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Abstract Quantum computers can efficiently model

and solve several challenging problems for classical com-

puters, raising concerns about potential security reduc-

tions in cryptography. NIST is already considering po-

tential quantum attacks in the development of post-

quantum cryptography by estimating the quantum re-

sources required for such quantum attacks. In this pa-

per, we present quantum circuits for the NV sieve al-

gorithm to solve the Shortest Vector Problem (SVP),

which serves as the security foundation for lattice-based

cryptography, achieving a quantum speedup of the square

root. Although there has been extensive research on
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the application of quantum algorithms for lattice-based

problems at the theoretical level, specific quantum cir-

cuit implementations for them have not been presented

yet. Notably, this work demonstrates that the required

quantum complexity for the SVP in the lattice of rank

70 and dimension 70 is 243 (a product of the total gate

count and the total depth) with our optimized quan-

tum implementation of the NV sieve algorithm. This

complexity is significantly lower than the NIST post-

quantum security standard, where level 1 is 2157, corre-

sponding to the complexity of Grover’s key search for

AES-128.

Keywords Shortest Vector Problem · Quantum NV

Sieve · Grover’s search · Lattice-based cryptography ·
Quantum Security.

1 Introduction

As outlined in IBM’s roadmap1, when a stable and ro-

bust quantum computer with more than 10,000 qubits

is developed, public-key algorithms (such as Rivest, Shamir,

Adleman (RSA) and Elliptic curve cryptography (ECC))

may be decrypted within polynomial time through Shor

algorithm [1]. Additionally, while classical computers

may require a search count of O(2k) for k-bit data,

Grover’s search algorithm can achieve results withO(
√
2k)

iterations.

The progression of quantum computing poses a sig-

nificant threat to contemporary cryptographic systems.

Therefore, migration to a secure cryptography system

(e.g., post-quantum cryptography) and the analysis of

potential quantum attacks are very important issues.

1 https://www.ibm.com/quantum/roadmap
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Among the post-quantum cryptography categories,

lattice-based cryptography such as Learning With Er-

ror (LWE) is gaining attention. NIST finalist also in-

cludes many lattice-based cryptography (e.g., Kyber,

Dilithium, and Falcon). There are many ways to re-

duce the quantum complexity of lattice-based cryptog-

raphy. However, practical quantum attacks on lattice-

based cryptography remain under-researched compared

to block cipher [2,3,4,5,6].

As mentioned earlier, analyzing potential quantum

attacks on various cryptographic algorithms is crucial

for establishing robust post-quantum security. In this

context, our work proposes a quantum implementation

of the NV Sieve algorithm to address the Shortest Vec-

tor Problem (SVP) in lattice-based cryptography. More-

over, we present an implementation that considers the

optimization of quantum resources, and we estimate the

quantum cost of Grover’s search for our quantum NV

Sieve approach.

1.1 Our Contribution

This paper makes several contributions, which can be

summarized as follows.

1. Applying Grover’s Search to Quantum NV

Sieve Algorithm on Lattice-based Cryptog-

raphy.

This work firstly presents the quantum NV Sieve

algorithm for solving the SVP on quantum comput-

ers. By applying Grover’s algorithm to the iterative

search process in the NV sieve, solutions that satisfy

the condition can be found with a quantum advan-
tage (a speedup of square root).

For practical utility as an exact algorithm for solv-

ing SVP, it is necessary to target lattices with di-

mensions greater than 50. Thus, we implement the

quantum NV Sieve algorithm, focusing on lattices

with dimensions and ranks greater than 50.

2. Detailed Resource Estimation of Quantum

NV Sieve.

Quantum NV Sieve can have multiple solutions in

the search process. In this case, an optimal number

of Grover iterations is required, and the quantum

cost is affected by the number of iterations. Consid-

ering this, we provide a detailed estimation of the

quantum resources required for the quantum NV

sieve when multiple solutions exist2.

2 Detailed resource estimation while varying the parame-
ters (e.g. iteration, γ, etc.) of the NV sieve remains for our
future work.

3. Optimized Implementation of Quantum NV

Sieve for High-dimensional Lattice.

We attempt quantum circuit optimization to obtain

an oracle that requires fewer quantum resources. We

efficiently implement the quantum NV Sieve logic

for high-dimensional lattices by applying the Quan-

tum Carry Save Adder (QCSA) with the Takahashi

adder, thereby optimizing the number of qubits and

T -depth. In particular, there is a significant decrease

in terms of T -depth compared to previous work [7].

4. Expanding the Research Scope of Cryptanal-

ysis for Lattice-based Cryptography.

We expand the scope of research by applying Grover’s

search, rather than the commonly used quantum

walks, as a cryptanalysis approach to lattice-based

cryptography.

1.2 Organization

The remainder of this paper is organized as follows. In

Section 2, related works, such as lattice-based cryptog-

raphy and Shortest Vector problem (SVP), are covered.

In Section 3, the quantum implementation for NV Sieve

to solve SVP is introduced. In Section 4, the resource es-

timation, quantum cost for Grover’s search and further

discussion of our implementation are provided. Finally,

Section 5 concludes our paper.

1.3 Extended Version of ICISC’23

In this paper, we extend our previous work published

in ICISC’23 [8]. In ICISC’23, small rank and dimension
of the lattice were targeted, and an optimal implemen-

tation was not applied. On the other hand, this work

targets real-level lattice where NV Sieve algorithm is

used, and we achieve low quantum resources through

an optimal quantum implementation.

