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Abstract

Our work aims to minimize interaction in secure computation due to the high cost and
challenges associated with communication rounds, particularly in scenarios with many clients. In
this work, we revisit the problem of secure aggregation in the single-server setting where a single
evaluation server can securely aggregate client-held individual inputs. Our key contribution
is One-shot Private Aggregation (OPA) where clients speak only once (or even choose not to
speak) per aggregation evaluation. Since every client communicates just once per aggregation,
this streamlines the management of dropouts and dynamic participation of clients, contrasting
with multi-round state-of-the-art protocols for each aggregation.

We initiate the study of OPA in several ways. First, we formalize the model and present a
security definition. Second, we construct OPA protocols based on class groups, DCR, and LWR
assumptions. Third, we demonstrate OPA with two applications: private stream aggregation
and privacy-preserving federated learning. Specifically, OPA can be used as a key building block
to enable privacy-preserving federated learning and critically, where client speaks once. This
is a sharp departure from prior multi-round protocols whose study was initiated by Bonawitz
et al. (CCS, 2017). Moreover, unlike the YOSO (You Only Speak Once) model for general
secure computation, OPA eliminates complex committee selection protocols to achieve adaptive
security. Beyond asymptotic improvements, OPA is practical, outperforming state-of-the-art
solutions. We leverage OPA to develop a streaming variant named SOPA, serving as the building
block for privacy-preserving federated learning. We utilize SOPA to construct logistic regression
classifiers for two datasets.

A new distributed key homomorphic PRF is at the core of our construction of OPA. This key
component addresses shortcomings observed in previous works that relied on DDH and LWR in
the work of Boneh et al. (CRYPTO, 2013), marking it as an independent contribution to our
work. Moreover, we also present new distributed key homomorphic PRF's based on class groups
or DCR or the LWR assumption.

*This paper was prepared for informational purposes by the Artificial Intelligence Research group of JPMorgan
Chase & Co and its affiliates (“J.P. Morgan”) and is not a product of the Research Department of J.P. Morgan. J.P.
Morgan makes no representation and warranty whatsoever and disclaims all liability, for the completeness, accuracy
or reliability of the information contained herein. This document is not intended as investment research or investment
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not constitute a solicitation under any jurisdiction or to any person, if such solicitation under such jurisdiction or to
such person would be unlawful.
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1 Introduction

Minimizing interaction in Multiparty Computation (MPC) stands as a highly sought-after objective
in the field of secure computation. This is primarily because each communication round is costly,
and ensuring the liveness of participants, particularly in scenarios involving a large number of
parties, poses significant challenges. Unlike throughput, latency is now primarily constrained by
physical limitations, making it exceedingly difficult to substantially reduce the time required for a
communication round. Furthermore, non-interactive primitives offer increased versatility and are
better suited as foundational building blocks. This prompts the crucial question: Is it possible to
further reduce interaction? Generally, the answer is negative. The underlying reason is that any
non-interactive protocol, which operates with a single communication round, becomes susceptible
to a vulnerability referred to as the “residual attack” [60] where the server can collude with some
clients and evaluate the function on as many inputs as they wish revealing the inputs of the honest
parties.

In this work, we explore a natural “hybrid” model that sits between the 2-round and 1-round
settings. Specifically, our model allows for private aggregation, aided by a committee of members,
where the client only speaks once. This approach brings us closer to achieving non-interactive
protocols while preserving traditional security guarantees. Our specific focus is within the domain
of secure aggregation protocols, where a group of n clients P; for i € [n] hold a private value z;,
wish to learn the sum ), z; without leaking any information about the individual z;. In this model,
clients release encoded versions of their confidential inputs x; to a designated committee of ephemeral
members and they go offline, they only speak once. Later, any subset of the ephemeral members can
compute these encodings by simply transmitting a single public message to an unchanging, stateless
evaluator or server. This message conveys solely the outcome of the secure aggregation and nothing
else. Of significant note, the ephemeral members are stateless, speak only once and can change
(or not) per aggregation session. With that in mind, the committee members can be regarded as
another subset of clients who abstain from contributing input when they are selected to serve on
the committee during a current aggregation session. Each client/committee member communicates
just once per aggregation, eliminating the complexity of handling dropouts commonly encountered
in multi-round secure aggregation protocols. The security guarantee is that an adversary corrupting
a subset of clients and the committee members learn no information about the private inputs of
honest clients, beyond the outputs of the aggregations they participated in. This holds for any
polynomial number of computation sessions. See Section 2 for a comparison to other models.

2 Technical Survey of Related Work

Multi-Round Private Summation. We begin by revisiting the concept outlined in [60]. The first
multi-round secure aggregation protocol, designed to enable a single server to learn the sum of
inputs x1, . .., z, while hiding each input x; is based on the following idea. Each user i adds a mask
r; to their private input x;. This mask remains hidden from both the server and all other users it
exhibits the property of canceling out when combined with all the other masks, i.e., Zie[n] ri = 0.
Subsequently, each user forwards X; = x; + r; to the server. By aggregating all the X; values, the
server is then able to determine the sum of all ;. More specifically, to generate these masks, a
common key k;; = kj; = PRG(g**7) is established by every pair of clients 7, j. Here, g* serves as an
ephemeral “public key” associated with each client ¢ € [n]. This public key is shared with all other
clients during an initial round, facilitated through the server. Importantly, the value s; remains
secret by each client 4. Then, each client i € [n] computes the mask r; = >, kij — 2, kij -
and due to the cancellation property the server outputs >, X; = >, ;. In this protocol, users are
required to engage in multiple rounds of communication, where each user communicates more than
once. Moreover, the protocol does not permit users to drop out from an aggregation iteration.



Non-Interactive Private Summation with trusted setup. If we were to require users to communicate
only once in a protocol iteration, we encounter the challenge of mitigating residual attacks. In a
prior study conducted by [88], a solution based on DDH was proposed to mitigate residual attacks by
involving a trusted setup that assumes the generation of the common keys k;; = kj; into the protocol.
However, it is important to highlight that this particular setup lacked the necessary mechanisms to
accommodate dropouts and facilitate dynamic participation for multiple aggregation iterations. An
additional limitation of this construction is the necessity of establishing a trusted setup that can
be utilized across multiple iterations. Furthermore, to ensure that the server is unable to recover
the masking key given a client’s masked inputs, the work relies on the DDH Assumption. An
unfortunate consequence is that the server has to compute the discrete logarithm to recover the
aggregate, a computationally expensive operation, particularly when dealing with large exponents.
Numerous other works within this framework have emerged, each relying on distinct assumptions,
effectively sidestepping the requirement for laborious discrete logarithm calculations. These include
works based on the DCR assumption [63, 13], and lattice-based cryptography [10, 53, 91, 90, 95].

Multi-Round Private Summation without Trusted Setup. A separate line of research endeavors to
eliminate the necessity for a trusted setup by introducing multi-round decentralized reusable setups
designed to generate masks while adhering to the crucial cancellation property. However, akin to the
previously mentioned approaches, these protocols come with a caveat—they do not accommodate
scenarios involving dropouts or dynamic user participation across multiple iterations. Dipsauce [23]
is the first to formally introduce a definition for a distributed setup PSA with a security model
based on k-regular graph, non-interactive key exchange protocols, and a distributed randomness
beacon [38, 50, 82| to build their distributed setup PSA. Meanwhile, the work of Nguyen et al. [78§],
assuming a PKI (or a bulletin board where all the public keys are listed), computed the required
Diffie-Hellman keys on the fly to then build a one-time decentralized sum protocol which allowed
the server to sum up the inputs one-time, with their construction relying on class group-based
cryptography. To facilitate multiple iterations of such an aggregation, they combined their one-time
decentralized sum protocol with Multiclient Functional Encryption (MCFE) to build a privacy-
preservation summation protocol that can work over multiple rounds, without requiring a trusted
setup and merely requiring a PKI. Unfortunately, per iteration, the clients need to be informed of
the set of users participating in that round and unfortunately, they cannot drop out once chosen.

Non-Interactive Private Summation with a collector. To circumvent the need for a trusted setup
and multi-round decentralized arrangements, an approach is presented in the work of [68] which
introduces an additional server known as the “collector”. The fundamental premise here is to
ensure that the collector and the evaluation server do not collude, thus effectively mitigating the
risks associated with residual attacks. This protocol does allow dynamic participation and dropouts
per iteration.

Multi-Round Private Summation with Dynamic Participation (aka Secure Aggregation). In Feder-
ated Learning, a server trains a model using data from multiple clients. This process unfolds in
iterations where a randomly chosen subset of clients (or a set of clients based on the history of their
availability) receives the model’s current weights. These clients update the model using their local
data and send back the updated weights. The server then computes the average of these weights,
repeating this cycle until model convergence is achieved. This approach enhances client privacy by
only accessing aggregated results, rather than raw data.

That said, secure aggregation of users’ private data with the aid of a server has been well-studied
in the context of federated learning. Given the iterative nature of federated learning, dynamic par-
ticipation is crucial. It enables seamless integration of new parties and those chosen to participate in



various learning iterations, while also addressing the challenge of accommodating parties that may
drop out during the aggregation phase due to communication failures or delays. Furthermore, an
important problem in federated learning with user-constrained computation and wireless network
resources is the computation and communication overhead which wastes bandwidth, increases train-
ing time, and can even impact the model accuracy if many users drop out. Seminal contributions
by Bonawitz et al. [18] and Bell et al. [12] have successfully proposed secure aggregation protocols
designed to cater to a large number of users while addressing the dropout challenge in a federated
learning setting. However, it’s important to note that these protocols come with a notable draw-
back—substantial round complexity and overhead are incurred during each training iteration. Even
in the extensive corpus of research based on more complex cryptographic machinery (see [64] for a
plethora of previous works) such as threshold additive homomorphic encryption etc., these persistent
drawbacks continue to pose challenges. Notably, all follow up works [12, 70, 57, 74, 11, 72, 73] of [18§]
require multiple rounds of interaction based on distributed setups. Secure aggregation protocols,
with their adaptable nature, hold relevance across a wide array of domains. They are applicable
in various scenarios, including ensuring the security of voting processes, safeguarding privacy in
browser telemetry as illustrated in [42], facilitating data analytics for digital contact tracing, as
seen in [5] besides enabling secure federated learning.

It is also important to note that some of these works - ACORN [11] and RoFL [73] build on top
of the works of [18, 12] to tackle the problem of “input validation” using efficient zero-knowledge
proof systems. The goal is for the clients to prove that the inputs being encrypted are “well-formed”
to prevent poisoning attacks.RoFL allows for detection when a malicious client misbehaves, while
ACORN presents a non-constant round protocol to identify and remove misbehaving clients. In
Section F, we show how to add to OPA to catch malicious clients, we leave it as a direction for
future research on how to augment our protocol to also support input validation.

In Section 3, we present our contributions. The above discussion is also summarized in Table 1,
by looking at four properties (a) whether the aggregate can be efficiently recovered, (b) whether
it allows dynamic participation, (¢) whether it requires trusted setup or multi-round distributed
setup, and (d) the security assumptions.

2.1 Other Communication/Computation Models

Shuffle Model. Note that our model bears similarities to the shuffle model, in which clients dispatch
input encodings to a shuffler or a committee of servers responsible for securely shuffling before the
data reaches the server for aggregation as in the recent work of Halevi et al. [59]. Nonetheless, it is
important to note that such protocols typically entail multiple rounds among the committee servers
to facilitate an efficient and secure shuffle protocol.

Multi-Server Secure Aggregation Protocols. It’s worth emphasizing that multi-server protocols, as
documented in [55, 43, 3, 83, 99], have progressed to a point where their potential standardiza-
tion by the IETF, as mentioned in [80], is indeed noteworthy. In the multi-server scenario, parties
can directly share their inputs securely among a set of servers, which then collaborate to achieve
secure aggregation. Some of the works in this domain include two-server solutions Elsa [84] and
SuperFL [99] or the generic multi-server solution Flag [9]. Unfortunately, in the case of federated
learning, which involves handling exceptionally long inputs, the secret-sharing approach becomes
impractical due to the increase in communication complexity associated with each input. Fur-
thermore, these servers are required to have heavy computation power and be stateful (retaining
data/state from iteration to iteration). Jumping ahead, in our protocol the ephemeral parties are
neither stateful nor require heavy computation.

Commmittee-Based MPC. Committee-based MPC is widely used for handling scenarios involving
a large number of parties. However, it faces a security vulnerability known as adaptive security,



Table 1: Comparison of Various Private Summation Protocols. TD stands for trusted dealer/trusted
setup, DS stands for multi-round distributed setup. Note that DS implies several rounds of interaction
while our protocol does not require any interaction. Here, efficient aggregate recovery refers to
whether the server can recover the aggregate efficiently. For example, [88, 13, 57] require some
restrictions on input sizes to recover the aggregate due to the discrete logarithm bottleneck.

. TD

Efficient Aggregate EZI:?:I‘;Z tion | VS Assumptions
[88] X X 0 | DDH
[65] v X ™ | DCR
[15] X/ X D | DDH/DCR
[10] v X T | LWE/R-LWE
[92] v X D | R-LWE
[95] v X TD | AES
[90] v X D | RLWE
[68] X v D | DCR
[53] v X D | LWR
[23] X X LWR
[18, 12] v 4 * | DDH
[57] 4 4 DDH
[74] v 4 DDH
[70] 4 4 DDH
Our Work | v/ 4 NA | HSM, LWR

where an adversary can corrupt parties after committee selection. The YOSO model, introduced by
Gentry et al. [37] proposes a model that offers adaptive security. In YOSO, committees speak once
and are dynamically changed in each communication round, preventing adversaries from corrupting
parties effectively. The key feature of YOSO is that the identity of the next committee is known only
to its members, who communicate only once and then become obsolete to adversaries. YOSO runs
generic secure computation calculations and aggregation can be one of them. However, its efficiency
is prohibitive for secure aggregation. In particular, the communication complexity of YOSO in the
computational setting scales quadratic with the number of parties n (or linear in n if the cost is
amortized over n gates for large circuits). Additionally, to select the committees, an expensive role
assignment protocol is applied. Like LERNA, in YOSO also specific sizes for the committee need
to be fulfilled to run a protocol execution. Last but not least, our protocol does not rely on any
secure role assignment protocol to choose the committees since even if all committee members are
corrupted, privacy is still preserved. Fluid MPC [40, 17] also considers committee-based general
secure computation. However, like YOSO, it is not practical. Unlike YOSO, it lacks support for
adaptive security.

Moreover, SCALES [2] considers ephemeral servers a la YOSO responsible for generic MPC
computations where the clients only provide their inputs. This approach is of theoretical interest as
it is based on heavy machinery such as garbling and oblivious transfer if they were to be considered
for the task of secure aggregation. Moreover, SCALES needs extra effort to hide the identities of
the servers which we do not require.



3 Our Contributions

We initiate the study of OPA at the following fronts:

e Modeling: Formally, we introduce the OPA model of operation and formalize a simple game-
based security notion. Our model is designed to achieve maximal flexibility by granting honest
parties the choice to speak once or remain silent, fostering dynamic participation from one
aggregation to the next. In our modeling, we associate a committee with each iteration. The
client communicates speaks once - sending a message to the committee and the server. The
committee members communicate with the server to aid the summation. This diverges from
prior approaches [18, 12, 70, 74, 57], which necessitate multiple interaction rounds and the
management of dropout parties to handle communication delays or lost connections.

e Cryptographic Assumptions: We construct the first OPA protocols providing a suite of
five distinct versions based on a diverse spectrum of assumptions:

— Hidden Subgroup Membership (HSMy) asusmption where M is a prime integer.

— HSMy assumption where M = p* for some prime p and integer k.

— HSMy assumption where M = 2F

— HSMy assumption where M = N where N is an RSA modulus (i.e., the DCR assumption)
— Learning With Rounding (LWR) Assumption

e Threat Models: Our protocols do not require any trusted setup for keys and for M being
either a prime or an exponent of prime, or the LWR assumption, we do not require any trusted
setup of parameters either. We present various levels of trust.

— First, we allow the server to be corrupt, corrupt clients, and corrupt up to a certain
threshold t of the committee members where t is the privacy threshold for secret recon-
struction. Note that malformed encryptions by malicious client can be viewed as the
client changing its input, for federated learning applications.

— Second, we strengthen the security to allow for the compromise of all the committee
members (while ensuring the server is not corrupt) and we present constructions that
satisfy this stronger definition.

— Third, we present a version of the protocol that is secure against active adversaries. Like
previous work, this relies on signatures. This adds an additional round-trip communica-
tion between committee and server, while the client still speaks once. This specifically
covers attacks where a malicious server tries to drop clients, based on their inputs.

— Fourth, we present a robust version against malicious clients and/or committee members
with the goal of identifying and removing these malicious clients’ inputs from the aggre-
gation. This relies on the client attaching a “proof” of honest behavior in communication
to both server and committee. The client still speaks once.

e Modes of Operations: Our protocol allows to be operated in two modes - “new key” and
“key reuse”. In the latter, the clients reuse the keys, across various iterations. Meanwhile, we
can leverage the non-interactive nature of our protocol to have the clients generate new keys,
in every iteration, and the committee members receive a share of a new key, as opposed to
some mapping of the key. The New Key mode offers several attractive features: (a) in some
settings this has better communication as a field element can be sent, as opposed to a group
element, (b) quick recovery from any key compromise as a new key is used in every round.



Meanwhile, prior works (especially LERNA) require a expensive setup phase to be performed
when a new key needs to be established. In LERNA, this involves speaking with a committee

of size 214,

On the other hand, the new key mode does reveal to the server the sum of the keys and can
constitute a big leakage if clients are not careful about sampling new keys. Meanwhile, key
reuse mode usually produces only an “ephemeral” encoding of the sum of the keys.

e List of Techniques:

— We build OPA constructions based on new Distributed, Key Homomorphic PRFs. We
operate both in the CL framework [34] and the LWR-based assumption.

