeasure in P2P MOGs”. In: 2009 6th IEEE Consumer Commu-
nications and Networking Conference. IEEE. 2009, pp. 1–5.

[9] Mohsen Ghaffari et al. “A dynamic networking substrate for distributed MMOGs”.
In: IEEE Transactions on Emerging Topics in Computing 3.2 (2014), pp. 289–
302.

[10] Sukrit Kalra, Rishabh Sanghi, and Mohan Dhawan. “Blockchain-based real-time
cheat prevention and robustness for multi-player online games”. In: Proceedings
of the 14th International Conference on Emerging Networking Experiments and
Technologies. 2018, pp. 178–190.

[11] Dapeng Li, Liang Hu, and Jianfeng Chu. “A more efficient secure event signa-
ture protocol for massively multiplayer online games based on P2P”. In: 2016
International Forum on Mechanical, Control and Automation (IFMCA 2016).
Atlantis Press. 2017, pp. 291–299.

[12] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: (May
2009). URL: http://www.bitcoin.org/bitcoin.pdf.

[13] Jehwan Oh et al. “Bot detection based on social interactions in MMORPGs”. In:
2013 International Conference on Social Computing. IEEE. 2013, pp. 536–543.

[14] Nirav Patel et al. “GiNA: A Blockchain-based Gaming scheme towards Ethereum
2.0”. In: ICC 2021-IEEE International Conference on Communications. IEEE.
2021, pp. 1–6.

[15] Jared N Plumb, Sneha Kumar Kasera, and Ryan Stutsman. “Hybrid network
clusters using common gameplay for massively multiplayer online games”. In:
Proceedings of the 13th International Conference on the Foundations of Digital
Games. 2018, pp. 1–10.

https://whitepaper.io/document/10/binance-whitepaper
https://whitepaper.io/document/10/binance-whitepaper
https://www.quanticdream.com/fr/detroit-become-human
https://www.quanticdream.com/fr/detroit-become-human
http://www.bitcoin.org/bitcoin.pdf

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 17

[16] polygon whitepaper. URL: https://polygon.technology/papers/
pol-whitepaper (visited on 08/22/2023).

[17] James Prather, Robert Nix, and Ryan Jessup. “Trust management for cheating
detection in distributed massively multiplayer online games”. In: 2017 15th An-
nual Workshop on Network and Systems Support for Games (NetGames). IEEE.
2017, pp. 1–3.

[18] Kalpit Sharma and Arunabha Mukhopadhyay. “ANN model for cyber-risk man-
agement for DDoS attacks in massively multiplayer online gaming”. In: In bright
internet global summit (2020), p. 2020.

[19] Yuan Tian et al. “Swords and shields: a study of mobile game hacks and existing
defenses”. In: Proceedings of the 32nd Annual Conference on Computer Security
Applications. 2016, pp. 386–397.

[20] Aleksandar Tošić and Jernej Vičič. “A Decentralized Authoritative Multiplayer
Architecture for Games on the Edge”. In: Computing and Informatics 40.3 (2021),
pp. 522–542.

[21] Steven Daniel Webb and Sieteng Soh. “Cheating in networked computer games:
a review”. In: Proceedings of the 2nd international conference on Digital inter-
active media in entertainment and arts. 2007, pp. 105–112.

[22] Steven Daniel Webb, Sieteng Soh, and Jerry L Trahan. “Secure referee selec-
tion for fair and responsive peer-to-peer gaming”. In: Simulation 85.9 (2009),
pp. 608–618.

[23] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[24] Feijie Wu et al. “Facilitating Serverless Match-based Online Games with Novel
Blockchain Technologies”. In: ACM Transactions on Internet Technology 23.1
(2023), pp. 1–26.

[25] Feijie Wu et al. “Infinity battle: A glance at how blockchain techniques serve
in a serverless gaming system”. In: Proceedings of the 28th ACM International
Conference on Multimedia. 2020, pp. 4559–4561.