2 Preliminaries

2.1 Lattice-Based Cryptography

2.1.1 Lattice

Lattice (L) is a set of points made up of a linear com-

bination of basis vectors (B). Since it is made up of

points, there can be more than one shortest vector (e.g.

x,−x ∈ L ). Equation 1 represents a lattice, and x is

an integer, and (b1, ..., bn) means the basis vector.

L(b1, ..., bn) = Σn
i=1(xi · bi, xi ∈ Z) (1)
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2.1.2 Basis

As noted earlier, the lattice is based on basis vectors. A

basis (B) is a set of vectors that can constitute all lattice

points. The vector (arrow sign) in Figure 1 represents

the basis in the lattice. Each vector (bi) that constitutes

the basis vector has a length of m and consists of a

total of components n. The length of each vector and

the number of vectors that make up the basis vector,

respectively, are called Dimension (m) and Rank (n).

Generally, a full-rank lattice is used (i.e., m = n).

It is important to note that the basis vector compris-

ing a single lattice is not unique. As depicted in Figure

1, basis vectors corresponding to the same lattice points

differ within a lattice. When a lattice is constructed us-

ing a vector generated by the multiplication of one basis

vector with another, the two distinct basis vectors give

rise to an identical lattice.

Fig. 1: Two different bases generating the same lattice.

However, these basis vectors can be categorized into

good basis and bad basis. A good basis typically com-

prises short vectors, while a bad basis is often created

by repeatedly multiplying the good basis by a matrix,

such as an unimodular matrix3. Consequently, deriving

a bad basis from a good basis is relatively straightfor-

ward, requiring only several matrix multiplications. In

contrast, the inverse process of extracting a good basis

from a bad one poses a significant challenge4. In lattice-

based cryptography, the bad basis serves as the public

key, while the good basis acts as the private key. Since

they generate the same lattice, constructing public and

private keys in this manner significantly complicates

decryption in lattice-based cryptography.

2.2 Shortest Vector Problem (SVP)

The Shortest Vector Problem (SVP), fundamental to

lattice-based cryptography, involves finding the short-

est nonzero vector within a lattice. Miklo’s Ajtai [9]

demonstrates that SVP is an NP-hard problem.

3 https://en.wikipedia.org/wiki/Unimodular_matrix
4 This is similar to generating a public key from a private

key in public key cryptography (i.e., obtaining a private key
by factorizing a large public key).

SVP finds the shortest vector using the lattice vec-

tor as input. However, the solution is not uniquely de-

termined, since a vector can have another vector of

equal magnitude. The challenge of solving SVP becomes

difficult when a bad basis vector is input. With a good

basis as input, there is a higher likelihood that the

shortest vector is already present within the input ba-

sis. On the contrary, the use of a bad basis leads to

the opposite result. The problem becomes increasingly

complex with the growing rank of the lattice, defined

by the number of constituent vectors.

Lattice-based cryptography typically involves lat-

tices with ranks of 500 or higher, making its solution

extremely difficult. Additionally, as noted earlier, deriv-

ing a good basis (i.e., private key) from a bad basis (i.e.,

public key) is challenging due to information asymme-

try. In essence, the intricacy of lattice-based cryptogra-

phy is primarily attributed to its reliance on one-way

processes - easy in one direction but difficult in the re-

verse. To compromise such cryptographic systems, one

must solve the underlying lattice problems. In short,

by solving SVP, a lattice problem, lattice-based cryp-

tographic schemes like LWE are threatened.

2.2.1 Algorithms to Solve SVP

To solve the lattice problems, approximate and exact

algorithms must be used together (see Figure 2). In

that, after the approximate algorithm is applied, to

solve SVP, an exact algorithm is needed and impor-

tant to find the shortest vector in the low-dimensional

lattice. Approximate algorithms that reduce the high-

dimensional to the low-dimensional lattice (e.g. Lenstra,

Lenstra and Lovász (LLL) [10], block Korkine-Zolotarev

(BKZ) [11]) have been widely studied. Also, sieve algo-

rithms, such as AKS [12] and NV Sieve [13], have been

proposed to solve SVP, which underpin lattice-based

cryptography. These exact algorithms generally target

low-dimensional lattices with a rank of about 50 ∼ 60.

2.3 Survey on the Exact Algorithms for SVP

Prominent exact algorithms in the field include AKS

and NV Sieve. AKS, recognized as one of the earliest

exact algorithms, suffers from drawbacks such as the

numerous parameters and high time and space com-

plexities. Therefore, AKS is largely impractical.

In response to the limitations of AKS, the NV Sieve

algorithm was developed. It addresses the shortcomings

of its predecessor by offering reduced time and space

complexities, enhanced practicality, and the actual im-

plementation. Building on the NV Sieve framework,

several other Sieve algorithms have been introduced, as

3
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Finding the exact shortest vector.

Fig. 2: Flow chart of approximate and exact algorithms for solving SVP.

evidenced by studies such as Wang et al. [14], Zhang

et al. [15], Laarhoven et al. [16], Becker et al. [17], and

Micciancio et al. [18].