— We build the first Key Homomorphic PRF based on the HSMy; assumption. We rely on
Shamir Secret Sharing [87] over integers we also present Distributed, Key Homomorphic,
PRFs.

— We extend the almost Key Homomorphic PRF based on the LWR assumption [20, 53]
using Shamir Secret Sharing over prime-order fields. In doing so, we fix gaps in the prior
Distributed Key Homomorphic PRF based on LWR, as proposed by Boneh et al. [20]

— We also extend Shamir Secret Sharing over Integers to a packed version which enables
packing more secrets in one succinct representation.

— We also present a robust variant of OPA leveraging the Verifiable Secret Sharing over
Integers [22].

— Of independent interest, we also build a seed homomorphic PRG from HSMy assumption
for the most efficient secure aggregation protocol we present in the context of federated
learning.

e Applications: We showcase the power of OPA protocols in two practical applications

— First, OPA empowers secure stream aggregation that was first introduced by Shi et al. [8§]
without necessitating the use of a Public Key Infrastructure (PKI) or the Common Refer-
ence String (CRS) model, prerequisites of prior techniques. Additionally, OPA supports
dynamic participation. Independently, OPA finds utility in distributed multi-client func-
tional encryption [78], eliminating the need for a setup phase, thereby enhancing its
efficiency and practicality.

— Second, leveraging the dynamic participation feature of OPA, crucial for federated learn-
ing, it facilitates secure federated learning, where participants speak only once, stream-
lining the process significantly. Learning in the clear involves the client receiving the
global update from the server and responds with one message corresponding to the new
updates generated after the client has trained the model with its local data. In con-
trast, prior works[18, 12] involve 8 rounds, and the work of [74] requires 7 rounds in
total, including the setup. Moreover, our protocols offer adaptive security. Our advan-
tages extend beyond just round complexity. The server’s asymptotic computation cost
is O(nL + L(lognloglogn)) while that of Flamingo is O(nL + nlog?n) and that of [12]
is O(nlog?n + nLlogn). The client computation cost is O(L + logn) (with committee
members doing O(n) work) while Flamingo has clients’ computation at O(L + nlogn).
Similar asymptotic gains can be observed in the communication costs. Our federated
learning protocols stand out by dramatically reducing the number of communication
rounds, ensuring that each participant’s engagement is just one round of interaction,
thereby bridging the gap between learning in the clear and learning with secure aggre-
gation. (See section 2 for a detailed comparison).



e Implementation and Benchmarks: Our contributions extend beyond the theoretical do-
main. We implement OPA as a secure aggregation protocol and benchmark with several
state-of-the-art solutions [18, 12, 57, 74]. Specifically, we implement that OPA protocol that
is based on the CL framework with M = p. Importantly, our server computation time scales
the best with a larger number of inputs where our server takes < 1s for computation even
for larger number of clients (n = 1000). Meanwhile, our client running time is competitive
for a small number of clients but offers significant gains for a larger number of clients. Note
that the motivating application of the secure aggregation protocol remains federated learn-
ing. Therefore, to demonstrate the feasibility of our protocol, we train a binary classification
model using logistic regression, in a federated manner, for two datasets. Our protocol carefully
handles floating point values (using two different methods of quantization - multiplying by a
global multiplier vs representing floating point numbers as a vector of integer values) and the
resulting model is shown to offer performance close to that of simply learning in the clear.
More details can be found in Section 10.

3.1 Detailed Contributions in Federated Learning

Next, we compare our protocol with all efficient summation protocols listed in Table 1, with a specific
focus on those that accommodate dynamic participation, a key feature shared by all federated
learning methodologies.

We introduce SOPA where users/clients speak only once, significantly reducing the round com-
plexity and overhead associated with each training iteration of prior works. SOPA is the streaming
version of OPA, designed to handle a vector of inputs, per client. This innovative approach stream-
lines the federated learning process, making it more efficient and less resource-intensive, ultimately
contributing to improved model training and accuracy. We propose three new secure aggregation
protocols for federated learning;:

e SOPA; where the committee size is set to be logn. Note that our protocols can support any
size of committees, but we set m to be logn for ease of presentation. This follows prior work
such as [12] where they have each client secret-share their keys with a “neighborhood” of
clients of size logn,

e SOPAY, which is SOPA; based on packed secret sharing for better performance
e SOPA,, based on a seed-homomorphic PRG, offering better efficiency for large input vectors

In our threat model, we tolerate any corruption of users and we offer two flavors: one in which
the server colludes with a maximum of ¢ — 1 committee members (where ¢ denotes the privacy
threshold), and the other where all committee members are allowed to collude while maintaining
privacy. The latter flavor is not offered by any prior multi-round protocol based on special groups
of users such as [74, 11, 57, 70, 12], and does not change the communication or the computation
cost.

In Tables 2 and 3, we list the communication complexity, computational complexity, and round
complexity per participant. Notably, our protocols are setup-free, eliminating any need for elaborate
initialization procedures. Furthermore, they are characterized by a streamlined communication
process, demanding just a single round of interaction from the participants.

Asymptotic Comparison. More concretely, based on Table 2, our approach stands out by signifi-
cantly reducing the round complexity, ensuring that each participant’s involvement is limited to a
single communication round i.e. each participant speaks only once. That is, users speak once and



Table 2: Total asymptotic computation cost for all rounds per aggregation with semi-honest security.
n denotes the total number of users, with committee size m = logn and L is the length of the input
vector. The “Rounds” column indicates the number of rounds in the setup phase (on the left, if
applicable) and in each aggregation iteration (on the right). A “round of communication” refers to
a discrete step within a protocol during which a participant or a group of participants send messages
to another participant or group of participants, and participants from the latter group must receive
these messages before they can send their own messages in a subsequent round. “fwd” means that
the server only forwards the messages from the users. The second column in the User Aggregation
phase refers to the cost of the committee members.

Computation Cost
Protocol Rounds Server User
Setup | Agg. | Setup Agg. Setup Agg.
BIK+17[18] 8 - O(n?L) - O(n?® +nlL)
BBG+20[12] 8 - O(nlog®n + nLlogn) - O(log®n + Llogn)
Flamingo[7}] 4 3 fwd O(nL + nlog®n) O(log? n) O(L + nlogn)
LERNA [10]] 1 [1]1] fwd O((k +n)L + £2) O(x?) O(L) | O(L+n)
SASH[72] - 10 = O(L + n?) - O(L + n?)
SOPA; - 111 - O(nL + L(log nloglogn)) - O(L +lognL) | O(nL)
SOPA?Y - 11 = O(nL + L(log nloglogn)) - O(lognlL) O(n)
SOPA, - 111 - O(nL + L(log nloglogn)) - O(L +1logn) | O(n)

committee members speak once too. On the contrary previous works[18, 12]! require 8 rounds and
the work of [74] requires 7 rounds in total, including the setup. This reduction in round complexity
serves as a significant efficiency advantage.

Despite our advantage in the round complexity, our advantages extend beyond just round com-
plexity (see Table 2). Notably, as the number of participants (n) grows larger, our protocol ex-
cels in terms of computational complexity. While previous solutions exhibit complexities that are
quadratic [18, 72] or linearithmic [74] in n, our approach maintains a logarithmic complexity for
the users which is noteworthy when considering our protocol’s concurrent reduction in the number
of communication rounds.

Furthermore, our committee framework demonstrates a linear relationship with n for the com-
mittee members, a notable improvement compared to the linearithmic complexity and setup require-
ment in the case of [74] which considers a set of decryptors among the set of users.? Additionally,
it’s worth highlighting that our protocol, SOPA; based on the homomorphic PRG, has superior
server computation complexity when compared to all other approaches.

When it comes to user communication and message sizes, previous solutions entail user com-
plexities that either scale linearly [18, 72] or linearithmically [74] with the number of participants
(n) according to Table 3. However, in our case, user communication complexity is reduced to a
logarithmic level. Our communication among committee members exhibits a linear relationship
with n. Furthermore, as the number of users n increases in SOPAs, the communication load placed
on the server is also effectively reduced in comparison to other existing protocols.

That said, the above advantages underline the scalability and efficiency of our protocols in the

1[12] offer a weaker security definition from the other works: for some parameter « between [0, 1], honest inputs
are guaranteed to be aggregated at most once with at least « fraction of other inputs from honest users.

2Flamingo [74] employed decryptors which were a random subset of clients chosen by the server to interact with
it to remove masks from masked data that were sent by the larger set of clients. [74] lacks security guarantees in the
event of collusion among all decryptors.



Table 3: Total received and sent asymptotic communication cost for all rounds per aggregation with
semi-honest security. n denotes the total number of users, k the security parameter, L the length
of the input vector, and £ the bit length of each element. Note that the version of our protocols
relying on the LWR assumption will not incur a multiplicative k factor, as that was to represent the
size of the group element being O(k).

Communication Cost
Protocol Server User
Setup Agg. Setup Agg.

BIK+17[18] - O(nLé + n?k) - O(L{ + nk)
BBG+20[12] - O(nLtL + nklogn) - O(LL + klogn)
Flamingo[74] | O(klogn) | O(nLf + nklog®n) | O(klogn) O(LL + nklogn)
LERNA [10] - O(Lnk +m2-k) | O(2k) | O(kL+ Llogn + k) \ O(Lk + Llogn + k)

SASH [712] - O(nLl + k2k) - O(LL + nk)
SOPA; - O(kL(n +logn)) - O(k(L +1lognL)) | Ok((nL+ L))
SOPAY - O(knL + klogn) - O(kL + klogn) O(kn)
SOPA, - O(knL + klogn) - O(kL + klogn) O(kn)

Table 4: Communication Cost, in bytes, of various SOPA protocol.

Key-Reuse (bytes New Key (bytes)
Client—Server | Client—Per Committee | Per Committee—Server | Client—Server | Client—Per Committee | Per Committee—Server
SOPA; 56L 56L 56L 56L 32L 32L
SOPAY 56L 56 56 56L 32 32
SOPA, 56-+32L 56 56 56+32L 32 32

federated learning context which typically requires a very large number of n and L.

The works of [18, 12, 74] address an active adversary that can provide false information regarding
which users are online on behalf of the server. All these works mitigate this issue by requiring users
to verify the signatures of the claimed online set. This approach introduces an additional two rounds
into each protocol, resulting in 10 rounds in [18, 12] and 5 rounds in [74] with 10 rounds of setup.
The setup communication complexity of [74] also increases to O(klog?n). This same approach
applies to our protocols as well, which in turn increases just our round complexity by 2 rounds.

Communication Cost. in Table 4, we also present the communication cost of our federated learning
protocols implemented using the HSMy; construction. Each group element requires 56 bytes, while
each field element has a size of 32 bytes. L is the length of the input vector. We present the costs for
both the modes - where key-reuse mode requires the communication from client to the committee
to be a group element. Meanwhile, in new key mode, the keys can be shared by itself which requires
only a field element to be sent. Recall that SOPAY is the packed version, which means that the
client can send a single element to the committee Finally, SOPA, is the version of our protocol that
works with a seed-homomorphic PRG.

Meanwhile, in order to ensure that malicious clients can be detected and removed, we can
employ the Verifiable One — shot PrivateAggregation (Construction 12), where t is the threshold
of reconstruction. The resulting construction has the following overhead.

e For SOPA, it would require an additional 56 Lt bytes from client to each committee member
and from client to each server.

e For SOPAs, this would simply be just a additional 56t¢.

Note that ACORN [11] also relies on a similar Verifiable Secret Sharing approach (albeit over field



elements). However, their resulting robust protocol is non-constant round and even their non-robust
version is multi-round.

Comparison with LERNA [70]. LERNA requires a fixed, stateful committee to secret share client
keys, whereas we support smaller, dynamic stateless committees which can change in every round.
Concretely, LERNA works by having each client (in the entire universe of clients, not just for that
iteration) secret-share the keys with the committee. Consequently, LERNA’s committee needs to
be much larger (24 members for x = 40 due to the number of shares they receive) and tolerate
fewer dropouts, compared to our approach. Furthermore, LERNA’s benchmarks assume 20K+
clients, while real-world deployments have 50-5000 clients per iteration. When clients count is low,
the committee has to do significantly more work to handle and store the required large number
of shares. That said, LERNA is not suitable for traditional FL applications. In the table, we
use the same notations, as for LERNA to refer to committee size by utilizing x in the committee
calculations. LERNA could work for less than 16K parties but then the computation of committee
members increases significantly as the number of parties decreases. Even concrete costs require the
client to send 2GB of data during the setup phase (with 20K clients and L = 50, 000). Per iteration,
the cost is 0.91 MB. For the same parameters, SOPA{, in the key-reuse mode, requires the client to
send 5.6 MB (across both server and committee, per iteration) As a result, LERNA only becomes
cost-effectively after more than 400 iterations, during which it requires a fixed, stateful, and a large
committee to stay alive.

4 Outline of Paper

We begin our Technical Overview in Section 5. In Section 6, we discuss our cryptographic building
blocks. In Section 6.1, we discuss the underlying cryptographic framework CL-framework [21]. We
defer a discussion on class groups and cryptography to Section A. Due to space constraints, readers
can refer to Section B for the syntax and security of Integer Secret Sharing. In this section, we
also present the scheme from Braun et al. [22], while also presenting the first Packed Integer
Secret Sharing scheme in the CL framework. Readers can also find the syntax and security of key-
homomorphic pseudorandom functions (and its distributed variant) in Section C and a discussion of
seed-homomorphic pseudorandom generators in Section E. Meanwhile, in Section 6.2, we present the
first key-homomorphic PRF in the CL framework. Later, in Section 6.3 we present the distributed
version of the same. Meanwhile, we defer to the appendix constructions from LWR assumption and
their proofs of correctness and security to Section D.

In Section 7, we present the syntax and correctness of our primitive One-shot Private Aggre-
gation. Due to space constraints, we present the discussion on stronger security and construction
that satisfies this definition to Section 8. Meanwhile, in Section 7.3, we present the generic con-
struction of our scheme, based on the CL framework. We present the LWR based instantiation in
Sections D.2, D.3. We also present an extension to support robustness whereby a server can detect
malicious behavior of clients and remove them from the aggregation. This is presented in Section F.

Our applications to Federated learning are presented in Section 9. We focus on the simpler
synchronous setting in the main body of the paper while presenting the asynchronous version (i.e.,
a client’s message to the server and committee members may be dropped) in Section H. Finally, in
Section 10, we present the results from our experiments.

5 Technical Overview

In this work, we focus on building a primitive, One-shot Private Aggregation (OPA), that enables
privacy-preserving aggregation of multiple inputs, across several aggregation iterations whereby a
client only speaks once on his will, per iteration. Our main technical tool in building this primitive
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is a distributed, key homomorphic, pseudorandom function. In the following section, we present
our core ideas for this construction. We begin by introducing the framework for our constructions.

CL Framework. Class group-based cryptography is a cryptographic technique that originated in the
late 1980s, with the idea that the class group of ideals of maximal orders of imaginary quadratic
fields may be more secure than the multiplicative group of finite fields [25, 76]. The CL framework
was first introduced by the work of Castagnos and Laguillaumie [33]. This framework operates on
a group where there exists a subgroup with support for efficient discrete logarithm construction.
Subsequent works [34, 30, 31, 94, 22] have refined the original framework. The framework has been
used in various applications over the years [34, 30, 31, 98, 49, 56, 93, 22, 65]. Meanwhile, class group
cryptography itself has been employed in numerous applications [96, 97, 71, 19, 32, 36, 67, 26, 6,
1, 45, 44, 7]. We use the generalized version of the framework, as presented by Bouvier et al. [21].
Broadly, there exists a group G whose order is M - 8 where ged(M, 5) = 1 and § is unknown while
M is a parameter of the scheme. Then, G admits a cyclic group F, generated by f whose order is
M. Consider the cyclic subgroup H which is generated by h = zM, for a random x € G. Then, one
can consider the cyclic subgroup G generated by ¢ = f - h with G factoring as F - H. The order
of G is also unknown. The HSMy; assumption states that an adversary cannot distinguish between
an element in G and H, while a discrete logarithm is easy in F. Meanwhile, §, an upper bound for
§ is provided as input. Note that for M = N where N is an RSA modulus, the HSMy, assumption
reduces to the DCR assumption. Therefore, HSMy assumption can be viewed as a generalization of
the DCR assumption.

(Almost) Key Homomorphic Pseudorandom Functions. The earliest work that presented a key ho-
momorphic PRF can be traced to the work of [77] where they showed that for appropriate definition
of a hash function, H(z)* where k is the key and z is the input was a secure key homomorphic
PRF under the DDH Assumption, in the Random Oracle Model. Subsequently, the work of [20]
constructed an almost key homomorphic PRF under the Learning with Rounding assumption [8],
again in the random oracle model. They also present constructions under the LWE assumption in
the standard model. In this work, we present a new construction of key-homomorphic PRF, in the
CL framework leading to new constructions under the HSMy assumption (which includes construc-
tions based on DCR assumption). The construction adapts the DDH-based construction into the CL
framework. We present the first such construction in the CL framework, which also includes the first
such construction known from the DCR assumption. We formally show that F(k,z) = H(x)* where
k «s K and H: {0,1}" — H is modeled as a random oracle is a secure key homomorphic PRF under
the HSMy assumption.® The adaptation necessitates a prudent approach, one has to be careful in
identifying appropriate groups to work over along with the identification of suitable input and key
spaces. More precisely, while it is known that one can identify encodings of G, the group order of
H and also identification of elements in this group is not efficient. Therefore, one has to rely on
using § to instantiate a distribution Dy such that {h” : x <s Dp} (refer Lemma 1) is statistically
indistinguishable from sampling an element directly from H.