[26] Mingli Wu et al. “A comprehensive survey of blockchain: From theory to IoT ap-
plications and beyond”. In: IEEE Internet of Things Journal 6.5 (2019), pp. 8114–
8154.

[27] Jingxi Xu and Benjamin W Wah. “Consistent synchronization of action order
with least noticeable delays in fast-paced multiplayer online games”. In: ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM)
13.1 (2016), pp. 1–25.

[28] Amir Yahyavi, Kévin Huguenin, and Bettina Kemme. “Interest modeling in games:
The case of dead reckoning”. In: Multimedia systems 19 (2013), pp. 255–270.

[29] Amir Yahyavi and Bettina Kemme. “Peer-to-peer architectures for massively
multiplayer online games: A survey”. In: ACM Computing Surveys (CSUR) 46.1
(2013), pp. 1–51.

[30] Anatoly Yakovenko. “Solana: A new architecture for a high performance blockchain
v0. 8.13”. In: Whitepaper (2018).

[31] Ho Yin Yuen et al. “Proof-of-play: A novel consensus model for blockchain-
based peer-to-peer gaming system”. In: Proceedings of the 2019 ACM interna-

https://polygon.technology/papers/pol-whitepaper
https://polygon.technology/papers/pol-whitepaper

18 Chan Yip Hon et al.

tional symposium on blockchain and secure critical infrastructure. 2019, pp. 19–
28.

[32] Jusik Yun et al. “MMOG user participation based decentralized consensus scheme
and proof of participation analysis on the bryllite blockchain system”. In: KSII
Transactions on Internet and Information Systems (TIIS) 13.8 (2019), pp. 4093–
4107.

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 19

Appendix

A Massively Multiplayer Online Game and Blockchains

Massively Multiplayer Online Game latency varies based on genre and user require-
ments. While low latency is not necessarily crucial for turn-based games, it is essential
for high-stakes scenarios and e-sports competitions to enhance player experience and
audience engagement. Table 2 analyses latency based on Massively Multiplayer Online
Game usage categories and criticality needs. Since latency is inadequate for measuring
criticality, we introduce actions per minute as an alternative metric.

Comparing Massively Multiplayer Online Game latency with blockchain latency
requires aligning metrics. For Massively Multiplayer Online Games, we use latency
and Action Per Minute, while for blockchain, we use block confirmation time and
transactions per second (TPS). Block confirmation times range from minutes to a min-
imum of 400 milliseconds with Solana. The transaction per second range can align
with certain Massively Multiplayer Online Game genres, such as first-person shooters
with low transaction per second blockchain and others with high transaction per second
blockchain.

Game categorize Latency (ms) Game Genre Action Per Minute
LAN-local 0-10 Fighting 150-180
Professional ESport 10-15 Multiplayer online battle 200-300
Amateur ESport 15-30 Real time strategy 300-350+
Leisure 30-50 First person shooters 25
LAG 50+

Table 2: Latency and Action Per Minute metrics

Narrative adventure games are promising candidates for blockchain-based Peer-to-
peer versions due to their Action Per Minute and latency characteristics, aligning well
with blockchain architecture’s flow of time 3.

blockchain consensus algorithm
Transaction
Per Seconds

number #
confirmation block

validation time
minute

finality or fork
Weight of block
in Kilobyte

Ethereum [23] proof of stake 15 30 6 finale 3662,109375
Polygon [16] proof of stake 38 128 5 finale 2441,40625
Solana [30] proof of history 4700 372 400 milliseconds fork NaN
Binance [4] NaN NaN NaN NaN NaN NaN

Table 3: Comparison between Binance, Ethereum, Polygon, Solana

20 Chan Yip Hon et al.

B Cheating in peer-to-peer game

In the columns, a classification proposed by Yahyavi et al. [29], which categorises at-
tacks according to their nature.

– Interruption of information dissemination: confuse the player about the current
stage of the game

– Illegal game action: A client can evade the physical laws of the game and unfairly
change its state by manipulating the game state.

– Unauthorised access to information: exploiting information that should not be dis-
closed.

