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Abstract. The analysis of the reduction effort of the lattice reduction
algorithm is important in estimating the hardness of lattice-based cryp-
tography schemes. Recently many lattice challenge records have been
cracked by using the Pnj-BKZ algorithm which is the default lattice
reduction algorithm used in G6K, such as the TU Darmstadt LWE
and SVP Challenges. However, the previous estimations of the Pnj-
BKZ algorithm are simulator algorithms rather than theoretical upper
bound analyses. In this work, we present the first dynamic analysis
of Pnj-BKZ algorithm. More precisely, our analysis results show that
let L is the lattice spanned by (ai)i≤d. The shortest vector b1 output

by running Ω

(
2Jd2

β(β−J)

(
ln d+ ln ln maxi

∥a∗
i ∥

(detL)1/d

))
tours reduction of

pnj-BKZ(β, J), b1 satisfied that ∥b1∥ ≤ γ
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+2

β · (detL)
1
d .
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1 Introduction

In recent years, with the development of quantum computers and quantum algo-
rithms like Shor’s algorithm [26], the current mainstream public key cryptography
schemes (RSA, ECC) are threatened by quantum computing. Therefore, the
National Institute of Standards and Technology (NIST) in the United States
has called the cryptography schemes which can resist attacks from quantum
computers (Post-Quantum Cryptography schemes). As one of the main parts
of post-quantum cryptography, lattice-based cryptography recently attracted
much interest, since it can construct numerous cryptographic primitives, and the
security of lattice-based cryptography schemes is guaranteed by the hardness of
lattice problems with worst-case which is considered to be quantum-resistant. In
2022, at the process of NIST’s PQC standardization [1], three over four selected
schemes as next-generation standard are lattice-based candidates (Kyber [5],
Dilithium [9] and Falcon [24]). In the standardization process of lattice-based
cryptography schemes, it is necessary to give an accurate estimation of the
concrete hardness of lattice problems.

A lattice L is generated by a basis B which is a set of linearly independent
vectors {b1,b2, . . . ,bn} ∈ Rm. In lattice-based cryptography, the approximated
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shortest vector problem is a basic and central computational problem. The α-
approximate Shortest Vector Problem (α-SVP): given an arbitrary basis B on
lattice L = L(B), find the shortest non-zero vector v s.t. ∥v∥ ≤ α · λ1 (L).

Over the past few decades, a series works of reduction algorithms were
proposed to solve α-SVP. In 1982, Lenstra et al. proposed the first polynomial-
time lattice reduction algorithm: LLL algorithm [18] which can solve α-SVP with
an exponential approximate factor α. Then Schnorr and Euchner give a stronger
lattice reduction algorithm Block Korkin-Zolotarev reduction (BKZ) [25] which
combined the LLL algorithm and the enumeration algorithm to balance the
algorithm’s time cost and the quality of output (e.g., the approximation factor
α) by adjusting a parameter β called blocksize. In the literature, many variants
([11],[12],[7],[22],[4]) of the original BKZ algorithm [25] are proposed. e.g. By
using the extreme pruning technique[13] and early termination operation, BKZ
2.0 [7] speed up enumeration and improve the efficiency of the BKZ algorithm.

In 2019, Albrecht et al. [3] designed the General Sieve Kernel (G6K) which
implemented a new version of BKZ named Pump and jump BKZ (Pnj-BKZ)
which has two adjustable parameters: size of Pump (β) and size of jump (J). Unlike
classical BKZ using an enumeration algorithm as its SVP oracle, Pnj-BKZ(β, J)
adopts Pump to do the reduction in each block. The Pump used in G6K combined
progressive sieving technology [17] and dimension-for-free (d4f) technique [8]
can not only return one short vector but return a lattice basis which is almost
HKZ reduced. Pump can selectively call the Gauss sieve [21], NV sieve [23], k-list
sieve([15],[16]) or BGJ1 sieve [2] to solve α-SVP with very small approximate
factor like α ∈ [1, 1.05). In 2021, Ducas et al. [10] improved the efficiency of G6K
using GPU and implemented the fastest sieving algorithm BDGL16 [6] in both
G6K and G6K-GPU-Tensor.

Another parameter the jump value J controls the jump stage of blocks in BKZ
with each Pump, which can jump by more than one dimension. For instance, after
L[1:β] is reduced by the first Pump, the next Pump will be used to do the reduction
on L[1+J:J+β]. However, unlike the Slide BKZ [11] which can be considered as
BKZ with jump value equals β. The jump value J in Pnj-BKZ(β, J) is flexible to
adjust witin [1, β]. So Pnj-BKZ(β, J) algorithm is different from Slide BKZ [11].

The Pnj-BKZ algorithm is efficient in solving α-SVP in practice. Recently
many lattice challenge records are cracked by using Pnj-BKZ algorithm, such as
the TU Darmstadt LWE Challenges: 1 (n, α) ∈ {(40, 0.035), (90, 0.005), (50, 0.025),
(55, 0.020), (40, 0.040)}, TU Darmstadt SVP Challenges2 dimensions from 180 up
to 186, and TU Darmstadt Ideal Challenges3 750-dimension approximate-SVP.
Therefore, the study of the reduction effect of the Pnj-BKZ algorithm is crucial
to accurately measure the concrete hardness of α-SVP which characterizes the
security of the lattice cryptographic schemes.

To simulate the reduction effect of the Pnj-BKZ algorithm, the Pnj-BKZ
simulator [28] and its optimized version [27] was proposed which is a polynomial

1 https://www.latticechallenge.org/lwe challenge/challenge.php
2 https://www.latticechallenge.org/svp-challenge/halloffame.php
3 https://latticechallenge.org/ideallattice-challenge/index.php
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time the simulator of pnj-BKZ can predict how the length of Gram-Schmidt lattice
basis vectors change during the process of running each tour of Pnj-BKZ(β, J)
without actually running Pnj-BKZ(β, J). Pnj-BKZ(β, J) is an exponential time
algorithm with respect to blocksize β.

However, there is no theoretical analysis like the analysis in [14] and [19]
to analyze the upper bound of the approximate factor that Pnj-BKZ(β, J) can
achieve in solving α-SVP. More specifically to study lattice reduction algorithms
like BKZ-β can solve α-SVP with how small the approximation factor α, many
analyses are proposed. In 2011, Hanrot et al. [14] analyzed a certain variant BKZ’
of BKZ by dynamic systems. Their results show that after a polynomial number
of tours reduction of BKZ’-β, the shortest vector output from BKZ’-β has norm

smaller than 2γ
d−1

2(β−1)
+ 3

2

β · (detL)
1
d . In 2020, Li and Nguyen [19] present the first

rigorous dynamic analysis of BKZ rather than BKZ’. They proves that after at

most Θ
(

d2

β2 log d
)
tours reduction of BKZ-β, the Euclidean norm of the first

basis vector output from BKZ-β at most γ
d−1

2(β−1)
+

β(β−2)
2d(β−1)

β · (detL)
1
d . In 2022, Li

and Walter [20] give a rigorous dynamic analysis of Slide BKZ [11]. Slide BKZ
is similar to a BKZ with jump, but the jump value J equals the blocksize β in
Slide BKZ.

1.1 Contribution

In this paper, we use the dynamical system to analyze the upper bound of the
approximate factor in solving α-SVP by using how many tours reduction of
Pnj-BKZ(β, J). Here the jump value J ∈ [1, β] rather than J = β as that of Slide
BKZ [11]. Besides, we focus on a slightly modified ideal variant Pnj-BKZ’(β, J)
instead original version of Pnj-BKZ(β, J) algorithm. We construct the dynamical
system of Pnj-BKZ’ by using the sandpile model and use it to give the first
dynamical analysis of an ideal version of Pnj-BKZ’. Our results show that:

Set L be the lattice spanned by (ai)i≤d. The shortest vector b1 output by

running C 2Jd2

β(β−J)

(
ln d+ ln ln maxi

∥a∗
i ∥

(detL)1/d

)
tours reduction of Pnj-BKZ’(β, J),

which satisfied that ∥b1∥ ≤ γ
d−1

2(β−J)
+2

β · (detL)
1
d . See Table 1 for the details about

comparison with other works. From Table 1, we can see that with the same block
size β, although the time cost of one tour of Pnj-BKZ(β, J) is only 1/J times the
time cost of BKZ. However, with the same block size β, when J is greater than 1,
the full reduction effect of Pnj-BKZ is not as good as that of BKZ or that of Slide
reduction. Therefore, J can be regarded as a new trade-off parameter of the BKZ
type lattice reduction algorithm in addition to the block size β, which balances
the reduction quality of Pnj-BKZ reduction and the time cost of Pnj-BKZ.



