
White-box filtering attacks breaking SEL masking:
from exponential to polynomial time

Alex Charlès1 and Aleksei Udovenko2

1 DCS, University of Luxembourg, Esch-sur-Alzette, Luxembourg,
alex.charles@uni.lu

2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg,
aleksei@affine.group

Abstract. This work proposes a new white-box attack technique called filtering, which
can be combined with any other trace-based attack method. The idea is to filter the
traces based on the value of an intermediate variable in the implementation, aiming
to fix a share of a sensitive value and degrade the security of an involved masking
scheme.
Coupled with LDA (filtered LDA, FLDA), it leads to an attack defeating the state-of-
the-art SEL masking scheme (CHES 2021) of arbitrary degree and number of linear
shares with quartic complexity in the window size. In comparison, the current best
attacks have exponential complexities in the degree (higher degree decoding analysis,
HDDA), in the number of linear shares (higher-order differential computation analysis,
HODCA), or the window size (white-box learning parity with noise, WBLPN).
The attack exploits the key idea of the SEL scheme - an efficient parallel combination
of the nonlinear and linear masking schemes. We conclude that a proper composition
of masking schemes is essential for security.
In addition, we propose several optimizations for linear algebraic attacks: redundant
node removal (RNR), optimized parity check matrix usage, and chosen-plaintext
filtering (CPF), significantly improving the performance of security evaluation of
white-box implementations.
Keywords: White-box Cryptography · Cryptanalysis · Filtering · Masking schemes
· SEL · FLDA · RNR · CPF

1 Introduction
White-box cryptography is a discipline introduced by Chow et al. [CEJv02, CEJv03]
in which it is supposed that the attacker has full access to the implementation of the
cryptographic primitive. The security goals may vary (for example, incompressibility,
one-wayness, traceability [DLPR14]), but in this paper, we focus on the secret key recovery
of a protected implementation.

The key protection methods in this context can be categorized into two main categories:
structure-hiding and value-hiding [BU18]. In the former, the designer will employ various
obfuscation techniques to make the implementation resistant to circuit analysis and fault
injection. The latter refers to protections against passive attacks that do not rely on the
circuit structure. In this work, we focus solely on the value-hiding protections and the
related attacks.

The paper of Bos, Hubain, Michiels, and Teuwen et al. [BHMT16] introduced the
first automated passive attack in the white-box setting called Differential Computational
Analysis (DCA), which broke existing encoding-based white-box implementations (for
further analysis, see [ABMT18, RW19]). The classic Ishai-Sahai-Wagner’s masking scheme

mailto:alex.charles@uni.lu
mailto:aleksei@affine.group

2 White-box filtering attacks breaking SEL masking scheme

(ISW) [ISW03] can counter DCA. Still, it has been later shown in [GPRW20, BU18] that
this masking scheme could also be broken in the white-box context with a linear algebraic
attack called Linear Decoding Analysis (LDA).

Recently, Seker, Eisenbarth, and Liskiewicz [SEL21] proposed a nonlinear masking
scheme (SEL), derived from the minimalist quadratic masking scheme (BU) by Biryukov
and Udovenko [BU18]. Its goal is to resist DCA and LDA attacks and be more efficient than
a combination of BU- and ISW-masking schemes. The SEL scheme can still be attacked by
a higher order/degree version of the attacks ([BRVW19] and [GPRW20, BU21]). However,
these attacks have an exponential cost with their degree/order, which should be chosen
according to the number of linear shares and the degree1 of the SEL masking scheme
respectively. More recently, an attack based on the LPN problem [CU23] - learning parity
with noise - was shown to be practical for high-degree instances of the SEL masking scheme.
However, it has exponential complexity in the implementation size (more precisely, in the
attacked window size, see Subsection 2.2).

In this work, we present filtering, a new methodology that can be coupled with any other
trace-based attack. Filtering is a preprocessing step that can be applied before executing
another attack. It has the effect of fixing an intermediate value in the implementation. For
masking schemes, this leads to nullifying (at least) one of the monomials of the decoding
polynomial. For instance, if the filtering methodology is used against the SEL masking
scheme, it removes the decoding function’s nonlinear monomial, making it linear and
vulnerable to the LDA attack.

Our attacks do not contradict the security proof of the SEL scheme, since they are
outside of the existing model of algebraic attacks. On the other hand, filtering particularly
exploits the key idea of the SEL masking scheme: to use only a single nonlinear monomial
and not split its variables linearly. It follows that both BU-masking and SEL-masking
can not be used securely and must be combined with a linear masking scheme such as
ISW. Unfortunately, such combinations do not have security proofs yet, and our results
emphasize the need for their analysis. A more detailed discussion on countermeasures
against FLDA is given in Section 7 and in Section 8.

Our contribution (Filtering and Filtered LDA) The main contribution of this paper
is the filtering methodology , which consists of nullifying a node by choosing all the traces
where it is equal to zero to reduce the security of the countermeasure. Most notably,
applying it with the Linear Decoding Attack (LDA) [GPRW20] creates an attack that we
call Filtered Linear Decoding Analysis (FLDA). We show both theoretically and in practice
that it breaks the SEL masking scheme in polynomial-time complexity independently of its
degree or number of linear shares, making it the best attack against this countermeasure
regarding traces and time it requires. We recall that every previous attack is exponential
in at least one of the parameters.

(Optimizations of algebraic attacks) In the first part of this section, we show that
using the parity check matrix in the LDA attack gives an optimization reducing its time
complexity from O(Wω + |K|W2) to O(Wω + |K|W), with ω the matrix multiplication
exponent. In the second part, we observe that LDA and its derivatives only depend on the
span of the vectors of a given window. Therefore, we propose an algorithm (redundant node
removal, RNR) that removes all redundant nodes from traces (within a given distance),
allowing us to perform sliding window algorithms through fewer and only relevant nodes.
Finally, we propose a general technique based on chosen-plaintext traces (chosen-plaintext
filtering, CPF), allowing a significant reduction of the cost of testing a large number of
selection vectors. These techniques greatly boost the speed of the assessment process of
white-box implementations.

1The authors of the SEL scheme define a general shape of the masking scheme for arbitrary degrees,
but only provide concrete gadgets and security proofs for quadratic and cubic versions.

Alex Charlès and Aleksei Udovenko 3

Table 1 compares the time and space complexities of the attacks from the literature
with our improvements against ISW and SEL masking schemes. The time complexities
are not given for a single window but rather for going through the traces over N nodes.
After dealing with a window, we slide over S nodes, implying that we must go over N/S
windows. Since S = Θ(W), given a time complexity O(C) for a single window, we thus
display O(CN/W)in Table 1.

Table 1: Summary of time and trace complexity of relevant trace-based white-box attacks
over N nodes for a window of size W; ω ≈ 2.8 is the matrix multiplication exponent; ℓ
and d denote the numbers of linear and nonlinear shares respectively; |K| is the number
of selection functions (≥ 4096 for the AES); g is the number of selection function groups
(16 for the AES, see Section 6); τ is the fraction of the points of interest among all nodes
(3 - 5% for CPF-LDA and 0.1 - 0.3% for CPF-FLDA); cd = (1 − 2−d)−1, c′

d = − ln (1−2−d)
(1/2−2−d)2 .

Target Attack Reference Time, O(·) Traces, O(·)
ISWℓ LDA [BU18] N · (Wω−1 + |K|W) W

LDA Subsection 5.1 N · (Wω−1 + |K|) W
CPF-LDA Algorithm 4 N · (Wω−1g + |K|τ) Wg

SELℓ,d HODCA [BRVW19] N · |K|TℓWℓ Tℓ

HDDA [GPRW20] N · |K|Wdω−1 Wd

HDDA [BU18] N · (Wdω−1 + |K|W2d−1) Wd

HDDA Subsection 5.1 N · (Wdω−1 + |K|Wd−1) Wd

WBLPN [CU23] N · |K|Wω−2c′
dcW

d Wc′
d

FLDA Subsection 4.2 N · (Wω + |K|W) W
CPF-FLDA Algorithm 5 N · (Wωg + |K|Wτ) Wg

(Other filtered attacks and discussion) We present the higher-order filtering, which
fixes multiple values in the implementation at once. We then discuss the combination of
filtering and higher-order filtering with other attacks and possible countermeasures.

2 Preliminaries
2.1 Notations
We denote by F2 the finite field of size 2 and by Fn

2 the vector space of dimension n over
F2. We denote by 0⃗ the vector consisting of only zeroes, with the dimension given by the
context. Similarly, we denote by 1⃗ the vector composed of only ones. We let len denote
the function returning the length of a list: len(L) = n.

Given a matrix M , we denote by ker(M) the (right) kernel of M , which is the vector
space of all vectors v⃗ such that Mv⃗ = 0⃗. A parity check matrix P is a basis matrix of the
left kernel of M , i.e., it has the maximum number of linearly independent rows verifying
PM = 0. Equivalently, P v⃗ = 0 for every vector v⃗ from the columns span of M . We
denote by ω the matrix multiplication exponent, 2 ≤ ω ≤ 3, such that operations on C × C
matrices can be done in time O(Cω). It varies depending on the algorithm employed,
but known algorithms with smaller known exponents are impractical due to the hidden
complexity constant. The common practical choice is the Strassen algorithm [Str69], which
has ω = 2.8.