On the rows is a classification proposed by Webb et al. [21], which categorises the
attack at the level at which it occurs.

– Game level: occurs within the game program without any modification or external
influence.

– Application level: requires modification of the game executable from data files or
running programs that read from and write to the game’s memory while it is run-
ning.

– Protocol level: interfering with the packets sent and received by the game.
– Infrastructure level: modifying or interfering with the software (e.g. drivers) or

hardware (e.g. network infrastructure) used by the game.

C Challenger Distributed Services

Overall service architecture is presented in Figure 3, while the description of all services
is presented in Table 5.

C.1 Membership Service

Membership service is described in Figure 4, while a corresponding sequence diagram
is presented in Figure 5. The user’s Orchestration initiates the process by sending the
id client to the Membership service. Membership service then performs two tasks:

– ID Creation: Membership service generates a unique user ID (id user) and game
ID (id game) based on the client’s provided id client.

– ID Verification: Membership service reads the blockchain to ensure that the gener-
ated id user and id game are unique and not already in use. If the IDs are unique,
they are sent to the Publication service; otherwise, the request is discarded.

C.2 Conflict service

The conflict service is described in Figure 6, while a corresponding sequence diagram
is presented in Figure 7. The user initiates a verification process, leading to a call to
Conflict service. Upon identifying the problem of multiple possible paths, Orchestration
is invoked to obtain the user’s perspective. The user can then choose between a manual
selection and a choice proposed by the blockchain.

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 21

Interruption information
dissemination

Illegal game
actions

Unauthorized information
access

Game level
- Bug
— Real money
transaction

Application level - Fast rate cheat

- Client side code
tampering
— Map hack
— Aim bots
— Bots[13]
— Reflex enhancers

- Information exposure
— Invalid commands

Protocol level

- Replay cheat
— Blind opponent
— Suppress correct
cheat
— Time cheating
[3] [8][9] — Collusion
— Undo
— Consistency cheat[26] [27]

- Spoofing - Rate analysis

Infrastructure level
- Flooding
— Escaping

- Sniffing
— Information exposure

Table 4: Cheating Methods Summary Table

Fig. 3: Challenger Services Architecture

Fig. 4: Membership Service

22 Chan Yip Hon et al.

SERVICE
Application
Programming
Interface

INPUT OUTPUT
INTERACTION
IN
READING

INTERACTION
IN
WRITING

Membership

Join :
first connexion to
generate(id user, id game)
based on id client of client

id client

(id user, id game)
and
deliver
submission (id user, id client)
to Publication service

Compare id user and
id client with in the
players IDs already
Submitted on the
blockchain.
Verify player IDs
are unique.

Publication

submission :
write the level up
from current
level
to next level
on the blockchain
as a proof of level change

(id user, id game,
current level, next level)

deliver
Notification
(new information available
on ledger)
to Orchestration service

write the level up
from current level
to next level

Conflict

- Find path :
there is a problem
with the progression of
the game state of
the user.
Find the type of problem
and send it to
the right service

Conflict is called by
Verification service
using delivering
Find path (id user, id game,
current level, next level)

Find path return case :
- deliver
location checkpoint recovery
to Recovery service

- deliver Choice.Choose path
(current level) to Choice service

- deliver
get peer choice(CHOICE TO MAKE)
to Orchestration service

-To find
location checkpoint recovery,
read blockchain to search for
submission where there
is a call to Choose path
this means that there is
at least a choice
between 2 paths

Verification

Verify path :
compare two game states
and evaluate if the
level up is legit or not.