To date, only the theoretical complexity of apply-

ing the Sieve algorithm on quantum computers using

Grover’s search has been calculated [19]. Practical im-

plementations of these quantum adaptations are still

lacking. Therefore, in this paper, we implement the

quantum NV Sieve, and discuss the quantum advan-

tages that arise from applying Grover’s search.

2.4 Classical NV Sieve Algorithm

2.4.1 Overview of the Classical NV Sieve Algorithm

Algorithm 1 briefly shows the process of NV Sieve5.

Algorithm 1: NV Sieve algorithm for finding short

lattice vectors
Input: A reduced basis (B) in lattice (L) using the LLL
algorithm, a sieve factor γ (2

3
< γ < 1), an empty set S, and

a number N
Output: A non-zero short vector

1: for i = 1 to N do
2: S ← Sampling B using sampling algorithm
3: end for
4: Remove all zero vectors from S.
5: S0 ← S
6: Repeat
7: S0 ← S
8: S ← latticesieve(S, γR) using Algorithm 2.
9: Remove all zero vectors from S.
10: until S becomes an empty set.
11: return v0 ∈ S0 such that ||v0|| =min||v||, v ∈ S0

First, a set S is generated by randomly sampling

the basis received as input. Next, the latticesieve

is repeatedly performed with S and γ as input. After

5 In our research, the NV Sieve algorithm is chosen as the
exact algorithm to address the SVP in efficiency.

this, the output vectors with zero vectors removed are

stored in S0, and the process is repeated until S be-

comes an empty set. Finally, it is completed by return-

ing the shortest vector among the vectors belonging to

S0. The purpose of NV Sieve is as follows:

• Minimizing the loss for short vectors: The goal

of NV Sieve is to find the shortest vector that ex-

cludes zero vectors while losing as few vectors as

possible. The input is the basis vector of the lattice

reduced through the approximate algorithm (i.e. LLL),

and the output is the shortest vector, not the zero

vector. For this, a point on the lattice called c is ran-

domly selected. Then, an additional computation is

performed using c. c is a sufficient number of points

on the lattice belonging to γR < x < R6.

• Reducing the search range (γR): The range is

reduced by the sieve factor γ to obtain a vector

shorter. Here, R means the maximum length among

the vectors belonging to the vector set received as

input.

2.5 Quantum Circuit

2.5.1 Qubits

A qubit is the basic unit of computation in a quantum

computer and can have probabilities of 0 and 1 in the

superposition state (|ψ⟩). This attribute allows k qubits

to represent 2k states. While qubits inherently exist in

a state of superposition and are processed accordingly,

they collapse to a singular classical value upon measure-

ment. Additionally, multiple qubits are affected by each

other through entanglement, and quantum computing

utilizes this characteristic.

6 γR, the sieve factor, is a geometric element in the range of
2
3
< γR < 1, and the closer it is to 1, the better. The reduc-

tion range of the lattice is determined by the corresponding
sieve factor.
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|0⟩ H
|0⟩+|1⟩√

2

|1⟩ H
|0⟩−|1⟩√

2

(a) Hadamard gate (H)

x x

(b) NOT gate (X)

x x

y x⊕ y

(c) CNOT gate (CX)

x x

y y

z xy ⊕ z

(d) Toffoli gate (CCX)

Fig. 3: Quantum gates.

2.5.2 Quantum Gates

Quantum gates operate as logical gates in quantum cir-

cuits. By applying a quantum gate to a qubit, the state

of the qubit can be controlled. There are several quan-

tum gates (see Figure 3). Each gate can be used to

configure superposition, entanglement, and inversion.

Therefore, these gates are instrumental in executing a

range of computational tasks, including addition and

multiplication on quantum circuits.

2.6 Grover’s Search Algorithm

Grover’s search algorithm is a quantum search algo-

rithm for tasks with k-bit complexity and has O(
√
2k)

complexity (O(2k) for classical computer). The k-bit

data for the target of the search must exist in a state

of quantum superposition7, given by:

H⊗k |0⟩⊗k (|ψ⟩) =
( |0⟩+ |1⟩√

2

)
=

1

2k/2

2k−1∑
x=0

|x⟩ (2)

Grover’s search algorithm is composed of two main

modules (Oracle and Diffusion operator):

1. Oracle is a quantum circuit designed to implement

the logic necessary to return a solution to the prob-

lem at hand. It achieves this by inverting the deci-

sion qubit at the circuit’s conclusion as follows. The

crucial aspect of Grover’s search with low cost lies in

the optimal implementation of the quantum circuit

that constitutes Oracle.

f(x) =

{
1 if Oracleψ(k) = Solution

0 if Oracleψ(k) ̸= Solution
(3)

2. Diffusion operator serves to amplify the probability

of the solution returned by the Oracle. By repeating

this process, the observing the correct solution is

increased, referred to as Grover iteration. However,

it is often omitted from resource estimations [5,20],

as its overhead is considered minimal and therefore

negligible.
7 Thanks to quantum advantage, all targets are computed

simultaneously.

3 Quantum NV Sieve for Solving SVP

3.1 System Overview

Lattice Cryptography
Based on the difficulty of solving SVP

Quantum Citcuit

Solving SVP on Quantum Computer

Quantum NV Sieve Grover's Search

Exact algorithm on
low-dimensional lattice

To reduce search complexity
Get quantum advantage

Fig. 4: System overview for quantum NV Sieve.