We denote by
(

a
≤b

)
=

∑b
i=0

(
a
i

)
, 0 ≤ b < a, the sum of all binomial coefficients inferior

or equal to b.

Proposition 1. For any fixed d, it holds O
((

n
≤d

))
= O(nd).

4 White-box filtering attacks breaking SEL masking scheme

2.2 Traces, Node Vectors and Sliding Window
White-box implementations come in different forms, typically as a compiled program.
Internally, they are often based on arithmetic or Boolean circuits, since these allow
masking countermeasures. The advantage of trace-based attacks is that they apply to
any program. For compiled programs, the authors of [BHMT16] suggest recording traces
based on the memory accesses (addresses and/or values). This works well if the program
does not employ desynchronization techniques. Otherwise, the underlying circuit may be
recovered by reverse-engineering efforts.

From now on, we consider a circuit-based implementation for the simplicity of exposition.
We denote by N the number of nodes (Boolean intermediate values) in the implementation.
To generate a trace, we encrypt a message and record the output values of all implementation
nodes. If we generate multiple traces, the ith bit contained in each of these traces will
correspond to the same ith node of the implementation. For T traces, we denote by the
node vector ∈ FT

2 the vector consisting of all the values taken by the same node through
all the encryptions.

Most available algorithms in the literature and this paper cannot process all of the
node vectors at once. The common standard solution is to use a sliding window algorithm,
that applies the algorithm separately on shorter consecutive parts of the traces, called
windows. In practice, it is more effective to employ data-dependency analysis (DDA)
[GRW20, TGCX23] and choose parts of the implementation based on the inter-dependencies
of nodes in the structure. These methods are based on the analysis of the circuits, which
puts it in the structure hiding [BU18] category, which is out of the scope of this paper.
However, we emphasize that all of our attacks can be equally combined with the sliding
window method or data-dependency techniques. The latter only dictates the selection of
windows, while we focus on the method of processing the given windows.

2.3 Selection Functions and Selection Vectors
This paper will focus on attacking a white-box implementation of the AES block cipher
[DR98, DR02], as it is the most often studied in the literature. Therefore, we will explain
in this section a selection function for the AES. However, our results are not limited to
this target and can be applied to others by choosing an appropriate selection function.

A selection function is a function of the plaintext and a part of the secret key. Matching
a selection function with a part of the implementation suggests a candidate for the involved
part of the secret key. For example, if we want to attack the first byte of the AES key
of a white-box implementation, a usual selection function is the first output bit of the
first S-box in the first round. Assume that we have generated T traces corresponding to T
plaintexts. To attack the first byte of the key, for the ith trace (i ∈ {1 · · · T}), we will go
through all of the 256 possible key byte values and compute the first output bit of the first
S-box. After doing this for all of the T messages, we end up with 256 different selection
vectors ∈ FT

2 , each corresponding to a key guess. We denote the set of all considered
selection functions by K.

In a reference implementation, there must exist a node vector that corresponds exactly
to the first bit of the output of the first S-box somewhere in the implementation. Therefore,
there must exist a node vector in the implementation’s traces that exactly matches the
correct selection vector. With enough traces, matches with incorrect selection vectors
can be excluded, leaving only the correct first key byte candidate. This process can be
repeated for all of the 16 bytes of the key to recover the full master key. This attack is
called exact matching [BU18]. For the AES, the number of selection functions is at least
16 · 256 = 4096. In practice, it is beneficial to consider more than one output bit of the
S-box or even linear combinations of the output bits. This allows to catch alternative
representations [Kar11] or flawed countermeasures, at the cost of increased analysis time.

Alex Charlès and Aleksei Udovenko 5

The total number of such selection functions for the AES is 16 · 256 · 255 ≈ 1 million.
Section 6 presents a general technique to deal with such large sets of selection vectors.

2.4 Masking Schemes, Shares and Decoding Function
To avoid an exact matching attack but especially other attacks to be presented in Section 3,
the designer of a white-box implementation may apply Boolean masking schemes to provide
value hiding. Applying a Boolean masking scheme transforms each different bit variable into
shares. For instance, the BU masking scheme (presented more in detail in Subsection 3.2)
transforms any bit variable a from the original implementation into three shares x1, x2
and x3, such that x1 ⊕ x2x3 = a.

Definition 1. ([CU23]): A decoding function with n shares can be viewed as a polynomial
P in F2[x1, · · · , xn] called a decoding polynomial. The degree deg P of the decoding function
is the algebraic degree of the decoding polynomial. The linear part lin(P) of the decoding
function is equal to the polynomial P with all monomials of degree more than 1 excluded.

3 Previous Works
3.1 DCA Attack and ISW Masking Scheme
Differential Computational Analysis (DCA) is the first automated white-box attack intro-
duced in [BHMT16], coming from the side-channel Differential Power analysis [KJJ99].
This attack was introduced to break value hiding encoding-based methods, which were intro-
duced in the original works by Chow, Eisen, Johnson and van Oorschot [CEJv02, CEJv03].

Instead of trying to find if one of the selection vectors matches one of the selection
vectors exactly, the algorithm computes the absolute value of the correlation between each
of the node vectors and each of the selection vectors and returns the highest value for each
key byte.

In the side-channel (“grey-box”) context, the main countermeasure against the DPA
attack is the ISW masking scheme [ISW03], which naturally extends its application to
the white-box setting. The ISW masking scheme replaces a sensitive bit variable s by n
shares x1, · · · , xn, with x1, x2 · · · xn−1 chosen uniformly at random, and xn chosen such
that x1 ⊕ · · · ⊕ xn = s. Therefore, none of the shares taken individually correlate with s
which could correspond to one of the selection vectors.

3.2 LDA Attack and BU Masking Scheme
Unlike the side-channel context, in white-box, the traces are generated without any noise,
which led to the Linear Decoding Attack (LDA) [GPRW20]. If the ISW masking scheme
with n shares has been employed in a white-box implementation, we know that there exist
n node vectors v⃗1, · · · , v⃗n and a selection vector s⃗ satisfying s⃗ = v⃗1 ⊕ · · · ⊕ v⃗n.

Consider a matrix M with columns being all the node vectors. Then, finding the node
vectors corresponding to a given selection vector s⃗ is equivalent to solving the matrix
equation Mx⃗ = s⃗ for x⃗. However, a white-box implementation may have a total number
of nodes N that makes this linear system infeasible to solve in practice. Therefore, we
have to use the sliding window approach to try to catch all of the shares of a sensitive bit
variable s corresponding to one of the selection vectors. For each of the windows W , we
then try to find a solution for Wx⃗ = s⃗, s⃗ ∈ K. If we find a solution, therefore the key byte
guess corresponding to the selection vector might be the correct one.

For a window containing W node vectors, the LDA attack requires to have the number
of traces T > W. Indeed, if T < W, there is a high chance of finding a false-positive for
every window. In the cases where there is no solution in the window, we need to be sure

6 White-box filtering attacks breaking SEL masking scheme

that we do not find a false-positive. Assuming that the vectors contained in the window
are generated uniformly at random, choosing T = W + 1 leads to the probability 1/2 of
finding a false positive when solving Wx⃗ = s⃗. Therefore, choosing to add t supplementary
traces reduces this probability to

(1
2
)t. In practice, choosing t = 30 is sufficient.

Definition 2. For any linear algebra-based attack (e.g. LDA, HDDA, FLDA, WBLPN),
we denote by t the number of supplementary traces ensuring the probability of finding a
false positive (per window) being equal to

(1
2
)t.

To avoid linear algebra-based attacks, Biryukov and Udovenko [BU18] introduced a
new masking scheme called BU. This masking scheme is the first to propose a nonlinear
decoding function, that is, a decoding function with the degree equal to at least 2 (c.f.
Definition 1). This masking scheme transforms a sensitive bit variable s to x1 ⊕ x2x3.
Therefore, to break it, we need to find three node vectors v⃗1, v⃗2 and v⃗3 such that v⃗1 ⊕ v⃗2v⃗3
(coordinate-wise) is equal to one of the selection vectors. Since this operation is non-linear,
we cannot find these vectors using the LDA attack. However, the DCA attack can reveal
the correlation of v⃗1 with one of the selection vectors [SEL21].

3.3 SEL Masking Scheme and HDDA, HODCA and WBLPN Attacks
To protect an implementation against both LDA and DCA, Seker et al. [SEL21] proposed
a new masking scheme having a linear part (c.f. Subsection 2.4) containing multiple linear
monomials, while having a degree 2 or more.

Definition 3. We denote by SELℓ,d the Boolean masking scheme with ℓ linear shares and
degree d ≥ 2, and with the decoding polynomial P = x1 ⊕ · · · ⊕ xℓ ⊕ (xℓ+1xℓ+2 · · · xℓ+d)
(c.f. Definition 1).

If we choose ℓ ≥ 2, then, as for the ISW masking scheme, the DCA attack will not
work. Similarly, since d ≥ 2, as for the BU masking scheme, the LDA attack will not work.

HODCA A variant of DCA has been studied in [BRVW19, GRW20, TGCX23], which
can break SEL masking scheme. Using the sliding window method, before computing the
correlation of the vectors, the HODCA of order O begins by increasing the window by
adding the xor of all combinations of O vectors.