(id user, id user,
current level, next level)

call Publication Service
OR
call Conflict Service

Compare the level up
between current level and next level
to level up, find with in
the blockchain for
the same current level

Recovery

Recovery checkpoint :
recover game state
request can be made by users
or
a call by Conflict service

recovery checkpoint
location

recovered level
Find submission linked
to recovery checkpoint location
and extract recovered level

Choice

Choose path :
randomly drawn a path
that is not register
yet in the blockchain

id game, current level random path drawn

- Find all possible
paths given current level
- List all paths taken
in the blockchain
by users for current level
- Consider
{not explored yet path}
{all paths given current level}
minus
{paths with in blockchain}

randomly drawn, a path from
{paths not explored yet}

Storage

-Save local progression :
save locally
game state
of id user on id game
- Recover local progression :
recover locally
last game state
saved by id user on id game

- (id user, id game,
current level)

- (id user, id game)

- Notification
(game state save)

- last game state

Misbehaviour

- Report :
create a report
with player IDs
object of misbehaving
and reported player
IDs

(id user, id game,
object misbehaving,
reported player IDs)

- log behaviour

Anomaly

- Detection :
filter behaviour
to determine cheating
behaviour from other
users behaviour

log behaviour log anomaly

Table 5: Challenger Services Summary

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 23

PEER MEMBERSHIP PUBLICATION PEERVERIFICATION

membership.join(id_client)

verification.verify_path(id_client)

Read blockchain
Verify if there is

connection using
the same IDs

if same IDs found :
send IDs to publica
tion service
send IDs to publica
tion service

else:
continue

memebership request

publication.submission(id_user, id_game)
in case id_client is not in ledger
publication.submission(id_user, id_game)
in case id_client is not in ledger

Creation identifier
(id_user, id_game)

orchestration.notification(new_publication_on_ledger)

orchestration.update(local_cache)
with (id_user, id_game)(id_user, id_game)

membership.join(id_client)

Creation identifier
(id_user, id_game)

orchestration.update(local_cache)
with (id_user, id_game)(id_user, id_game)

Fig. 5: Membership Service Sequence Diagram

Fig. 6: Get client choice Architecture

24 Chan Yip Hon et al.

PEER PUBLICATION CONFLICT PEERVERIFICATION

verification.verify_path(id_user, id_game, current_level, unknow_targeted_level)

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
multiple branches

Read Blockchain
Find all possible branch

Solve the problem:
- manual selection
- choice proposal

Result:
manual selection

=> Client choose between
suggested branch

orchestration.get_choice
(manual selection or choice proposal)

Return Sign_private_key_peer(manual selection)

orchestration.get_peer_choice(choice_branch_x , choice_branch_y)

Peer chooses :
choice_branch_x

Return Sign_private_key_peer(choice_branch_x)

verification.verify_path(id_user, id_game, current_level
, choice_branch_x)
verification.verify_path(id_user, id_game, current_level
, choice_branch_x)

Read blockchain
Check if the level up

from the current_
level

to
choice_branch_x

is valid

Result :
valid change of statepublication.submission(id_user, id_game, current_level

, Sign_private_key_peer(choice_branch_x))
publication.submission(id_user, id_game, current_level
, Sign_private_key_peer(choice_branch_x))

Write on the blockchain
Selected branch

level up
from current_

level toto
choice_branch_x

orchestration.notification
(New_publication_on_ledger)

orchestration.update(local_cache)
with choice_branch_xchoice_branch_x

verification.verify_path(id_user, id_game, current_level, unknow_targeted_level)

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
multiple branches

Read Blockchain
Find all possible branch

Solve the problem:
- manual selection
- choice proposal

Result:
manual selection

=> Client choose between
suggested branch

orchestration.get_choice
(manual selection or choice proposal)

Return Sign_private_key_peer(manual selection)

orchestration.get_peer_choice(choice_branch_x , choice_branch_y)

Peer chooses :
choice_branch_x

Return Sign_private_key_peer(choice_branch_x)

verification.verify_path(id_user, id_game, current_level
, choice_branch_x)
verification.verify_path(id_user, id_game, current_level
, choice_branch_x)

publication.submission(id_user, id_game, current_level
, Sign_private_key_peer(choice_branch_x))
publication.submission(id_user, id_game, current_level
, Sign_private_key_peer(choice_branch_x))