In this section, we briefly describe proposed meth-

ods. Figure 4 illustrates the overview of the system of

our quantum NV Sieve. As mentioned earlier (Section

2.4), the NV Sieve minimizes vector loss by searching

for multiple vectors and identifying short vectors within

a specified range, serving as a lattice reduction method.

We apply Grover algorithm to the process that searches

for random vectors c in the lattice to reduce search com-

plexity. In order to implement the NV Sieve on Grover’s

search, a quantum oracle is required, and we propose an

optimal implementation for it along with the quantum

cost.

3.2 Quantum Implementation of NV Sieve’s Core

Logic

3.2.1 Target Core Logic of the NV Sieve.

Algorithm 2 shows the latticesieve algorithm in NV

Sieve. To find short vectors by reducing the size of the

lattice, the core logic to find the vector c is implemented

as a quantum circuit (see Figure 5).
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Algorithm 2: The latticesieve algorithm in NV

Sieve
Input: A subset S in L and sieve factor γ (0.666 < γ < 1)
Output: S′ (Short vector, not zero vector)

1: Initialize C, S′ to empty set.
2: R← maxv∈S ||v||
3: for v ∈ S do
4: if ||v|| ≤ γR then
5: S′ ← S′ ∪ {v}
6: else
7: if ∃c ∈ C||v − c|| ≤ γR then
8: S′ ← S′ ∪ {v − c}
9: else
10: C ← C ∪ {v}
11: end if
12: end if
13: end for
14: return S′

Vectors after

The c's space

( R < x < R)

v

v2

v1

v3

v5

v4

c1

c3

c2

v

v
v

v

R

R

v - c

Fig. 5: The core logic in NV Sieve (∃c ∈ C||v−c|| ≤ γR).

1. First, initialize C and S′. Afterward, the vectors

with a length shorter than γR are stored in S′

2. However, there will be vectors longer than γR. For

this, the process as in line 7 of Algorithm 2 is per-

formed to minimize the loss for short vectors on the

lattice, which is the goal of NV Sieve.

A vector longer than γR is subtracted from a point

on the lattice called c. If the result is shorter than

γR, then it is stored in S′. If the length is longer

than γR, it is stored in C.

3. Finally, by returning S′, some shorter vectors than

γR are selected. By performing this process repeat-

edly, sufficiently short vectors are obtained, and the

shortest vector among them is found.

4. In summary, the core logic of the NV Sieve, which

is our target operation for the oracle, is ∃c ∈ C||v−
c|| ≤ γR.

3.3 Quantum Implementation of NV Sieve

This section describes step-by-step the quantum im-

plementation of NV Sieve. Algorithm 3 and Figure 6

show all the steps of the quantum NV Sieve. We ap-

ply Grover’s search to find a random vector c. After

subtracting between the two vectors v and c, check

whether the vector exists within the reduced lattice

range. For this, two’s complement is required, and it

is implemented keeping in mind that conditional state-

ments cannot be used in quantum computers.

1. Initialization: We set dim to dimension+2, and

rank to rank. sqr bitsize equals 2·dim. Also, carry,

qflag, cflag, zero, and γ ·Rsqr is initialized.

2. STEP 1. Input settings: Qv and Qc are the

qubits for the lattice vectors v and c. H gates are

applied to all the quantum registers (Qc) for c. Also,

γ · Rsqr is allocated to Qγ·Rsqr . It is used to check

that the output vector can satisfy the condition.

By using squared values γR2, we do not need the

square-root operation to calculate the vector size.

3. STEP 2. Upscaling: Algorithm 4 shows the up-

scaling process in the quantum circuit. In the up-

scaling step, for Qv and Qc, we duplicate the upper

data bit into the two empty upper qubits. This ap-

proach expands the range while preserving the data

and its sign intact. For example, a value 1100(2)
becomes 111100(2), maintaining the same value. To

achieve this, we store the value of the third-highest

qubit (the MSB of the data) into the qflag and then

replicate it into the top two qubits using a CNOT

gate.

4. STEP 3. Two’s complement for positive value:

Algorithm 5 shows the two’s complement for a pos-

itive value. For the subtraction operation, we apply

the complement operation to the operand before us-

ing an adder. In this step, the complement opera-

tion is performed only for positive vector elements.

Therefore, it is crucial to identify the most signifi-

cant bit. However, conditional statements cannot be

used in quantum implementations. Thus, we utilize

a qflag to ensure that the complement operation

is carried out only when the value is positive. Af-

ter copying the value of the most significant qubit

in qflag, we apply the X gate to it. If the target

qubit is positive, the value of qflag will be inverted

to 1 in this process. Consequently, using qflag as a

control qubit allows the application of one’s comple-

ment operation, effectively flipping the entire data

6



Algorithm 3: The quantum NV Sieve on the quantum circuit.