Let us suppose that we want to attack SEL3,d using HODCA of order O = 3. If a
window succeeds in catching all three shares of the linear part of the SEL masking scheme,
HODCA will in particular try the correlation of the xor of these three vectors, which will
be high for one of the selection vector, thus recovering a part of the key.

For a window containing W elements, and for TO the number of traces required to
perform the attack with success depending on the order O, with Proposition 1, we have a
time complexity in O(|K|TO

(W
O

)
) = O(|K|TOWO) given in [BRVW19].

HDDA Similarly, HDDA of degree d is a variant of LDA that expands the window
by appending all the and combinations of d or less vectors to it. In this way, all degree-d
monomials will be considered when performing LDA in the resulting window.

For instance, if we attack SELℓ,3 with HDDA of degree d = 3, we may catch inside
a window all shares of a sensitive variable. During the expansion of the window, we will
in particular append the nonlinear monomial of the SELℓ,3 decoding function. Then, the
selection vector matching problem becomes linear and can be solved using LDA, leading
to a key recovery.

For a window containing W elements, the complexity of HDDA of degree d has been first
established in O(|K|Wdω) in [GPRW20], and can been reduced to O(

(W
≤d

)ω + |K|
(W

≤d

)2) =
O(Wdω + |K|W2d) using LU-decomposition, as observed by [BU18]. We show in Section 5
that this complexity can be further improved to O(Wdω + |K|Wd) using parity check
matrices.

Alex Charlès and Aleksei Udovenko 7

Corollary 1. SELℓ,d is broken by HODCA of order greater or equal than ℓ and by HDDA
of degree greater than or equal to d.

However, HODCA (resp. HDDA) has a complexity growing exponentially with its
order (resp. degree), being infeasible in practice for SELℓ,d with ℓ (resp. d) chosen high
enough.

WBLPN Recently, Charlès and Udovenko [CU23] showed that considering the
nonlinear monomial of SEL as a noise occurring with probability (1/2)d, we can reduce
the problem to an LPN instance to solve. This attack on SELℓ,d becomes more effective as
d increases, which is the opposite of HDDA. However, its complexity remains exponential
on the window size, which is problematic as even if having d large reduces the cost, it still
implies that the SEL gadgets will be more complex, forcing to have a bigger window to
catch all the shares of the linear part.

4 Filtered Linear Decoding Analysis

As presented in Subsection 3.3, the SEL masking scheme is broken by HDDA and HODCA
which are exponential in time and trace number concerning the degree and the number
of linear shares of SEL. Similarly, WBLPN [CU23] is faster than these two attacks if the
degree of SEL is high enough, but it has exponential time complexity in the window size.
In this section, we present the filtering preprocessing method that can be combined with
any trace-based attack. Thereafter, we show that when combined with LDA it can break
the SEL masking scheme in quartic time (in sliding window’s size) independently from
SEL’s degree or number of linear shares.

4.1 The Filtering Methodology

Filtering can be described as a window preprocessing method, which can be combined with
any window-based attack. Its broad goal is to deactivate a small amount of randomness in
the implementation, which in turn should weaken the employed countermeasures. This is
done by selecting a node vector (c.f. Subsection 2.2) in the window and filtering traces,
keeping only the traces where the node value is equal to zero. The process is repeated for
each node vector in the window as the filtering source. The algorithm allowing to perform
a filtered version of any chosen attack A is depicted in Algorithm 1.

Example 1. Suppose an implementation is protected by the SEL2,2 masking scheme
that transforms every bit a of the implementation into shares (x1, x2, x3, x4) satisfying
a = x1 ⊕ x2 ⊕ x3x4. Then, by running a sliding window method with a window size W = 9
and T = 15 traces, we will catch at some point the shares x1, x2, x3, and x4 corresponding
to the selection function (c.f. Subsection 2.3) inside a window, among other unrelated
nodes.

Even if we don’t know which node vectors correspond to the shares of the secret variable,
we can filter iteratively every node vector of the window as shown in Figure 1. Filtering a
new vector corresponds to selecting a column of the window, and keeping only lines of the
window in which the selected node vector is equal to zero. At some point, we will filter
one of the shares corresponding to the non-linear part of the masking scheme, in our case
x3 or x4.

8 White-box filtering attacks breaking SEL masking scheme

0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 1
0 0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1 1
1 1 1 0 0 1 1 1 0
1 0 0 0 1 1 1 1 1
1 0 1 1 1 0 1 1 0
1 1 1 1 1 0 0 0 0
0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 0
0 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0

x1 x2 x3 x4

0
1
1
1
1
1
1
0
0
1
1
1
1
0
1

x1 ⊕ x2 ⊕ x3x4

0 1 0 1 0 1 1 1 1
0 1 0 0 0 1 1 0 1
0 0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1 1
1 1 1 0 0 1 1 1 0
0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0 1
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0

x1 x2 x3 x4

0
1
1
1
1
1
1
0
1

= x1 ⊕ x2

x1 ⊕ x2 ⊕ x3x4

Figure 1: Filtering the fifth column (inside the rectangle) of a window corresponding
to one of the non-linear shares of the decoding function of SEL2,2, making the problem
linear.

If we manage to filter one of the shares corresponding to the non-linear part (in our
example x3 or x4) while having the shares of the linear part (x1 and x2) inside the window,
we make the problem linear. In Figure 1, we managed to filter x3 out, therefore the
decoding function of SEL2,2 becomes: x1 ⊕ x2 ⊕ 0 · x4 = x1 ⊕ x2 and is now susceptible to
Linear Decoding Analysis attacks (c.f. Algorithm 2). This procedure leads to our FLDA
algorithm explained in the next Subsection 4.2.

Instead of filtering every node of a window, we can filter only the middle node vector,
and reduce the sliding window step to 1 (to apply filtering to every node in the traces),
improving the filtering algorithms’ in-practice time. However, we consider that this
optimization does not have an impact on the window complexity, as applying the algorithm
to a unique window would require filtering all of its nodes.

Theorem 1. Given a trace-based attack on a window of size W that has a time complexity
in O(CW), performing the filtered version of this attack has for time complexity O(WCW).

Proof. Considering the worst-case scenario where one has to attack a single window, we
cannot apply the optimization previously described. Therefore, we have to filter every W
node of the window, which has a negligible cost, and apply the attack W time, for a total
time complexity equal to O(WCW).

Trace complexity To perform the filtered version of an attack A that requires
T traces, we need to determine the total number of traces F ≥ T that will allow us to
perform both the filtering and the attack. F also corresponds to the size of a node vector,
and we want it to have at least T zeroes. If we suppose that the node vectors are uniformly
distributed, then each of their elements is equal to zero with probability one-half, and the
number of its zeroes follows a Binomial distribution. Therefore, if we denote the value of

Alex Charlès and Aleksei Udovenko 9

Algorithm 1 Sliding window filtered version of an attack A (FA)
Inputs:

• An attack A requiring T traces over N nodes
• A total number of traces F allowing to filter at least T traces (c.f. Theorem 2)
• An odd window size W, and halfW = W−1

2
• The list K containing the selection vectors si ∈ FF

2 (c.f. Subsection 2.3)
Output: The selection vectors corresponding to candidate key guesses, if any

1: for n ∈ [halfW, · · · , N − halfW] do
2: window ← the list of the (n− halfW)th to the (n + halfW)th node vectors
3: Idx← the indexes where the nth node vector is equal to zero
4: if len(Idx) ≥ T then
5: W̃ ← all rows of the T ×W window with indexes in Idx
6: S̃ ← the list of selection vectors restricted to coordinates with indexes in Idx
7: Perform the attack A on W̃ and S̃
8: end if
9: end for

the number of its zeroes by the variable X, we have:

P (X ≥ T) = 1
2F

F∑
i=T

(
F

i

)
Theorem 2. Given an attack that has a trace complexity in O(CW), its filtered version
has the same asymptotic complexity O(2CW) = O(CW).

Proof. For an attack A requiring T traces, supposing that the node vectors takes their
values in F2 uniformly at random, filtering would require to have on average a total number
of traces for filtering F = 2T . With the Law of Large Numbers, the filtered version of an
attack A of trace complexity O(CW) has a total trace complexity O(2CW) = O(CW).

Data dependency version of Filtered attacks Algorithm 1 shows how to perform
the filtered version of an attack A with a sliding window algorithm. However, [GRW20,
TGCX23] presented another method to skim through all the nodes of an implementation.
Even though this method called data dependency analysis is out of the scope of this paper,
the filtering method is compatible with it.

Indeed, the data dependency gives different windows to perform the attack A on. To
achieve its filtered version, instead of filtering only one node vector of a window, we can
iteratively filter each of the node vectors of a given window and perform the attack A.

Filtering by one A simple countermeasure to filtering by zero is to change the
gadgets to flip the filtering-sensitive bit variables. To thwart this potential countermeasure,
an attacker can perform his attack first filtering by zero and then by one. This has no
impact on the asymptotic time complexity as it only adds a factor 2 to it.

4.2 Filtering Linear Decoding Analysis against SEL masking scheme
As presented in Subsection 3.3, the SEL masking scheme has a decoding polynomial (c.f.
Definition 1) P = x1 ⊕ · · · ⊕ xℓ ⊕ xℓ+1 · · · xℓ+d. Using a sliding window or a data
dependency approach, let us consider that we managed to catch all the node vectors
corresponding to the ℓ + d shares of the decoding polynomial inside of a single window.