Write on the blockchain
Selected branch

level up
from current_

level toto
choice_branch_x

orchestration.notification
(New_publication_on_ledger)

orchestration.update(local_cache)
with choice_branch_xchoice_branch_x

Read blockchain and Check
if the level up from the
current_level to unknow_tar
geted_level is valid
Result : call conflict

Fig. 7: Get client choice Sequence Diagram

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 25

C.3 Choice service

The choice service is described in Figure 8, while a corresponding sequence diagram is
presented in Figure 9. A call to the Verification service initiates a subsequent call to the
Conflict service due to path ambiguity. Conflict service identifies the potential paths a
user can take from their position, referred to as SET OF PATH. When the Choice service
is selected to decide the path, SET OF PATH is sent as input to the Choice service.
A path is drawn according to the previously described process and is then submitted
for updating by Orchestration in the user’s local cache. The choice service Algorithm
(Algorithm 5) takes the user’s current level and all potential paths for that level as input.
Instead of recalculating SET OF PATH, Choice uses it as input and reads the blockchain
to extract paths already taken by users at this level. The difference between these two
sets forms the set of potentially available and unexplored paths by other users.

Fig. 8: Choice Service Architecture

C.4 Misbehaviour service

When requested by a user, the misbehaviour service is described in Figure 10, while a
corresponding sequence diagram is presented in Figure 11. The Misbehaviour process
begins with the Verification process, initiated by Conflict service. Conflict maintains a
local variable, ALL GAME STATE STEP BY STEP, to respond to a verification process
requested by a user. Conflict compares the request with ALL GAME STATE STEP BY
STEP and reads the blockchain to detect redundancy or other malicious verification
requests. If the Conflict’s analysis matches any misbehaviour, a report is generated and
collected in the LOG behaviour. The misbehaviour process stops here, as the filtering
phase is part of the Anomaly service (Algorithm 9).

When requested by the system, the misbehaviour service is described in Figure 12,
while a corresponding sequence diagram is presented in Figure 13.

The Anomaly filtering process targets the Misbehaviour service from the start when
reports are received from users. This sequence diagram assumes that services are correct
and users are altruistic. In the case where a user reports directly to another user for

26 Chan Yip Hon et al.

VERIFICATIONPEER PUBLICATION CONFLICT PEER

verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)
verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Check if the level up

from the current_
level toto

unknow_targeted_
level is validis valid

Result :
Call Conflict

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
multiple branches

orchestration.get_peer_choice
(manual selection or choice proposal)

Return Sign_private_key_peer(choice selection)

Read blockchain
Check if the level up

from the current_
level toto

choice_branch_x
is valid

Result :
valid change of state

publication.submission(id_user, id_game, current_level
, chosen_path)
publication.submission(id_user, id_game, current_level
, chosen_path)

Write on the blockchain
Selected branch

level up
from current_

level toto
chosen_path

orchestration.notification
(New_publication_on_ledger)

orchestration.update(local_cache)
with chosen_path

CHOICE RECOVERY

choice.choose_path(id_game, current_level) Read blockchain
constructs any scenarios

of interest to the customer,
i.e.

{interesting scenario}
=

{all possible scenarios}
from which we deduct

{scenarios already on the blockchain.}
Return:

randomly drawn in
{interesting scenario}

= > chosen_path

publication.submission(id_user, id_game, current_level
, chosen_path)
publication.submission(id_user, id_game, current_level
, chosen_path)

Verified path of id_user on id_game from current_level
to chosen_path
Verified path of id_user on id_game from current_level
to chosen_path

recovery_checkpoint(chosen_path)

return chosen_path

verification.verify_path(id_user, id_game, current_level
, choice_service_selection)
verification.verify_path(id_user, id_game, current_level
, choice_service_selection)

verified choice_service_selection for id_user on id_game
from current_level
verified choice_service_selection for id_user on id_game
from current_level