Table 1: Comparison with other works
Technique GN08[11] LW23[20]
Algorithm Slide reduction Slide reduction

∥b1∥ /λ1(L) ≤ ((1 + ε) γβ)
(d−β)/(β−1) ≤ (1 + ε) γ

d−1
2(β−1)

β

Convergence needed Tours no O
(

d3 ln d
ε

β2

)
Discrete dynamical systems no yes

Technique HPS11[14] LN20[19]
Algorithm BKZ’ BKZ

∥b1∥ /λ1(L) ≤ 2γ
d−1

2(β−1)
+ 3

2

β ≤ γ
d−1

2(β−1)
+

β(β−2)
2d(β−1)

β

Convergence needed Tours Θ
(

d3

β2 (log d+ log logmaxi ∥bi∥)
)

Θ
(

d2

β2 log d
)

Discrete dynamical systems yes yes

Technique Our
Algorithm Pnj-BKZ’

∥b1∥ /λ1(L) ≤ γ
d−1

2(β−J)
+2

β

Convergence needed Tours Θ

(
2Jd2

β(β−J)

(
ln d+ ln ln maxi

∥a∗
i ∥

(detL)1/d

))
Discrete dynamical systems yes

2 Preliminaries

2.1 Notations and Basic Definitions

We use Ji,j to represent all-ones matrix where every entry is equal to 1 with i
rows and j columns, 0i,j represent i× j zero matrix, i, j ∈ N∗.

Definition 1 (Lattice). A lattice L is generated by a basis B which is a set
of linearly independent vectors {b1,b2, . . . ,bn} ∈ Rm. We will refer to it as
L (b1,b2, . . . ,bn) = {

∑n
i=1 zibi, zi ∈ Z}. In this paper the length of v ∈ Rm is

the Euclidean norm ∥v∥2.

A non-zero vector in a lattice L that has the minimum norm is called the shortest
vector. We use λ1 (L) to denote the norm of the shortest vector.

Definition 2. (α-approximate Shortest Vector Problem(α-SVP)) Given an ar-
bitrary basis B on lattice L = L(B), find the shortest non-zero vector v s.t.
∥v∥ = α · λ1 (L).

Definition 3 (Gram-Schmidt Basis and Projective Sublattice). For a
given lattice basis B = (b1,b2, . . . ,bn), we define its Gram-Schmidt orthogonal

basis B∗ := (b∗
1,b

∗
2, . . . ,b

∗
n) by b∗

i = bi −
∑i−1

j=1 µijb
∗
j for 1 ≤ j < i ≤ n, where

µij =
⟨bi,b

∗
j ⟩

∥b∗
j∥2 are the Gram-Schmidt coefficients (abbreviated as GS-coefficients).

In this paper we use li to represent the value of log (∥b∗
i ∥). The lattice determinant

is defined as det (L (B)) : =
∏n

i=1 ∥b∗
i ∥ and it is equal to the volume vol(L (B))



of the fundamental parallelepiped. We denote the orthogonal projection by πi :
Rm → span (b1, . . . ,bi−1)

⊥
for i ∈ {1, 2, . . . , n}. We denote the local block

of the projective sublattice L[i:j] := L (πi (bi) , πi (bi+1) , . . . , πi (bj)), for j ∈
{i, i+ 1, . . . , n}.

The notion of the norm of the shortest vector is also defined for a projective
sublattice as λ1

(
L[i:j]

)
.

Heuristic 1 (Gaussian Heuristic) Given an n-dimensional lattice L with de-
terminant det (L), the Gaussian heuristic predicts that there are around vol (C) /
det (L) many lattice points in a measurable subset C in Rn.

In addition, the length of the shortest vector can be approximated by the
radius of a sphere whose volume is det (L). This is usually called the Gaus-
sian heuristic of a lattice. Under Gaussian heuristic, it can be denoted as

λ1 (L) = GH (L) = det (L)
1/n

/Vn (1)
1/n

, where Vn (1) is the volume of unit

ball of dimension n. Besides GH (L) = det (L)
1/n

/Vn (1)
1/n

is usually approxi-

mated to
√

n
2πedet (L)

1/n
by using Stirling’s formula.

Definition 4 (Hermite-Korkine-Zolotarev (HKZ) Reduction). A lattice
basis is HKZ reduced, if it is size reduced and all Gram-Schmidt vectors satisfy
∥b∗

i ∥ = λ1
(
L[i,d]

)
, where d is dimension of lattice.

Heuristic 2 (Sandpile Model Assumption (SMA) [14]) For any HKZ re-

duced basis (bi)i≤β, xi =
1
2 ln γβ−i+1 +

1
β−i+1

∑β
j=i xj for all i ≤ β with (xi =

log ∥b∗
i ∥)i≤β.

Here γi in Heuristic 2 is the i-dimension Hermite’s constant which equals to
λ1(L)2

(detL)
2

dim(L)
. In this paper we use dim(L)

2πe to approximate this γdim(L).

Under SMA, once
∑

ixi (i.e., |det (bi)i|) is fixed, the (xi = log ∥b∗
i ∥)i≤β of

an HKZ-reduced basis is uniquely determined.

Definition 5 (Hermit factor). A d-dimensional lattice with basis B, the Her-

mite factor of L(B): HF(B) = ∥b1∥ /det(L)
1
d is one of quality measurement for

a lattice basis B which is reduced by lattice reduction algorithm. And the root
Hermite factor (rhf) is defined as HF(B)

1
d .

Definition 6 (Characteristic Polynomial). The characteristic polynomial
χ (A) of a matirx A is the polynomial defined as: det (A− λI) , where matirx A
is a square matrix and I is the identity matrix of identical dimension.

2.2 Pump and Jump BKZ Algorithm

Pnj-BKZ is a BKZ-type reduction algorithm that uses Pump as its SVP oracle.
However, Pump can return not only one short vector but many short vectors
and insert them at different positions to obtain an almost HKZ-reduced basis.



Specifically, inputting a projected sublattice basis Bπ[κ,r], after the reduction of
Pump, the output Bπ[κ,r] by Pump(Bπ[κ,r], κ, β, f) is an almost HKZ reduced basis.
Here f is a dimension for free function related to block size β and the information
about the dimension for free technology can be seen in [8]]. More detail about
Pump can be found in Algorithm 1 or the description of Pump in Section 4.1 of
G6K[3].

Algorithm 1 Pump

Input: B, κ, β, ds = f, stn = 30
Output: B

1: r := κ+ β; l := max {κ+ f + 1, r − stn} ; ilb := κ; L := ∅;
2: Bπ[κ,r] := LLL

(
Bπ[κ,r]

)
;

3: //Phase=“init”;
4: L := gauss sieve

(
Bπ[l,r ],L

)
;

5: //Phase=“up”;
6: while l > κ+ f do
7: L :=

{
EL (v, 1)

∣∣v ∈ L
}
, l := l − 1;

8: L := sieve
(
Bπ[l,r ],L

)
;

9: end while
10: //Phase=“down”;
11: while d > 1 & ilb < κ+ ds do
12: BL := best lifts (L); //score all the vectors in best lifts list of L, and

score each vi with score (vi) := θ−i ∥vi∥
∥b∗

i ∥
;

13: if BL ̸= ∅ then
14: ii := BL.index (max (BL));//Find the best scoring position;
15: Insert vii into the basis Bπ[κ,r ];
16: ilb := ii + 1;
17: else
18: L :=

{
SL (v, 1)

∣∣v ∈ L
}
;

19: end if
20: L := sieve

(
Bπ[l,r ],L

)
;

21: l := l + 1;
22: end while
23: return B

Besides unlike classical BKZ, Pnj-BKZ performs Pump with an adjustable
jump which can be bigger than 1. Specifically, PnjBKZ runs each Pump with
blocksize β and jump=J , after a certain block B[i:i+β] is reduced by Pump, the
next Pump will be executed on the B[i+J:i+β+J] block with a jump count J rather
than B[i+1:i+β+1]. More detail can be seen in Algorithm 2. In addition, the
jump value J in Pnj-BKZ(β, J) is within the range [1, β]. When J = β, it is
similar to Slide BKZ[11]. However, when one uses Pnj-BKZ(β, J) to do the
reduction of a d-dimension lattice basis in practice, usually there is the following



relationship: J ≪ β ≤ d. Since the inserting area of each Pump is at most the
value of dimension for free d4f(β) (Eq.(1)) according to entire block size β. To
ensure the output lattice basis of each Pump is almost HKZ-reduced lattice basis,
one needs J ≤ d4f(β). Eq.(1) shows the dimension for free value used in the
implementation of G6K([3],[10]). In other words, to ensure the output lattice
basis of each Pump is almost HKZ-reduced lattice basis, under the dimension for
free value setting in G6K, J ≤ 0.076β ≪ β ≤ d when β is bigger enough.