Distributed Key Homomorphic Pseudorandom Functions. The seminal paper of Boneh et al. [20]
also presented generic constructions of Distributed PRF from any Key Homomorphic PRF. The
reduction proceeds by secret sharing (such as using Shamir Secret Sharing [87]) the PRF key, with
partial evaluation simply performing the evaluation with respect to the key share. Unfortunately,
since the CL framework works in groups of unknown order, one needs to work over integer spaces.
There have been several research focusing on Linear Integer Secret Sharing [47], which can be

3Most recently, [86] showed how to hash into groups of unknown order, such that the discrete logarithm is unknown.
However, for our purposes, knowledge of discrete logarithm does not constitute an attack vector.
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expensive (See an overview of shortcomings [47, Introduction]). Instead, we rely on the Shamir
Secret Sharing over Integer Space, as described by Braun et al. [22]. This work is the first to
identify how to suitably modify the secret sharing protocol to ensure that the operations can work
over a group of unknown order, such as the ones we use based on the CL framework. This stems
from two reasons. The first is leakage in that a share f(i) corresponding to some sharing polynomial
f always leaks information about the secret s, mod¢ when the operation is over the set of integers.
Meanwhile, the standard approach to reconstruct the polynomial requires the computation of the
Lagrange coefficients which involves dividing by an integer, which again needs to be “reinterpreted”
to work over the set of integers. The solution to remedy both these problems is to multiply with an
offset A = m! where m is the total number of shares. We refine the Integer Shamir Secret Sharing
scheme by adjusting various computations with appropriate offsets, to present a construction of
Distributed PRF's from our HSMy-based construction. Unfortunately, multiplying such offsets results
in our actual evaluation protocol differing substantially from the HSMp-based key homomorphic
PREF. Therefore, one has to be careful during our security reduction proof to account for the offset.
Finally, we show that it still satisfies the key homomorphism property whereby a combination of
partial evaluations of secret shares of various keys is matched by the evaluation of the sum of the
keys at the same input point.

Meanwhile, the aforementioned work of Boneh et al. [20] presented a generic construction of
distributed PRF from any almost key homomorphic PRF. To this end, they present a construction
based on the Random Oracle under the Learning with Rounding Assumption. The work of Boneh et
al. [20] proposed the following construction Fryr(k, ) := |[(H(z), k)|, as an almost key homomorphic
PRF under the LWR assumption. Here, ¢ > p are primes where k «<s Z and H is a suitably defined
hash function. Then, they present a generic reduction to build a distributed PRF from any almost
key homomorphic PRF. To this end, they rely on standard Shamir’s Secret Sharing over fields
because both ¢ and p are primes. This reduces some complexity when compared with integer secret
sharing. However, their proposed construction contained critical shortcomings in the construction
leading to issues in proof of correctness and security. We now present a broad intuition on these
flaws.

An almost KH-PRF satisfies the definition that F(ki + ko,z) = F(k1,2) + F(k2,z) — e for
some error e. In the case of the LWR construction, e € {0,1}. However, this also implies that
F(T-k,z)=T-F(k,z) — ep where the error is now in {0,...,7 — 1}. This results in error growth,
and causes impact when we rely on Lagrange interpolation. Therefore, the fix, as proposed by
the authors, is to multiply with offset A. By multiplying with A = m!, one can upper bound the
value that the error function takes and then use suitable rounding down values to ensure that the
error terms are “eaten” up. Unfortunately, in their security reduction, there comes a point where
one should be able to simulate partial evaluations on i*, such that * is unknown. This results in
the reduction employing Lagrange interpolation with the “clearing out the denominator” technique,
resulting in error growth. Therefore, the partial evaluation response again needs to be rounded down

to avoid error growth. In other words, the challenger can only provide with [AF (k(i*), :L')J . Recall
u

that to round an integer down from Z,, to Z,, one finds the largest integer ¢ such that i-|p/u| does not
exceed x. Consequently, their definition of partial evaluation is incorrect and needs to be updated
to be consistent with this simulatable response. Finally, the presence of an A in partial evaluation
implies that the actual evaluation should have another factor of A. We also noticed further issues in
their choices of rounding. Specifically, the partial evaluation needs to be rounded down to u such that
|p/u] > ((A+1)-t-A) where t is the threshold for reconstruction. Additionally, they only provided
a framework to build distributed PRF from any almost key homomorphic PRF with respect to one
PRF key and not the case where the key is a vector, as is the case with LWR. We fix these issues
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in our construction where we build a distributed, almost key homomorphic PRF from the LWR-
based almost key homomorphic PRF. We formally show that Fiy(k,z) = |A|A [<H(m),k>pju“v
for appropriate choices of v and v is a secure, distributed, almost key homomorphic, PRF.

One-shot Private Aggregation With these key cryptographic building blocks in place, we introduce
a new primitive called One-shot Private Aggregationfor secure aggregation for multiple iterations
where users choose to participate in a particular iteration or not. The idea of this primitive is
for the client to do two steps concurrently: encrypt its input value while providing the committee
members with some auxiliary information. Meanwhile, the committee members can combine the
auxiliary information from all of the clients and forward the results to the server. Now, the server
can accumulate all of the ciphertexts, use the information from the committee members, and finally
unmask the summation. We build generic constructions from any distributed, key homomorphic
PRF and prove its security. The idea of our construction is as follows. Client 4, with input z; ¢ for
iteration /, first uses its PRF key k; to compute F'(k;,£) and uses the result to mask x;,. In the
CL framework, we do this as follows: f*i¢ . F(k;,¢). Meanwhile, to the committee member j, it
sends F (kl(] ), ¢) where ki(j ) is the j-th share of using Integer Shamir Secret Sharing to distribute the

key k;. The committee member j, which has received {F(k(J )¢

7 )

n
)} . simply combines the inputs it
1=

received to obtain F(} ", kgj ),E) using the key-homomorphism property. This is communicated to
the server. Once t such combinations are received by the server, the server uses the reconstruction
property of the integer secret sharing scheme to compute F ()", k;, ¢). Further, it multiplies all
the ciphertexts together to get fX®it . [, F(k;,€). Finally, it can use the key homomorphism
property again to remove the product mask and simply get f2%i.¢, which it can then recover because
F has efficient discrete logarithm. The CL framework also supports the construction from the DCR
assumption.

Additionally, we also build OPA from the distributed, almost key homomorphic PRF based
on LWR. However, due to the “almost key homomorphism”, the error growth required additional
rounding. Therefore, we build our OPA based on LWR assumption, in a white-box manner. In our
construction, the auxiliary information only consists of the first level of rounding down. Specifically,

auxgje) = l<H(€>, kgj )J where auxl(.j[) is the information sent from client i to committee member j
Y p k)

for label ¢ with kl(-j ) denoting the j-th share of k; where the sharing was done using Shamir’s
Secret Sharing over a field. Meanwhile, the committee member simply sums up all of the auxiliary
information it has received, and multiplies it with the offset before rounding down to an appropriate
choice of integer u to avoid any error growth. In essence, the output at this stage corresponds with
a partial evaluation of x with the j-th key share corresponding to > ; k;. Finally, the server
combines it using the standard DPRF to recover auxy, which corresponds with F(}}" ; k;, z) based
on the correctness of our DPRF. Additional care needs to be taken to ensure that the input x;, is
suitably modified before encrypting to ensure that the aggregate can be computed, even in the face
of leakage.

However, the resulting construction still has worse parameters than desired due to successive
rounding. We, instead, present a more efficient construction, under the LWR assumption with the
following observation: Unlike other protocols in secure aggregation literature, in our case, one does
not need to reuse the key for correctness. This leverages the non-interactivity critically. Indeed,
while reusing keys does seem to naively offer computational efficiency, we show that for our LWR
setting, the flexibility afforded by keys per label is far higher. We employ a key k; ¢ for each user ¢
for each label £. The benefits are listed below:

e Reusing keys necessitated that the auxiliary information never leaked information about the
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key share, while still allowing computation. Meanwhile, since we have a key per label, and
each label is used exactly once, the shares received by the committee can simply be the key
share.

e Since the key shares are provided only by the client, rather than associating a separate sharing
polynomial per element of the key vector, one can resort to packed secret sharing. This reduces
the communication sent from the client to any one committee member to simply be a single
field element.

e This savings can be forwarded to the server as well with the committee members simply naively
adding its received key shares and sending the information to the server. Then, the server can
perform the Lagrange Interpolation to receive the aggregated key, element by element.

e Finally, it can use the almost key homomorphism of the PRF to unmask the aggregated inputs.

Stronger Security Definitions and Construction. We also present a stronger security guarantee
whereby the committee members can all collude and observe all encrypted ciphertexts and all
auxiliary information, and cannot mount an IND-CPA-style attack. Unfortunately, our current
construction where the inputs are solely blinded by the PRF evaluation, which is also provided to
the committee members in shares, can be unblinded by the committee leaking information about
the inputs. We modify the syntax where each label/iteration begins with the server, which has its
own secret key, advertising a “public key” for that iteration (the keys for all iterations can also be
published beforehand). The auxiliary information sent by a client to the committee is a function
of this public key while the actual ciphertext is independent of this public key. Intuitively, this
guarantees that the committee member’s information is “blinded” by the secret key of the server
and cannot be used to unmask the information sent by the client. We now describe our updated
construction. For each label ¢, the server publishes F'(kg, ) where kg is its public key. Then, the

auxiliary information sent by the client is of the form F' (kgj ), ¢) where kEJ ) is the j-th share of the
i-th clients key. Client 4 masks its input by doing f% - F(kg,£). Committee member j combines

the results to then send F(}}" kl(-j ) ,0) to the server. The server uses Lagrange interpolation and its
own key ko to compute: F(ko > ki, £). Meanwhile, the server, upon multiplying the ciphertexts
gets X, = fi=1%it . F(kg Doy ki, €). The recovery is straightforward after this point.

OPA and Private Stream Aggregation. Private Stream Aggregation was a primitive introduced to
ensure that a server can routinely aggregate information from the clients without learning any
information about the client’s inputs. There has been a long line of research in this domain which
has worked under the setting where a trusted setup distributes the key. Meanwhile, the only work
that aimed to allow for dynamic participation while avoiding the pitfalls of trusted setup focused
on a modified setting of private stream aggregation whereby it used a “collector” [68]. This implies
that a party cannot drop or join, without redoing the entire setup. Meanwhile, our OPA protocol
can be effectively used as a drop-in for Private Stream Aggregation protocols. It allows dynamic
participation where users can join and leave, as needed. We have distributed trust among the
committee members. It also avoids some issues of having to compute expensive operations to
recover the aggregate (i.e., take discrete logarithm). Finally, we also present a version of PSA that
is robust, i.e., incorrect client behavior can be detected and removed, along with any errant behavior
on the part of the committee members. More details can be found in Section G.

Secure Aggregation for Federated Learning. Using One-shot Private Aggregation we present three
levels of construction.

e SOPA;: To begin with, we present a naive approach whereby our OPA primitive is used to
encrypt a vector of length L, element by element. This requires a key per element of the
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vector. The server receives L ciphertexts, per client while the committee members receive
L key shares per client. In this protocol, which we call SOPA, we consider the synchronous
setting in which all the communication sent by the set C of clients participating in an iteration
reaches the designated parties. Then, one can simply use our OPA protocol in a black box
fashion, applied to every element separately to ensure that the server is capable of aggregating
the clients’ vector of inputs. For simplicity, we assume that m = logn. However, our protocol
can work for any choice of m.

We propose an optimization to use packed secret sharing. Notice that there are L keys that
were originally distinctly shared using several polynomials. This can be optimized by using
a single polynomial to share all these L secrets, reducing the communication between the
client and the committee members to a minimum. Note that one requires Secret Sharing over
the Integer Space to ensure that we can pack secret shared multiple instances of our OPA
construction based on the HSMy, assumption. We show how to adapt existing Shamir’s Packed
Secret Sharing protocol over prime-order fields to integers in this work. Our proof technique
again relies on constructing a vector of sweeping polynomials. We believe this is a contribution
of independent interest. We denote the packed, grouped version of our protocol with SOPAY.

SOPA,: Observe that, in SOPA;, we encrypt each element separately and if one were to use
the HSMy assumption, this can prove to involve (L) group exponentiations which can be
impractical when L is very large. Instead, we propose a hybrid approach to reduce com-
munication and computation. The solution relies on the approach observed by SASH [72].
The idea is to use a seed homomorphic PRG, i.e., we have a PRG SHPRG : Z, — Z]%
SHPRG(seed;) + SHPRG(seeds) = SHPRG(seed; + seedz). With this tool in our arsenal, we
can do this simpler solution. Each client ¢ samples a seed seed; ¢ per iteration . Then, the
client ¢ uses our OPA protocol to encrypt seed; . At the end of the execution of our OPA
protocol for iteration ¢, the server receives > ; seed; . Meanwhile, the client uses SHPRG to

expand seed; ¢ to get (maski(’lg), e ,mask:l%)) < SHPRG(seed; ¢). Then, the client can mask
the actual input vector by doing %(',]e) + mask‘g@) for j = 1,..., L. Finally, the server can use
the aggregated seed produced by our OPA protocol to compute the sum of all the masks and
then unmask it to receive the aggregation. Unfortunately, there is only a construction based
on LWR that is almost seed homomorphic [20], so care must be taken to handle the error.
Critically, this reduces the actual encryption of the input vector to operations over field ele-
ments. Moreover, the communication with the committee members is reduced as there is only
a single key to share. Finally, of independent interest, we also present a seed homomorphic
PRG from HSMy, assumption.

SOPA3: SOPA3 that aims to handle the case when the set of clients whose inputs are received
by the server is different from the committee members. While the client still speaks once, we
add two rounds of communication between the committee members and the server to identify
the set C of users whose messages have been received by the server and a sufficient quorum of
committee members.

6 Cryptographic Building Blocks

We defer our exposition on some of our cryptographic building blocks to our appendix. We discuss
class groups and cryptography in Section A. For completeness, we discuss secret sharing in Section B.
We discuss pseudorandom functions in Section C.

Generalized CL Framework

Let M be an integer. The CL Framework consists of a setup algorithm that generates a large
cyclic group of an unknown order but which contains a subgroup of order M where the discrete
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logarithm problem is easy. The index of that subgroup is dictated by some security parameter of the
scheme. Consequently, one can admit various versions of the Elgamal cryptosystem [51] such that the
plaintext space is the additive group (Z/MZ, +). While the work of Castagnos and Laguillaumie [33]
and its subsequent variations and refinement restricted the choice of M to be a prime integer M, the
work of Bouvier et al. [21] presented a more generic framework that would capture an assortment of
linearly homomorphic encryption schemes. Specifically, the generic framework implies the security
of the construction where M = p [34], M = p¥ for some choice of k [48], where M = 2% [35]. They also
show that it encompasses schemes which go beyond class groups including variants of the Paillier
cryptosystem [79] such as the Camenisch and Shoup’s encryption scheme [29] where M = N which
is an RSA modulus. At it core lies the Hidden Subgroup Membership (HSMy) assumption which
can be viewed as a generalization of the Decisional Composite Residuosity (DCR) assumption.

Definition 1 (Generalized CL Framework). Let ks be the statistical security parameter and let k.
be the computational security parameter. Let M be a positive integer. Let G be a group of unknown
order M -3, for some § that depends on the security parameter k.. We require that G admits a cyclic
group F, generated by f, of order M such that gcd(M, 5) = 1, although § which is the index G:Fis
unknown and hard to compute. Instead, we are given an upper bound § of 5. Further, let h = zM
for some random x € G.

The framework is defined by two algorithms (CLGen, CLSolve) such that:

e ppcL = (5, f, h, G, F) s CLGen (1%, 1%5)*

e The DL problem is easy in F, i.e., there exists a deterministic polynomial algorithm CLSolve
that solves the discrete logarithm problem in F:
ppcL = < CLGen(1%<, 1%+)
Pr|lo=2a2 |2<sZ/pZ X = f% =1
x’ « CLSolve(ppci, X)

Proposition 1 ([21]). Let g := f-h. Let G :={g) be a cyclic subgroup of G. If H = {zM : 2 € G},
then we have H is generated by h and G factors as F x H.

Definition 2 (Intermediate Distributions). For ease in security proofs, we will define intermediate
distributions as follows. Dg (resp. Dg) be a distribution over the set of integers such that the
distribution {g* : x<sDg} (resp. {h* : x<sDg}) is at most distance 27" from the uniform
distribution over G (resp. H).

We also have the following lemma from Castagnos, Imbert, and Laguillaumie [32] which defines
how to sample D, Dy from a discrete Gaussian distribution.

Lemma 1. Let G be a cyclic group of order n, generated by g. Consider the random wvariable X
sampled uniformly from G; as such it satisfies Pr[X = h] = % for all h € G. Now consider the
random variable Y with values in G as follows: draw y from the discrete Gaussian distribution Dz, 4

with o =2 n w and set'Y := g¥. Then, it holds that:
A(X,Y) < 2e

4In the original work where M = p, the CLGen algorithm was also allowed to take as input the M with the only
requirement that it was at least k. bits long and the randomness used in the procedure was made public. This implies
that one does not need to rely on a trusted setup. These are features we will later exploit to make this entire CLGen
algorithm be decentralized, as shown by the work of Castagnos et al. [30, 31].
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Specifically, looking ahead we will set Dy to be the uniform distribution over the set of integers
[B] where B = 2"s . 5. Using Lemma 1, we get that the distribution is less than 27" away from
uniform distribution in H. We refer the readers to the discussion in Tucker [94, §2.7.1, §3.1.3, §3.7]
for more information about instantiating the distribution from a folded uniform distribution or from
a folded discrete Gaussian distribution.