Input: Reduced lattice vector({v0, ..., vn}), dimension and rank of the lattice, A subset S in L and sieve factor γ (2
3
< γ < 1)

Output: {c0, ..., cn}
1: Initiate quantum and classical registers (carry, qflag, cflag, γ ·Rsqr, zero, cn.)
2: Let Qv and Qc be the qubits for lattice vectors v and c ▷ Qc is the search target
3: Let Qγ·Rsqr

be the qubits for square of γ ·R

4: // STEP 0: Extend dim and rank for addressing the overflow
5: dim← dimension+2, rank ← rank
6: sqr bitsize← 2 · dim

7: // STEP 1: Input setting (Qv, Qc, Qγ·Rsqr
)

8: Qv0
, · · · , Qvn

← v0, · · · , vn ▷ Using X gate
9: All(H)|Qc

10: Qγ·Rsqr
← γ ·Rsqr ▷ 0 ≤ i < sqr bitsize

11: // STEP 2: Upscaling to address overflow
12: for i in rank do
13: UPSCALING(Qv[i], vflag[i])
14: end for

15: // STEP 3: Two’s complement for subtraction using adder
16: for i in rank do
17: COMPLEMENT pos(Qc[i], qflag[i], zero) ▷ Outputs are Qc

18: end for

19: // STEP 4: Qv +Qc (= Qv −Qc)
20: for i in rank do
21: TAKAHASHI ADDER(Qv[i], Qc[i]) ▷ Store to Qc[i], [21]
22: end for

23: // STEP 5: Two’s complement for correct squaring
24: for i in rank do
25: COMPLEMENT neg(Qc[i], qflag[rank + i], zero)
26: end for

27: // STEP 6: Duplicating qubit for squaring
28: Dup Qc ← Qc

29: // STEP 7: Squaring elements of vectors (Qc and Dup Qc)
30: for i in rank do
31: output[i] = MUL(Qc[i], Dup Qc[i])
32: end for

33: // STEP 8: Addition for squared results to obtain the size of the vector
34: result← QCSA(output) ▷ [22]

35: // STEP 9: Two’s complement with sqr bitsize
36: COMPLEMENT compare(result[0 : sqr bitsize], qflag[2 · (rank − 2)], zero)

37: // STEP 10: Size comparison between Qγ·Rsqr
and (||Qv −Qc||)2

38: TAKAHASHI ADDER(Qγ·Rsqr
, result[0 : sqr bitsize])

39: // STEP 11: Measurement
40: All(Measure)|Qc

41: return {c0, ..., cn}

7
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Fig. 6: Overall Quantum Circuit for Quantum NV Sieve.

Algorithm 4: Quantum implementation for UPSCAL-

ING function
Input: (Qv[i], vflag) or (Qc[i], cflag), and dim
Output: Qv[i] or Qc[i]

1: // Copy the MSB to the upper 2 qubits using CNOT gate
2: CNOT|(Qv[i][dim− 3], vflag[i])
3: CNOT|(vflag[i], Qv[i][dim− 2])
4: CNOT|(vflag[i], Qv[i][dim− 1])

5: CNOT|(Qc[i][dim− 3], cflag[i])
6: CNOT|(cflag[i], Qc[i][dim− 2])
7: CNOT|(cflag[i], Qc[i][dim− 1])

8: return Qv[i] or Qc[i]

(only for positive cases). To complete the two’s com-

plement operation, we add 1 to the Least Significant

Bit (LSB). For this purpose, we create a new qubit

(New Qc), to which we add qflag to the lowest

qubit and fill the rest with zeros (except for LSB).

When this qubit is added to the qubits that are ap-

plied to one’s complement, the two’s complement is

calculated. Additionally, we employ the Takahashi

Algorithm 5: Quantum implementation for COM-

PLEMENT pos function

Input:Qc[i], qflag[i], zero
Output: Qc or Qc

1: // Copy the MSB of Qc to qflag to check the sign bit
2: CNOT(Qc[dim− 1], qflag)

3: // Invert qflag to take complement only when positive
4: X|qflag

5: // Invert Qc

6: for i in dim do
7: CNOT|(qflag,Qc[i])
8: end for

9: // Create a new array of qubits and append qflag to LSB
10: NEW Qc = []
11: NEW Qc.append(qflag)

12: // Append 0 so that it has the same length as Qc

13: for i in dim− 1 do
14: NEW Qc.append(zero[i])
15: end for

16: // Addition for LSB + 1
17: TAKAHASHI ADDER(NEW Qc, Qc)

18: return Qc or Qc

8



adder [21]8 to add the new qubit to the target qubit

(one’s complement applied).

5. STEP 4. Qv − Qc: In this step, the subtraction

operation between the two vectors is performed by

adding the complemented Qc and Qv. The Taka-

hashi adder is also employed in this process to per-

form the addition.

6. STEP 5. Two’s complement for negative value:

STEP 5 is dedicated to applying the two’s comple-

ment operation exclusively to negative numbers, for

accurate square operations. For example, perform-

ing a square operation directly on 1110(2) would re-

sult in a square of -2, which yields 14. However, by

applying the two’s complement first and then squar-

ing, the square of 0010(2) is 4. Therefore, we ob-

tain the correct squared result. Algorithm 6 demon-

strates the two’s complement operation for nega-

tives. It is largely similar to the operation for pos-

itives, with the key difference that the MSB is al-

ready 1 for negatives, thus omitting the application

of the X gate on qflag.