d4f(β) =


0, β < 40

⌊β−40
2 ⌋, 40 ≤ β ≤ 75

⌊11.5 + 0.075β⌋, β > 75.
(1)

Algorithm 2 Pump and jump BKZ

Input: B, β, fextra, jump = J
Output: B

′

1: f := min
{
max

{
0, β−40

2

}
, ⌊11.5 + 0.075β⌋

}
+ fextra;

2: ds := f + 3; β := β + fextra;
3: B=LLL (B);

4: for i ∈
{
1, . . . , d+2f−β

jump

}
do

5: if 1 ≤ i ≤ f+1
jump then

6: κ, β′, f ′ := 1, β − f + jump · i− 1, jump · i− 1
7: else if f+1

jump ≤ i ≤ d−β+f
jump then

8: j := jump · i− f
9: κ, β′, f ′ := j, β, f

10: else
11: j := jump · i− (d− β + f)
12: κ, β′, f ′ := d− β + j, β − j + 1, f − j + 1
13: end if
14: Bπ[k:β′+k−1] · vi = Pump

(
Bπ[k:β′+k−1],κ,β′,f ′,ds

)
15: B=LLL (B)
16: end for
17: B

′
=Pump (B, d− β + f + 1, β, f)

18: return B
′

One can obtain an (almost) HKZ reduced basis, by turning on sieving during
the Pump-down stage, which has actually already been the default operation
in the implementation of G6K-GPU[10]. After turning on sieving during the
Pump-down stage the output projected basis of pnj-BKZ(β, J) is very close to
an HKZ reduction. More detail about the reduction effect of a Pump can be seen
in the description of Pump in Section 4.1 of G6K[3].



3 Analysis of Pnj-BKZ’ in the Sandpile Model

Although the output of a Pump is very close to the HKZ reduced basis, it is still
not strictly equal to the HKZ reduced basis. In this paper, we will not analyze
the original Pnj-BKZ algorithm used in practice, but we will focus on a slightly
modified ideal variant instead. That is to say, when each Pump called by Pnj-BKZ
algorithm, the input projected sublattice basis Bπ[κ,κ+β], after the reduction of
Pump(Bπ[κ,κ+β], κ, β, f) is strictly satisfied the property of HKZ reduced basis.

3.1 The sandpile model and dynamical system in Pnj-BKZ’

Heuristic 3 (Ideal Pump variant: Pump’) A projected sublattice basis Bπ[κ,κ+β]

after the reduction of Pump’(Bπ[κ,κ+β], κ, β, f) strictly satisfied the property of
HKZ reduced basis (Definition 4), for all κ ∈ {1, ..., d − β + 1}, dimension of
entire lattice basis B is d.

Then we call a Pnj-BKZ which replaces Pump by Pump’ as Pnj-BKZ’. In this
paper, we focus on the analysis of this slightly modified ideal variant of Pnj-BKZ
instead.

Under Heuristic 3, the lattice basis L[i:i+β−1] reduced by a Pump’ is a HKZ

reduced lattice basis. Let L
′

[i:i+β−(i−1 mod J)] or L
′

[i:d] be the projected sub-lattice

after lj for all j ∈ [1, i− 1] have been replaced during the previous embedding.
Under Sandpile Model Assumption [14] (Heuristic 2), after one tour reduction

of Pnj-BKZ’(β, J), new l
′

i can be expressed as:

l
′

i =

ln GH
(
L

′

[i:i+β−(i−1 mod J)]

)
, i ∈ [1, d− β]

ln GH
(
L

′

[i:d]

)
, i ∈ [d− β + 1, d]

(2)

We set ai as:

ai =


ln

(√
β−(i−1 mod J)

2πe

)
, i ∈ [1, d− β]

ln

(√
d−i+1
2πe

)
, i ∈ [d− β + 1, d]

(3)

Using Stirling’s approximation, Eq.(2) can be written as:

l
′

i ≈

ai +
1

β−(i−1 mod J) ln
(
vol
(
L

′

[i:i+β−(i−1 mod J)]

))
, i ∈ [1, d− β]

ai +
1

d−i+1 ln
(
vol
(
L

′

[i:d]

))
, i ∈ [d− β + 1, d]

(4)

Set ci = ln
(√

i
2πe

)
, (l′i)

(k)
i be the ln value of the length of Gram-Schmidt

vectors after k-th Pump’(κ = 1+(α−1)J, β) reduction. k ∈
[
1, . . . ,

⌈
d−β
J

⌉]
, based

on Eq.(4), it gives that:

l
′(1)
1 = cβ +

1

β

β∑
i=1

l
(0)
i (5)



Since after l
(0)
1 changed to l

′(1)
1 , all l

(0)
i for i ∈ [2, d] will change to some

l
⋆(0)
i and such change is hard to predicate. However the value of vol

(
L[1:β]

)
will not change after l

(0)
1 changed to l

′(1)
1 , so we can predict l

′(1)
2 by calculating

l
′(1)
2 = cβ−1 + 1

β−1

∑β
i=2 l

⋆(0)
i by l

′(1)
2 = cβ−1 + 1

β−1

(∑β
i=1 l

(0)
i − l

′(1)
1

)
. Since

ln
(
vol
(
L

′

[2:β]

))
= ln

(
vol
(
L[1:β]

))
− l

′(1)
1 .

Combined with Eq.(5), l
′(1)
2 can be written as:

l
′(1)
2 = cβ−1+

1

β − 1

(
β∑

i=1

l
(0)
i − cβ − 1

β

β∑
i=1

l
(0)
i

)
= cβ−1−

1

β − 1
cβ+

1

β

(
β∑

i=1

l
(0)
i

)
(6)

Lemma 1. For j ∈ [2, ..., β − 1], Eq.(7) holds.

l
′(1)
j =

1

β

β∑
i=1

l
(0)
i + cβ−j+1 −

j−1∑
k=1

1

β − k
cβ−k+1 (7)

Proof. l
′(1)
2 already satisfied Eq.(7). Since l

′(1)
j+1 = cβ−j+

1
β−j

(∑β
i=1 l

(0)
i −

∑j
k=1 l

′(1)
k

)
,

we obtain that:

l
′(1)
j+1 = cβ−j +

1

β − j

[
β∑

i=1

l
(0)
i −

j∑
k=1

(
1

β

β∑
i=1

l
(0)
i + cβ−k+1 −

k−1∑
s=1

1

β − s
cβ−s+1

)]

l
′(1)
j+1 = cβ−j +

1

β − j

[
β − j

β

β∑
i=1

l
(0)
i −

j∑
k=1

(
cβ−k+1 −

k−1∑
s=1

1

β − s
cβ−s+1

)]

l
′(1)
j+1 =

1

β

β∑
i=1

l
(0)
i + cβ−j +

1

β − j

(
−

j∑
k=1

cβ−k+1 +

j∑
k=1

k−1∑
s=1

1

β − s
cβ−s+1

)

l
′(1)
j+1 =

1

β

β∑
i=1

l
(0)
i + cβ−j +

1

β − j

(
−

j∑
k=1

cβ−k+1 +

j∑
k=1

j − k

β − k
cβ−k+1

)

l
′(1)
j+1 =

1

β

β∑
i=1

l
(0)
i + cβ−j −

j∑
k=1

1

β − k
cβ−k+1

Therefore, Eq.(7) is held by induction proving. 2



Besides, since β-dimensional Pump’(κ = 1, β) only affect the GS values in
L[1:β], for these rest of GS values we have the same conclusion as that in [14]:

j ∈ [1, d] \ [1, β], l
′(1)
j = l

(0)
j (8)

Combining the Eq.(7) and Eq.(8) together shows how these ln values of the
length of Gram-Schmidt vectors change after one reduction of a β-dimensional
Pump’(κ = 1, β) on lattice basis L[1:β]. Based on Eq.(7) and Eq.(8), ∀j ∈ [1 : d]

we can give the estimation of how Gram-Schmidt lengths l
(original)
j change

to l
(new)
j after the reduction of a β-dimensional Pump’(κ, β) on any position

κ = i ∈ [1, d− β + 1].

l
(new)
j =

{
1
β

∑i+β−1
j=i l

(original)
i + cβ−j+1 −

∑j−1
k=1

1
β−k cβ−k+1, j ∈ [i, i+ β − 1]

l
(original)
j , j ∈ [1, d] \ [i, i+ β − 1]

(9)
Based on Eq.(9), we can give the discrete-time linear dynamical system of

Pnj-BKZ’. During one tour reduction of a Pnj-BKZ’-(β, J), it will call
⌈
d−β
J

⌉
time

Pump’ whose first index κ as κ ∈
{
1, 1 + J, 1 + 2J, ..., 1 +

⌊
d−β
J

⌋
J
}
∪{d− β + 1}.