Definition 3 (Hard Subgroup Membership Assumption (HSMy) Assumption [34]). Let k. be a
the security parameter. Let M be a positive integer. Let (CLGen, CLSolve) be the group generator
algorithms as defined in Definition 1, then the HSMy assumption requires that that HSMy problem be
hard in G even with access to the Solve algorithm. More formally, we say that the HSMy problem is
hard if for all PPT adversaries A, there exists a negligible function negl such that:
ppcL < CLGen (1%, 1%5)

x s Dy, u s (Z/MZ)\ {0}
b<s{0,1}; Zyp = h*; Z1 = f*- h*

b s ASoNe(PPeL) (ppey , Zy)

1
Prib=1V <zt negl(k.)

Remark 1 (Trusted Setup). It is well known that the DCR assumption requires a trusted setup
where the RSA modulus N is the product of two sufficiently large safe primes. Any knowledge of
the independent primes renders the assumption insecure. As pointed out by the work of Bouvier et
al. [21], the procedure for CLGen for the case when M = 2* also requires an RSA modulus.
Consequently, when M = ¢, ¢*, one does not require a trusted setup while M = N and M = 2F
where N is an RSA modulus that requires a trusted setup. We refer the interested readers to the
work of Bouvier et al. [21, §4] for a detailed exposition on how to instantiate the cases for M = ¢¥, 2%
in class groups.

6.2 Pseudorandom Functions in CL Framework

Construction 1 (PRF in CL Framework). Let (CLGen, CLSolve) be the class group framework as
defined in Definition 1. Then, let ppc <s CLGen(1%<,1%¢). Further, let H : X — H be a hash
function. Then, consider the following definition of K = Dy, X = {0,1}*,Y = H, F(k,z) = H(z)*.

Remark 2. Note that the order of H is unknown. Therefore, one has to rely on Dy to hash into
H. Most recently, [86] showed how to hash into groups of unknown order to ensure that discrete
logarithm is unknown. However, for our applications, this is not a concern. Indeed, one can simply
compute the hash function as h'(®) where H’(z) hashed in Dy.

Theorem 2. Construction 1 is a secure PREF where H is modeled as a random oracle under the
HSM\ assumption.

Proof. We denote the challenger by B. Let S;j be the event that the adversary wins in Hybrid; for
each j € {0,...,2}. Let g. (resp. qp) denote the number of evaluation queries (resp. hash oracle
queries) that the adversary makes. We use an analysis similar to the technique by Coron [41].

Hybridg(x): Corresponds to the security game as defined in Definition 10. It follows that the ad-
vantage of the adversary is

Advg = 2 - | Pr[So] — 1/2] = Adv5RF

Hybrid; (x): This game is identical to Hybrid; with the following difference. The challenger tosses
biased coin d; for each random oracle query H(t). The biasing of the coin is as follows: takes

a value 1 with probability —— and 0 with probability Then, one can consider the

qe+1

9e
QE+1 -
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following event E': that the adversary makes a query to the random oracle with x; as an input
where z; was one of the evaluation inputs and for this choice we have that §; was flipped to 0.

If F happens, the challenger halts and declares failure. Then, we have that:

e 1
Pr[—-FE] = < ge > >
ge +1 e(ge + 1)

where e is the Napier’s constant. Finally, we get that:

Pr[So]

Pr[S1] = Pr[So] - Pr[—E] > e(ge + 1)

Hybrida(x): This game is similar to Hybrid; with the following difference: we modify the random
oracle outputs.

e If 5, = 0, the challenger samples w; «<—s Dy and sets H(t) = h™t
e If §; = 1, the challenger samples w; <s Dy, uy <s Z/MZ and sets H(t) = h™t - ft

Note that, under the HSM assumption, an adversary cannot distinguish between the two
hybrids. Therefore, we get:
| Pr[Sa] — Pr[S1]] < cusn,
where egsy,, is the advantage that an adversary has in the HSMy game. Note that Hybrid,
corresponds to the case where the outputs are all random elements in G. Therefore, the
inputs are sufficiently masked and leak no information about the key. Therefore, Pr[S2] = 0
Then,
AdVERF < (e (e + 1) - ensmy,

O]

Remark 3. Note that the above scheme is simply an adaptation of the famous DDH-based con-
struction of a key-homomorphic PRF that was shown to be secure by Naor et al. [77]. Tt is easy to
verify that our construction is also key homomorphic as H(x)#1+k2) — H(z)k1 . H(z)k2.

6.3 Distributed PRF in CL Framework

We build our construction of Distributed PRF from the Linear Secret Sharing Scheme LISS :=
(Share, GetCoeff, Reconstruct) with ppsg denoting the public parameters of the LISS scheme. We
specifically employ the Shamir Secret Sharing scheme over the Integers, as defined in Construction 4.

Construction 2 (Distributed PRF in CL Framework). A (t, m)-Distributed PRF is a tuple of PPT
algorithms DPRF := (Gen, Share, Eval, P-Eval, Combine) with the algorithms as defined in Figure 1.

Theorem 3. In the Random Oracle Model, if Construction 1 is a secure pseudorandom function if
Construction 4 is statistically private, then Construction 2 is pseudorandom in the static corruptions
setting.

Correctness. As discussed in Section B.1, for a polynomial f € Z[X], every f(i) leaks information
about the secret s mod i leading to a choice of polynomial f such that f(0) = A -s. For our use
case, the secret is the PRF key k. Let us consider a set S = {i1, ..., 4} of indices and corresponding
evaluations of the polynomial f at iy, ..., giving us key shares: k), ... k(). To begin with, one

ri—X

can compute the Lagrange coefficients corresponding to the set S as Vi e S, \;(X) := l_[jes\{i} ﬁ

This implies that the resulting polynomial is f(X) := Z;:l Ai; (X) - k(i)
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—1 Protocol Distributed PRF

Gen(1%,1%,1™) Eval(k, x)
Parse r = (rs, ic) - Compute Y = H(z)A"k
Run ppc s CLGen(1%¢,1%¢) return Y
Set €, := M| o Euel(19
Sample H: X — H M
return pppgr = (PPcL, LISS.ppss, H) Compute 1; = H(z)A"
Share(k, t, m) return y;
Run k.. k(™ s LISS Share(k, t, m) Combine({yi};cs)
return k(... k(™ Run Ajcs = LISS. GetCoeff(S)
Compute Y’ = [.cs yf\’
return Y’

Figure 1: Construction of Distributed PRF based on the LISS := (Share, GetCoeff, Reconstruct)
scheme of Construction 4, with ppgg denoting the public parameters of the LISS scheme. Recall
that the offset A := m! where m is the number of shares generated.

However, \;(X) requires one to perform a division ; — x; which is undefined as H hashes to G
whose order is unknown. To avoid this issue, a standard technique is to instead compute coefficient
Ai(X) := A \ij(x). Thereby, the resulting polynomial that is reconstructed if f/(X) = A f(X) =
Z;zl Ay (X) - k(). Consequently,

H(a)2"* = H(a) O = B(a)2 2 4 O

(H($)A.k(ij))Aij ©)

(P-Eval(k(%‘), @)A” (0)

—.

<
Il
—

<
Il
—

I
.:]{*

Thus, our protocol is correct.

Pseudorandomness. Next, we consider the pseudorandomness property of our construction. Boneh et
al. [20] showed that from any Key Homomorphic PRF (which Construction 1), one can build a Dis-
tributed PRF. The proof of the following theorem follows the template of this scheme with certain
important adaptations as our secret sharing scheme is over integers. The proof technique is to show
that if there exists an adversary A that can break the DPRF security, one can then use it to build an
adversary B to break the pseudorandomness of our original PRF, as defined in Construction 1. The
idea behind the proof is for B, upon receiving a choice of t — 1 corruptions as indices i1, ...,4_1, to
then choose a random index i; and implicitly set k(®) to be the PRF key chosen by its challenger.
Therefore, the B now knows t indices, with which it can sample the Lagrange coeflicients as before:

for j=1,...,tdo
ic—X
Ay (X) = TTeeqr, .0y =P C

Now, B with knowledge of the keys for indices i1,...,4—1 along with access to oracle needs to
simulate valid responses to P-Eval queries for an unknown index. Call this index ¢*. Then, we have:

P-Eval(k(™), ) 1= ()" = ()2 M KT
— H(x)Zﬁ-;iAij (i*)-k) (H(;p)k“t)>Ait(i*)

The last term is simulated using B’s own oracle access.
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Proof. Let Abe a PPT attacker against the pseudorandomness property of DPRF, having advantage
€.

A first chooses t — 1 indices K = {ij,...,4—1} where each index is a subset of {1,...,m}.
A receives the shares of the keys k) = f(i1),... k(1) = f(it_;) (for unknown polynomial f
of degree t such that f(0) = k- A with A := A. Further, A has access to Ogyal(i, ) receiving
P-Eval(k;, z) ins response. Additionally, A expects to have oracle access to the random oracle H.

Using this attacker A, we now define a PPT attacker B which will break the pseudorandomness
property of Construction 1. Note that B is given access to the oracle that either outputs the real
evaluation of the PRF on key k* or a random value. Additionally, B expects to have oracle access
to the random oracle H.

e Setup: B does the following during Setup.

— Receive set S = {i1,...,it—1} from A.
— Next B generates the key shares and public key as follows:
% Sample k(1) k(1) e 7,
* BB picks an index 7y at random and implicitly sets the PRF key chosen by its challenger
as k),
* Immediately, given the t indices, one can construct the secret sharing polynomial
f € Z[X] as described earlier, but instead recreating the polynomial f'(X) using
the coefficients A;; (X) for j = 1,...,t with k(i) being unknown to B and using its
challenger to simulate a response.

% B gives k), k(1) to A.
e Queries to H: B merely responds to all queries from A to H by using its oracle access to H.

e Queries to Partial Evaluation: B receives as query input, some choice of key index specified
by ¢* and input z; for ¢ = 1,..., Q. In response B does the following:

— Forward z; to its challenger. In response it implicitly receives P-Eval(k(®), x;), but off by
a factor of A in the exponent. Call this h;;.

t—1 A ey (35) .
— Compute: hj+ = H(wj)zizlAzf ()47 (hjx) 1) where B uses its own access to hash
oracle to get H(z;).

— It returns hj;+ to A.
e Challenge Query: On receiving the challenge input z*, B does the following:
— Ensure that it is a valid input, i.e., there is no partial evaluation queries on xz* at any

unknown index point.

— If not, B forwards to its challenger z*. In response it implicitly receives P-Eval(k(®), z*),
but off by a factor of A in the exponent. Call this h*.

— It also uses its oracle access to H to receive h = H(z*).

AT Ay (0)k\%) (h*)A2~Ait(O)

— It finally computes y = H(x;) and outputs y to A

e Finish: It forwards A’s guess as its own guess.
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Analysis of the Reduction. Note that for the case when b = 0, A expects to receive H(m*)AB'k where
k is defined at the point 0. So, we get:

H(x*)AS,k(O) _ H(x*)Azf/(O) _ H(z)AQ ;_:1 Aij (0)~k(ij)

1 A (o)) i\ A% (0)
_ H(,’L’)A2Zi:i Alj(O) k) <H(x)k( ))

This shows that the returned value y is consistent when b = 0. Meanwhile, when b = 1, h* is a
random element in the group and then y is a truly random value which means that B has produced
a valid random output for A. Similarly, when b = 0, every response to partial evaluation is also
done consistently by correctness of the underlying secret sharing scheme. Meanwhile, when b = 1,
we can rely on the statistical privacy preserving guarantee of the underlying secret sharing scheme
to argue that the difference that the adversary can notice is statistically negligible. This concludes
the proof where B can only succeed with advantage e. O

Verification of Key Homomorphism. Let ki and ko be two sampled keys from K. Let kgl), cee kgm)

«s Share(k;) and kgl), Cee kgm) «s Share(kg) where we have two polynomials f;(X) and fo(X) with
the property such that fi1(X) = A - kq, fo(X) = A - ke. Consider a subset S of size at least
t indicated by the indices {i1,...,1d}. Then, the lagrange coefficients induced by the set S can

be defined as: V i; € S, )\i?. (X) = I leep a3 % ‘
FiX) o= XN (X) -k, f(X) = Y A (X) - kS7. Similarly, as before we will consider

Thereby, the resulting polynomials are f](X) = A - f1(X) = Z;zl Ay (X) - kgzj), f5(X) =A-
F2X) = Sy A (X) k5.

; ; ; ) | Gj)

Then, for any x, consider yg = H(:c)Akgj) ~H(:U)Ak§]) = H(z)2 k" k") for 5 =1,...,m. Then,

let us consider:
Eval(ki + ko, ) := H(z) A (atke) — g(z)A%k g(z)A%k2 = g(2) A" N1 Op(g) A7)

)

This implies that the resulting polynomial is

t G ap ) MO e\
= (H H(IL’)A'(klj +ky? )) = (H yglJZ))
j=1 =1

- Combine({ygg)}jem

As discussed earlier, the HSMy assumption also generalizes the DCR assumption. It follows that we
also have a Distributed PRF that is Key Homomorphic under the DCR Assumption in the Random
Oracle model.

Corollary 4. In the Random Oracle model, there exists a secure distributed, key homomorphic
PRF evaluating the PRFF : K x X — Y

We defer our constructions, security, and proofs of correctness from LWR assumption to Sec-
tion D.1.

7 One-shot Private Aggregation

In this section, we begin by introducing the syntax and security of our primitive which we call
(Labeled) One-shot Private Aggregation (OPA). Broadly speaking, the goal of this primitive is
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to support a server (aka aggregator) to sum up the clients’ inputs encrypted to a particular label
(which can be a tag, timestamp, etc.), without it learning any information about the inputs beyond
just the sum.

7.1 Syntax and Correctness

Definition 4. Let C = {C4,...,Cn} be a committee of size m and let t be the threshold for the
committee. Further, let M denote the modulus of the summation and L be the set of all labels.
Then, an (t,m,M) One-shot Private Aggregation Scheme OPA = (Setup, KeyGen, Enc, C-Combine,
S-Combine, Aggregate) consists of five algorithms and has the following syntaz:

e pp <s Setup(1%, 1, 1™): On input of a security parameter r, public parameters pp are gener-
ated. These parameters are implicit arguments to the remaining algorithms.

o k; <3 KeyGen(): Generates and outputs a party’s private key k;. This algorithm is run by the
server and the clients, but not the committee.

° (Ctng, {auxgjz)} [ ]> «—s Enc(pp, ki, zi, t,m, £): For label £ € L, client i encrypts its value x;
™) je[m
using its private key k; and produces ct; . Further, it also generates an auziliary information

for label ¢, {auxl(.jg)} where auxgjg) s sent to committee member j.
’ je m y

. (AUX(j)) « C-Combine( aux?) ): This is the “combine” procedure that is executed by the
14 i, icCy
committee member, whereby a member j runs this algorithm on all the auxiliary informa-
tion {auxgje)} : for label ¢ it has received from the clients denoted by Cp, and outputs the
’ 1€Cy

combination of this auziliary input AUng ),

o AUX; « S—Combine({C, AUng)} ' S)) This is the “combine” procedure that is executed by the
je

server, on the combined information received from a set S of committee members, denoted by
S < {1,...,m} such that |S| = t where the combined information is denoted by{ (AUXEJ))} &
je

and outputs the final combined information for ¢ denoted by AUX,.

o X; « Aggregate(AUXy, {cti s}, o): The server, on input of AUX,, the cipherterts {ct;,}
runs the aggregate procedure to output X, such that Xy = Y. x; mod M.

ieC’

Definition 5 (Correctness). We say that a (t,m, M) One-shot Private Aggregation Scheme OPA is
correct if: for any n,m,k € Z, any t € Z such that t < m, any set S < [m] with |S| > t, any inputs
T1,...,Tp € Ly with X := Zie[n] x; mod M, and any label £ € L, the following holds:

pp < Setup(1%), {k; <5 KeyGen()};c[n10 10}
X=X, {(Cti,g, {auxgjg} ) s Enc(pp, ki, T;,t,m, £)
) gelm] ie[n]
Pr {(AUXE”) «— C-Combine <{aux5jg>}_ } =1
(‘.> i€[n] jes

AUX, < S-Combine({AUX}’
y om |ne({ y }je[s])
Xy < Aggregate (AUXg7 {Ctiﬂg}

L i€[n] J

Remark 4. The above syntax is for the “Key Reuse” mode. For the new key mode, the KeyGen
algorithm will output k; ¢
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~‘ Game Server Indistinguishability Security Game Oracles I

OCorr(i) OEnc(i7 x, Z, S)

K:=Ku {i} if (i,¢,-) ¢ E and |S| <t then

return k; cti e, {auxi?} ) ) «s Enc(k, z,t,m, ()
Ocom (£) ) jelm]

for j € [m] do E=Ev {(z’,é‘, {auxqgg }]E[m]>}
Let Eff) = {auxsj} QA aux_(fé)) € E} return ct; ¢, {auxije)}
AUXf{j) «— C-Combine (Eﬁﬁ) ges
AUX, < S-Combine ({Auxy)} )
J€[m]
return AUX,

Figure 2: Server Indistinguishability Security Game Oracles

7.2 Server Indistinguishability

The server indistinguishability game aims to guarantee that the server cannot learn the input of
any honest party, even if it receives up to t — 1 auxiliary information sent by the client and all
the collected auxiliary information produced by all the committee members. This is modeled by
allowing the adversary to make queries to various oracles, as defined in Figure 2, which we now
expand upon in words. For convenience, we introduce an intermediate function S-Combine that we
employ in the security game:

e Corrupt the user (Ocerr): This is the oracle that the adversary uses to corrupt and retrieve
the secret key corresponding to a user ¢ that it specifies. It receives k; in response. We use K
to record all corrupted parties.

e Encrypt, on behalf of a user (Ognc): The adversary invokes this oracle with the following
inputs: the identity of the user i, the input to be encrypted x, the label to be encrypted under
¢, and the committee subset S for which it wishes to receive the auxiliary information. We

record (i,¥, {auxl(j )}' [ ) in E. There are two restrictions in making queries to this oracle.
j€[m

First, the adversary can only query this oracle once per combination of (i,¢) and we use E
to do this verification. Second, the size of S does not exceed the threshold, i.e, |S| < t. In
response, the adversary receives the ciphertext that encrypted the input z;, and auxiliary
information for each of the members in S, i.e., {auxgj)} .
9 je

e Combination queries, on the inputs that have been encrypted to label £ (Ocom): The adversary
invokes this oracle to receive the final combined auxiliary information AUX, where the auxiliary
information is a function of all those auxiliary information generated through calls to Ogpc on
adversarial choices of input.