Read Blockchain
Find all possible branch

Solve the problem:
- manual selection
- choice proposal

Result:
choice selection

=> CHOICE service
 choosebetween br
anchs

=> CHOICE service
 choosebetween br
anchs branchs

verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)
verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Check if the level up

from the current_
level toto

unknow_targeted_
level is validis valid

Result :
Call Conflict

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
multiple branches

orchestration.get_peer_choice
(manual selection or choice proposal)

Return Sign_private_key_peer(choice selection)

publication.submission(id_user, id_game, current_level
, chosen_path)
publication.submission(id_user, id_game, current_level
, chosen_path)

Write on the blockchain
Selected branch

level up
from current_

level toto
chosen_path

orchestration.notification
(New_publication_on_ledger)

orchestration.update(local_cache)
with chosen_path

choice.choose_path(id_game, current_level) Read blockchain
constructs any scenarios

of interest to the customer,
i.e.

{interesting scenario}
=

{all possible scenarios}
from which we deduct

{scenarios already on the blockchain.}
Return:

randomly drawn in
{interesting scenario}

= > chosen_path

publication.submission(id_user, id_game, current_level
, chosen_path)
publication.submission(id_user, id_game, current_level
, chosen_path)

Verified path of id_user on id_game from current_level
to chosen_path
Verified path of id_user on id_game from current_level
to chosen_path

recovery_checkpoint(chosen_path)

return chosen_path

verification.verify_path(id_user, id_game, current_level
, choice_service_selection)
verification.verify_path(id_user, id_game, current_level
, choice_service_selection)

Fig. 9: Choice Service Sequence Diagram

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 27

Fig. 10: Request Misbehaviour Architecture Service by user

MISBEHAVIOURANOMALYPEER PUBLICATION PEER

orchestration.notification
(new_publication_on_ledger)

orchestration.update(local_cache)
with byzantine player IDs

Creation of a
suspicious behaviour

log listing
player IDs

and behaviouranomaly.detection(log_behavior)

Behavior filtering
to distinguish

Byzantine behavior
from bad gameplay

publication.submission(log_anomaly)

misbehavour.report (reported_id_user, id_game, object : redundacy in level crossing requests)

orchestration.notification
(new_publication_on_ledger)

orchestration.update(local_cache)
with byzantine player IDs

Creation of a
suspicious behaviour

log listing
player IDs

and behaviouranomaly.detection(log_behavior)

Behavior filtering
to distinguish

Byzantine behavior
from bad gameplay

publication.submission(log_anomaly)

misbehavour.report (reported_id_user, id_game, object : redundacy in level crossing requests)

Fig. 11: Request Misbehaviour Sequence Diagram Service by user

Fig. 12: Request Misbehaviour Service by Conflict Service Architecture

28 Chan Yip Hon et al.

MISBEHAVIOURANOMALYPEER PUBLICATION CONFLICT PEERVERIFICATION

verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)
verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Check if the level up

from the current_
level toto

unknow_targeted_
level is valids valid

Result :
Call Conflict

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
Branch blocked

Read blockchain
Detects suspicious

activity, e.g.
redundancy in
level crossing

requests

orchestration.get_peer_choice
(a_choice_to_make)

Return Sign_private_key_peer(a_choice_to_make)

orchestration.notification
(new_publication_on_ledger)

orchestration.update(local_cache)
with byzantine player IDs

verification.verify_path(id_user, id_game, current_level
, a_choice_to_make)
verification.verify_path(id_user, id_game, current_level
, a_choice_to_make)

failed a_choice_to_make for id_user on id_game
 from current_level
failed a_choice_to_make for id_user on id_game
 from current_level

misbehavour.report (reported_id_user, id_game, object : redundacy in level crossing requests)

Creation of a
suspicious behaviour

log listing
player IDs

and behaviouranomaly.detection(log_behavior)

Behavior filtering
to distinguish

Byzantine behavior
from bad gameplay

publication.submission(log_anomaly)

verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)
verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Check if the level up

from the current_
level toto

unknow_targeted_
level is valids valid

Result :
Call Conflict

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
Branch blocked

Read blockchain
Detects suspicious

activity, e.g.
redundancy in
level crossing

requests

orchestration.get_peer_choice
(a_choice_to_make)