Now, if we apply the filtering methodology before an LDA attack as shown in Example 1,
we will at some point filter one of the d nodes corresponding to one of the shares of the
non-linear monomial xℓ+1 · · · xℓ+d. Following Algorithm 1, we will select all the trace

10 White-box filtering attacks breaking SEL masking scheme

indexes where this node vector equals zero. For these traces, we then nullified the non-linear
monomial, since we have: P = x1 ⊕ · · · ⊕ xℓ ⊕ xℓ+1 · · · 0 · · · xℓ+d = x1 ⊕ · · · ⊕ xℓ. For
these traces only, the decoding polynomial of SEL becomes linear and therefore weak to the
LDA attack. Applying this attack to this subset of traces recovers information on the key.

Complexity As discussed in Subsection 4.1, filtering increase the time complexity by
a factor W. Therefore, FLDA reaches a time complexity equal to O(Wω+1 + |K|W2)(c.f.
Subsection 5.1), with ω the linear exponent (c.f. Section 2). Since LDA has a trace
complexity O(W + t) = O(W) (c.f. Definition 2), FLDA has a trace complexity in
O(2W) = O(W).

Time complexity comparison of FLDA with HDDA and HODCA HDDA and
HODCA time complexities depend on the parameters d and ℓ of SELℓ,d (c.f. Definition 3),
whereas FLDA complexity is independent of it.

Moreover, even in the best situation for HDDA, when d = 2, its complexity reaches
O(W2ω + |K|W2) whereas FLDA remains at O(Wω+1 + |K|W2) for any ℓ and d, following
Theorem 1. We will show in the next paragraph that FLDA is also outperforming HDDA
against the SEL masking scheme for any degree d and window size in practice.

In [BRVW19], the authors estimated the time complexity of HODCA to be equal to
O(|K|TO

(W
O

)
) = O(|K|TOWO) (c.f. Proposition 1), with TO the number of traces required

to succeed differentiating the correlation between the correct selection vector and the
shares of the decoding function from the correlations between the other node vectors and
selection vectors (c.f. Section 3). TO grows extremely fast with the window size and the
degree which slows down the attack drastically (c.f. [BRVW19], Table 1, with λ = W
and d = O). Even if TO was equal to one, the time complexity of HODCA would remain
exponential with its order O that should match the number of linear shares ℓ of SEL, while
FLDA remains independent of these parameters.

Practical results and comparison of the number of binary operations The
following computations were done on an AMD EPYC 3.2 GHz CPU with 1 TiB of
RAM running Ubuntu 20.04 with SageMath 10.2 using Python 3.11.7. However, these
experiments can be reproduced on a common laptop.

We ran FLDA2 over the first 20% of the traces of SEL3, BU4 and ISW4 masking
schemes applied over a ten-round AES (respectively [SEL21], [BU18] and [ISW03]), since
the key parts are located in the beginning of the traces. Given a window size W, we ran
FLDA over 2(W + t) + 50 traces, for t = 30 (c.f. Definition 2), which allowed us to filter
out enough traces to perform LDA with very high probability.

Table 2 shows that FLDA can break all SEL implementations, and by extension, ISW
and BU masking schemes with a time remaining low even for big window sizes. Compared
to its counterpart HDDA, observing its time measurements from [CU23] (on comparable
software and hardware), to break the quadratic SEL5,2 with window size W = 50, HDDA
of degree 2 would take 6.5s per window with their implementation, compared to an average
of 7659s

240k nodes = 33.13ms per window for FLDA. To break the cubic SEL5,3, since FLDA is
independent of SEL’s degree, the time per window will not change, while HDDA needs to
be of degree 3, which has a time per window already exceeding 2 minutes for window size
W = 34.

We can observe that SEL with a decoding polynomial of degree 3 (SEL5,3 in Table 2,
with 1161k nodes in total) has fewer nodes than its degree 2 version (SEL5,2 with 1204k
nodes in total), which is unexpected, considering that the gadget of the former is more
complex than the latter[SEL21]. We investigated the official SEL implementation3 that
we used to generate our traces and found that the Refresh gadget is never recorded in

2https://github.com/cryptolu/whitebox-filtering
3https://github.com/UzL-ITS/white-box-masking
4https://github.com/hellman/ches2022wbc

https://github.com/cryptolu/whitebox-filtering
https://github.com/UzL-ITS/white-box-masking
https://github.com/hellman/ches2022wbc

Alex Charlès and Aleksei Udovenko 11

Table 2: Time and number of bytes of the key recovered (✓ if the key is fully recovered)
with FLDA over different countermeasures applied to the first 20% of the traces of ten-
round AES implementations, with 2(W + 30) + 50 traces, using a sliding window approach
and sliding by one node at a time.

W = 50 W = 100 W = 200 W = 400
Target 20%N time Key time Key time Key time Key
ISW3 39k 20min 5B 25min 14B 32min ✓ 49min ✓
BU 168k 1h29 ✓ 1h45 ✓ 2h16 ✓ 3h32 ✓
SEL5,2 240k 2h08 ✓ 2h29 ✓ 3h18 ✓ 5h06 ✓
SEL5,3 232k 2h03 ✓ 2h25 ✓ 3h11 ✓ 4h57 ✓

the traces, and the And gadget is only partially recorded for degree 3. Since the Refresh
gadget is called within the other gadgets, the traces should be drastically heavier. This
would make our attack slower especially for degree 3, since it would have to go through
more nodes, while not impacting the time cost per window.

Trace complexity comparison of FLDA with HDDA and HODCA Given
Theorem 2, FLDA has the same trace complexity as LDA in O(W + t) = O(W) (c.f.
Definition 2), independently of the parameters of SEL ℓ and d. Whereas HDDA of degree
d has a trace complexity in O

((W
≤d

)
+ t

)
= O(Wd) (c.f. Proposition 1). In [BRVW19],

Table 1, with λ = W and d = O, the authors shown that HODCA of order O requires
drastically more traces than FLDA (c.f. Table 3).

Table 3: Number of traces F for FLDA with LDA on W + t traces for a probability of
filtering enough traces equal to 0.99, using the trace formula from Subsection 4.1.

W + t 10 20 40 80 160 320 640 1280
F 33 57 103 192 364 701 1365 2680
F

W+t 3.3 2.85 2.575 2.4 2.2750 2.1906 2.1328 2.0938

Other Filtered attacks The filtering methodology can be applied to any trace-based
attacks (FDCA, FHODCA, FHDDA, and FWBLPN). We will discuss them and also their
Higher-Order filtered versions against combined countermeasures in Section 7.

5 Optimizations of linear algebra-based algorithms
In this section, we propose an optimization of LDA using a parity check matrix, a new
algorithm called RNR, and a general optimization of processing a large number of selection
functions. These improvements significantly enhance the performances of LDA, HDDA,
FLDA, and WBLPN.

5.1 Optimization of LDA
As presented in [GPRW20], given a window W containing W elements, we try to solve
Wx⃗ = s⃗i for si ∈ K, which has complexity O(|K|Wω) (c.f. Subsection 2.1), with ω
the linear complexity exponent. The authors of [BU18] then showed how to reduce this
complexity to O(Wω + |K|W2) by using the LU-decomposition of a matrix. We will now
show that we can reduce the complexity to O(Wω + |K|W).

We propose to compute once the parity check matrix PCM of W (c.f. Subsection 2.1),
which, once multiplied by a vector v⃗, has the property to make the result equal to zero
if and only if v⃗ is in the column space of W . Indeed, the equation Wx⃗ = s⃗ is solvable if

12 White-box filtering attacks breaking SEL masking scheme

and only if PCM · s⃗ = PCM · W · x⃗ = 0. Therefore, once we have computed the parity check
matrix of the window, we multiply it by all of the selection vectors. If the result is equal
to zero, then the guess of the key part associated to this vector should be correct.

Since we verify that PCM v⃗ = 0⃗, we can stop the verification right when we find a single
one in the resulting vector. For a random vector multiplied to the PCM, we will in average
have to verify the multiplication of only two (1+1/2+1/4+ ...) rows of the PCM by v⃗ before
determining that v⃗ is not in the column space of W , which is depicted in Algorithm 2.

Algorithm 2 Revisited Linear Decoding Analysis (LDA)
Inputs:

• A window W containing W node vectors ∈ FW+t
2

• A list K of selection vectors ∈ FW+t
2

Output: The selection vectors corresponding to candidate key guesses, if any
1: PCM← the parity check matrix of W
2: for v⃗ in K do
3: for i in {1 · · ·W + t} do
4: if the multiplication of the ith row of PCM and v⃗ equals one then
5: break
6: end if
7: end for
8: if all the multiplications were equal to zero then
9: Append v⃗ to the output

10: end if
11: end for

Complexity comparison For a window with W node vectors over T = W + t traces
(c.f. Definition 2), since computing the parity check matrix is a linear algebra operation,
it costs O(Wω) and creates a matrix with T = W + t columns. We then perform on
average 2 multiplications of vectors of size W + t for each of the |K| key guesses, which
represents O(2|K|(W + t)) = O(|K|W). We conclude that the complexity of LDA after
our optimization is O(Wω + |K|W).

New complexity for HDDA The HDDA of degree d ≥ 2 attacks begin by computing
and adding to the window all the

(W
≤d

)
vectors resulting from the and operation of all

combinations of ≤ d node vectors of the original window. This cost is negligible compared
to computing the LDA attack to the newly increased window.