The server indistinguishability game proceeds in phases.

e Setup Phase: The challenger runs the setup algorithm to generate the system parameters pp.
The adversary is given pp and outputs n, the number of users to register. The challenger runs
the KeyGen algorithm n times, once for each of the n users.

e Learning Phase: The adversary issues queries to the various oracles defined by Ocerr, Oknc, Ocom
to learn any information it could. This phase ends with the adversary committing to a target
label 7.
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Challenge Phase: In this phase, the challenger identifies honest eligible users U := [n]\K.
Without loss of generality, we assume that there have been no queries to Og, with 7 as the
label. Should there be such queries, those users i such that (i,7,-) € E are also removed
from the set & and these inputs are later used to compute the challenge. Upon receiving,
U, the adversary commits to two sets: H < U is the set of honest users that the adversary
is targeting, and S that is the set of committee members for whom the adversary receives

{a uxng) }
i€H,jeS

of inputs for a user in H denoted by {x; 0,71}, and inputs {xz} n]\H for the remaining
users, with the caveat that the sum needs to be the same for those in ’H

provided |S| <t — 1. Further, the adversary also provides inputs two choices

Finally, the adversary is provided with individual auxiliary information for the subset S of the
committee members, ciphertexts, and the final auxiliary information for 7 denoted by AUX;.

Guessing Phase: The adversary outputs a guess ' and wins if ¥’ = b, provided trivial attacks
do not happen.

Definition 6 (S-IND-CPA Security). We say that a (t,m,M) One-shot Private Aggregation Scheme
OPA with label space L is Server-Indistinguishable under Chosen Plaintext Attack (S-IND-CPA) if
for any PPT adversary A, there exists a negligible function negl such that:

Pr

pp <s Setup(17%); b s {0, 1}

Check({%i,0, Zi,1}je3) A (st,n) <—s A(pp), {k; <s KeyGen()}z e[n]
b=1 (st,T) <3 AOcomOenc,Ocom (st U := [n]\K
|S] <t (7, S, {2000 ip bicw » {@ibiepp ) <—$A (st,U)

{ctw, {aufoT)} ] —s Enc(pp, 74, Tip }
j€[m

1
{Ctiﬂ—, {auxET)} ‘ s Enc(pp, 74, xl)} < 57 negl(x)
je[m] ien]\H

{(AUX(Tj)) « C-Combine ({aux?)} [ ])}
ISk

jelm]
AuxT«-scombmeQKAuxfﬂ

jelm]
,AUX,)

b —s A t,{ct ,a G }
(S “T UXZ’T i€[n],jeS

where

Check({xi’o, xm}

7.3

ieH)
if ZlEH 331‘,0 mOd M ;é ZiEH .Ti71 mOd M then

return false
return true

Our Construction of One-shot Private Aggregation Scheme

In this section, we present our constructions of OPA and prove its correctness and security. While
our underlying abstraction is that we build it from a distributed, key-homomorphic PRF DPRF :=
(DPRF.Gen, DPRF.Share, DPRF.Eval, DPRF.P-Eval, DPRF.Combine) as defined in Definition 12, we
would like to point out that these schemes need to have a particular feature. Specifically, if the
range of our PRF is ). Then, there exists a subgroup W into which our desired inputs can be
efficiently encoded and decoded. In our HSMy; based construction, the subgroup is F from where one
can efficiently encode and decode an input in Z/MZ. This is much easier in the context of our LWR
construction as everything happens over subgroups of the integers.
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~‘ Protocol One-shot Private Aggregation }

Setup(1*, 1, 1™) C-Combine({auxf"}} )
Parse k = (Ke, Kis) —
Run ppppge < DPRF.Gen(1%¢, 1%+ 1%, 1™) Compute AUX?) := ®iec aux:,{f)
return ppppre return AUXY)

KeyGen() ()

- . s-Combine({AUX{} )
Sample k «s K jes
return k

Run AUX, < DPRF.Combine({AUXﬁ”}’ )

Enc(pp, ki, i, t,m, () return AUX jes
¢

Parse k; = k;

Compute h; , = DPRF.Eval(k;, {) %
Compute ctl(.fJ =f*hig Compute M = AUX; " - [T,cc ctiv
Compute (k;”’)je[m] < DPRF.Share(k;, t, m) Compute X, < CLSolve(pp, M)
for j=1,...,mdo return X,

aux”) — DPRF.P-Eval(k"), ¢)

return ct; ¢, {auxf?} with auxf]} going to com-
je[m ’

mittee member j and server getting ct; 4.

Figure 3: Our Construction of OPA based on the HSMy; Assumption.

We present the construction that builds OPA from a KH-DPRF as instantiated from the HSMy
Assumption. Due to space constraints, we defer our LWR constructions to the appendix. We present
a construction that builds OPA from an almost KH-TPRF, as instantiated from the LWR Assumption
in Section D.2. We also present a much simpler construction in Section D.3 whereby there is a new
key in every round/label, i.e., in the “New Key” mode. We present this version to have much better
parameters based on the LWR assumption. We maintain that the construction based on Distributed
Key Homomorphic PRF achieves a stronger security definition whereby, even if the same key is
used across multiple labels, it does not affect the security of the construction. However, for some
applications, the optimized version is sufficient whereby a new key is generated at every round.

We build OPA based on the HSMyy Assumption, building it based on the Key Homomorphic,
Distributed PRF as presented in Construction 1.

Construction 3. We present our construction in Figure 3.

Correctness. The correctness of this protocol follows from the correctness of the DPRF scheme, with
the only additional argument being that we rely on the actual structure of the CL framework where
we encrypt the input under f and then finally use CLSolve to recover the actual sum.

Theorem 5. Construction 3 is Server-Indistinguishable under Chosen Plaintext Attack (S-IND-
CPA) provided DPRF is a secure key-homomorphic distributed PRF with advantage epprg then:

AdvaPA < 2-n-€pprF

Proof. Let Sj be the event that the adversary outputs 1 in Hybrid; for each j € {0,...,2}. The
proof proceeds through a sequence of hybrids. We define the hybrids below:

Hybrido(x): This corresponds to the game where b = 0, i.e., for all the honest users in H, the first
input is encrypted.

Hybridi(k): In this game, we will first guess an index i*. Implicitly, this is the i* for which we will
inject the random challenge from the DPRF security game. If there is a corruption query issued
on 7*, the game aborts. Otherwise, the game responds to Ogpe, Ocom With some changes.

o If there is a Onc (1%, 2% ¢, £, S), rather than setting h; ¢ to be the evaluation to DPRF, it
will instead be a random value in Y« ¢ «<—s G. The rest of it proceeds as before with the
adversary receiving aux corresponding to only elements in & and the ciphertext is now
set to ctjx ¢ = f**£ - Yix . The inputs to Ognc along with the outputs are recorded.
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o Ifthereis a call to Ocom with input label ¢, then we look at the table of encryption queries.
If there exists an entry for ¢* with ¢, then the combination procedure is modified. We
will set AUX, = (J]f%*)~!-]]ct where = and ct are retrieved from the encryption table.

e Challenge Phase: If i* is in H, then the encryption procedure for challenge ciphertext
for 7* is again modified to use a random Yjx ; <—s G. We again need to modify AUX; to
be consistent in order to ensure that the adversary can perform Aggregate on its own.

Claim: If DPRF is a secure, distributed PRF with advantage eprg, then,
| Pr[So] — Pr[S1]| < n - epprr

The proof of this claim is fairly straightforward. Note that our proof of security of the DPRF
hinged on a single challenge. It is fairly straight forward to reduce the multi-challenge version
of DPRF security game to the single-challenge version presented in Definition 12. This comes
at the price of q. where ¢. is the total number of queries made to the challenge oracle. Let
A be capable of distinguishing Hybrid, and Hybrid;, then we can build B that can win in the
DPRF security game. B does the following:

e Does not corrupt any shares.
e Every encryption query with i* for which A expects {auxgi) Z} & B issues Eval queries
) je
for j € S at £ as input. Meanwhile, to mask inputs corresponding to i*, B simply invokes
challenge oracle with the .

e For the challenge phase, again, rather than sampling the value, it uses its challenge oracle
to get the masking value.

Note that if B’s challenger’s tossed bit was 0, then B perfectly simulates Hybrid, while simu-
lating Hybrid; should the tossed bit be 1. This concludes the proof.

Hybrida(k): Same as Hybrid;, except that the value encrypted corresponds to bit b = 1 for all the
honest parties’ challenge inputs. Claim: Hybrid; and Hybrid, are identically distributed.

Hybrids(x): Same as Hybrid,, except we now go back to honest generation of ciphertexts for i*.
Claim: If DPRF is a secure, distributed PRF with advantage eprg, then,

| PI‘[SQ] — PI‘[S3]| < N * €EDPRF

The proof of this claim is akin to the earlier claim.

O]

We defer our exposition on OPA constructions from LWR to Section D.2. We also present a
“robust” version whereby the server can detect malicious behavior and remove those clients. This
is discussed in Section F.

8 Stronger Security Definition

Hitherto, we have only considered the indistinguishability of information from the perspective of the
server. However, one can consider the requirement to hold for even corrupt committee members.
Specifically, should their entire committee collude (or at least t of them), then the client’s input
remains hidden. It is easy to observe that our construction of OPA does not satisfy the stronger
security definition. Specifically, if we had a single committee member, then the auxiliary informa-
tion (which is available to the committee member) simply masks the input and therefore can be
unmasked.
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Thus, we need to modify our existing OPA syntax and construction. Informally, we do the
following;:

e First, the server or the aggregator has a secret key as well. This is denoted by kg.

e Second, for each label ¢, the server first publishes a “public key”, as a function of the following
algorithm auxg ¢ < PublicKeyGen(ko, ¢)

e Third, the encrypt procedure takes into account this auxiliary information, i.e., <Cti,g, {auxz(je)} [ ])
™) je[m

—s Enc(pp, ki, z;,auxg ¢,t,m, £). In other words,the server publishes the public key and then
the client can begin encrypting to a label.

e Fourth, the decrypt procedure takes kg as input too.
The committee indistinguishability game proceeds in phases.

e Setup Phase: The challenger begins by running the setup algorithm to generate the system
parameters. The adversary is then provided with the system parameters pp and is asked to
output an adversarial choice of n, which is the number of users that will be registered. In
response, the challenger runs the KeyGen algorithm n + 1 times, once each for the n users and
once for the server’s secret key. This phase ends with the adversary being provided with the
server’s secret key denoted by kg.

e Learning Phase: The adversary issues queries to the various oracles defined by Ocorr, Opnc
to learn any information it could. The oracle definitions are changed here. Ocq proceeds
as before where the adversary can corrupt any user and receive its key. These corruptions
are tracked. Meanwhile, Og, allows the adversary to issue any arbitrary encryption queries
on behalf of any of the users, with the restriction that it can only do so once per user per
label. in response, it receives both the ciphertext encrypting the input and all the auxiliary
information.

This phase ends with the adversary committing to a target label 7.

e Challenge Phase: In this phase, the challenger begins by identifying eligible users &/ who are
honest, which is defined by [n]\K. Without loss of generality, we assume that there have
been no queries to O, with 7 as the label. Should there be such queries, those users @ such
that (i,7,-) € E are also removed from the set & and these inputs are later used to compute
the challenge. Upon receiving, U, the adversary commits to two sets: H < U is the set of
honest users that the adversary is targeting, and S that is the set of committee members for

whom the adversary receives {aux(j )}' b s provided |S| < t — 1. Further, the adversary
i€H,je

1, T
also provides inputs two choices of inputs for user in H denoted by {z; 0, i,1},.,, and inputs
{xi}ie[n]\ﬁ for the remaining users.

e Finally, the adversary is provided with individual encryptions and auxiliary information for
all committee members.

e Guessing Phase: The adversary outputs a guess ' and wins if ¥ = b, provided trivial attacks
do not happen.
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Definition 7 (C-IND-CPA Security). We say that a (t,m, M) One-shot Private Aggregation Scheme
OPA with label space L is Server-Indistinguishable under Chosen Plaintext Attack (S-IND-CPA) if
for any PPT adversary A, there exists a negligible function negl such that:

pp <s Setup(1%); b «s {0, 1} }
(st,n) <s A(pp), {ki < KeyGen()}ze[n]u{O}
b="0b| (st,1) s A9cmOenc(st ko), U := [n]\K
(R, S {zi,00 @i bicay » {Tibiepapa) < Alst,U)

1
Pr {ctw, {aux(]T)} s Enc(pp, 7, a:Lb)} < 5T negl(r)
Jj€[m] ieH
ctir, {aux(]T)} ‘ s Enc(pp, i, ;)
g&[m] ie[n]\H

b s A(st, {ctZ - aux(]T) } il

8.1 Updated Committee Indistinguishable Construction

These are the changes to OPA construction based on the HSMy; assumption to adapt it to the stronger
security definition:

e PublicKeyGen(kg, £)

Compute pkg , <= DPRF.Eval(ko, ¢)
return pk

e Modify the encryption procedure as follows:

Enc(pp, ki7 Zi, pk(),év t,m, f)

Parse k; = k;
Compute h; ; = DPRF.Eval(k;, ¢)
Compute ct; , = f* - pkgfe
Compute (kf”)je[m] «s DPRF Share(k;, t, m)
for j=1,...,mdo
aux) = DPRF. Eval(k¥), 0)

return ct; g, {auxﬂ)} ‘
™) je[m]

In other words, aux(]e) can be viewed as the j-th partial evaluation of the key (k;) where k;

was key shared using Secret Sharing scheme, while ct; , was masked by the DPRF evaluation
on the key k; - kg

Now, observe that the C-Combine algorithm merely multiplies all the auxiliary information. As
a result, AUX( ) s simply a partial evaluation of the following key share ). , l(J )). Therefore,

S-Combine computes DPRF.Eval(-(}""_; ki). Now, let us look at the decryption procedure:
Aggregate(AUXy, ko {cti ¢}, )

Compute M = AUX;I‘0 ([ Liee ctive)
Compute Xy < CLSolve(pp, M)
return X, mod M
The security of this construction follows from the intuition that the adversary gets all of the
auxiliary information, from which it can only construct a Diffie-Hellman key on the fly, from which
it cannot compute any masking information to unmask the inputs.
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~{ Protocol SOPA

System Parameters Generation Committee Member j in iteration ¢
Run pp —s OPA.Setup(1*, 1, 1™)
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. (5)
‘Samplu K k) s OPA KeyGen() ‘ Input: {A“X«' },—a,
Sample k; s OPA.KeyGen() forin=1,..Ldo
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Figure 4: In this figure, we present our two constructions of SOPA. The text inside of the blue box
corresponds to ’SOPAl ‘ while ‘ SOPA, ‘ is contained in the red box.

9 Secure Aggregation for Federated Learning with Single Client Interaction

As discussed, the motivating application for OPA is privacy-preserving federated learning (PPFL),
allowing the server to aggregate models across iterations with dynamic client participation. For
ease of presentation, we have defined OPA to work over single client input. However, for PPFL, the
client usually has to work with multiple inputs. In this section, we introduce SOPA, the streaming
version of OPA. The clients’ masked inputs remain private, with the server only learning the sum.
Our goal is a protocol without distributed setup, which is required before each iteration in prior
works like [18, 12, 74, 57, 72, 70]. Some allow setup reuse but OPA eliminates this entirely.

In our protocol, we will set the committee of size to be m = |logy(n)]. Our protocol supports
arbitrary threshold of reconstruction, but our implementation will set choice to be t = 2-m/3+1. We
present two approaches to mask vectors of length L. In Section 9.1, we naively mask each element
and in Section 9.2 we discuss how to improve communication complexity using seed homomorphic
PRG. Meanwhile, in Section H, we discuss the asynchronous setting where messages to intended
recipients may be delayed or dropped. This requires an additional round of interaction between
server and committee members to agree on a set of online clients whose inputs can be aggregated
with the help of committee.

9.1 Non-Interactive, Single Round, Secure Aggregation Protocol

In the synchronous setting, the chosen committee members and server receive respective information
from all online clients per round. Intuitively, this corresponds with each client running OPA protocol
L times, once per input element. The committee members combine all client information received
for that round (without additional randomness) and communicate a succinct version to the server
which helps server aggregate. Our protocol, which we call SOPA;, is built from any secure OPA
protocol. The details are provided in Figure 4. Those lines that are specifically executed by SOPA;
is shown with a blue box around the line.

Remark 5. (Packed Secret Sharing) This can be optimized using Packed Secret Sharing. OPA.Enc
does: (a) encrypts information and (b) secret-shares the key. In SOPA;, each client has L keys,
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shared naively. Instead, Packed Secret Sharing (Construction 5) over integers has the client send
just one auxgje) to each committee member j. Similarly, the committee avoids the loop and can
simply combine one element, per client. The server still reconstructs the L aggregated keys. In
Tables 2 and 3, this version is represented as SOPAgp ),

9.2 Non-Interactive, Single Round, Secure Aggregation Protocol Using Seed

Homomorphic PRG

In this section, we rely on a dual-pronged strategy first proposed in SASH [72]. First, a client
samples a single key k; by running PSA.KeyGen. Then, it samples a seed seed; from the domain
of a seed homomorphic PRG. The formal definition is presented in Section E.1 but informally the
property is that SHPRG(seed) + SHPRG(seed') = SHPRG(seed + seed’). To encrypt a vector of
length L, client ¢ expands the seed seed; to a masking vector mask; of length L. Inputs are masked
by simply doing mask; + x;. Meanwhile, the seed; itself is encrypted using PSA.Enc By correctness
of OPA protocol, we have that the server can efficiently recover > | seed;. Note that, by correctness
of a seed homomorphic PRG has the property that: SHPRG(Y" , seed;) = > | SHPRG(seed;) =
>, mask;. Therefore, the server can expand the aggregated seed to compute the vector sum of all
of the masks, which can be used to unmask the ciphertexts. The immediate benefit of this version
of the protocol is that the masked inputs are no longer group elements, but merely integers/field
elements which improves the computation and communication. Unfortunately, they had to rely on
an approximate, i.e., almost seed homomorphic PRG [20] based on the LWR assumption. Formally,
it is presented as Construction 10. Informally, SHPRG(s) := [AT . s]p where n,m,p,q satisfy
p < ¢,n < m are public parameters such that A «sZj*™. This protocol is only almost seed
homomorphic, i.e., SHPRG(}]"_; seed;) = >, ; SHPRG(seed;) + e,e € {0,...,n — 1} Due to the
presence of the error value, we need to ensure that the choice of p is sufficiently large that one can
round down efficiently. Specifically, one requires that p > >3 ; z; ¢ + e. This leads to an immediate
trade-off where O(L) work done by the client and server would be over field elements rather than
group elements, vastly improving the efficiency. Unfortunately, careful consideration has to be
made for the choice of parameters. For completeness, we also present an SHPRG construction that
is secure under the HSMy assumption next in Section E.