Let x = (li)i, (li)
(α)
i be the ln value of the length of Gram-Schmidt vectors after

α-th Pump’(κ = 1 + (α− 1)J, β) reduction, x(α) = (li)
(α)
i , α ∈

[
1, 2, . . . ,

⌈
d−β
J

⌉]
.

Then we know that ∀i ∈
{
1, 1 + J, 1 + 2J, ..., 1 +

⌊
d−β
J

⌋
J
}
∪ {d− β + 1} and,

x(1+⌊ i
J ⌋) = A(i) · x(⌊ i

J ⌋) + c(i) with:

A(i) =



. . .

1
1
β . . .

1
β

...
. . .

...
1
β . . .

1
β

1
. . .



(i)

(i+ β − 1)

and c
(i)
j =


0, j < i

cβ−j −
∑j−1

k=1
cβ−k+1

β−k , j ∈ [i, i+ β − 1]

0, i+ β ≤ j

. It can be seen that the

dynamic system of Pnj-BKZ’ actually only has part of the matrix A(i) that
i ≡ 1 (mod J) in the dynamic system of BKZ’[14].

The effect of Pnj-BKZ’ tour on x is Ax+ c with c =

c
(d−β+1)

+A
(d−β+1)

[
c

(
1+

⌊
d−β
J

⌋
·J

)
+ A

(
1+

⌊
d−β
J

⌋
·J

) (
c

(
1+

⌊
d−β
J

⌋
·J−J

)
+ A

(
1+

⌊
d−β
J

⌋
·J−J

)
· (· · · )

)]

and A = A(d−β+1) ·A(1+⌊ d−β
J ⌋·J) · ... ·A(1+J) ·A(1).



We use Ji,j to represent all-ones matrix where every entry is equal to 1
with i rows and j columns, 0i,j represent i × j zero matrix, and In represent
n-dimensional identity matrix. It is easy to get that:

A(1+J) ·A(1) =

 1
βJJ,β 0J,J 0J,d−β−J

β−J
β2 Jβ,β

1
βJβ,J 0β,d−β−J

0d−β−J,β 0d−β−J,J Id−β−J,d−β−J

 ,

A(1+2J)·A(1+J)·A(1) =


1
βJJ,β 0J,J 0J,J 0J,d−β−2J

β−J
β2 JJ,β

1
βJJ,J 0J,J 0β,d−β−2J

(β−J)2

β3 Jβ,β
β−J
β2 Jβ,J

1
βJβ,J 0β,d−β−2J

0d−β−2J,β 0d−β−2J,J 0d−β−2J,J Id−β−2J,d−β−2J

 ,

We can set A(1+(k−1)J) · · · · ·A(1+2J) ·A(1+J) ·A(1) =



1
β

JJ,β 0J,J 0J,J · · · 0J,J 0J,J 0J,d−β−(k−1)J
β−J

β2 JJ,β
1
β

JJ,J 0J,J . . . 0J,J 0J,J 0J,d−β−(k−1)J

(β−J)2

β3 JJ,β
β−J

β2 JJ,J
1
β

JJ,J . . . 0J,J 0J,J 0J,d−β−(k−1)J

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

(β−J)k−2

βk−1
JJ,β

(β−J)k−3

βk−2
JJ,J

(β−J)k−4

βk−3
JJ,J . . . 1

β
JJ,J 0J,J 0J,d−β−(k−1)J

(β−J)k−1

βk
Jβ,β

(β−J)k−2

βk−1
Jβ,J

(β−J)k−3

βk−2
Jβ,J . . .

β−J

β2 Jβ,J
1
β

Jβ,J 0J,d−β−(k−1)J

0d−β−(k−1)J,β 0d−β−(k−1)J,J 0d−β−(k−1)J,J . . . 0d−β−(k−1)J,J 0d−β−(k−1)J,J Id−β−(k−1)J,d−β−(k−1)J



It is hold for k = 1, 2, 3. ThenA(1+kJ)·A(1+(k−1)J)·· · ··A(1+2J)·A(1+J)·A(1) = IkJ,kJ 0kJ,β 0kJ,d−β−kJ

0β,kJ Jβ,β 0β,d−β−kJ

0d−β−kJ,kJ 0d−β−kJ,β Id−β−kJ,d−β−kJ

 ·A(1+(k−1)J) · · · · ·A(1+J) ·A(1) =

Finally, we have: A(1+kJ) ·A(1+(k−1)J) · · · · ·A(1+2J) ·A(1+J) ·A(1) =



1
βJJ,β 0J,J 0J,J . . . 0J,J 0J,J 0J,d−β−kJ

β−J
β2 JJ,β

1
βJJ,J 0J,J . . . 0J,J 0J,J 0J,d−β−kJ

(β−J)2

β3 JJ,β
β−J
β2 JJ,J

1
βJJ,J . . . 0J,J 0J,J 0J,d−β−kJ

...
...

...
. . .

...
...

...
(β−J)k−1

βk JJ,β
(β−J)k−2

βk−1 JJ,J
(β−J)k−3

βk−2 JJ,J . . .
1
βJJ,J 0J,J 0J,d−β−kJ

(β−J)k

βk+1 Jβ,β
(β−J)k−1

βk Jβ,J
(β−J)k−2

βk−1 Jβ,J . . .
β−J
β2 Jβ,J

1
βJβ,J 0β,d−β−kJ

0d−β−kJ,β 0d−β−kJ,J 0d−β−kJ,J . . . 0d−β−kJ,J 0d−β−kJ,J Id−β−kJ,d−β−kJ


When d− β ≡ 0(mod J), set k = d−β

J , we have:

A =



1
βJJ,β 0J,J 0J,J . . . 0J,J 0J,J

β−J
β2 JJ,β

1
βJJ,J 0J,J . . . 0J,J 0J,J

(β−J)2

β3 JJ,β
β−J
β2 JJ,J

1
βJJ,J . . . 0J,J 0J,J

...
...

...
. . .

...
...

(β−J)k−1

βk JJ,β
(β−J)k−2

βk−1 JJ,J
(β−J)k−3

βk−2 JJ,J . . .
1
βJJ,J 0J,J

(β−J)k

βk+1 Jβ,β
(β−J)k−1

βk Jβ,J
(β−J)k−2

βk−1 Jβ,J . . .
β−J
β2 Jβ,J

1
βJβ,J


(10)



When d− β ̸= 0(mod J), set k =
⌊
d−β
J

⌋
, we also have A :=



1
β

JJ,β 0J,J . . . 0J,J 0J,J 0J,d−kJ−β
β−J

β2 JJ,β
1
β

JJ,J . . . 0J,J 0J,J 0J,d−kJ−β

(β−J)2

β3 JJ,β
β−J

β2 JJ,J . . . 0J,J 0J,J 0J,d−kJ−β

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

(β−J)k−1

βk
JJ,β

(β−J)k−2

βk−1
JJ,J . . . 1

β
JJ,J 0J,J 0J,d−kJ−β

(β−J)k

βk+1
Jd−kJ−β,β

(β−J)k−1

βk
Jd−kJ−β,J . . .

β−J

β2 Jd−kJ−β,J
1
β

Jd−kJ−β,J 0d−kJ−β,d−kJ−β

(β−J)k·(kJ+2β−d)

βk+2
Jβ,β

(β−J)k−1·(kJ+2β−d)

βk+1
Jβ,J . . .

(β−J)·(kJ+2β−d)

β3 Jβ,J
kJ+2β−d

β2 Jβ,J
1
β

Jβ,d−kJβ


(11)

3.2 Solutions of the dynamical system of Pnj-BKZ’

Same proof as that in the Lemma 3 in [14], we know that if A · x = x then

x ∈ span (1, 1, . . . , 1)
T
.

So it suffices to find one solution of x = A · x+ c to obtain all the solutions.
Set β

′

i = β − (i− 1 mod J) we define x̄ as follows:

l̄i =

ai + 1
β
′
i

∑i+β
′
i−1

j=i l̄j , i ∈ [1, . . . , d− β]

ai +
1

d−i

∑d
j=i l̄j , i ∈ [d− β + 1, . . . , d]

and we can get x̄ :=

l̄i =


β
′
i

β
′
i−1

ai +
1

β
′
i−1

∑i+β
′
i−1

j=i+1 l̄j , i ∈ [1, . . . , d− β]

β
′
i

β
′
i−1

ai +
1

d−i−1

∑d
j=i+1 l̄j , i ∈ [d− β + 1, . . . , d]

(12)

Lemma 2. For x̄ as the form shown in Equ.(12), we have x̄ = A · x̄+ c.