In the previous paragraph, we showed that LDA applied to a window size W has
complexity O(Wω+|K|W) with our optimization. Therefore, in the case of HDDA of a fixed
degree d, we conclude that it dropped the cost of the attack from O(

(W
≤d

)ω + |K|
(W

≤d

)2) =
O(Wdω + |K|W2d) to O(

(W
≤d

)ω + |K|
(W

≤d

)
) = O(Wdω + |K|Wd).

However, this optimization does not change the trace complexity of both attacks,
therefore LDA keeps its trace complexity in O(W) and HDDA in O(Wd).

5.2 Redundant Nodes Removal (RNR)
Linear algebra-based attacks (LDA, HDDA, FLDA, and WBLPN) are trying to determine
if any of the linear combinations of the node vectors inside of a window corresponds to
one of the |K| selection vectors. This is equivalent to verifying if one of the selection
vectors is in the column space of the matrix corresponding to the window. To perform
this verification, it is enough to use only the vectors from a basis of the matrix. Therefore,
to decrease the window size, we can remove the vectors that are not part of the basis.

Definition 4. Given a list of node vectors ∈ FT
2 over T traces and a subset of it spanning

the same vector space, we say that all node vectors that are not in this basis are redundant.

Alex Charlès and Aleksei Udovenko 13

Redundancy is common among the node vectors since many of them correspond to the
output of a xor gate in the implementation. Indeed, given a xor gate of an implementation
computing a ⊕ b = c, there will be three node vectors v⃗a, v⃗b and v⃗c in the traces such that
v⃗a ⊕ v⃗b = v⃗c, and therefore one of these three vectors is redundant.

We would like to remove all of these vectors, so that linear algebra-based attacks would
only run on relevant vectors, increasing the effectiveness of the attack. In Subsection 5.2,
we show that for the official SEL implementation and BU implementation, we can remove
more than 50% of the nodes. Therefore, running an attack onto only the non-redundant
vectors of these implementations will be twice as fast since there are only half of the
elements to go through. Furthermore, if the attack is using a window size W, then this
window will be virtually twice as big, as half of its elements would have been irrelevant for
the attack if we had kept the redundant node vectors.

Ideally, to remove these redundant vectors we would like to consider all node vectors
as a big matrix and keep only vectors that span the vector space, but this would be too
heavy to perform. Fortunately, the nodes interacting with each other are located relatively
close in the traces, and therefore we can use a sliding window method to remove a major
part of the redundant node vectors. Therefore, the RNR algorithm is similar to the LDA
attack, but instead of observing if one of the selection vectors is in the vector space of a
given window, we simply remove all the redundant nodes of the window before sliding,
which is depicted in Algorithm 3.

Algorithm 3 Redundant Node Removal (RNR)
Inputs: A list L containing N node vectors, a window size W and a sliding size S
Output: The list NRN of Non-Redundant Nodes

1: NRN ← [0 · · ·N], stored in reverse order to prevent sliding the whole list at each removal
2: while i ∈ {0 · · ·N −W} do
3: window ← the list of the ith to the (i +W)th node vectors from L
4: Idx← the indexes of the node vectors of the window that form a basis
5: Remove all indexes that are in NRN and not in Idx
6: i← i + S
7: end while
8: return NRN

Time and trace complexity Finding the node vectors that are linearly independent
and which span the space of a matrix W × (W + t) is linear and therefore RNR has a time
complexity in O(Wω), with ω being dependent on the algorithm used (c.f. Section 2). To
avoid removing nodes that are non-redundant, we should have t supplementary traces (c.f.
Definition 2). Therefore, the trace complexity of RNR is O(W + t) = O(W).

In-practice RNR Result We ran our RNR algorithm5 on the traces generated by
the countermeasures SEL6, BU7, Dummy Shuffling7 (three slots) and ISW7 (three linear
shares) applied over a ten-round AES (respectively [SEL21], [BU18], [BU21] and [ISW03]).
As explained in Section 4, the official implementation of SEL is incorrect, explaining why
SEL5,3 has fewer nodes than SEL5,2.

The computations of Table 4 were done on a 12th Gen Intel(R) Core i7-1265U 1.80
GHz CPU, with 32 GB of RAM on WSL 2 running Ubuntu 22.04 on Windows 10, with
SageMath 10.2 [Sag23] using Python 3.11.7. The RNR implementation5 was run with
different window sizes, with t = 30 (c.f. Definition 2) and a sliding size S = W

6 . The time
is given in seconds and takes into account the time required to first open the node vectors.

5https://github.com/cryptolu/whitebox-filtering
6https://github.com/UzL-ITS/white-box-masking
7https://github.com/hellman/ches2022wbc

https://github.com/cryptolu/whitebox-filtering
https://github.com/UzL-ITS/white-box-masking
https://github.com/hellman/ches2022wbc

14 White-box filtering attacks breaking SEL masking scheme

Table 4: Time in seconds and percentage of node removed for RNR algorithm ran with
different window sizes and different algorithms

W = 100 W = 200 W = 300 W = 400 W = 500
Target N time del time del time del time del time del
Dum3 164k 12s 45% 13s 54% 22s 55% 25s 57% 32s 59%
ISW3 194k 13s 50% 18s 57% 24s 60% 30s 61% 36s 61%
BU 837k 57s 41% 83s 45% 111s 48% 138s 50% 176s 51%
SEL5,2 1204k 75s 43% 126s 47% 161s 47% 196s 47% 240s 47%
SEL5,3 1161k 70s 48% 108s 48% 142s 48% 182s 48% 225s 48%

Compatibility of RNR and correlation attacks Although it is clear that RNR
enhances LDA, HDDA, and WBLPN attacks, it is not clear what impact it has on the
other attacks. For instance, let us suppose that this implementation is secured with the BU
masking scheme such that each bit s is replaced by three shares such that s = a ⊕ bc. We
know that the node vector corresponding to the share a is correlating to one of the selection
vectors, therefore we would like to apply DCA (c.f. Subsection 2.3 and Subsection 3.1).

However, let us suppose that we have there node x1, x2 and x3 in this implementation
such that x1 ⊕ x2 = x3. If we apply RNR to these three nodes, one of them is redundant
and will be removed. Therefore, we may be removing the node corresponding to the share
a of the BU scheme, avoiding the DCA attack from working.

Compatibility of RNR and filtered attacks The same problem can be observed
with filtered attacks as removing one of the nodes that corresponds to one of the shares
that we would like to filter. Therefore, we do not recommend applying filtered attacks
only on non-redundant nodes.

However, for FLDA, FHDDA, and Higher-Order FLDA (c.f. Section 7) it is possible
to filter all the nodes while applying the subsequent attack only on non-redundant nodes.
This way, we do not benefit from the aspect of RNR that allows us to go through only a
subset of the nodes, but we benefit from the virtually increased window size.

6 Chosen-Plaintext Filtering (CPF)
Trace-based white-box attacks descended from gray-box attacks, which are typically known-
plaintext attacks in their nature due to this setting being the most realistic in practice. In
the white-box setting, however, there is no reason to follow this constraint. To this end, we
present a general optimization technique exploiting the ability to record chosen-plaintext
traces8 for handling large sets of selection vectors efficiently. This is particularly important
due to the possibility that a white-box designer uses alternative representations or linear
encodings [Kar11, ABMT18], which can be attacked by considering all relevant linear
combinations of basic single-output-bit selection functions (in the case of 1-round AES,
16 × 256 × 255 ≈ 106 selection functions).

The main idea of our optimization is to apply the divide-and-conquer principle to the
selection function detection in a white-box implementation. The goal is to separate the
location of points of interest from the recognition of the actual sensitive function. We
achieve this by the means of chosen plaintext filtering (CPF):

1. (Location of points of interest) The first step is to split selection functions into groups
and, for each group, to sample plaintexts for which all the selection functions in the

8We remark that chosen-plaintext attacks in the white-box setting were already considered in a few
previous works [BU21, TGLZ23].

Alex Charlès and Aleksei Udovenko 15

group are constant. In the case of the usual 1st round S-box targets in the AES, a
group may correspond to plaintexts having one byte fixed to a constant. Indeed,
all selection functions corresponding to that S-box would be constant (equal to 0
or 1) on all such plaintexts. Therefore, the set of distinct selection vectors (for that
byte) consists of just the all-zero and the all-one vectors. Matching these selection
vectors in the implementation would not immediately leak the secret key, but instead
pinpoint potential points of interest for the second step. In the AES above, these
include intermediate variables which are functions only of the chosen plaintext byte
(i.e., are independent of the other input bytes), but also, more importantly, (possibly
filtered) linear combinations yielding such functions.

2. (Selection function recognition) Once the points of interest have been located, the
usual attack techniques can be applied to distinguish the chosen plaintext on function
inside the group. This may include a direct comparison of each trace point with each
selection function (including correlation or exact matching), or algebraic matching
techniques (c.f. Subsection 5.1), possibly filtered as in the main FLDA (c.f. Section 4).