Algorithm 6: Quantum implementation for COM-

PLEMENT neg function

Input:Qc[i], qflag[i], zero
Output: Qc or Qc

1: // Copy the MSB of Qc to qflag to check the sign bit
2: CNOT(Qc[dim− 1], qflag)

3: // Invert Qc (no need X gate for qflag)
4: for i in dim do
5: CNOT|(qflag,Qc[i])
6: end for

7: // Create new array of qubits and append qflag to LSB
8: NEW Qc = []
9: NEW Qc.append(qflag)

10: // Append 0 so that it has the same length as Qc

11: for i in dim− 1 do
12: NEW Qc.append(zero[i])
13: end for

14: // Addition for LSB + 1
15: TAKAHASHI ADDER(NEW Qc, Qc)

16: return Qc or Qc

7. STEP 6. Duplication of squaring: In quantum

implementation, operations on the same qubit can-

not be performed. So, the value of Qc is stored in

8 It is an in-place adder and requires fewer qubits than
other adders [23,24].

Dup Qc[i] for the square operation. For this, we use

a CNOT gate, and the CNOT gate acts as a copying

value of a controlled qubit into the empty (target)

qubit.

8. STEP 7. Squaring Qc: Figure 7 illustrates the

squaring operation using Quantum CSA with Taka-

hashi adder. First, a Toffoli gate is applied on two

qubits assigned with identical values to multiply

each element by one another. Subsequently, the re-

sults are stored in dim qubits, each of which has a

length of sqr bitsize. According to line 8 of Algo-

rithm 7, values are stored in the indices correspond-

ing to each element. This process is repeated for all

qubits and yields the arrays of dim qubits. Then,

utilizing QCSA with the Takahashi adder applied,

all results are summed at the same time. This results

in an array of qubits with a length of sqr bitsize.

When this process is repeated for the rank of times,

the squaring for all vector elements is completed.

Multiplication

with Toffoli gate

dim

Qc

Dup_Qc

Quantum CSA
with Takahashi

output

sqr_bitsize

Fig. 7: Squaring using QCSA with Takahashi adder.

9. STEP 8. Addition of squared results: The

square of the vector’s magnitude is computed by

summing the squared results of each element of the

vector. For this purpose, the Quantum CSA is uti-

lized to aggregate all the resultant values at a time.

10. STEP 9. Two’s complement: The two’s com-

plement for positive value is calculated. Although

the logic is identical to the Algorithm 5, a notable

distinction is that the range is set to sqr bitsize.

11. STEP 10. Comparison of sizes (Qγ·Rsqr
and

(||Qv −Qc||)2): Finally, the result of STEP 9, with

the complement applied, is compared with Qγ·Rsqr
.
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Algorithm 7: Quantum implementation for MUL

function
Input:Qc[i], Dup Qc[i]
Output: output[0 : sqr bitsize]

1: // Setting for multiplication
2: Let a be Qc[i].
3: Letb be Dup Qc[i].
4: input = [[0 for i in do(sqr bitsize)] for j in do (dim)]

5: // Multiply all elements of Qc[i] and Dup Qc[i] using
Toffoli gate

6: for i in dim do
7: for j in dim do
8: Toffoli|(a[i], b[j], input[i][i+ j])
9: end for
10: end for

11: // Addition of the results for each element at once
12: output = QCSA(input)

13: return output[0 : sqr bitsize]

For comparison, the Takahashi adder is used to add

the two values. If the MSB of the derived result is

0, it indicates that Qc has been found, which can

bring the vector Qv into the range by making it a

short vector. Conversely, if the MSB is 1, then it

means that vector that meets the conditions does

not exist.

4 Experiment and Evaluation

4.1 Experiment Environment

In this section, we present the quantum cost of our

quantum NV Sieve implementation. For this, we use

ProjectQ, which is an open-source quantum program-

ming tool. It provides ClassicalSimulator which simu-

lates quantum circuits and ResourceCounter which es-

timates the quantum resources (e.g. qubits, gates, etc.).

4.2 Result of Quantum NV Sieve

Table 1 shows the results of each step of our imple-

mentation for the quantum NV Sieve. STEP is in Algo-

rithm 3, and the expression of the complement of x is x.

We set the rank and dimension to 5 as a toy example to

show the correctness of our oracle. So rank remains 5

and dim becomes 7 to handle the overflow. In STEP 1,

the quantum registers set the lattice vectors (i.e., test

vector). In STEP 2, the vectors are upscaled, but the

value is the same as in STEP 1. In STEP 3, we per-

form the complement operation of Qc when the vector

element is positive (no operations are performed on Qv
and Qγ·Rsqr

). In STEP 4, the subtraction is performed

on Qv and Qc (Qv +Qc). In STEP 5, the complement

operation with negative elements is used. In STEP 7,

the squaring operation is performed for each element.

In STEP 8, we calculate the squares of the vector sizes.

In STEP 10 and 11, we get the result of quantum NV

Sieve with the above test vector. It is -40 in decimal and

11111111011000(2) in the quantum state (measured).

The two values are the same, and this means that our

oracle can derive the correct vector. Also, the MSB be-

ing 1 signifies that the result vector is not the short

vector (if we use another test vector, MSB as 0 can be

derived).

Table 1: Results from each step of quantum NV Sieve

to check whether it has been implemented correctly

(Rank and Dimension are 5; rank = 5, dim = 7, and

sqr bitsize = 14).