Return Sign_private_key_peer(a_choice_to_make)

orchestration.notification
(new_publication_on_ledger)

orchestration.update(local_cache)
with byzantine player IDs

verification.verify_path(id_user, id_game, current_level
, a_choice_to_make)
verification.verify_path(id_user, id_game, current_level
, a_choice_to_make)

misbehavour.report (reported_id_user, id_game, object : redundacy in level crossing requests)

Creation of a
suspicious behaviour

log listing
player IDs

and behaviouranomaly.detection(log_behavior)

Behavior filtering
to distinguish

Byzantine behavior
from bad gameplay

publication.submission(log_anomaly)

Fig. 13: Request Misbehaviour Service by Conflict Service Sequence Diagram

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 29

misbehaviour, there is a problem of trust that needs to be solved. For instance, from the
point of view of the Anomaly service, there is no way to identify a legitimate report
made by a cheating user and a suspicious report made by an altruist user.

C.5 Recovery service

When requested by the system, the recovery service is described in Figure 14, while a
corresponding sequence diagram is presented in Figure 15.

The Recovery process is initiated by a call to Verification, which leads to a call
to Conflict because the current level has no path (i.e., it is a dead end). Conflict reads
the blockchain to find a previous game state with multiple paths. More specifically, it
searches for a submission indicating that a user had to decide between several paths.
This submission is registered as a location recovery and sent to the Recovery service.
Recovery then reads the blockchain to find the location recovery location and sends the
recovered game state to the user. Simultaneously, Publication is called to submit the
location recovery, allowing the Application to update its local cache with the location
recovery, which is useful if the user is blocked again and needs to recover the game
state.

ORCHESTRATION VERIFICATION

RECOVERY

PUBLICATION CONFLICT

submission 14.d
verify_path

5.d
get_peer_choice 7.d

sign_choice 8.d

6.d
find_path

9.dverify

10.dverified

15.d notification

recover_path 16.d

verify_path 12.d

location_checkpoint_recovery 11.d

verified 13.d

Fig. 14: Request Recovery service by Conflict Service Architecture

C.6 Orchestration service

Orchestration service is the client-side service that users interact with directly and trans-
parently. Orchestration summarizes the interaction between him and the other services,
as depicted in Figure 2. Interaction involves the following services:

– Membership service: Join, to create player IDs; Notification, to register player IDs
– Verification service: To verify level-up from two states of the game
– Publication service: Notification, to update new information on the ledger
– Conflict service

• Get a choice, to choose between manual selection and Choice proposal
• In case of manual selection, sign with a private key to select a path for the

current level

30 Chan Yip Hon et al.

PEER PUBLICATION CONFLICT PEERVERIFICATION

verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)
verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Check if the level up

from the current_
level toto

unknow_targeted_
level

is valid

Result :
Call Conflict

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
Branch blocked

Read the blockchain
from the end

Find the transaction
for which there is at least

a different branch
than the current one

Result :
location_recovery

orchestration.get_peer_choice
(use_recovery_service)

Return Sign_private_key_peer(use_recovery_service)

publication.submission(id_user, id_game, current_level
, recovered_level)
publication.submission(id_user, id_game, current_level
, recovered_level)

Write on the blockchain
Selected branch

level up
from current_

level toto
recovered_

level

orchestration.notification
(New_publication_on_ledger)

orchestration.update(local_cache)
with recovered_

level

RECOVERY

return recovered_level

verification.verify_path(id_user, id_game, current_level
, use_recovery_service)
verification.verify_path(id_user, id_game, current_level
, use_recovery_service)

verified recovery_service_selection for id_user on id_game
from current_level
verified recovery_service_selection for id_user on id_game
from current_level

Recuperation.Recovery_checkpoint (location_recovery)