We formally present our construction of SOPA; in Figure 4 that is built from any OPA and any
SHPRG. Those lines that are solely executed by SOPAs are encased in a red box.

10 Experiments

In this section, we perform different experiments to demonstrate that (t,m,M = p) OPA, (hereafter
OPA(L) based on the CL framework, can indeed be used as a secure aggregation algorithm and to
train machine learning models. We run our experiments on an Apple M1 Pro CPU with 16 GB
of unified memory, without any multi-threading or related parallelization. We use the ABIDES
simulation [27] to simulate real-world network connections. ABIDES supports a latency model
which is represented as a base delay and a jitter which controls the number of messages arriving
within a specified time. Our base delay is set to the “global” setting in ABIDES’s default parameters
(the range is 21 microseconds to 53 milliseconds), and use the default parameters for the jitter. This
framework was used to measure performance of other prior work including [74, 57].

Microbenchmarking Secure Aggregation. Our first series of experiments is to run OPA¢| to build
a secure aggregation protocol. We also compare with existing work including [18, 12, 57, 74]. We
vary the offline rates, the ability to group clients, along with increasing the number of clients to
study the performance of related work. Recall that the offline rate (denoted by 1) controls the
number of clients who do not participate, despite being selected. Meanwhile, we denote by g the
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Figure 5: Client and Server Computation Time as a function of client count across different algo-
rithms.

size of the neighborgood or group. For [57], we set the input size to be bounded by 10%. Recall
that [57] does not have efficient aggregate recovery and requires input bounding. Also, [57] incurs
a setup/offline client computation time of nearly 30ms, even for 100 clients. Our implementation
sets m = |log(n)]. As can be seen from Figure 5, OPAcL’s server running time is less than 1
second - owing to a single round protocol with support of efficient recovery of the aggregate. Our
client performance scales best for a large number of clients while competitive for fewer. This
beats all other protocols. Each committee member computes < 1ms. OPAcL assumes concurrent
client communication to committee and server. Additional checks like in Section H where server and
committee agree on client intersection to compute aggregation are possible. These would have (a) no
impact on client computation time, and (b) a negligible increase in server/committee computation
time. [72] combines existing secure aggregation protocol [18] with a seed-homomorphic PRG to
gain efficiency for large input sizes. However, their cost is dominated by [18], which we significantly
outperform. One could combine SASH with OPA¢| to achieve efficient round-communication and
improved server computation, optimizing input size scaling. With our 256-bit prime to initialize
the CL group, each group element requires 56 bytes. One can further reduce bandwidth by using
the “New Key” mode and sending shares of keys instead. Note that SOPA is instantiated from any
OPA protocol, including the LWR based construction. However, while [72] showed how to use LWR
based SHPRG to build a secure aggregation protocol, demonstrating accuracy in training datasets,
care must be taken to ensure that the error growth can be controlled. Our experiments will rely

on the HSMy based construction and we leave it as future work to instantiate a protocol based on

Benchmarking FL Models. To demonstrate OPAc’s viability for federated learning, we train a
logistic regression model on two skewed datasets. We show that CAPSc_ performs very close to
learning in the clear, indicating feasibility for machine learning. As our goal was to show feasibility,
our experiments use one committee member for all n clients. We vary n and the number of iterations
for model convergence, measuring accuracy and Matthew’s Correlation Coefficient (MCC) [75] which
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Figure 6: Measure of MCC as a function of number of iterations and number of clients, comparing
OPA(L and plaintext learning.

better evaluates binary classification with unbalanced classes.

e Adult Census Dataset: We first run experiments on the adult census income dataset from
[28, 62] to predict if an individual earns over $50,000 per year. The preprocessed dataset has
105 features and 45,222 records with a 25% positive class. We randomly split into training
and testing, with further splitting by the clients. First, we train in the clear with weights sent
to the server to aggregate. With 100 clients and 50 iterations, we achieve 82.85% accuracy
and 0.51 MCC. We repeat with OPAc, one committee member, and 100 clients. With 10
iterations, we achieve 82.38% accuracy and 0.48 MCC. With 20 iterations, we achieve 82%
accuracy and 0.51 MCC. Our quantization technique divides weights into integer and decimal
parts (2 integer and 8 decimal values per weight). Training with 50 clients takes under 1
minute per client per iteration with no accuracy loss. This quantization yields a vector size
of 1050 (10 per feature).

e We use the Kaggle Credit Card Fraud dataset [81], comprising 26 transformed principal com-
ponents and amount and time features. We omit time and use the raw amount, adding an
intercept. The goal is to predict if a transaction was indeed fraudulent or not. There are
30 features and 284,807 rows, with <0.2% fraudulent. Weights are multiplied by 10,000 and
rounded to an integer, accounted for in aggregation. Figure 6 shows OPAc ’s MCC versus
clear learning for varying clients and iterations. With the accuracy multiplier, OPA¢’s MCC
is very close to clear learning and even outperforms sometimes. The highly unbalanced dataset
demonstrates OPAcL can achieve strong performance even in challenging real-world scenarios.
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A Class Groups and Cryptography

In this section, we present an abridged overview of class groups of imaginary quadratic fields. We
refer the readers to the work of Buchmann and Vollmer [24] and Cox [46] for a comprehensive
treatment.

A.1 Class Groups

Quadratic Fields. Let Q be the set of rational numbers. Then, imaginary quadratic fields are
extensions of degree 2 over Q represented as K = Q(v/D) where D < 0 and is a square-free integer.
With every such field, one can identify an integer called fundamental discriminant and is denoted
D if D =1(mod4)

by K with the following definition: K = .
4D otherwise

Orders. The ring Oa,. of algebraic integers in K is also called the mazimal order and is denoted by
Z[wi] where wi = (K ++/K)/2. We define orders as the special subrings of O, and is associated
with a nonfundamental discriminant Ay := ¢2A g where ¢ is called conductor. The order O, of the
conductor ¢ is the ring Z[lwk ]

Class Groups. Any discriminant A has an associated finite abelian group called ideal class group,
denoted by CI(A), and is defined as the quotient of the group of (invertible fractional) ideals of Oa
by the subgroup of principal ideals. The order of this group is the class number and is denoted by
h(A).

The value of h(A) is close to \/W in general. Further, one can evaluate its number of bits
in polynomial time using the analytic class formula number as proposed by McCurley [76]. Un-
fortunately, the only known method to compute h(A) from A takes a subexponential time in the
length of A. This hardness forms the basis of the various cryptographic protocols that have been
implemented based on groups of unknown order. The benefit of these protocols is that one can
simply generate the integer A to use these groups, unlike the group of invertible elements of Z/NZ
which requires a trusted setup to generate the RSA modulus N as the factorization needs to be
kept secret to generate the unknown order group. The other benefit is that discrete logarithms in
CI(A) are also hard to compute with only known sub-exponential time algorithms [15].

A.2 Class Group and Cryptography

Class Group-based Cryptography originated in the late 1980s with the pioneering work of Buchmann
and Williams [25] and McCurley [76]. They proposed that class groups of maximal orders of
imaginary quadratic fields could offer better security than multiplicative groups of finite fields,
based on the exponential running time of discrete logarithm algorithms for class groups versus sub-
exponential time for finite field groups using index calculus. Subsequent progress on computing
class group structure was made by Hafner and McCurley [58], Jacobson [61], Biasse [16], and
Kleinjung [66], but costs still increase with the discriminant size, with 512-bit discriminants the
current limit [14]. Notably, subexponential class group computation is asymptotically slower than
integer factorization (Ly/5(|A[) vs Ly/3(N) for factoring integer V). Biasse et al.[15] conjectured
1872-bit discriminants are needed for 128-bit security, versus 3072-bit RSA moduli.

Despite early vulnerabilities, class group cryptography has seen a resurgence in diverse appli-
cations over the past decade. A major advance was Castagnos and Laguillaumie’s cryptosystem
using a class group subgroup with easy discrete logs [33]. This became the foundation for vari-
ous protocols like projective hash functions for inner product encryption [34], threshold ECDSA
signatures [30, 31], coin mixing [56], and timed commitments [93]. It also enabled multiparty com-
putation from threshold encryption [22] and verifiable secret sharing [65]. A key feature of class
groups is suitability for multiparty protocols with one-time transparent setup, no interaction. This
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Table 5: Comparison of the RSA Modulus Size and the Class Group Size for various Security Levels.
All the sizes are in bits. The RSA Modulus forms the basis of the DCR-based construction.

Security Level | RSA Size Modulus | Class Group Size
112 2048 1348
128 3072 1872
192 7680 3598
256 15360 5971

has allowed verifiable random functions without trusted setup [96, 97|, accumulators [71, 19], en-
cryption switching [32], designated verifier NIZK [36], SNARKSs [67, 26, 6], homomorphic secret
sharing, correlation functions [1], range proofs [45, 44], and vector commitments [7].

B Secret Sharing

Definition 8 (Secret Sharing over Z). A (t,m) Linear Integer Secret Sharing Scheme LISS is a tuple
of PPT algorithms LISS := (Share, GetCoeff, Reconstruct), with the following public parameters: the
statistical security parameter kg, the number of parties m, and the threshold t of secrets needed for
reconstruction, the randomness bit length £,, the bit length of the secret {5 and the offset by which
the secret is multiplied by which is denoted by A = m!, and the following syntax:

® (s1,...,Sm) <s Share(s,m,t): On input of the secret s, the number of parties m, and the thresh-
old t, the share algorithm outputs shares si,...,Sm such that party i receives s;.

o {\i}ics «— GetCoeff(S): On input of a set S of at least t indices, the GetCoeff algorithm
outputs the set of coefficients for polynomial reconstruction.

o s’ — Reconstruct({s;},.5): On input of a set of secrets of at least t shares, the reconstruction
algorithm outputs the secret s'.

We further require the following security properties.

e Correctness: For any m, kg, t,ls, 0, € Z with t < m, and any set S < [m] with |S| = t, for any
se 7 such that s € [0,2%) the following holds:
(S1y-..,Sm) <s Share(s, m, t) }

P _ /
r {S S s — ReconstruCt({si}ies)

e Statistical Privacy [47]: We say that a (t,m) linear integer secret sharing scheme LISS is
statistically private if for any set of corrupted parties C < [m] with |C| < t, and any two
secrets s,s' € [0,2%) and for independent random coins p, p' such that {Si}ie[m) < Share(s; p),
{si};e[m] «s Share(s'; p’) we have that the statistical distance between: {s;|i € C} and {s;|i € C}
1s negligible in the statistical security parameter Ks.

B.1 Secret Sharing over Integer Space

A key component of threshold cryptography is the ability to compute distributed exponentiation
by sharing a secret. More formally, the standard approach is to compute ¢°® for some g € G
where G is a finite group and s is a secret exponent that has been secret-shared among multiple
parties. This problem is much simpler when you assume that the group order is a publicly known
prime p which then requires you to share the secret over the field Z,. This was the observation
of Shamir [87] whereby a secret s can be written as a linear combination of ). ¢ cs; mod p where
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S is a set of servers that is sufficiently large and holds shares of the secret s; and «a; is only a
function of the indices in S. It follows that if each server provides g; = ¢°, then one can compute
g° = glies i'Si — [ ics gi". Unfortunately, the same protocol does not extend to settings where the
order of the group is not prime, not publicly known, or even possibly unknown to everyone. In this
setting, the work of Damgard and Thorbek present a construction to build Linear Integer Secret
Sharing (LISS) schemes. In this work, we rely on the simpler scheme that extends Shamir’s secret
sharing into the integer setting from the work of Braun et al. [22].

Construction 4 (Shamir’s Secret Sharing over Z). Consider the following (t,m) Integer Secret
Sharing scheme where m is the number of parties and t is the threshold for reconstruction. Further,
let ks be a statistical security parameter. Let £ be the bit length of the secret and let £, be the bit
length of the randomness. Then, we have the following scheme:

Share(s,t, m) GetCoeff(S) Reconstruct({s(’)}ies)

A=ml5:=s-A if S| >t if S| >t

(M. 1e1) s [0,2650)  for i€ S do {Ai},.g « GetCoeff(S)
= . A; = H YA = Z Ay s®

f(X) =s+ ri- X jesS\{i} Tj — Ti €S

O e return {A;}, ¢ return s’
return {s = f(z)}ie[m]

We omit the proof of correctness as it is similar to the original Shamir’s Secret Sharing scheme
with the only difference being that the shared secret is now s- A and the Lagrange coefficients can
only reconstruct to this value. However, note that the inverse of x; — x; which was defined over
the field Z; might not exist or be efficiently computable in a field of unknown order. Instead, we
multiply the Lagrange coefficients by A. Consequently, the reconstruction yields A - s which equals
s- A2,

Theorem 6 ([22]). Construction 4 is statistically private provided £, = {5+ [logy(hmax - (t—1))]+1
where hmax 18 an upper bound on the coefficients of the sweeping polynomial.

We refer the readers to the proof in [22, §B.1]. The key idea behind the proof is first to show that
there exists a “sweeping polynomial” such that at each of the points that the adversary has a share
of, the polynomial evaluates to 0 while at the point where the secret exists, it contains the offset A.
Implicitly, one can add the sweeping polynomial to the original polynomial whereby the sweeping
polynomial ”sweeps” away the secret information that the adversary has gained knowledge of.
Meanwhile, in the later section, we present the proof for the generic construction that uses Shamir’s
Packed Secret Sharing over the integer space. This again uses the idea of a sweeping polynomial.

Construction 5 (Shamir’s Packed Secret Sharing over Z). Let m be the number of parties and
p be the number of secrets that are packed in one sharing. Further, let t denote the threshold for
reconstruction (implies that corruption threshold is t — p). Then, consider the following (m,t, p)
Integer Secret Sharing Scheme with system parameters ks as the statistical security parameter, ¢4
is the bit length of the a secret, and let ¢, be the bit length of the randomness. Then, we have the
following scheme:
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PackedShare(s = (s1,...,s,),t,m) Reconstruct({s(i)}ies)

A:=ml§:=s-A if |S| <t return L
(1o -y Te—p—1) < [0, 9brtra) Parse S := {i1,...,i,...}

p=1 for k € [p]

D Xt for j e [t]

= ic— X
pos,=m+ifori=1,...,p A (X) = H ic—i‘.(A)
for i € [p] do cely ¢

R fm Y A
i : ey pos, — posj jelt]
LN return s’ := (s}, ...,s))

X)ﬁ(X—posi)+ ZPJ§Z~L X
i=1

i=1
return {s(i) }

i€[m]

Correctness. Observe that for all ¢ = 1,..., p, we have the following:
e L;(pos;) = A
e Lj(pos;) =Aforall je[p]|,j#1
o f(pos;) =3;- A =s;-A®

Meanwhile, for A;; (X) := ng the polynomial we will be able to compute the polynomial

flz)=> jelt] N -sU) by correctness of Lagrange Interpolation. Consequently, f(pos;) would return

'zCz’

s; - A2. However, we compute A; ; instead, by multiplying with A to remove need for division.
Consequently, the resulting polynomial has A multiplied throughout yielding a A% as the total
offset.

Definition 9 (Vector of Sweeping Polynomials). Let C < [m] such that |C| = t — p. Then, we
have a vector of sweeping polynomials, denoted by spc(X) = (spyc,--.,P,c) where sp; o(X) :=
Z;;’g sp; ;- X7 € Z[X]<t—1 is the unique polynomial whose degree is at most t—1 such that sp; ¢(m+
i) = A% spie(m+4) =0 for j e [pl,j # i, and sp;c(j) = 0 for all j € C. Further, one can
define spy,. as the upper bound for the coefficients for the sweeping polynomials, i.e., Spaz =
{sp, ;lie{1,...,p},j€{0,...,t =1}

Lemma 7 (Existence of Sweeping Polynomial). For any C < [m] with |C| = t — p, there exists
spc € (Z[X]<t—p)? satisfying Definition 9.

Proof. For any i = 1,...,p, we have that sp;,c(m + i) = A? and sp,¢(j) = 0 for j € C. Let
C := (i1,...,%—p). In other words, we can use these evaluations to construct a polynomial as

follows:
A2 (X —(m+7))
sp; : A Suial AL F 4
C H m + ) .7 [1;\[{1} (2 - ])
Note that i1,...,%; € [m] and are d1st1nct Therefore [T 5 (m + 1) — i; perfectly divides A and

so does 1_[ [o]\{i} ( j), which implies that the coefficients are all integers. Further, the degree of
this polynomlal is at most t — 1. Thus, sp; o(X) € Z[X];—1. This defines the resulting vector of
sweeping polynomials spe. ]
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Theorem 8. Construction 5 is statistically private provided
b= ls + ﬂogQ(spmax ’ (t - 1) : P)] +1

Proof. Let s,s’ € [0,2%)” be two vectors of secrets. Then, § :=s-A and § :=s'- A. Let C denote
an arbitrary subset of corrupted parties of size |C| =t — p. Further, let us assume that S is shared
using the polynomial f(X) as defined below:

P P
F(X) = q(X) - [ [(X —pos;) + > & - Li(X)
k=1 k=1

X— ) X .
where Ly (X) := Hje[p]\{k} Wpopscjsj -A. and ¢(X) is a random polynomial of degree t — p — 1.