The grouping in the first phase can be rather broad, and thus yield many points of
interest. For example, all intermediate variables in the circuit of one AES S-box in the first
round (which make up for about 1/160=0.63% of a reference AES implementation) satisfy
the detection criteria (being functions of the fixed input byte), but at the same time are
difficult to exploit for key recovery. However, it is expected that the resulting number
of interest points is much smaller than the original trace size. Therefore, the first phase
should be viewed as a trace reduction optimization. In addition, this technique provides
insights into the structure of the studied implementation, which can be useful for a human
reverse engineer.
Remark 1. Although serving a similar purpose, the data-dependency analysis (DDA)
methods [GRW20, TGCX23] are independent of chosen plaintext filtering and can be
combined with it. Roughly speaking, CPF determines the global positions of interesting
windows, while DDA determines the local structure of the windows.
Remark 2. CPF can be also “simulated” in the usual known-plaintext setting: from 256T
random plaintexts we can always select at least T traces with an input byte fixed to a
constant, for any input byte, by the pigeonhole principle. For T = 512 this requires 130 000
traces, which may take some time and storage, but should be feasible in most cases.

Importance of preprocessing As outlined above, the first phase is essentially
searching for constant selection vectors inside the traces recorded for a specific set of
plaintexts. For raw traces, this may yield many irrelevant points of interest, such as
computed constants, negated variables, all linear gates, etc. Therefore, it is crucial to
preprocess traces to remove this material. This can be done by preprocessing an additionally
recorded set of traces for purely random plaintexts, recording the eliminated redundancies,
and eliminating them from the group traces. For this purpose, in the case of algebraic CPF
attacks, the previously developed RNR technique from Subsection 5.2 will play a crucial
role. More specific details are described below on the examples of chosen-plaintext-filtered
LDA and FLDA workflows.

Optimizing plaintext grouping for reducing the number of traces As currently
described, the optimization requires recording T traces for each group, where T is the
number of traces required to detect the constant selection function using the main attack
(such as LDA or FLDA in our case). In the case of AES described above, the attacker
needs 16 distinct sets of traces, one per plaintext byte being fixed (and an extra set for
random plaintexts). However, it is possible to significantly reduce the required number of
traces. The idea is to combine several groups into a few very large groups, sample large

16 White-box filtering attacks breaking SEL masking scheme

pools of plaintexts for these large groups, and extend them with a few plaintexts targeting
smaller groups. The last step is needed to differentiate the smaller groups from the larger
group.

Example 2. In the case of AES, the attacker can record T − ϵ traces for plaintexts with
the first 8 bytes fixed to constants (and the other 8 bytes varying randomly), and T − ϵ
traces for plaintexts with the last 8 bytes fixed to constants (and the other 8 bytes varying
randomly). Then, for each plaintext byte, an extra ϵ traces are recorded with this byte
fixed to the constant value which this byte was set to in one of the large sets. From all these
traces, for each plaintext byte, it is possible to choose at least T traces for which the byte
is constant (has the same value), while the other bytes are varying. As a result, the trace
complexity is reduced from 16T to 2T + 14ϵ. How large should be the ϵ parameter? Since
its goal is to distinguish the fixed input byte from the other bytes in the same half, the
selection functions associated with the non-fixed bytes must be non-constant in the current
trace set. Assuming that the sensitive functions are balanced, it is sufficient to choose,
say, ϵ = 64 to filter out irrelevant selection functions with probability 1 − 2−ϵ = 1 − 2−64

each. For T = 512, this leads to a factor of 4 improvement in the trace complexity and
approaches the factor of 8 as T tends to infinity.

Remark 3. The grouping of selection functions can be nested to reduce the cost of iterating
over each group of selection functions. This is similar to the optimization described above
but applies to the time complexity rather than to the trace complexity. For example, in
the case of AES, we have 16 selection function groups, one per each plaintext byte. This
adds a factor of 16 to the cost of the first step. To reduce this factor, we can first consider
only two groups (one per each half of the plaintext). This would yield more false-positive
points of interest, but still only a small fraction of the full trace. Then, these points of
interest could be further sieved by using more fine-grained selection groups. This would
have negligible cost since the algorithm’s input would be of much smaller size than the
original trace. However, for simplicity, we do not consider this optimization further.

6.1 Chosen-plaintext-filtered LDA
The most natural application of the CPF method is to the LDA attack. The procedure is
summarised below and in Algorithm 4:

Step 1: Record the required pool of traces, including a sufficient amount of plaintexts for
each group of selection vectors and random plaintexts. If possible, this step should
use the optimization described above and in Example 2.

Step 2: Perform RNR on the general trace set (random plaintexts) and eliminate the
corresponding redundant node vectors from all traces.

Step 3: For each selection function group:

(a) Perform RNR on the corresponding set of reduced traces (for which all the
selection functions in the group are constant) and record the kernel information
(i.e., which linear combinations of node vectors sum to a constant).

(b) Apply the kernel map to the general trace set, producing a new small trace set.
(c) Apply the usual LDA attack on the final compact trace set, using selection

functions from the group as target candidates.

The crucial step in the procedure is 3.a: it locates linear combinations of nodes that
are constant when inside the chosen selection vector group. It is expected to significantly
reduce the trace size. The exact reduction factor depends strongly on the underlying
cipher, countermeasures, and design strategy.

Alex Charlès and Aleksei Udovenko 17

Often in practice the RNR step in 3.a produces at most 1 linear combination per most
windows, or just a few of them. In these cases, it does not make sense to pass these vectors
through full LDA procedure and parity check matrix computation but rather to do an
exact matching with selection vectors (which can be done in O(W) bit operations and
memory lookups using a precomputed hash table). If there is more than 1 vector in the
window, it may still be cheaper to enumerate all their linear combinations exhaustively
and perform an exact matching for each of the combinations. Indeed, an LDA matching
requires at least 32 traces to ensure a low false-positive ratio, which leads to a complexity
of about 323 = 215 bit operations, and all linear combinations of 10 32-bit vectors can
be enumerated with the same complexity. We emphasize that using exact matching in
this step instead of LDA does not decrease the quality of the attack: the actual linear
matching part has already happened in the RNR in step 3.a.

Proposition 2. The procedure described above (and in Algorithm 4) produces equivalent
results as the LDA attack applied to the full set of traces.

Proof. It is easy to verify that a selection function that is non-constant on the full set of
traces, but which is recoverable using the LDA attack, must be constant on the fixed-group
set of traces and thus will be caught by step 3.a, and recognized by step 3.c. Additional
false positives may happen due to a virtual increase in the window size due to shrinkage
of the trace. These can be avoided (if needed) by tracking the indexes of the linear
combinations and dropping matches with distances bigger than the window size.

Algorithm 4 Chosen-plaintext-filtered LDA (CPF-LDA)
Inputs:
• LDA parameters (window) (c.f. Algorithm 2)
• Groups [(P1, S1), . . . , (Pg, Sg)], Pi a set of plaintexts and Si a set of selection functions constant

on Pi

Output: Selection vectors corresponding to candidate key guesses, if any
1: T$ ← a set of traces on random plaintexts
2: B ← indexes of non-redundant nodes from RNR(T$) (c.f. Subsection 5.2)
3: for i ∈ {1, . . . , g} do
4: Ti ← traces on plaintexts from Pi

5: Ki ← kernel information from RNR(Ti |B) (linear relations), where Ti |B denotes traces
restricted to non-redundant nodes from B

6: T$,i ← Ki(T$) (compute new traces by applying the kernel Ki to T$)
7: Apply Exact matching/LDA to traces T$,i and selection vectors Si

8: end for
The correspondence between the steps described in the text and this algorithm is as follows. Step
1 refers to the preparation of inputs for the algorithm. Step 2 is implemented by lines 1-2. The
loop of Step 3 is defined by line 3. Then, step 3.a is done in lines 4-5, step 3.b is done in line 6,
step 3.c is performed in line 7.

Complexity The cost of the CPF-LDA phase 1 (locating points of interest) is
equal to g + 1 times the cost of RNR, which is O(Wω) per window of size W and g
selection vector groups. The cost of phase 2 (matching selection functions) depends on
the number of points of interest and is equal to O(|Ki|W) for matching selection vector
group Ki per one point of interest, using the exact matching method (this assumes that
points of interest are sparsely placed). The total complexity of CPF-LDA can thus be
estimated by O((N)Wω−1g + |K|τN) for a window of size W , window step O(W), N -node
traces, selection vector set K =

⋃
i Ki, and τN points of interest. In our experiments,

we observed values of τ on the magnitude of 3 - 5%. Compared to the optimized LDA
complexity from Subsection 5.1, equal to O((N)Wω−1 + |K|(N)), the optimization leads to

18 White-box filtering attacks breaking SEL masking scheme

the factor τ improvement, assuming that the second term dominates (which is the case of
a large number of selection functions). We remark that this is a rough estimate based on
practical considerations and reasonable assumptions about the attacked implementation.
In principle, the factor g in the first term can be removed by implementing the nesting
grouping optimization (see Remark 3). An example breakdown of an application of
CPF-LDA and CPF-FLDA is described in Table 5.

6.2 Chosen-plaintext-filtered FLDA
The idea of applying the CPF optimization to FLDA is similar to the LDA case. For
this, we need a filtered version of RNR, which reports non-redundant nodes and kernel
information per each filtered window. It is a direct application of filtering to RNR.

Definition 5 (FRNR). Filtered RNR (FRNR) is a combination of general filtering
(Algorithm 1) and RNR (Subsection 5.2). It takes as input the window size and a set of
traces, and it outputs a list of triplets (filter position, indexes of non-redundant nodes in
the window that has been filtered, kernel of the redundant window).