STEP (Alg. 3) Quantum variable Values

STEP 1

Qv {1, 3, 1, 1, 5}

Qc {8, 1, 4, 4, 6}

Qγ·Rsqr
32

STEP 2

Qv {1, 3, 1, 1, 5}

Qc {8, 1, 4, 4, 6}

Qγ·Rsqr
32

STEP 3 Qc (when positive) {−8,−1,−4,−4,−6}

STEP 4 Qv +Qc {−7, 2,−3,−3,−1}

STEP 5 Qv +Qc (when negative) {7, 2, 3, 3, 1}

STEP 6 Dup Qc {7, 2, 3, 3, 1}

STEP 7 Qc ·Dup Qc(Squaring for each element) {49, 4, 9, 9, 1}

STEP 8 SumQc
72

STEP 9 SumQc
(when positive) -72

STEP 10 (γ ·R)2 +SumQc
-40

STEP 11
Output 11111111011000(2) (-40)

MSB 1 (not short vector)

4.3 Resource Estimation of Quantum NV Sieve

Table 2 shows the resources of the quantum NV Sieve

oracle according to the case (rank and dimension of lat-

tice). From R10D10 to R20D20, the quantum resources

increase the most. This is a natural phenomenon be-

cause it is a section where the rank and dimension are

doubled. Therefore, each time rank and dimension in-

crease by 10, and the amount of increased resources

decreases. This can be seen more clearly in quantum

costs, which we will see in the next section.

The NV Sieve algorithm which we target as an ex-

act algorithm, is meaningful when it involves at least

50 ranks and dimensions. In general, the ranks and di-

mensions typically used in cryptographic algorithms are
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Table 2: Resource Estimation of quantum NV Sieve oracle (R10D10 means the rank and the dimension of the

lattice are 10).

Case #CNOT #1qCliff #T T -depth (Td) Full depth (FD) Qubit (M) Td-M FD-M

R10D10 216.1767 213.9067 215.7118 27.6037 211.5264 212.5454 220.1491 224.0718

R20D20 218.9097 216.6143 218.4212 28.4470 214.2190 215.2640 223.7110 229.4830

R30D30 220.5672 218.2624 220.0695 28.9454 215.2810 216.9202 225.8656 232.2012

R40D40 221.7859 219.4808 221.2880 29.3531 216.0566 218.1329 227.4860 234.1896

R50D50 222.6998 220.3885 222.1958 29.6165 216.6674 219.0527 228.6692 235.7201

R60D60 223.4836 221.1729 222.9802 29.8595 217.1715 219.8329 229.6924 237.0044

R70D70 224.1348 221.8228 223.6301 210.0660 217.6005 220.4848 230.5508 238.0853

Table 3: Quantum cost for Grover’s search on quantum NV Sieve.

Case #Total gates T -depth (Td) Full depth (FD) Qubit (M) Quantum cost Td-M FD-M

R10D10 218.1267 28.6073 212.5264 212.5456 230.6532 · r 221.1529 225.0720

R20D20 220.8481 29.4470 215.2190 215.2640 235.0664 · r 224.7110 232.4830

R30D30 222.5012 29.9454 216.2810 216.9202 237.7823 · r 226.8656 233.2012

R40D40 223.7199 210.3531 217.0566 218.1329 239.7765 · r 228.4860 235.1895

R50D50 224.6308 210.6165 217.6674 219.0527 241.2938 · r 229.6692 236.7201

R60D60 225.4150 210.8595 218.1715 219.8329 242.5865 · r 230.6924 238.0044

R70D70 226.0655 211.0660 218.6005 220.4848 243.6661 · r 231.5509 239.0853

over 500. In such large-sized lattices, approximate algo-

rithms (e.g., LLL, BKZ) are employed to reduce the

lattice size. Typically, these reductions bring the di-

mension down to around 50-60. Therefore, our imple-

mentation must target lattices with dimensions of at

least 50. Consequently, in Table 2, the important part

to observe is from R50D50 to R70D70.

The parts with the high complexity of our oracle are

STEP 7 and STEP 8 in Algorithm 3, where the square

operation is performed with the Toffoli gate. The Toffoli

gate is used only in the squaring and in the part that

calculates the square of the size of the vector. There-

fore, we estimate the T -depth in STEP 7 and STEP 8.

In particular, in the part where the multiplication of

each qubit for the square operation is performed, it can

be seen that the T -depth consistently increases by 70 as

the rank and the dimension are expanded by 10. As the

dimension and the rank increase, the number of target

qubits to calculate also increases regularly. Therefore,

the T -depth increases regularly in the multiplication

part. Additionally, this part would be resource inten-

sive if schoolbook multiplication was performed. How-

ever, we achieve a low T -depth using Quantum CSA 9,

despite the high dimension and the rank of the lattice.

Additionally, we further reduce T -depth by not using

the reverse part in QCSA for qubit reuse. This is be-

9 The T -depth of our Toffoli gate is 4.

cause the operand in the square operation process is

not a value that is used again in our implementation.

Our previous work [7] shows T-depth of 1,756 in

R2D4. This means that our implementation achieves less

T -depth even with much higher dimensions and ranks,

while our previous work has a high T -depth even with

small dimensions. That is, our implementation is op-

timized in terms of T -depth (T -depth of this work:

210.0660 in R70D70, T -depth of [7]: 210.7780 in R2D4).

In addition, to save the number of qubits used, the

Takahashi adder is used, which does not require ancilla

qubits. This reduces the value of Td-M and FD-M .