Read Blockchain
Gets the branch of the

the transaction
location_recovery from

id_user on id_game
Result :

recovered_
level

verification.verify_path(id_user, id_game, current_level
, recovered_level)
verification.verify_path(id_user, id_game, current_level
, recovered_level)

verified recovery_service_selection for id_user on id_game
from recovered_level
verified recovery_service_selection for id_user on id_game
from recovered_level

Read blockchain
Check if the level up

from the current_
level toto

recovered_
level is validis valid

Result :
valid change of state

verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)
verification.verify_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Check if the level up

from the current_
level toto

unknow_targeted_
level

is valid

Result :
Call Conflict

conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)
conflict.find_path(id_user, id_game, current_level
, unknow_targeted_level)

Read blockchain
Specifies the type of conflict:

- Branch blocked
- multiple branches

Result :
Branch blocked

Read the blockchain
from the end

Find the transaction
for which there is at least

a different branch
than the current one

Result :
location_recovery

orchestration.get_peer_choice
(use_recovery_service)

Return Sign_private_key_peer(use_recovery_service)

publication.submission(id_user, id_game, current_level
, recovered_level)
publication.submission(id_user, id_game, current_level
, recovered_level)

Write on the blockchain
Selected branch

level up
from current_

level toto
recovered_

level

orchestration.notification
(New_publication_on_ledger)

orchestration.update(local_cache)
with recovered_

level

return recovered_level

verification.verify_path(id_user, id_game, current_level
, use_recovery_service)
verification.verify_path(id_user, id_game, current_level
, use_recovery_service)

Recuperation.Recovery_checkpoint (location_recovery)

Read Blockchain
Gets the branch of the

the transaction
location_recovery from

id_user on id_game
Result :

recovered_
level

verification.verify_path(id_user, id_game, current_level
, recovered_level)
verification.verify_path(id_user, id_game, current_level
, recovered_level)

verified recovery_service_selection for id_user on id_game
from recovered_level
verified recovery_service_selection for id_user on id_game
from recovered_level

Read blockchain
Check if the level up

from the current_
level toto

recovered_
level is validis valid

Result :
valid change of state

Fig. 15: Request Recovery Service by Conflict Service Sequence Diagram

Challenger: Blockchain-based Massively Multiplayer Online Game Architecture 31

– Misbehaviour service, to report misbehaviour
– Recovery service

• user recovery: to recover the current level and start from scratch
• Conflict Recovery, to recover the anterior level because user progression is

blocked
– Storage: Save, to save local progression; Retrieve, to retrieve local progression

The pseudo-code for the orchestration service is provided as Algorithm 10.

32 Chan Yip Hon et al.

Algorithm 10 Orchestration Service
1: Local variable :
2: LOCAL CACHE local storage of application
3: Function :
4: - update (object):
5: take into account object and update LOCAL CACHE if necessary
6:
7: Upon receiving Notification (player IDs) from the Membership service do :
8: update (LOCAL CACHE)
9: enddo

10:
11: Upon receiving Notification (new information on ledger) from the Publication service do :
12: update (LOCAL CACHE)
13: enddo
14:
15: Upon receiving Notification (log anomaly) from the Publication service do :
16: update (LOCAL CACHE)
17: enddo
18:
19: Upon receiving Recovered checkpoint from the Recovery service do :
20: update (LOCAL CACHE)
21: enddo
22:
23: Upon receiving get peer choice (id user, id game, current level, CHOICE TO MAKE)

from Conflict service do :
24: deliver Sign private key user (id user, id game, current level, CHOICE MADE) to

Conflict service
25: enddo
26:
27: Upon receiving Notification (game state saved) from the Storage service do :
28: update (LOCAL CACHE)
29: enddo
30:
31: detection (log behaviour) :
32: analysis of the misconduct to determine real Byzantine behaviour from stubborn or unwise

game-play.
33: LOG ANOMALY works as a reference for Byzantine attacks, the log helps to identify be-

haviour that seems Byzantine.
34: LOG ANOMALY must be constantly updated to predict potential Byzantine schemes.

	Challenger: Blockchain-based Massively Multiplayer Online Game Architecture