Proposition 3. FRNR can be computed in time NWω for N nodes and window W.

We are now ready to describe the CPF-FLDA procedure. We assume that all trace sets
are processed through RNR first so that simple linear redundancies are excluded from the
output of FRNR (but the filter nodes are chosen from the complete list of nodes, as in the
compatibility remark from Subsection 5.2). We apply FRNR to the random trace set and
focus on the filtered-non-redundant nodes. Note that we only need to store information
about windows containing redundant nodes. In the next step, for each selection group,
we apply FRNR to the corresponding restricted set of traces and now record the kernel
information. This information describes filter positions coupled with linear combinations
of nodes that are constant on the current selection group. Finally, we apply this kernel
(together with filtering) to the random set of traces and apply exact matching/LDA to the
resulting vectors, targeting selection vectors from the current group. Note that, due to
filtering, the size of the produced columns would vary in some range. Therefore, it is not
convenient to write down the resulting vectors in a trace file; we apply the desired testing
method to computed vectors on the fly. The procedure is summarized in Algorithm 5.

Complexity The cost of the CPF-FLDA phase 1 (locating points of interest) is equal
to g + 1 times the cost of FRNR, which is O(Wω) per window of size W and g selection
vector groups (however, compared to CPF-LDA, the FLDA is forced to use sliding window
step 1). The cost of phase 2 (matching selection functions) again depends on the number of
points of interest and is equal to O(|Ki|W) for matching selection vectors group Ki per one
point of interest, using the exact matching method. The total complexity of CPF-FLDA
can thus be estimated by O((N)Wωg + KWτ(N)) for a window of size W , N -node traces,
selection vectors K =

⋃
i Ki, and τ(N) points of interest. In our experiments, we observed

values of τ on the magnitude of 0.1 − 0.3% per group (as a fraction of the original number
of nodes in the circuit; the total number of filtered positions to be considered by plain
FLDA is bigger by a factor W). An example breakdown of an application of CPF-LDA
and CPF-FLDA is described in Table 5.

6.3 Combining CPF with other attacks
The CPF technique can be combined with other white-box attacks, directly or with some
additional work, achieving its main goal: reducing the cost of considering a large number
of selection vectors.

CPF-HDDA is a natural extension of CPF-LDA. However, it is not directly clear how
to implement the preprocessing step, which should exclude higher-degree redundancies of

Alex Charlès and Aleksei Udovenko 19

Algorithm 5 Chosen-plaintext-filtered FLDA (CPF-FLDA)
Inputs:

• Groups [(P1, S1), . . . , (Pg, Sg)], Pi a set of plaintexts and Si a set of selection functions
constant on Pi

• FLDA parameters (window)
Output: Selection vectors corresponding to candidate key guesses, if any

1: T$ ← a set of traces on random plaintexts
2: I$ ← pairs (filter position, list of non-redundant vectors in the window) from FRNR(T$)
3: Note: sufficient to store pairs only for windows with redundancies
4: for i ∈ {1, . . . , g} do
5: Ti ← traces on plaintexts from Pi

6: Ri ← pairs (filter position, window kernel) from FRNR(Ti |I$), where FRNR is applied to
the traces Ti restricted to nodes from I$ depending on the filter position

7: for (f, k) ∈ Ri do
8: Filter traces T$ at position f and apply the kernel matrix k to the window
9: Apply exact matching/LDA to the result, using selection functions from Si

10: end for
11: end for
Remark: In FRNR, filter nodes should be iterated over the original trace (including linearly
redundant nodes), while window nodes should be selected only from non-redundant ones (to
reduce time and to separate targets for CPF-LDA and CPF-FLDA).

Table 5: Evolution of the number of nodes and time costs for steps of CPF-LDA and
CPF-FLDA, on the example of 5-round AES implementation protected by SEL2,5 from
wboxkit / CHES 2022 white-box tutorial, targeting all 216 selection vectors per byte. The
RNR window size is set to 250 and the FRNR window size is set to 100. CPF-FLDA
successfully recovers the selected key bytes. Standard FLDA with all the selection vectors
requires more than 33 hours for the same result (1 key byte recovery).

Step Time #nodes Perc.

Initial circuit 1300k 100%
Transpose and RNR on random traces 2.3min↰

Redundant nodes 717k 55%↰

Non-redundant nodes 584k 45%↰

Transpose and RNR on group traces (1/16 groups) 2.3min↰

Redundant nodes 52k 4%
|

↰

CPF-LDA (1/16 groups) 2min↰

Non-redundant nodes 532k 41%↰

FRNR on random traces 36min↰

Non-redundant (filter position, node) pairs 42M 99%↰

FRNR on group traces (1/16 groups) 33min↰

Redundant filter positions 3009 0.23%↰

CPF-FLDA (1/16 groups) 5 min

20 White-box filtering attacks breaking SEL masking scheme

the random trace set from higher-degree redundancies of the group trace sets. This does
not prevent the application but may return a larger amount of points of interest.

CPF-(HO)DCA performs correlation of node vectors / their combinations with a
constant selection vector inside each group. This only requires to compute the weight of
the vector inside the chosen trace set. Afterward, the located points of interest can be
fully checked for correlation against respective selection vectors.

CPF-WBLPN specializes the LPN problem into the low-weight codeword problem
when the target selection function is constantly zero. This renders the basic PooledGauss
algorithm [EKM17, CU23] invalid since the selected square submatrix has to be invertible
for the algorithm to work but the target zero vector implies non-full rank. This can be
solved by applying low-weight-codeword formulations of LPN algorithms (for example,
[CC98]), or by only considering selection functions with value 1.

7 Higher-Order Filtered Attacks
We show in Subsection 4.1 that we can nullify one of the monomials of the selection
function using filtering. The higher-order filtering version of an attack follows the same
idea, but we would like to filter O node vectors at once, e.g. having indexes where these O
vectors are all equal to zero. Therefore, given a window of W elements, we will go through
all the

(W
≤O

)
the combinations of ≤ O vectors, and filter them at the same time before

performing the attack A which is depicted in Algorithm 6.

Algorithm 6 Higher-Order filtering with an attack A (HOF-A)
Inputs:

• A window containing W node vectors
• A list containing the selection vectors
• An attack A to apply after filtering the nodes
• An order O <W of filtering

Output: Selection vectors corresponding to candidate key guesses, if any
1: for each order 1 ≤ o < O do
2: for each combination c of o vectors in the window do
3: Filter the trace indexes where all the vectors of c are equal to zero
4: Apply the attack A on this subset of traces (for the window and the selection vectors)
5: end for
6: end for

Theorem 3. Given a trace-based attack with time complexity O(CW) for a window of size
W, the higher-order filtered version of this attack can be performed with time complexity
O(WOCW).

Proof. Filtering the node vectors has a negligible cost compared to the attack. However,
we are repeating this attack

(W
≤O

)
times on a window where O elements have been removed.

Therefore, if the attack A has a complexity CW , we conclude that its higher-order filtered
version (HOF-A) has time complexity O(

(W
≤O

)
CW) = O(WOCW), using Proposition 1.

Theorem 4. Given a trace-based attack on a window of size W that has trace complexity
O(CW), performing the higher-order filtered version of this attack has trace complexity
O(2OCW).

Proof. In the higher-order filtering, we filter at most O vectors at once
(W

O
)

times, which
multiplies the number of indexes ∈ {0, 1} that we need to filter. With the law of large
numbers, the ratio of zeroes of the vectors will converge towards one-half. Therefore, to
filter O vectors at once has a trace complexity of 2O. With a window size big enough,

Alex Charlès and Aleksei Udovenko 21

the minimum amount of filtered zeroes among the
(W

O
)

of O-filtering will also converge
towards 2O.

Filtering and correlation-based attacks Correlation-based attacks have two main
limits: the number of linear shares, and the noise rate of a masking scheme[CU23] close to
one-half. For the former, as explained in Subsection 3.1, it is impossible to correlate one
node vector to one selection vector if there are linear shares (c.f. Subsection 3.3). For the
latter, the more the noise is close to one-half, the more traces you need to distinguish the
correlation of a correct node vector with selection vectors to random node vectors.

Filtering can help in both of these cases as HOFO can nullify up to O linear shares, or
O non-linear monomials (or a mix of the two). By reducing the number of linear shares, we,
therefore, need a lower degree version of HODCA since its order must match the number
of linear shares of the attacked implementation (e.g. for ℓ linear shares, HOFO-HODCAo

can break it if O + o ≥ ℓ). Similarly, by nullifying non-linear monomials of the decoding
function, we can reduce the noise and therefore reduce the number of required traces to
perform HODCA, which directly impacts its time complexity. Similarly, WBLPN could
benefit greatly from filtering, as [CU23] shows that reducing the noise rate drastically
improves its time complexity.

Filtering and LDA-based attacks The degree d of HDDA should match the
highest degree of the non-linear monomials of the decoding function of a masking scheme.
To reduce it by one, we need to filter every monomial of maximum degree. This was
especially effective against the SEL masking scheme as its decoding function only has one
monomial of maximum degree. We can also observe that the time complexity of performing
HOFO (O(WO)) is better than HDDAd’s (O(Wdω + |K|Wd), c.f. Subsection 3.3), as well
as for their trace complexities. Therefore, it is worth performing filtering while there are
few highest-degree monomials in the decoding function.