Proof. Let x̄ as the length vector of initial input vector. After the reduction of

first Pump’, l̄
(1)
1 = a1 +

1
β

∑β
j=1 l̄

(0)
j . As the definition of x̄ Equ.(12), we know

that l̄
(1)
1 = a1 + 1

β

∑β
j=1 l̄

(0)
j = l̄

(0)
1 . Therefore l̄

(1)
1 = l̄

(0)
1 , there is no change

in the value of l̄1 after the reduction of first Pump’. Set l̄
(0)
i = l̄

(1)
i , it already

hold when i = 1. For the case i + 1, l̄
(1)
i+1 = ai+1 +

1
β
′
i+1

∑i+β
′
i+1

j=i+1 l̄
(0)′

j = ai+1 +

1
β
′
i+1

(∑i+β
′
i+1

j=1 l̄
(0)
j −

∑i
j=1 l̄

(1)
j

)
= ai+1 + 1

β
′
i+1

(∑i+β
′
i+1

j=1 l̄
(0)
j −

∑i
j=1 l̄

(0)
j

)
=

ai+1 +
1

β
′
i+1

(∑i+β
′
i+1

j=i+1 l̄
(0)
j

)
. According to the definition of Equ.(12), we know

that l̄
(0)
i+1 = ai+1+

1
β
′
i+1

(∑i+β
′
i+1

j=i+1 l̄
(0)
j

)
. Therefore l̄

(1)
i+1 = l̄

(0)
i+1. Then we inductive

proved Lemma 2. 2

We now give the lower and upper bounds for the coordinates of the solution
x̄.



Lemma 3. For all i ≤ d−β+1, we have 2 ·
(

d−i
β−J − 3

2

)
cβ−J+1 ≤ l̄i − l̄d−β+1 ≤

2 · d−i
β−J cβ.

Proof. We first consider the upper bound on l̄i − l̄d−β+1. Since l̄d−β+1 ≥ · · · ≥ l̄d,
it indicates that:

∀i > d− β, l̄i − l̄d−β+1 ≤ 0 ≤ 2 · d− i

β − 1
cβ

According to Equ.(12),

l̄i =
β

′

i

β
′
i − 1

ai +
1

β
′
i − 1

i+β
′
i−1∑

j=i+1

l̄j , i ∈ [1, . . . , d− β]

β
′
i

β
′
i−1

decreases monotonically with respect to β
′

i . β
′

i ∈ [β − J + 1, ..., β]. So

we obtian that:

l̄i ≤
β − J + 1

β − J
cβ +

1

β
′
i − 1

i+β
′
i−1∑

j=i+1

l̄j , i ∈ [1, . . . , d− β]

The average value 1
β
′
i−1

∑i+β
′
i−1

j=i+1 l̄j is smaller than 1
β−J

∑i+β−J
j=i+1 l̄j since l̄i

decreases as the index i increasing and β
′

i − 1 ≥ β − J . It shows that:

l̄i ≤
β − J + 1

β − J
cβ +

1

β − J

i+β−J∑
j=i+1

l̄j , i ∈ [1, . . . , d− β]

Next, we will prove l̄i ≤ l̄d−β+1 +2 · d−i
β−J cβ , ∀i ∈ [1, . . . , d] by inductive proof.

∀i ∈ [d − β + 1, . . . , d], l̄i ≤ l̄d−β+1 + 2 · d−i
β−J cβ hold. Since l̄i ≤ l̄d−β+1 and

d−i
β−J cβ ≥ 0. Then for the case i = d − β, from l̄i ≤ β−J+1

β−J cβ + 1
β−J

∑i+β−J
j=i+1 l̄j ,

we have:

l̄i ≤
β − J + 1

β − J
cβ +

1

β − J

i+β−J∑
j=i+1

(
l̄d−β+1 + 2 · d− j

β − J
cβ

)

l̄i ≤
β − J + 1

β − J
cβ + l̄d−β+1 + 2 ·

d− i− β−J+1
2

β − J
cβ

l̄i ≤ l̄d−β+1 + 2 · d− i

β − J
cβ (13)

By inductive prove, Equ.(13) hold for ∀i ∈ [1, . . . , d].
We now give the lower bound on l̄i − l̄d−β+1.
According to Equ.(12),



l̄i =
β

′

i

β
′
i − 1

ai +
1

β
′
i − 1

i+β
′
i−1∑

j=i+1

l̄j , i ∈ [1, . . . , d− β]

As l̄j is decreased when j is increasing. β
′

i ∈ [β − J + 1, ..., β], for ∀i ∈

[d−2(β−1), . . . , d−β], i+β′

i ≤ i+β, it means 1
β
′
i−1

∑i+β
′
i−1

j=i+1 l̄j ≥ 1
β−1

∑i+β−1
j=i+1 l̄j

and we obtain:

l̄i ≥
β

β − 1
cβ−J+1 +

1

β − 1

 d−β∑
j=i+1

l̄j +

i+β−1∑
j=d−β+1

l̄j

 , i ∈ [1, . . . , d− β] (14)

Next, we will prove l̄i ≥ l̄d−β+1 + 2 ·
(

d−i
β−J − 3

2

)
cβ−J+1, ∀i ∈ [1, . . . , d− β]

by inductive proof. As l̄j is decreased when j is increasing, for ∀i ∈ [d− 2(β −
1), . . . , d− β − J ], we get:

1

i+ 2β − d− 1

i+β−1∑
j=d−β+1

l̄j ≥
1

β − J + 1

d−J+2∑
j=d−β+1

l̄j

∀i ∈ [d − 2(β − 1), . . . , d − β − J ], since l̄d−β+1 = GH
(
L[d−β+1:d]

)
≤

1
β−J+1

∑d−J+2
j=d−β+1 l̄j +cβ−J+1 = GH

(
L[d−β+1:d−J+2]

)
. ∀i ∈ [d−2(β−1), . . . , d−

β − J ], we also have:

1

i+ 2β − d− 1

i+β−1∑
j=d−β+1

l̄j ≥
1

β − J + 1

d−J+2∑
j=d−β+1

l̄j ≥ l̄d−β+1 − cβ−J+1,

Since −1 ≥ 2 · 1
i+2β−d−1

∑i+β−1
j=d−β+1

(
d−j
β−1 − 3

2

)

1

i+ 2β − d− 1

i+β−1∑
j=d−β+1

l̄j ≥ l̄d−β+1 +
2 · cβ−J+1

i+ 2β − d− 1

i+β−1∑
j=d−β+1

(
d− j

β − 1
− 3

2

)
(15)

∀i ∈ [d− β − J, . . . , d− β], since 1
i+2β−d−1

∑i+β−1
j=d−β+1 l̄j ≥

1
β

∑d
j=d−β+1 l̄j =

l̄d−β+1 − cβ and limβ→∞ cβ−J+1 − cβ = 0 (β >> J), it gives that:

1

i+ 2β − d− 1

i+β−1∑
j=d−β+1

l̄j ≥
1

β

d∑
j=d−β+1

l̄j ≥ l̄d−β+1 − cβ−J+1,

Then Eq.(15) also hold when ∀i ∈ [d − β − J, . . . , d − β]. Therefore, ∀i ∈
[d− 2(β − 1), . . . , d− β] Eq.(15) hold.



Besides, ∀j ∈ [d−2(β−1), . . . , d−β], l̄j > l̄d−β+1 and
∑d−β

j=i+1

(
d−j
β−1 − 3

2

)
≤ 0,

we have:

1

d− β − i

d−β∑
j=i+1

l̄j ≥ l̄d−β+1 +
2 · cβ−J+1

d− β − i

d−β∑
j=i+1

(
d− j

β − 1
− 3

2

)
(16)

Plugging Eq.(15) and Eq.(16) into Eq.(14), it gives that:

l̄i ≥
β

β − 1
cβ−J+1 +

1

β − 1

(β − 1) · l̄d−β+1 + 2 · cβ−J+1

i+β−1∑
j=i+1

(
d− j

β − 1
− 3

2

)

l̄i ≥
β

β − 1
cβ−J+1 + 2 ·

(
d− i− β

2

β − 1
− 3

2

)
cβ−J+1 + l̄d−β+1

l̄i ≥ l̄d−β+1 + 2 ·
(
d− i

β − 1
− 3

2

)
cβ−J+1 (17)

By inductive proving remain for ∀i ∈ [1, . . . , d − 2(β − 1)], we have ∀i ∈
[1, . . . , d− β], Eq.(17) hold. 2

Next in Lemma 4, we give the upper bound of Hermite factor of the Pnj-BKZ’
fully reduced lattice basis: lnHF (B∞). Here we set B∞ as the lattice basis which
is fully reduced by Pnj-BKZ’(β, J).