Now observe that the adversary see |C| = t — p shares corresponding to f(i;) for i; € C. By
Lagrange interpolation, this induces a one-to-one map from possible secrets to corresponding sharing
polynomials. Specifically, we can use the vector of sweeping polynomials, as defined in Definition 9
to explicitly map any secret vector s* to its sharing polynomial defined by f(X) + (s* —s,sp¢(X))

In other words, the sharing polynomial to share s* is defined by

P
FHX) = FX) + D)5k —s8) - sprc(X)
k=1
One can verify the correctness. For example, to secret share s}, at position m + 1, we get:
p
Frm 1) = fm+ 1)+ Y (55— 5) - Py (X)
k=1

Now, observe that f(m + 1) = s; - (A?). Meanwhile, sp; ¢(m + 1) = A% while sp;¢(m + 1) = 0 for
1 < j < p. This simplifies to: f*(m+1) =s;- A%+ (s¥ —s1)- A2 = s¥ - A2, However, while we have
an efficient mapping, note that f*(X) could have coefficients that are not of the prescribed form,
i.e., coefficients do not lie in the range [0, 2/ +"s). We will call the event good if the coefficients lie
in the range and bad even if one of the coefficients does not lie in the range.

Let us apply the above mapping to the secret s’ and we have the resulting polynomial:
p
FX) = FX) + (s = si) - spe(X)
k=1
Now, observe that if f/(X) was a good polynomial, then f'(j) = f(j) for every j € C. It follows
that if f’ was good, then an adversary cannot distinguish whether the secret vector was s or s'.
We will now upper bound the probability that f’ was bad in at least one of the coefficients.
We know that [s), — si| € [0, 26s) for k = 1,...,p. Further all coefficients of spgc(X) are upper
bounded by sp,,,.. Therefore, to any coefficient of f(X), the maximum perturbation in value is:
2% . sp,.. - p. Therefore, one requires that the original coefficients of f be sampled such that they
lie in [268 “ SPmax * P obrths _ ols . SPmax * £]- In other words, the probability that one coefficient of
f! is bad is:
225 - 5Py P
2r+Ks
There are t — 1 such coefficients. This gives us that the probability is < 27" assuming that
ET = 65 + [IOgQ(spmax ' (t - 1) ' p)] +1 O

C Pseudorandom Functions

Definition 10 (Pseudorandom Function (PRF)). A pseudorandom function family is defined by a
tuple of PPT algorithms PRF = (Gen, Eval) with the following definitions:
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e ppprr < Gen(1%): On input of the security parameter K, the generation algorithm outputs the
system parameters required to evaluate the function F : K x X — Y where K is the key space,
X is the input space, and Y is the output space.

o y — Eval(k,z): On input of x € X and a randomly chosen key k «<s K, the algorithm outputs
y € Y corresponding to the evaluation of F(k,x).

We further require the following security property that: for all PPT adversaries A, there exists a
negligible function negl such that:
b—s {0,1} , ks K 1
Pr|b=0 | Oy():=F(k,"),01(-) :=UY) | < = + negl(r)
b —s AG() 2
where U(Y) outputs a randomly sampled element from ).

Definition 11 ((v)-Key Homomorphic PRF). Let PRF be a pseudorandom function that realizes
an efficiently computable function F : KK x X — Y such that (K,®) is a group. Then, we say that
1t 18

e key homomorphic if: (¥,®) is also a group and for every ki, ke € K and every x € X we get:
Eval(ky, ) x Eval(ka, z) = Eval(k; @ ko, x).

e v = l-almost key homomorphic if: Y = 7Z, if for every ki, ko € K and every x € X, there
exists an error e € {0, 1} we get: Eval(ky, x) x Eval(ke, z) = Eval(k; @ ko, x) + e.

Definition 12 (Distributed Key Homomorphic PRF (DPRF)). A (t, m)-Distributed PRF is a tuple
of PPT algorithms DPRF := (Gen, Share, Eval, P-Eval, Combine) with the following syntax:

e ppprr < Gen(1%, 14 1M): On input of the threshold t and number of parties m, and secu-
rity parameter k, the Gen algorithm produces the system parameter ppprp which is impliclty
consumed by all the other algorithms.

o kW . kM s Share(k,t,m): On input of the number of parties m, threshold t, and a key
k <s IC, the share algorithm produces the key share for each party.

o Y «— Eval(k,z): Oninput of the PRF key k and input x, the algorithm outputsy corresponding
to some pseudorandom function F : K x X — ).

® Y s P—Eval(k(i),x): On input of the PRF key share k(@) the partial evaluation algorithm
outputs a partial evaluation y; on input x € X.

o Y/ —s Combine({y;},c5): On input of partial evaluations y; corresponding to some subset of
shares S such that |S| = t, the algorithm outputs Y'.

We further require the following properties:

o (Correctness: We require that the following holds for any m t,x € Z with t < m and any set
S € [m] with |S| = t, any input z € X:
pPpre <% Gen(17, 11 1M) k «s K
Pr|v =y’ | {k}, < Share(k), {yi — P-Eval(k® )}, ¢ | =1
Y’ « Combine({yi};.s), Y = Eval(k, z)
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o Pseudorandomness with Static Corruptions: We require that for any integers t,m with t < m,
and for all PPT adversary A, there exists a negligible function negl such that:
i b=10 PPpre <5 Gen(1%, 18, 1™) k «s KC |
Ku{j:(jz")eE} <t (st, K) <s A(ppprr)
{k(’)}ie[m] s Share(k)

(st,z*) s AOEvaI({k(l)}ieK)
b<s{0,1}, Yy «<s Eval(k, z*)

Y] «sU(Y),V s A% (st,Y3)

Pr

where:

OEval(iax)
E=Eu{(i,z)}
return P—Eval(k(i),x)

e Key Homomorphic: We require that if (IC,®), (V,®) are groups such that:
— V 2z e X,V ki, ke € K, Eval(ki, z) ® Eval(ke, ) = Eval(ky @ kg, x), and

—VzeX,Vky ke ek, {kfj) s Share(kb)}je[m] oy V€ [m], V) := (P-Eval(kgﬂ'), ) ® P-Eval(k), z)

and VS < [m] with |S| = t, Combine <{y§2} S> — Eval(ki @ ko, )
’ jE

D Lattice-Based Cryptography and Constructions

We will begin by defining the learning with rounding (LWR) assumption, which can be viewed as
a deterministic version of the learning with errors (LWE) assumption [85]. LWR was introduced by
Banerjee et al. [8].

Definition 13 (Learning with Rounding). Let p,q,p <s LWRGen(1?) with p,q,p € N such that
q > p. Then, the Learning with Rounding assumption states that for all PPT adversaries A, there
exists a negligible function negl such that:

S,ap $ZZ?
Yo := [<a0 S>J 1
! 9 p _
Pr{b=10 Vi s 2y, oy s Z2 —2+negl(p)

b s {0,1}, 1 s A(ay, Y})

where || =1 where i -|q/p| is the largest multiple of |q/p| that does not exceed x.

p

We also have the construction from Boneh et al. [20] of an almost Key Homomorphic PRF from
LWR in the Random Oracle model which was later formally proved secure by Ernst and Koch [53]
with v = 1.

Construction 6 (Key Homomorphic PRF from LWR). Let H: X — Z/. Then, define the efficiently
computable function F': X' x Zg — Z, as [(H(x), k)|,. F' is an almost key homomorphic PRF with

v =1
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D.1 Distributed PRF from LWR

Let us revisit Construction 6. First, observe that the key space is from Z{ which implies that the
order of K is known. Further, the computation occurs over a group whose structure and order is
known. This is a departure from the construction based on the HSMy; assumption. Consequently,
by assuming that both p and ¢ are primes, one can avoid integer secret sharing but instead rely on
traditional Shamir’s Secret Sharing over a field, which we define now:

Construction 7 (Secret Sharing over Fy). e SecretShare(k, t,m): Sample a random polynomial
f(X) € Fg[X] of degree t — 1 such that f(0) = k. Then, return {f(j)} ;¢

m]
e Coeff(S): On input of a set S = {i1,...,it,...} S [m] of at least t indices, compute \;;, =
et ZC%J Then, return {)\Z’j}ije{il,.“,it}

Now let us look at some error propagation when applying the almost key homomorphic PRF.
We have that for ki, ko «<s Z,

F(ki; +ko,z) = F(ky,z) + F(ko,z) + €
where e € {0,1}. It also follows that:
T-F(kl,w) :F(T‘ko,.’L')—GT

where er € 0,...,T. This becomes a cause for concern as, in the threshold construction using
the Shamir Secret Sharing over the field as shown in Construction 7, one often recombines by
multiplying with a Lagrange coefficient A;;. Unfortunately, multiplying the result by A;; implies
that the error term ey, € {0,...,7;}. The requirement is that this error term should not become
“too large”. However, interpreting Lagrange coefficients as elements in Z, results in the error term
failing to be low-norm leading to error propagation. To mitigate this, we use techniques quite similar
to Construction 4 by essentially clearing the denominator by multiplying with A := m!. This is a
technique made popular by the work of Shoup [89] and later used in several other works including in
the context of lattice-based cryptography by Agrawal et al. [4] and later to construct a distributed
key homomorphic PRF from any almost key homomorphic PRF by Boneh et al. [20]. > Then, the
combine algorithm will simply multiply all partial evaluations with A as well.

Construction 8 (Distributed Almost Key Homomorphic PRF from LWR). A (t, m)-Distributed
PRF is a tuple of PPT algorithms DPRF := (Gen, Share, Eval, P-Eval, Combine) with the algorithms
as defined in Figure 7.

Issues with the Construction from Boneh et al. [20, §7.1.1]. As remarked earlier, their generic
construction suffers from issues stemming from their security reduction. Specifically, their security
reduction proceeds similarly to the proof of Thoerem 3 and requires B to answer honest evaluation
queries for key indices for which it does not know the actual key share. Their explanation suggests
that we again use the “clearing out the denominator” trick by multiplying with A. However,
the issue is that the resulting response will be of the form A - F(k;,x) for ¢*, unknown to B.
Consequently, one has to change the partial evaluation response to also include this offset to ensure
the correctness of reduction. This would imply that the Combine algorithm will multiply with A
again, which would thus result in the actual Eval algorithm having an offset of A2. Furthermore,
the partial evaluation algorithm should also have to round down to the elements in [0,u — 1] for
the same reason that the Combine algorithm required this fix.

SHowever, their generic construction is incorrect, owing to issues in their security proof which is not entirely
sketched out. We fix the issues in our construction.
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—1 Protocol Distributed PRF from Learning with Rounding Assumption

Gen(17,1%,1™) Eval(k, z)
Parse 1 = (p) Compute ¥ = | A A|¢H(z), k
Run ppuwg = (0.4.) <s LWRGen(17) ompute ¥ =[] Al 1L ] |
Set £, = |q| return Y
Set u such that |p/u] > (A + 1)tA P-Eval(k¥, z)
Set v such that |u/v]| > At
Sample H: X — Z{ Compute y; = {A l(H(x), k(i)>J J
return pppge = (PPLwr, PPss, H, 1) Plu

return y;
P
Share(k € Zf,t, m) Combine({y:},.<)

fori=1,...,pdo
Run Ajes = SS.CoefF(S
k<l ..... k<m «s SS.SecretShare(k;, t, m) C:)lllrllpliii Y = lzo:é S(Ai‘ i)
i€ ? oy

return {k(J) (km ..... km} return Y’
je[m]

Figure 7: Construction of Distributed PRF based on the Secret Sharing scheme of Construction 7
where SS = (SecretShare, Coeff) with ppsg denoting the public parameters of the secret sharing
scheme.

Correctness.
lAKH(m),k»JpJ - A{iHmz) sz | = A{i H(z,z) ) Aijsgij>|
u z=1 ply z=1 ije{it,..., it} plu
- A{ 3 iH(m 2) A “J)| = A{ 3 @), A k<w>>J
ije{it,..., it} z=1 ol ij€{i1,..., it} plu
=|Afe+ > i CH(z), k()) >|
L ( GiE{i1,..., it}[ Jp N
- |a (et Y ea, A @),k )|
I ijelitr it} p N
=|a <et+ 3 e)\i/_)Jr 3oAa {(H(z),k(iﬂ'bJ |
| ijelinrit) $5E{i1,0 st} P N
= D AN, {<H(z),k<i]’>>J |
Lijefit,... it} p N
The last step follows provided the error term is small. Recall that e; € {0,...,t} and ex;, €
{O, . ,/\ij}. Now observe that we multiply with A and A;; has a maximum value A. Therefore,

A-ey,; < A%, Therefore, the size of the error term is < t- A + t - A2, Therefore, provided u is
chosen such that |p/u| > (A +1)-t- A, then the last step is correct. Now, we have:

[AlE@IDL) = | X A |@@).kO)|

15€{i1,...,0t} ”

Therefore,

NINCESHEE {A{ R >J"|u|v
A



= {A (et+ > )\ijP—EvaI(kiJ',x))|
ij€{i1,...,it} v

—{ > Aij~A~P-EvaI(k(iJ),:c)|

:combine({P Eval(k(), 2), cpiy .. m})
provided |u/v]| > tA.
Pseudorandomness. The proof of pseudorandomness follows the outline of the proof of Theorem 3
but with some important differences. First, we do not rely on integer secret sharing but rather
plain secret sharing over the field. Therefore, the Lagrange coefficients correspond to A;;. Or more

formally, to respond to a partial evaluation query at point z; with target key index i*, the adversary
B does the following;:

e Use its oracle to get partial evaluation on x; at ¢, which we call as h;.

e Then, use Lagrange coefficients but with suitably multiplying with A to compute the correct
distribution by rounding down to u. The choice of u guarantees that the response is correct.
For challenge query, it simply does two rounding down, first to u and then to v.

Verification of Almost Key Homomorphism. Let ki, ko be two keys that are shared. Now, let the
key shares received by some party i; be k(”) and k(” ) Then,

P-Eval(k\""), z) + P-Eval(ky?, z [ ), k{7 pJu + [A {(H(x),kg"pru
lA ), k{7 A {<H(a;), kgif’>J Ju —e
{ 2), k) 1 (H(w), kgi-7‘>>JpJu —2¢;
— P-E val(k(” + k59 2) — 2¢y

It follows that for n such keys:

3 P-Eval(k() 2) = P-Eval( Y k() 2) —n - e
=1 =1

This shows that the P-Eval is almost key-homomorphic. Consequently, one can verify that the whole
Eval procedure is almost key homomorphic for the appropriate error function. To do this, recall
that from correctness of our algorithm:

Share(k, m, t) = {k“)} [ ],cOmbine({Evm(k(ij),x)} = Eval(k, z)
€lm

ie{i1,..., it}
In other words, for ki, ko € K, Share(ky,m,t) = {kgi)} ] and Share(kg, m,t) = {k(;)}, - we
i€ S

will have for i € [m], Eval(kgi), x), Eval(kgi),w) = Eval(k( Dy k( 2 x)—2-eq.

D.2 One-shot Private Aggregation Construction based on LWR Assumption

We build OPA based on the LWR Assumption, building it based on the Key Homomorphic, Dis-
tributed PRF as presented in Construction 6. However, our construction is largely different from

the template followed to build OPA from the HSMy assumption. This is primarily because of the

(4)

growth in error when combining partial evaluations. Specifically, will get that P-Eval(}}" , k;”’, z) =

hI P—Eval(kl( ,x) + e where e € {0,...,n — 1} where n is the number of clients participating for
that label. This would require us to round down to a new value u' such that |u/u/| > n — 1.
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—1 Protocol One-shot Private Aggregation

Setup(1”, 1%, 1™) C-Combine({aux“}} )

Run pppprr < DPRF.Gen(1%,1t,1™) ) = .

return ppppre Compute AUX?) = {A Diec auxg‘][)J

X u

KeyGen() return AUXE”

Sample k «s K )

return k S—Combine({AUXE”} s)

je

Enc(pp, ki € Z{, i, t,m, ()

Run AUX, « DPRF.Combine({AUXé‘j)} )

Compute h; , = DPRF.Eval(k;, £) jes
Compute ctL g = (z;-n+1)+ hijy) modv return AUX,
Compute (ki )/E[m] «s DPRF.Share(k;, t, m) Aggregate(AUXy, {ct; ¢},;cc)
for j 7@% ,m do W) Compute Xy = > },.c cti ¢ — AUX, mod v
aux;y l< ), ki >Jp Round up [X/] to X, the nearest multiple of n

t X, —
return ct; ¢, {auxﬂ)} return (X; —n)/n
Jj€[m]

Figure 8: Our Construction of OPA based on the LWR Assumption.

Therefore, while we still employ the underlying functions of the distributed, key-homomorphic PRF
based on LWR, we have to open up the generic reduction. Specifically, the client’s share to the
committee will only be the first level of the evaluation, i.e., rounded down to p. C-Combine will then
add the shares up, multiply with the offset, and then round down to u. We will show that provided
|p/u| > A - n, the output of C-Combine is consistent with P-Eval(} ;" ; kgj),x). Recall that DPRF
correctness requires that |p/u| > t- A +t- A2 and so one just needs |p/u] > max(t-A+t-A% n-A).
Then, one can rely on the correctness of DPRF as shown below to argue that S-Combine outputs

Eval(}" | ki, z).

Construction 9. We present our construction in Figure 8.

