
A Plug-and-Play Long-Range Defense System for Proof-of-Stake

Blockchains

Lucien K. L. Ng1, Panagiotis Chatzigiannis2, Duc V. Le3, Mohsen Minaei4, Ranjit
Kumaresan5, and Mahdi Zamani6

1luciengkl@gatech.edu Georgia Institute of Technology
2pchatzig@visa.edu Visa Research
3duc.le@visa.edu Visa Research

4mominaei@visa.edu Visa Research
5rakumare@visa.edu Visa Research
6mzamani@visa.edu Visa Research

Abstract

In recent years, many blockchain systems have progressively transitioned to proof-of-stake (PoS) con-
sensus algorithms. These algorithms are not only more energy efficient than proof-of-work but are also
well-studied and widely accepted within the community. However, PoS systems are susceptible to a
particularly powerful “long-range” attack, where an adversary can corrupt the validator set retroactively
and present forked versions of the blockchain. These versions would still be acceptable to clients, thereby
creating the potential for double-spending. Several methods and research efforts have proposed counter-
measures against such attacks. Still, they often necessitate modifications to the underlying blockchain,
introduce heavy assumptions such as centralized entities, or prove inefficient for securely bootstrapping
light clients.

In this work, we propose a method of defending against these attacks with the aid of external servers
running our protocol. Our method does not require any soft or hard-forks on the underlying blockchain
and operates under reasonable assumptions, specifically the requirement of at least one honest server.

Central to our approach is a new primitive called “Insertable Proof of Sequential Work” (InPoSW).
Traditional PoSW ensures that a server performs computational tasks that cannot be parallelized and
require a minimum execution time, effectively timestamping the input data. InPoSW additionally allows
the prover to “insert” new data into an ongoing InPoSW instance. This primitive can be of independent
interest for other timestamp applications. Compared to näıvely adopting prior PoSW schemes for In-
PoSW, our construction achieves >22× storage reduction on the server side and >17900× communication
cost reduction for each verification.
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1 Introduction

Blockchain-based systems provide a high degree of decentralization on distributed trustless ledgers, which
have major applications in digital currencies and other financial systems. The original Proof-of-Work (PoW)
consensus protocol was part of Bitcoin [26], the first permissionless blockchain, where the parties verifying
the validity of the blocks added to the chain (called “miners” or “validators”), had to spend substantial
computational power. This was part of a permissionless consensus protocol, with the incentive being mon-
etary rewards. This requirement eventually led to expensive specialized hardware, and very high energy
consumption just to reach a consensus, making the system highly inefficient. To resolve these issues, an
alternative, more energy-efficient consensus protocol, Proof-of-Stake (PoS) was proposed. In a PoS system,
validators invest in the blockchain’s native tokens, rather than in specialized hardware to participate in the
blockchain’s validation process. Validators in a PoS system are selected to create new blocks based on their
wealth, or stake, in the system. Furthermore, to discourage validators from any type of malicious behavior,
the PoS protocols typically include a mechanism where the validator’s stake is forfeited in case such behavior
is detected.

Long-Range Attacks. Despite their popularity in recent years, PoS blockchains are susceptible to a
particularly powerful attack called long-range attack [10, 9, 23]. This type of attack considers a malicious
actor who controls the private keys of validators in the past but no longer have any stake in the system. For
instance, an attacker might acquire these keys from exited validators. These validators no longer participate
in the consensus process and therefore, cannot be penalized for malicious behavior. Then, assuming the
attacker has collected enough voting power at some point in the past using those keys, they can sign a
competing block history, which would still be acceptable to the blockchain verifiers. As verifiers would not
be able to distinguish the “real” blockchain history from the “fabricated” one, a fork would be created. This
fork provides the possibility for the attacker to “double-spend” the amounts they owned before that fork.
This can lead to financial losses for the parties that have transacted with the attacker, for example, those
who exchanged tokens for physical goods or services.