Lemma 4. lnHF (B∞) ≤
(

d−1
β−J + 4

)
cβ ≲

(
d−1
β−J + 4

)
ln
√
γβ

Proof.

lnHF (B∞) = l∞1 − 1

d

d∑
i=1

l∞i = l∞1 − l∞d−β+1 + l∞d−β+1 −
1

d

d∑
i=1

l∞i

Based on Lemma 3 and
∑d

i=d−β+1 l
∞
i = β

(
l∞d−β+1 − cβ

)
≥ βl∞d−β+1 + 2 ·

cβ
∑d

i=d−β+1

(
d−i
β−1 − 3

2

)
. This implies that:

lnHF (B∞) ≤ 2 · d− 1

β − J
cβ − 1

d

(
d∑

i=1

(
l∞i − l∞d−β+1

))

lnHF (B∞) ≤ 2 · d− 1

β − J
cβ − 1

d

(
d∑

i=1

(
2 ·
(
d− i

β − J
− 3

2

)
cβ−J+1

))

lnHF (B∞) ≤ 2 · d− 1

β − J
cβ −

(
d− 1

β − J
− 3

)
cβ−J+1



Meanwhile β >> J , cβ − cβ−J+1 = 1
2 ln

β
β−J+1 ≤ 1, and d = O(β), we can

further obtain:

lnHF (B∞) ≤
(
d− 1

β − J
+ 3

)
cβ +

d− 1

β − J
≤
(
d− 1

β − J
+ 4

)
cβ

Besides, cβ = ln

(√
β

2πe

)
≲ ln

√
γβ . Finally we get

lnHF (B∞) ≤
(
d− 1

β − J
+ 4

)
ln

√
γβ (18)

2

We can see that when J = 1, Eq.(18) the upper bound of lnHF (B∞) degen-
erates to the form in [14].

4 Convergence speed of the Pnj-BKZ’ dynamical system

In this section, we study the speed of convergence of the discrete-time dynamical
system x̄k+1 := Ax̄k + c (where Ad and cd are the d-dimensional A and c
respectively). According to the principle of the power iteration algorithm, the

asymptotic speed of convergence of the sequence (A
(k)
d x̄)k is determined by the

eigenvalue of Ad. And we can bound
∥∥∥A(k)

d x̄
∥∥∥ ≤

∥∥∥A(k)
d

∥∥∥ ∥x̄∥, so we mainly study

largest eigenvalue of AT
d Ad. In fact the largest eigenvalue of AT

d Ad is 1. In the
following subsection we want to show that the second largest singular value is

smaller than 1− β(β−J)
2Jd2 .

4.1 Upper bound of the second largest eigenvalue of AT
dAd

Set M [a : b, c : d] to represent the block matrix composed of elements at the
intersection of the area from row a to row b of the matrix M and the area
from columns c to column d. Firstly, based on Eq.(10), we give the form of
Md = AT

d Ad is Eq.(19).

In fact, according to Eq.(10), we give the form of Mβ+(k+1)J by Eq.(19) that

for k = 0, 1, . . . ,
⌊
d−β
J

⌋
:

Mβ+(k+1)J = AT
β+(k+1)JAβ+(k+1)J =

(
J
β2 Jβ,β + (β−J)2

β2 Mβ+kJ [1 : β, 1 : β] β−J
β

Mβ+kJ [1 : β, (β − J) : (β + kJ)]
β−J
β

Mβ+kJ [(β − J) : (β + kJ), 1 : β] Mβ+kJ [(β − J) : (β + kJ), (β − J) : (β + kJ)]

)
(19)

Here dim(Mβ+kJ) = β + kJ .



Proof. To prove Eq.(19), one can compare the form of Mβ+kJ and Mβ+(k−1)J .
According to Eq.(10), the coefficient of the first β × β dimensional block in

Mβ+kJ is
∑k−1

i=0
J
β2

(
β−J
β

)2i
+ (β−J)2k

β2k+1 , while the coefficient of the first β × β

dimensional block in Mβ+(k−1)J is
∑k−2

i=0
J
β2

(
β−J
β

)2i
+ (β−J)2(k−1)

β2k−1 .

J
β2 +

(
β−J
β

)2 [∑k−2
i=0

J
β2

(
β−J
β

)2i
+ (β−J)2(k−1)

β2k−1

]
= J

β2 +
∑k−1

i=1
J
β2

(
β−J
β

)2i
+

(β−J)2k

β2k+1 =
∑k−1

i=0
J
β2

(
β−J
β

)2i
+ (β−J)2k

β2k+1 . Therefore, the relationship shown in

Eq.(19) holds for the first β × β dimensional block.

Meanwhile, Eq.(10) shows that

Mβ+(k+1)J [1 : β, (β − J) : (β + kJ)] =
β − J

β
Mβ+kJ [1 : β, (β − J) : (β + kJ)]

Mβ+(k+1)J [(β − J) : (β + kJ), 1 : β] =
β − J

β
Mβ+kJ [(β − J) : (β + kJ), 1 : β]

Mβ+(k+1)J [(β − J) : (β + kJ), (β − J) : (β + kJ)] = Mβ+kJ [(β − J) : (β +
kJ), (β − J) : (β + kJ)] 2

To give a more intuitive representation of Mβ+kJ in Eq.(19), following we
give the cases of k = 1, 2, 3 which are easy to calculate by using Eq.(10).

Mβ+J = AT
β+JAβ+J =

((
J
β2 + (β−J)2

β3

)
Jβ,β

β−J
β2 Jβ,J

β−J
β2 JJ,β

1
βJJ,J

)
,

Mβ+2J = AT
β+2JAβ+2J =


(

J
β2 + J(β−J)2

β4 + (β−J)4

β5

)
Jβ,β

(
J(β−J)

β3 + (β−J)3

β4

)
Jβ,J

(β−J)2

β3 Jβ,J(
J(β−J)

β3 + (β−J)3

β4

)
JJ,β

(
J
β2 + (β−J)2

β3

)
JJ,J

β−J
β2 J.J,J

(β−J)2

β3 JJ,β
β−J
β2 JJ,J

1
βJJ,J


Mβ+3J = AT

β+3JAβ+3J = (Mβ+3J [(1 : β + 3J), (1 : β + J)], Mβ+3J [(1 :
β + 3J), (β + J + 1) : (β + 3J)])

Mβ+3J [(1 : β + 3J), (1 : β + J)] =

(
J
β2 + J(β−J)2

β4 + (β−J)4

β6 + (β−J)6

β7

)
Jβ,β

(
J(β−J)

β3 + J(β−J)3

β5 + (β−J)5

β6

)
Jβ,J(

J(β−J)
β3 + J(β−J)3

β5 + (β−J)5

β6

)
JJ,β

(
J
β2 + J(β−J)2

β4 + (β−J)4

β5

)
JJ,J(

J(β−J)2

β4 + (β−J)4

β5

)
JJ,β

(
J(β−J)

β3 + (β−J)3

β4

)
JJ,J

(β−J)3

β4 JJ,β
(β−J)2

β3 JJ,J





Mβ+3J [(1 : β + 3J), (β + J + 1) : (β + 3J)] =

(
J(β−J)2

β4 + (β−J)4

β5

)
Jβ,J

(β−J)3

β4 Jβ,J(
J(β−J)

β3 + (β−J)3

β4

)
JJ,J

(β−J)2

β3 JJ,J(
J
β2 + (β−J)2

β3

)
JJ,J

β−J
β2 J.J,J

β−J
β2 JJ,J

1
βJJ,J


Let χ (Mβ+i) (λ) = χβ+i (λ). Next, we give the characteristic polynomial χd

of AT
d Ad. For i ≥ 0, d = β + i.