Correctness. Earlier, we showed how the output of S-Combine is Eval(};" | k;, z). Now, let us look
at Aggregate algorithm.

o!

n n
Xp= ) ct— AUX, = Z x; 0%+ 1) + Eval(k;, £) — Eval( ) k;,£) mod v

i=1

i=1

n
ie+n+ Z Eval(k;, ) — Eval(z k;,¢) mod v
i=1 i=1

n-

S
1=1
n
DMxiet+n+ Eval(z k;, 0) — EvaI(Z ki, f) — en_1 mod v
=1 1=1 i=1
n
Z Zj¢+mn—ep—1 modv
i=1
n

=n- Tie+n—en—1

For the last step to hold, we need that

n
OSn-ZxM—Fn—en_l <
i=1
en—1 the small value is 0 and the largest value is n—1 which requires that >\ | z; ¢ < (v—n)/n. Note
that we already require |p/u| > nA, |u/v] > tA = |p/v| > ntAZ. In other words, > z; <
Finally, X; = n- > | ;¢ + n and that completes the remaining steps.

p
n2tA2”
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Theorem 9. Construction 9 is Server-Indistinguishable under Chosen Plaintext Attack provided
Construction 8 is a secure PRF.

The proof of the theorem proceeds largely similar to that of Theorem 5 and is omitted.

D.3 Modified Construction of OPA under LWR Assumption

The proposed syntax for OPA allows for a one-time key generation with every encryption requiring a
new key share per committee. However, one could also move the key-sharing to the key generation
algorithm and simply perform partial evaluations during the encryption. We opt to include the
sharing of the key within the encryption algorithm to allow for greater flexibility should either the
threshold or the committee size change during a label.

Indeed, one can also leverage the non-interactivity of the client whereby the client’s choice of
key(s) does not affect the key choices of any other clients, the committee members, or even the
server. Therefore, one can move the generation of keys inside the encryption procedure. For every
label, the client samples a new key, encrypts information with the new key, shares the key, and
then generates auxiliary information using the shares. While this might be intuitively inefficient,
we show that such a process actually affords efficiency in both computation and communication,
at least in the LWR construction. It immediately follows that, in this setting, for each label, we
essentially run a distinct OPA protocol as we defined before.

More specifically, consider the following variation of the scheme:

e For ¢, Client ¢ samples k; s <s Zj.

e Compute Packed Secret Sharing over [, space to k; ¢ to get shares aux(] ) for j=1,.

e Masking happens as before by performing: ct;, = n-z; o + 1 + |(H({), ki>Jp mod p

e The committee member j receives: {k(.jg)} . It simply adds up all the shares as AUXEj ) =
bt )iec

Dice auxﬂ) mod ¢
e The server, upon receiving AUXEj ) for j € S with |S| = t does the following:

— Reconstruct from the shares AUXéj ), the values K, = (kél), el kép )), over the field F,.
Now, note that this, by the correctness of Packed Shamir Secret Sharing over Integers

(1)

and their additive homomorphism implies that k, ’ is the sum of all the keys in element

1 across k; ¢, ...,k ¢ where n is the number of clients. In other words, K, = Z?:l ki,
— Compute AUX, = [(H({), Ky,
— Compute

o
M:

k3

(cti,¢) — AUXp, mod p = Z (n * (x50) + 1+ [CH(O), k4 ) { k; g>J mod p
1 i=1 i=1 »

3

=n- Zwlg+n+Z<H { Z Zg)J mod p
P
— Now, we know that >3, [CH(¢), kip|, = [CH(€), 230, ki ()], —e where e € {0,...,n — 1}
— Or,
ZCtZ[ AUXgmodpzn-Z:ci,g—i-n—e
(

i—1
provided Y | (cti¢) < (p —n)/n
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— Then, we round up to the nearest multiple of n and do the recovery as before.

Now, observe that this modified construction does not require any additional rounding down and
simply requires that > z; > (p — n)/n. However, this does require sampling a new key for every
label but can enjoy the benefits of packed secret sharing to send minimal communication to and
from the committee.

Therefore, by generating a new key at every round, we have simply employed the original Almost
Key Homomorphic PRF construction, rather than the threshold one. Consequently, we avoid partial
evaluations and instead simply generate new keys repeatedly. This modification can also be applied
to the HSMy; assumption.

E Seed Homomorphic PRG

E.1 Syntax and Security

Definition 14 (Seed Homomorphic PRG (SHPRG)). Consider an efficiently computable function
G : X — Y where (X,®),(Y,®) are groups. Then (G,®,®) is said to be a secure seed homomorphic
pseudorandom generator (SHPRG) if:

e G is a secure pseudorandom generator (PRG), i.e., for all PPT adversaries A, there exists a
negligible function negl such that:
b—s {0,1},5s s X 1
Prib=V |Yy=G(s),Y1<scY | < 5t negl(k)
b —s A(Yp)

o For every si,s2 € X, we have that G(s1) ® G(s2) = G(s1 D s2)

E.2 Construction from LWR Assumption

Construction 10 (SHPRG from LWR Assumption). Let A «s Z;1*"2, then consider the following
seed homomorphic PRG G : {0,1}"" — {0,1}"* where ny > n; is defined as G(s) = [A" - s|, where
q > p with [z, = [ - p/q] for z € Z,.

This is almost seed homomorphic in that: G(s; +s2) = G(s1) + G(s2) + e where e € {—1,0,1}"

E.3 Construction in CL Framework

Construction 11 (SHPRG in CL Framework). Let (CLGen, CLSolve) be the class group framework
as defined in Definition 1. Then, let ppc| «<—s CLGen(1%<,1%¢). Consider the following definition of
X =Dy, Y =G, G(s) = h*.

Theorem 10. Construction 11 is a secure seed homomorphic PRG.

Proof. 1t is easy to verify the homomorphic property of the above construction. For any s1, so from
Dy, the construction is homomorphic in that A5t - h%2 = h51F52,
The proof of pseudorandomness can proceed through a sequence of hybrids as follows:

Game-0 This corresponds to the case when b = 0, i.e., the adversary receives G(s) = h® for s «s Dy.
Game-1 This corresponds to the case when the adversary receives g° for s «s D.

Claim: Game-0 and Game-1 are computationally indistinguishable under the HSMy assumption.
Game-2 This corresponds to b = 1 where the adversary receives Y «s G.

Claim: Game-1 and Game-2 are statistically indistinguishable, by definition of D.
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F Verifiable One-shot Private Aggregation

We now show how to add verifiability to the aforementioned modified construction of OPA, where a
new key is generated per encryption. We focus on the HSMy, construction, specifically where M — p,
for some prime p. We directly present our construction, without the abstraction of the Distributed
PRF. Instead, our masking PRF will be based on Construction 1, where F(k,z) = H(z)*. We
will also be using the Integer Secret Sharing Scheme from Construction 4. Our construction will
use Feldman’s Verifiable Secret Sharing scheme [54], adapted to the integer setting, as shown by
Braun et al. [22, Protocol 2].

This construction aims to detect malicious behavior by either the client or the committee mem-
bers. To avoid malicious behavior by the clients, they are expected to send commitments to the
sharing polynomial and their actual key. For purposes of reporting, one can assume that the client is
expected to sign this information. Upon receiving the share of the key, committee members can use
the commitments to simply evaluate the polynomial, in the exponent, at point j. If the verification
fails, the committee member can simply send the signed message to the server. The server can run
the same verification algorithm and then take action against the misbehaving client.

A similar check can be performed by the server to detect errant behavior on the part of the

committee members, where the detection would be using the sum-of-shares (contained in AUXEj ))

and the commitments it has already received from the clients. This detects cases where AUng ) is
wrongly computed.

Construction 12. We present our construction in Figure 9.

Correctness. Observe that, for a client ¢, its sharing polynomial is given by:

t—1 t—1
FX) = Akt 3P XF = A fi(X) = A ki + ), A X
z=1 z=1

Raising to the exponent by gr we get:

Afi(X) A2k, = A (D)X
gp' = <9F ) 11 (gp i )
z=1

Plugging in the commitments, as computed, we get:

t—1 .
AR _ (Ci(O)A2> 1_[ (CZ-(Z)>X

z=1

Therefore, a share kl(j ) — fi(4) should satisfy the equation:

. —1 .

A (A0 T (@)
Ir = (Ci ’ H (Ci )
z=1

Asymptotic Performance. Note that the verification “key” per client, per label consists of t group
elements. Therefore, an additional O(t) element is sent from every client to each committee member
and to the server. Therefore, the client has an additional O(m - t) communication complexity.
Meanwhile, there is no additional information to be sent by the committee members, but the
committee member has to verify, for every client, the correctness of “sharing” which costs a total
of O(nt) in computational effort.
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—1 Protocol Verifiable, One-shot Private Aggregation

Setup(1™, 1%7) C—Combine({auxi'fz } )
Run ppe, < CLGen(1%,1%,1™) =
Sample hash function H: {0,1}* — H
Sample a group element gp € @\]F

forieCdo ‘
Parse auxi-f,? = (kY v, = (O, ctYy)

el A2 _ Nz
return ppcy, H, gr if o 2 GO TIZNE)UY) then
Enc(pp, zi, t,m, () C:=C\{i}

Send to server i’s verification failed with proof
)

ieC i

Sample k; «—s K >
Conll;)utolhi ¢ = H(O)A™ Compute AUXE]) -

(7)
Set ctio = f% - hie return AUX;

L@ - ) )
Compute {k, }]E[m] LISS.Share(k;,t, m) S-Combine({AUXl(/)} N Vithoe)
jE

Let rgl), .. ,Tit_l) be the coefficients of the polyno-

mial. for i e C do

Set C,i(j) = g?(”m) forj=1,...,t—1 Parse v, o = <Cz(0)7 .. ,,Cz(t*))

Set C,L(O) :=g;l fOI‘ijtOt—ldp

Vi = (Ci(o)7 . ,Ci(tfl)) ) Ccu) = [Tiec ij)

return ct; ¢, v; ¢ to Server for je S do ) -

return auxﬁ_’Z = (kY v, ) to Committee Member j if gg(A';U\x;(J;) * 8 . (C(j))(‘/ ) then
= J

Run AUX, = LISS.Reconstruct({AUX&j)} )
JjeS
return AUX,

Aggregate(AUXy, {ctiv},cc)

2
if oA = C©% then

Compute Xy = [ ;o ctive (H(X><AUX[))(71)
return CLSolve(pp¢, X/)

Figure 9: Our Construction of Verifiable OPA based on the HSM, assumption where p is a prime
integer that is at least k. bits long.

G Private Stream Aggregation and Labeled Decentralized Sum

As discussed before, private stream aggregation [88, 63, 13, 68, 53, 10, 95, 91, 90] has a long line
of research which allows the server to compute only the sum of the clients’ inputs without leaking
information about the actual inputs. An independent line of research has been on leveraging the
idea of “labeled decentralized sum” [39, 78] whereby multiple clients encrypt values to a particular
label with the final output that is computed being only the sum of inputs encrypted to that label,
without any leakage of information about the individual inputs. This tool, dubbed DSUM, finds
applications in Decentralized Multi-Client Functional Encryption.

Instantiating PSA with OPA. The versatility of OPA implies that one can simply instantiate the
Private Stream Aggregation protocol, in the committee-aided setting. We can call this Committee
Aided Private Stream Aggregation. The benefit of this is we can now allow clients to join and drop,
as needed. It also avoids the pitfalls of a trusted setup for key generation. Finally, some of our
constructions (the OPA based on HSM, for prime p can also be modified to achieve decentralized
parameter generation as shown by the works of Castagnos et al. [30, 31].

Labeled Decentralized Sum with OPA. The state-of-the-art DSUM protocol is from the work of
Nguyen et al. [78]. They take a two-step approach where first they build a one-time decentral-
ized sum protocol from the HSMy assumption, and then combine it with Multi-Client Functional
Encryption (MCFE) to build DSUM. The former requires a PKI-style infrastructure where the
clients’ public keys are posted. Meanwhile, OPA helps one achieve the same functionality of private
summation, without relying on expensive tools such as MCFE, and by only requiring a committee.
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Furthermore, OPA, at its core, can be modified to remove the dependence on the committee while
offering DSUM functionality. Quite simply, for each ¢, there is a new public key for each client 4,
which is computed as DPRF.Eval(k;, £). Then, we can build DSUM using the following construction:

Construction 13 (DSUM from OPA). e Setup(k): Run ppc <3 CLGen(1%<, 1%+)
o KeyGen(/): Each client i does the following: (a) sample k; <—s IC, (b) Compute T; ; = DPRF.Eval(k;, £)

. Encrypt(:ci,g,{Tz-yg}ie[n]): Compute:

ki
Cip = [t (HTJ- HTﬁ)

i<j i>j

e Decrypt(Ciy,...,Cpny) : Compute M = []_, C;, before using CLSolve(ppc, M) to recover
the sum.

Note that the definition of dynamic participation in the context of MCFE is a strictly weaker
one than what we employ. The assumption in MCFE is that there is a consensus on the set of
public keys per label that is to encrypt for that label.

Robust PSA. Private Stream Aggregation has only operated on the trust model whereby every
participant is honest but curious. The only work that deviates from this setting is the work of
Emura [52] where they focus on having the aggregator create a proof that is publicly verifiable that
the aggregate computed is indeed correct. However, the resulting scheme was based on the DDH
construction [88, 13] and thus requires computation of discrete logarithm. Additionally, it requires
a pairing-friendly group. Another approach for verifiability was by Leontiadis et al. [69] whereby
the goal was for the aggregator to prove to a data analyzer that it has computed the correct output.

One can look at another malicious behavior whereby the clients misbehave. The goal is to
detect and remove such errant behavior. To this end, one can use our verifiable OPA (defined in
Construction 12), as a black box. Thereby, we achieve the first PSA protocol that computes the
sum of inputs in a privacy-preserving manner, while removing errant client behavior.

H Two Round Secure Aggregation Protocol for Federated Learning

In the earlier protocol, we were in the synchronous setting which assumed that each committee
member receives shares from the same set C of clients. However, due to network delays, it is pos-
sible that some committee members do not receive shares from some of the clients. Unfortunately,
this leads to an issue when it comes to reconstruction. To ameliorate, we relax the single round
requirement and include some minimal interactivity. Our resulting protocol is still built from our
earlier OPA scheme. The key aspect here is that the interaction is only between the committee
members and the server. There are no additional rounds or interactivity for the clients. Specifi-
cally, rather than combining information about the auxiliary information received by the committee
member j, as a first step, the committee member only sends the set of clients whose shares it pos-
sesses. Each committee member does the same. Finally, the server computes the intersection of
each of the sets sent by the committee member along with the set of clients whose encrypted inputs
it has received. The key idea here is that each committee member is expected to respond exactly
once per iteration £. This set C is then sent by the server to the committee members and the server
expects a combination with respect to this set C. The rest of the protocol proceeds as before. Our
construction, which we dub SOPAg, is described in Figure 10.
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Protocol SOPA3

One-Time System Parameters Generation

Run pp <s OPA.Setup(1#, 1%, 1™)
Output Committee of size m.

Client i Key Generation Phase
Sample ki,l; ey ki,L «—$ OPAKeyGen()
Data Encryption Phase by Client i in iteration ¢

Let xi 0 = (xfle), - ,:vZ(Le)) be the input of Client ¢ in iteration /.
forin=1,...,L do

ctf), {aux™ | - OPA.Enc(kiin, 2\, t,m, )
’ “ ) jelm :

Send ctg}e), e ,ctl(.’LZ) to the Server
Send auxf@”, . ,aungZL) to committee member j for each j € [m]

Set Identification Phase by Committee Member j in iteration /¢

Let {{aux,gjél), ey aux,,(:jéL)}} be the inputs received by Committee member j from Clients i € C19)

Send CY) to server

Set Intersection Phase by Server in iteration /

Let {C (j)} j € S be the client sets received from committee members j € S.
assert |S| >t

Let the server’s set of ciphertexts be from clients be denoted by C(?).
Compute C := mj€SU{0}c<j>

Send C to committee members in S

Data Combination Phase by Committee Member j in iteration /¢

Let {aungzl), o auxg

forin=1,...,L do
Compute (AUX™)) OPA.C—Combine({aufoéin)})iec
Send AUX(j’l), e ,AUX(j’L) to server
Data Aggregation Phase by Server in iteration /
forin=1,...,L do
Let {AUX{™ ) . {el}

je ’ i€

jl?L)} be the inputs received by Committee member j from Clients i € C

c be the inputs received by the server with |S| > t.

Run AUX{™ < OPA.S-Combine({AUX{"™ } )

JES

Run X" « OPA.Aggregate(AUX "™ {Ctz('-iz )}' ¢
’ 1€

Figure 10: Our Construction of Two Round Secure Aggregation protocol with m committee members
and t being the threshold for reconstruction using (t, m, M) One-shot Private Aggregation scheme

Using Packed Secret Sharing. As in the case of SOPA;, SOPA; can be further optimized by using
Packed Secret Sharing. We refer the reader to Remark 5 for a discussion on how to employ packed

secret sharing of the multiple keys used in an effort to reduce communication.
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Using Signatures for Active Security. In the context of Federated Learning, active security of current
protocols aims to offer robustness where a server or a committee member could lie about the set
of online clients. To mitigate this, one needs to simply add a signature. Each committee member
sends a bit string of length n where i-th bit is set to 1 iff client ¢ participating in that iteration.
It also signs this message with its signing keys. This is done by every committee member. The
server performs the intersection and when communicating to the committee members, also attaches
the list of all signatures to ensure that the intersection is done correctly. Finally, the committee
members aggregate their information only after verifying there are at least t valid signatures and the
intersection is computed correctly. Among recent contributions, only the work by [11] introduces
a resilient secure aggregation protocol that achieves full malicious security. However, it grapples
with a substantial round complexity, approximately logn. This situation raises an intriguing and
unresolved challenge: devising a fully robust federated learning protocol that not only reduces round
complexity but also transitions to a non-interactive framework remains an open problem.
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