4.4 Quantum Cost of Quantum NV Sieve

Figure 8 and Table 3 show the quantum cost of our

quantum NV Sieve on Grover’s search. While calculat-

ing the quantum cost [25] of Grover’s search, the total

number of gates (#gates) and Full depth (FD) men-

tioned in Table 2 must be multiplied by iteration (i.e.

#gates · FD · r).
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1Fig. 8: Quantum cost for quantum NV Sieve on Grover’s

search (r = 1)

Figure 8 shows the quantum cost and the increase

according to rank and dimension. As shown in Table 3,

when rank and dimension increase, the increment in the

number of quantum resources decreases. In addition, it

usually targets a lattice with rank and dimension of

about 50 ∼ 60 and can be attacked at a quantum cost

of about 242.

Even if the number of iterations increases, the num-

ber of iterations in a multi-solution problem is not that

large, and so it is not expected to deviate significantly

from the cost of the current attack.

Furthermore, research on LLL which is one of the

approximate algorithms, is conducted on quantum sim-

ulator. If applied to a lattice reduced through their

technology, it is believed that our implementation for

solving SVP will be more realistic and operate more

powerfully.

4.5 Further Discussions

4.5.1 Comparison with Quantum Cost of Other

Quantum Attacks

A direct comparison is challenging since the target prob-

lem is different from the symmetric key problem, and

the target lattice is not the entire lattice. Taking into

account this fact, the quantum NV Sieve can be a quan-

tum attack that solves the fundamental problem of lattice-

based cryptography with a quantum cost of approxi-

mately 243. This is approximately the square root of

the cost of Grover’s search for a 64-bit symmetric key

cipher.

4.5.2 Additional Optimizing Point of the Quantum

Implementation

It is believed that by employing a Toffoli gate with a

lower T -depth, our T -depth can be further reduced. Ad-

ditionally, while using the Draper adder in QCSA, al-

though it may increase the number of qubits required,

it is expected to yield a lower circuit T -depth.

4.5.3 Considerations for the Complexity of NV Sieve

The factors that affect the complexity of NV Sieve’s

algorithm are as follows.

1. Multiple solutions In our approach, unlike key

search using Grover’s search, multiple solutions may

exist10. For the multi-solution scenario in Grover’s

algorithm, the number of iterations (r = ⌊π4 ·
√

N
M ⌋)

required differs from that of the one-solution Grover’s

search (N is a search space, M is the number of so-

lutions, [26,27]). In this work, we primarily focus

on presenting a correct and optimized oracle and

estimating the cost associated with Grover’s search.

2. Search space (N): It is decided by rank and di-

mension (N = 2rank·dimension). As N increases, the

difficulty of solving the NV Sieve increases. It is re-

lated to the number of points in c. There is a suf-

ficiently large number of points (e.g. v, c) on the

lattice. Among this, we need to find a point c that

can be used to create a vector with a length shorter

than γR, and it is important to find the number of

c. Because it is difficult to find c in a high-rank lat-

tice, the size of the set of target basis vectors affects

the complexity of the algorithm.

3. Length (R) of the longest vector among input

vectors (v): The input vectors fall within the range

γ < v < R. Consequently, the maximum length (R)

in the input vector set is determined (e.g., rank and

dimension are 2, then R is 2
√
2). The complexity

will vary depending on the condition of the value of

R which determines the search space.

4.5.4 Quantum Query Complexity

In noted above, the quantum query complexity of the

NV Sieve algorithm varies with several parameters, such

10 Contrary to the traditional Grover’s search that identi-
fies a single solution, the NV Sieve yields multiple outcomes.
That is, it may produce multiple short vectors that meet the
condition in the quantum NV Sieve. Therefore, determining
the correct Grover iteration is another important issue.
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as N , R r, γ, etc. However, if the oracle is appropri-

ately implemented, and the optimal number of itera-

tions is determined, it follows the theoretical complexity

of Grover’s search (see Equation ??). In this scenario,

the number of solutions, denoted as M , is significantly

smaller than the entire search space N .

Consequently, the quantum query complexity is ex-

pected to be O(
√
N). From a query complexity perspec-

tive, this suggests a quantum advantage over classical

computers.

5 Conclusion

In this work, we introduce the quantum NV Sieve al-

gorithm as a solution to the Shortest Vector Problem

(SVP), a pivotal challenge in lattice-based cryptogra-

phy. Furthermore, we aim to achieve a lattice of 50 ∼
60 dimensions, which are commonly used in algorithms

to solve SVP. By applying Grover’s search algorithm to

the vector search component of the existing NV Sieve,

our implementation achieves a significant advantage in

search (i.e., query) complexity. Notably, for optimal im-

plementation, we employ QCSA with Takahashi adder,

achieving a substantial reduction in depth compared to

our previous work. This means that our approach facil-

itates a more efficient quantum circuit, even in higher-

dimensional lattices than our previous implementation.

This work shows that the required quantum com-

plexity for the SVP on the lattice of rank 70 and dimen-

sion 70 is 243 (a product of total gate count and total

depth) with our optimized quantum implementation of

the NV sieve algorithm. This complexity is significantly

lower than the NIST post-quantum security standard,

where level 1 is 2157, corresponding to the complexity

of Grover’s key search for AES-128.

Ultimately, our work contributes to expanding the

scope of research in the field of cryptanalysis by apply-

ing Grover’s search to the cryptanalysis of lattice-based

cryptography.
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