Lemma 5. For i ≥ 2, d = i+ β, χβ+i (λ) = 2λ · χβ+i−1 (λ)− λ2 · χβ+i−2 (λ) , i mod J ̸= 1[(
1 +

(
β−J
β

)2)
λ− J

β2

]
· χβ+i−1 (λ)−

(
β−J
β

)2
λ2 · χβ+i−2 (λ) , i mod J ≡ 1

Proof. When i mod J ̸= 1, according to Eq.(19), the form of Mβ+i is:

Mβ+i =

a a aT

a a aT

a a Mβ+i−2


Then

χβ+i (λ) =

∣∣∣∣∣∣
2λ −λ 0
−λ λ− a −aT

0 −a Mβ+i−2 − λIβ+i−2

∣∣∣∣∣∣
χβ+i (λ) = 2λ · χβ+i−1 (λ)− λ2 · χβ+i−2 (λ)

When i mod J = 1, the form of Mβ+i is:

Mβ+i =

a b bT

b c b′T

b b′ Mβ+i−2


Here according to Eq.(19), b = β−J

β b′, b = β−J
β c, a = J

β2 + β−J
β b, so

a = J
β2 +

(
β−J
β

)2
c. Then χ (Mβ+i) (λ) is:

χβ+i (λ) =

∣∣∣∣∣∣∣∣
[
1 +

(
β−J
β

)2]
λ− J

β2 −β−J
β λ 0

−β−J
β λ λ− c −b′T

0 −b′ Mβ+i−2 − λIβ+i−2

∣∣∣∣∣∣∣∣
χβ+i (λ) =

[(
1 +

(
β − J

β

)2
)
λ− J

β2

]
·χβ+i−1 (λ)−

(
β − J

β

)2

λ2 ·χβ+i−2 (λ)

2



Lemma 6. For J ≥ i ≥ 0, χβ+i (λ) = λβ+i−2 (λ− 1)
(
λ− i2

β2

)
Proof. AT

βAβ = Aβ and dim ker (Aβ) = β − 1, so λβ−1 | χβ (λ). Besides,

Tr (Aβ) = 1 thus it implies that χβ (λ) = λβ−1 (λ− 1). Meanwhile, ∀i ∈
{1, 2, ..., J},

Aβ+i =

(
1
βJi,β 0i,i

β−i
β2 Jβ,β

1
βJβ,i

)
,

AT
β+iAβ+i = Mβ+i =

((
i
β2 + (β−i)2

β3

)
Jβ,β

β−i
β2 Jβ,i

β−i
β2 Ji,β

1
βJi,i

)
,

We grt that Tr (Mβ+i) =
i
β + (β−i)2

β2 + i
β = 1 + i2

β2 and dim ker (Aβ+i) =

β + i − 2, so λβ+i−2 | χβ+i (λ). Meanwhile, it always has that AT
β+iAβ+i ·

(1, · · · , 1)T = (1, · · · , 1)T . Therefore, we obtain that for i ≥ 0, χβ+i (λ) =

λβ+i−2 (λ− 1)
(
λ− i2

β2

)
. 2

Since J ≪ β, 1 = limβ→∞

(
β−J
β

)2
and 0 = limβ→∞

J
β2 , we give the following

Heuristic 4.

Heuristic 4 For i ≥ 2:

χβ+i (λ) =

[(
1 +

(
β − J

β

)2
)
λ− J

β2

]
·χβ+i−1 (λ)−

(
β − J

β

)2

λ2 ·χβ+i−2 (λ) .

When Heuristic 4 is hold, we can prove that Heuristic 4 satisfies a second
order recurrence formula.

Lemma 7. For d ≥ β, the largest root of χd(λ) is within

[
1

J+
2β(β−J)π2

J(d−β)2

, 1− β(β−J)
2Jd2

]

The proof of the following result relies on several changes of variables to link
the polynomials χd (λ) to the Chebyshev polynomials of the second kind.

Proof. Let χ̄i (λ) = λiχi

(
1
λ

)
, we have: χ̄ (Mβ+i) (λ) = λi · χ (Mβ+i)

(
1
λ

)
,

χ̄ (Mβ+i) (λ) = λi·
[(

1 +
(

β−J
β

)2)
1
λ − J

β2

]
·χ (Mβ+i−1)

(
1
λ

)
−λi·

(
β−J
β

)2
1
λ2 ·

χ (Mβ+i−2)
(
1
λ

)
χ̄ (Mβ+i) (λ) = λi−1 ·

[
1 +

(
β−J
β

)2
− J

β2λ

]
·χ (Mβ+i−1)

(
1
λ

)
−
(

β−J
β

)2
λi−2 ·

χ (Mβ+i−2)
(
1
λ

)
χ̄ (Mβ+i) (λ) =

[
1 +

(
β − J

β

)2

− J

β2
λ

]
· χ̄ (Mβ+i−1) (λ)−

(
β − J

β

)2

· χ̄ (Mβ+i−2) (λ)



Let τ (λ′) =
(

J
β2

)−1
[
(2λ′) · β−J

β −
[
1 +

(
β−J
β

)2]
+ J

β2

]
, ψ (Mβ+i) (λ

′) =(
β

β−J

)i χ̄(Mβ+i)[1−τ(λ′)]
τ(λ′) , we obtain ψ (Mβ+i) (λ

′) =

(
β

β − J

)i−1
(

β

β − J

{[
1 +

(
β − J

β

)2

− J

β2

(
1− τ

(
λ′))]}) χ̄ (Mβ+i−1) [1− τ (λ′)]

τ (λ′)

−
(

β

β − J

)i−2
χ̄ (Mβ+i−2) [1− τ (λ′)]

τ (λ′)

ψ (Mβ+i) (λ
′) = 2λ′ · ψ (Mβ+i−1) (λ

′)− ψ (Mβ+i−2) (λ
′) (20)

Next we will give the initial two values of ψ (Mβ+i): ψ (Mβ) and ψ (Mβ+1).
Then we can use Eq.(20) to represent all characteristic polynomials of different
dimensions-d of Md, d = β + i, for i ≥ 0.

Based on Lemma 6, for J ≥ i ≥ 0, χ̄β+i (λ) = λβ+i · 1
λβ+i−2

(
1
λ − 1

) (
1
λ − i2

β2

)
.

J ≥ i ≥ 0, χ̄β+i (λ) = (1− λ)

(
1− i2

β2
λ

)
Specifically, χ̄β (λ) = 1 − λ. Therefore, ψ (Mβ) (λ

′) =
(

β
β−J

)0 χ̄β[1−τ(λ′)]
τ(λ′)

= 1 · 1−[1−τ(λ′)]
τ(λ′) = 1.

Besides, since χβ+1 (λ) = λβ−1 (λ− 1)
(
λ− 1

β2

)
, 1

β2 ≤ J
β2 < 1, both matrix

with eigenvalue λ = 1
β2 and matrix with eigenvalue λ = J

β2 are Lyapunov

asymptotically stable according to Lyapunov stability theory (First Method).

Therefore, even if we set χβ+1 (λ) = λβ−1 (λ− 1)
(
λ− J

β2

)
, it still asymptotically

stable. Then we have χ̄β+1 (λ) = 1− λ and χ̄β (λ) = (1− λ)
(
1− J

β2λ
)
.

ψ (Mβ+1) (λ
′) =

(
β

β − J

)1
χ̄β+1 [1− τ (λ′)]

τ (λ′)

ψ (Mβ+1) (λ
′) =

β

β − J
· 1− [1− τ (λ′)]

τ (λ′)
·
[
1− J

β2
(1− τ (λ′))

]

ψ (Mβ+1) (λ
′) =

β

β − J

[
1− J

β2
+

J

β2
τ (λ′)

]

ψ (Mβ+1) (λ
′) =

β

β − J

{
1− J

β2
+ (2λ′) · β − J

β
−

[
1 +

(
β − J

β

)2
]
+

J

β2

}

ψ (Mβ+1) (λ
′) = 2λ′ − β − J

β



For i ≥ 0, let Ui be the the sequence of Chebyshev polynomials of the second
kind, U0 = 0, U1 = 1, U2 = 2λ′, i ≥ 2, Ui = 2λ′Ui−1 − Ui−2. Meanwhile, we
know that ψ (Mβ) (λ

′) = 1, ψ (Mβ+1) (λ
′) = 2λ′ − β−J

β .

Then for i ≥ 2, based on Eq.(20), we obtain ψ (Mβ+i) (λ
′) = Ui+1 − β−J

β Ui.

Finally, we get ψ (Md) (λ
′) = Ud−β+1 − β−J

β Ud−β .
Chebyshev polynomials satisfying that:

∀d ≥ 0,∀x ∈ R \ {2kπ; kx ∈ Z} ,Ud(cosx) =
sin(nx)

sinx
.

Since ψ (Md)
(
cos π

d−β

)
= Ud−β+1(cos

π
d−β )−

β−J
β Ud−β(cos

π
d−β ) =

sin(
π(d−β+1)

d−β )

sin π
d−β

−

0 and
sin(

π(d−β+1)
d−β )

sin π
d−β

< 0, we know ψ (Md)
(
cos π

d−β

)
< 0.

ψ (Md)
(
cos π

2(d−β+1)

)
= Ud−β+1(cos

π
2(d−β+1) )−

β−J
β Ud−β(cos

π
2(d−β+1) ) =

1
sin π

2(d−β+1)
− β−J

β ·
sin(

π(d−β)
2(d−β+1)

)

sin π
2(d−β+1)

and 1 > sin( π(d−β)
2(d−β+1) ), we get that:

ψ (Md)

(
cos

π

2 (d− β + 1)

)
> 0.