Possible countermeasure As explained in Section 3, the ISW masking scheme
is easily broken by LDA, BU by DCA, and now SEL by FLDA (c.f. Section 4). As of
now, the only solution remaining to force the usage of slow attacks is to combine masking
schemes, e.g. by applying one to an implementation and then applying a second one to
the result. If we apply the ISWℓ masking scheme with ℓ linear shares and thereafter the
SEL1,d masking scheme with one linear share and a monomial of degree d, we will obtain
the following decoding polynomial (c.f. Definition 1):

P = (x1,1⊕x1,2·x1,3 · · · x1,d+1)⊕(x2,1⊕x2,2·x2,3 · · · x2,d+1)⊕· · ·⊕(xℓ,1⊕xℓ,2·xℓ,3 · · · xℓ,d+1)

This combined masking scheme has a theoretical degree d, which would force HDDA
to be degree d while having ℓ linear shares, which would oblige HODCA to be order ℓ.
Moreover, using Matsui’s Pilling up Lemma [Mat94], the non-linear part of SEL1,d◦ISWℓ

has a noise rate τ = 1
2

(
1 −

(
1 − 1

2d−1

)ℓ
)

, which may prevent WBLPN and slow down
HODCA. Lastly, there exist ℓ independent monomials of maximum degree, which forces
Higher-Order Filtered LDA to be of order ℓ.

However, we do not have proof of the security of the combination of two (or more)
masking schemes, thus it is difficult to affirm that combining masking schemes results in a
secured implementation. Another big open problem is even defining gadgets for the SEL1,d

scheme for d ≥ 4. Thus, our work emphasizes the crucial importance of future research on
these problems.

8 Conclusion
In this paper, we introduced a new filtering methodology that, when coupled with the
Linear Decoding Analysis attack (FLDA), breaks the SEL masking scheme with any

22 White-box filtering attacks breaking SEL masking scheme

parameters in quartic time per window; which is a major improvement to the previous
approaches that were exponential-time in the parameters of SEL. In practice, FLDA is the
fastest attack against the SEL masking scheme, which we further improved with multiple
optimizations such as redundant node removal (RNR), the underlying linear algebra of
LDA, and chosen-plaintext filtering (CPF). These techniques allow for the significantly
reduced time needed to assess white-box solutions.

This raises the need for new countermeasures preventing existing attacks and their new
possible filtered versions. One way to achieve it would be to directly compose the cubic
SEL- (or the quadratic BU-) with ISW-masking, though it is more expensive and there
is no proof of security of composed masking schemes in the current literature. Another
alternative is the dummy shuffling, which imposes a strong structure on the implementation
and is susceptible to fault attacks.

Acknowledgments We would like to thank the anonymous reviewers and the
shepherd for their useful comments and suggestions which greatly enhanced the paper’s
clarity. This work was supported by the Luxembourg National Research Fund’s (FNR)
and the German Research Foundation’s (DFG) joint project APLICA (C19/IS/13641232).

References
[ABMT18] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff.

On the ineffectiveness of internal encodings - revisiting the DCA attack on
white-box cryptography. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18, volume 10892 of LNCS, pages 103–120. Springer, Heidelberg, July
2018. doi:10.1007/978-3-319-93387-0_6. 1, 14

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential
computation analysis: Hiding your white-box designs is not enough. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 215–236. Springer, Heidelberg, August 2016. doi:10.1007/
978-3-662-53140-2_11. 1, 4, 5

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang. Higher-
order DCA against standard side-channel countermeasures. In Ilia Polian and
Marc Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages 118–
141. Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-16350-1_8.
2, 3, 6, 10, 11

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for
white-box designs. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 373–402. Springer,
Heidelberg, December 2018. doi:10.1007/978-3-030-03329-3_13. 1, 2, 3,
4, 6, 10, 11, 13

[BU21] Alex Biryukov and Aleksei Udovenko. Dummy shuffling against algebraic
attacks in white-box implementations. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of
LNCS, pages 219–248. Springer, Heidelberg, October 2021. doi:10.1007/
978-3-030-77886-6_8. 2, 13, 14

[CC98] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998. doi:10.1109/18.651067. 20

https://doi.org/10.1007/978-3-319-93387-0_6
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1109/18.651067

Alex Charlès and Aleksei Udovenko 23

[CEJv02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A white-box DES implementation for DRM applications. In Digital Rights
Management Workshop, volume 2696 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2002. doi:10.1007/978-3-540-44993-5_1. 1, 5

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003. doi:10.1007/3-540-36492-7_17. 1, 5

[CU23] Alex Charlès and Aleksei Udovenko. LPN-based attacks in the white-
box setting. IACR TCHES, 2023(4):318–343, 2023. https://tches.iacr.
org/index.php/TCHES/article/view/11168. doi:10.46586/tches.v2023.
i4.318-343. 2, 3, 5, 7, 10, 20, 21

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja
Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282
of LNCS, pages 247–264. Springer, Heidelberg, August 2014. doi:10.1007/
978-3-662-43414-7_13. 1

[DR98] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. AES submission.
See also http://csrc.nist.gov/archive/aes/rijndael/, 1998. 4

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Information Security and Cryptography. Springer-Verlag
Berlin Heidelberg, 2002. doi:10.1007/978-3-662-04722-4. 4

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402
of LNCS, pages 486–514. Springer, Heidelberg, August 2017. doi:10.1007/
978-3-319-63715-0_17. 20

[GPRW20] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How
to reveal the secrets of an obscure white-box implementation. Jour-
nal of Cryptographic Engineering, 10(1):49–66, April 2020. doi:10.1007/
s13389-019-00207-5. 2, 3, 5, 6, 11

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating state-of-the-art
white-box countermeasures. IACR TCHES, 2020(3):454–482, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8597. doi:10.13154/
tches.v2020.i3.454-482. 4, 6, 9, 15

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.
doi:10.1007/978-3-540-45146-4_27. 2, 5, 10, 13

[Kar11] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In Kyung-
Hyune Rhee and DaeHun Nyang, editors, Information Security and Cryptology
- ICISC 2010, pages 278–291, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg. doi:10.1007/978-3-642-24209-0_19. 4, 14

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–
397. Springer, Heidelberg, August 1999. doi:10.1007/3-540-48405-1_25.
5

https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://tches.iacr.org/index.php/TCHES/article/view/11168
https://tches.iacr.org/index.php/TCHES/article/view/11168
https://doi.org/10.46586/tches.v2023.i4.318-343
https://doi.org/10.46586/tches.v2023.i4.318-343
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
http://csrc.nist.gov/archive/aes/rijndael/
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/s13389-019-00207-5
https://tches.iacr.org/index.php/TCHES/article/view/8597
https://tches.iacr.org/index.php/TCHES/article/view/8597
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/3-540-48405-1_25

24 White-box filtering attacks breaking SEL masking scheme

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer,
Heidelberg, May 1994. doi:10.1007/3-540-48285-7_33. 21

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR TCHES, 2019(2):225–255, 2019. https://tches.iacr.org/index.php/
TCHES/article/view/7391. doi:10.13154/tches.v2019.i2.225-255. 1

[Sag23] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 10.2), 2023. https://www.sagemath.org. 13

[SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box
masking scheme resisting computational and algebraic attacks. IACR
TCHES, 2021(2):61–105, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8788. doi:10.46586/tches.v2021.i2.61-105. 2, 6, 10, 13

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug 1969. doi:10.1007/BF02165411. 3

[TGCX23] Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie. Higher-order DCA
attacks on white-box implementations with masking and shuffling countermea-
sures. IACR TCHES, 2023(1):369–400, 2023. doi:10.46586/tches.v2023.
i1.369-400. 4, 6, 9, 15

[TGLZ23] Yufeng Tang, Zheng Gong, Bin Li, and Liangju Zhao. Revisiting the computa-
tion analysis against internal encodings in white-box implementations. IACR
TCHES, 2023(4):493–522, 2023. doi:10.46586/tches.v2023.i4.493-522.
14

https://doi.org/10.1007/3-540-48285-7_33
https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/7391
https://doi.org/10.13154/tches.v2019.i2.225-255
https://www.sagemath.org
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://doi.org/10.46586/tches.v2021.i2.61-105
https://doi.org/10.1007/BF02165411
https://doi.org/10.46586/tches.v2023.i1.369-400
https://doi.org/10.46586/tches.v2023.i1.369-400
https://doi.org/10.46586/tches.v2023.i4.493-522

	Introduction
	Preliminaries
	Notations
	Traces, Node Vectors and Sliding Window
	Selection Functions and Selection Vectors
	Masking Schemes, Shares and Decoding Function

	Previous Works
	DCA Attack and ISW Masking Scheme
	LDA Attack and BU Masking Scheme
	SEL Masking Scheme and HDDA, HODCA and WBLPN Attacks

	Filtered Linear Decoding Analysis
	The Filtering Methodology
	Filtering Linear Decoding Analysis against SEL masking scheme

	Optimizations of linear algebra-based algorithms
	Optimization of LDA
	Redundant Nodes Removal (RNR)

	Chosen-Plaintext Filtering (CPF)
	Chosen-plaintext-filtered LDA
	Chosen-plaintext-filtered FLDA
	Combining CPF with other attacks

	Higher-Order Filtered Attacks
	Conclusion