Then using intermediate value theorem, there exists λ′0 ∈
[
cos π

d−β , cos
π

2(d−β+1)

]
such that ψ (Md) (λ

′
0) = 0, and ψ (Md) (λ

′) > 0 for all λ′ ∈ (λ′0, 1). It indicates
that

χ̄d (1− τ (λ′0)) =

(
β − J

β

)d−β

τ(λ′0)ψ (Md) (λ
′
0) = 0,

hence λ0 = (1− τ(λ′0))
−1

is a root of χd(λ). Since the image of (λ′0, 1) by

λ′ 7→ (1− τ(λ′))
−1

is (λ0, 1), we obtain that λ0 is the largest root of χd(λ)
smaller than 1. Next we give the upper bound of λ0.

cos π
d−β ≤ λ

′

0 ≤ cos π
2(d−β+1) ≤ cos π

2d , 1−
π2

(d−β)2 ≤ λ
′

0 ≤ 1− 2π2

17d2 , 1−τ(λ′) =

(−2λ′)β(β−J)
J + β2

J

[
1 +

(
β−J
β

)2]
, it implies that:

1− τ(λ′) ≤
(
β2

J

)[
1 +

(
β − J

β

)2
]
− 2

β(β − J)

J

(
1− π2

(d− β)2

)

Combining with
(

β2

J

)[
1 +

(
β−J
β

)2]
− 2β(β−J)

J = J , it gives

1− τ(λ′) ≤ J +
2β(β − J)π2

J(d− β)2
(21)

(
β2

J

)[
1 +

(
β − J

β

)2
]
− 2

β(β − J)

J

(
1− 2π2

17d2

)
≤ 1− τ(λ′)



Since 1 ≤
(

β2

J

)[
1 +

(
β−J
β

)2]
− 2β(β−J)

J = J , we have:

1 +
β(β − J)

J

2π2

17d2
≤ 1 + 2

β(β − J)

J

2π2

17d2
≤ 1− τ(λ′)

Combining this with Eq.(21), we can obtain that

1

J + 2β(β−J)π2

J(d−β)2

≤ 1

1− τ(λ′)
≤ 1

1 + β(β−J)
J

2π2

17d2

≤ 1− β(β − J)

J

1

2d2
.

In addition, set φd(λ) =
χd(λ)
λ−1 , based on Heuristic 4, we have φd(1) ̸= 0, for

d ≥ β , which means that 1 is never a multiple root of χd(λ). 2

5 Upper bound of the length of the Pnj-BKZ’ reduction
vector and convergence speed

In this section, we combined the conclusion in Lemma 4 and Lemma 7 to prove
the following theorem which describes the upper bound of the length of fully
Pnj-BKZ’ reduced vector and the convergence speed of Pnj-BKZ’ reduction.

Theorem 1. Under SMA, there exists C > 0 such that the following holds for
all d, β and J . Let (ai)i≤d be the input of Pnj-BKZ’(β, J). Set L be the lattice

spanned by (ai)i≤d. After C
2Jd2

β(β−J)

(
ln d+ ln ln maxi

∥a∗
i ∥

(detL)1/d

)
tours reduction

of Pnj-BKZ’(β, J), the output lattice basis (bi)i≤d satisfies ∥x− x∞∥2 ≤ 1, here

x = (x1, . . . , xd)
T and xi = ln

∥b∗
i ∥

(detL)1/d
for all i and x∞ is the unique solution

of the equation x∞ = Ax∞ + c. Specifically ∥b1∥ ≤ 2γ
d−1

2(β−J)
+2

β · (detL)
1
d .

Proof. Let
(
b
(k)
i

)
i≤d

be the basis after k tours reduction of Pnj-BKZ’(β, J) and

set x
(k)
i = ln

∥∥∥b(k)∗
i

∥∥∥
(detL)1/d

, we have x(k) − x(∞) = Ak
(
x(k) − x(∞)

)
. Both x(0) and

x(∞) ∈ Span (1, . . . , 1)
⊥
. Using Aε be the restriction of A to Span (1, . . . , 1)

⊥
,

∥∥∥x(k) − x(∞)
∥∥∥
2
≤ ∥Aε∥k2

∥∥∥x(0) − x(∞)
∥∥∥
2
= ρ

(
AT

ε Aε

)k/2 ∥∥∥x(0) − x(∞)
∥∥∥
2

By Lemma 7 we know the largest eigenvalue Aε is bounded in Lemma 7 by

1− β(β−J)
2Jd2 . Then we obtain that

∥∥∥x(k) − x(∞)
∥∥∥
2
≤
(
1− β(β − J)

2Jd2

)k/2 ∥∥∥x(0) − x(∞)
∥∥∥
2

Meanwhile the tern
∥∥x(0) − x(∞)

∥∥
2
can be bounded by

∥∥x(0)
∥∥
2
+
∥∥x(∞)

∥∥
2
≤(

ln maxi
∥a∗

i ∥
(detL)1/d

d
)
+dO(1), then ln

∥∥x(0) − x(∞)
∥∥
2
= O

(
ln d+ ln ln maxi

∥a∗
i ∥

(detL)1/d

)
.



There exists constant number C to make
∥∥x(k) − x(∞)

∥∥
2
≤ 1 when k ≥

C 2Jd2

β(β−J)

(
ln d+ ln ln maxi

∥a∗
i ∥

(detL)1/d

)
.

Next we give the uppper bound of
∥∥∥b(k)

1

∥∥∥. By Lemma 4, lnHF (B∞) ≲(
d−1
β−J + 4

)
ln
√
γβ , i.e x

(∞)
1 ≲

(
d−1
β−J + 4

)
ln

√
γβ . Using the inequality x

(k)
1 ≤

x
(∞)
1 + 1, we directly get the upper bound of

∥∥∥b(k)
1

∥∥∥ ≤ γ
d−1

2(β−J)
+2

β · (detL)
1
d . 2

6 Verification experiments

From Section 5, after running sufficient tours of Pnj-BKZ(β, J), the first vector

b1 in lattice basis output from Pnj-BKZ(β, J): ∥b1∥
(detL)

1
d
≤ γ

d−1
2(β−J)

+2

β . In this part,

we show that the actual the root Hermit factor of the Pnj-BKZ reduced lattice

basis

(
∥b1∥

(detL)
1
d

) 1
d

is indeed smaller than the theoretical upper bound γ
d−1

2(β−J)d
+ 2

d

β ,

which we give in Section 5. See Fig. 1 and Fig. 2 for more details.
The x-axis in Fig. 1 and Fig. 2 is the number of Pnj-BKZ(β, J) that have

been run. The y-axis in Fig. 1 and Fig. 2 is the root of the Hermit factor. The

red line in Fig. 1 and Fig. 2 is the theoretical upper bound γ
d−1

2(β−J)d
+ 2

d

β of the
root of Hermit factor for a Pnj-BKZ(β, J) reduced lattice basis. The blue points
in Fig. 1 and Fig. 2 are the root of the Hermit factor of lattice basis reduced by
each tour of Pnj-BKZ(β, J).

From Fig. 1 and Fig. 2, we can see that the actual reduction effort of Pnj-BKZ
is consistent with our theoretical estimation. Specifically, the root Hermite factor
of the lattice basis reduced by each tour of Pnj-BKZ(β, J) will gradually decrease
and finally is smaller than our theoretical upper bound of root Hermite factor

γ
d−1

2(β−J)d
+ 2

d

β . In addition, the theoretical upper bound is very close to the actual
value for the small block size reduction testing. The test results of larger blocks
show that the actual reduction effect is better than the theoretical upper bound.
It may be caused by the contraction of our theoretical derivation, and we will
give tighter theoretical upper bounds in the future.
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Dilithium(Round 3). NIST PQC probject, 2020.

10. L. Ducas, M. Stevens, and W. van Woerden. Advanced lattice sieving on gpus, with
tensor cores. In A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, pages 249–279, Cham, 2021. Springer International Publishing.

11. N. Gama and P. Q. Nguyen. Finding short lattice vectors within mordell’s inequality.
In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, page 207–216, New York, NY, USA, 2008. Association for Computing
Machinery.

12. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In H. Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 257–278,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

13. N. Gama, P. Q. Nguyen, and O. Regev. Lattice Enumeration Using Extreme Pruning.
In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, and H. Gilbert, editors, Advances in Cryptology
– EUROCRYPT 2010, volume 6110, pages 257–278. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. Series Title: Lecture Notes in Computer Science.
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