Possibility of Long-Range Attacks. For popular PoS blockchains with high market capitalization,
launching long-range attacks targeting these blockchains requires compromising a large set of validators with
high monetary cost and thus is unlikely. However, it does not exclude the possibility of posterior corruption
in the future when the blockchain’s total value drops. At that period, the past validators might become
more allured to selling their old keys to long-range attackers for higher monetary rewards (instead of hiding
their keys for the blockchain’s reputation and the safety of their assets on the chain). The attacks will
become profitable when the blockchain’s value bounces back. For similar reasons, PoS blockchains with less
popularity or in their infancy might also be more susceptible to long-range attacks because they might have
a smaller set of validators, and their coin values are usually more fluctuated.

Checkpoints. To prevent such attacks with devastating consequences, “checkpoints” are typically used
in proof-of-stake blockchains. Checkpoints are essentially block header information published periodically
on public bulletin boards, block explorers, or other websites. They serve as a reference for validators to
discourage such attacks. For instance, Ethereum’s Finality Gadgets [3, 14] require a vote of at least 2/3 of
validators on a checkpoint to validate it. However, the checkpointing solution is still problematic, as newly
onboarded clients need to trust those websites publishing the checkpoints. This introduces a significant
degree of centralization in the system, which contradicts the decentralization principles of blockchain. It also
creates single points of failure that are susceptible to adversarial corruption.

Existing Impossibility Result. With the checkpointing solution being imperfect, Lewis-Pye and Rough-
garden [23] proved that it is impossible to prevent long-range attacks in proof-of-stake consensus without
relying on time-dependent cryptographic primitives such as Verifiable Delay Functions (VDFs) or ephemeral
keys. More formally, such time-dependent cryptographic primitives can be modeled as oracles that either do
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not provide an output immediately (e.g., VDFs) or change their output at different times (e.g., key-evolving
cryptography).

Shortcoming of Key-Rotation. A näıve solution to long-range attacks is key rotation. Using key-
evolving cryptographic primitives, the validators can delete their old keys and update their keys to new
ones. With the old keys no longer available, an adversary would not be able to compromise the system.
However, this solution suffers from two significant drawbacks: First, it requires that the validators adhere to
a new protocol (i.e., a hard-fork). Second, it assumes that validators will delete their old keys, while their
incentive would be to keep them and sell these to an attacker for profit after exiting the system.

Our Contributions. We propose a framework that provides defenses against long-range attacks with the
following advantages:

• No need for soft or hard-forks. Our framework can be adopted on deployed blockchain systems to
defend against long-range attacks, without requiring changes to the existing consensus protocol.

• Reasonable assumptions. Instead of trusting a few centralized servers that broadcast the history of a
blockchain, our protocol works as long as one of the servers that the client connects to is honest.

• Light-client friendly. A client only needs to receive a short proof of size logarithmic to the length of
the blockchain’s history and verify it with logarithmic computation complexity. Therefore, it provides
light clients such as resource-constrained devices or web browsers a way to detect long-range attacks
in PoS blockchains.

As a core component of our system, we propose a new primitive called Insertable Proof-of-Sequential-
Work (InPoSW), which is an extension of Proof-of-Sequential-Work (PoSW). It offers asymptotic and concrete
efficiency improvements over prior approaches for timestamping data arriving at different times.

Overview. The participating parties in our system are the following: a) a client without any knowledge
about the blockchain’s history and current state, and b) an arbitrary number of servers, independent of
the existing PoS blockchain validators, with the goal to help defend against long-range attacks. The only
requirement is that at least one of these servers is honest.

For each epoch in a PoS blockchain, finalized blocks about the blockchain’s history are periodically
emitted. Upon receiving a finalized block, a server time-stamps it by importing a digest of the block into
an auxiliary sequence generated by an InPoSW algorithm. Timestamping is crucial for defending against
long-range attacks because, in such an attack, the attacker can produce another “finalized” block for an
early epoch, which would be otherwise valid if the client only inspected the validity of the transactions and
PoS consensus results. The timestamp service via InPoSW now comes to rescue by helping the client identify
the correct block, which will be the older block produced.

For ease of exposition, we assume there are only 2 servers, where one of them is a long-range attacker
and the other is honest. When the client wants to obtain (the commitment of) the current state of the
blockchain, it requests the latest state of the chain from both servers. In case of an inconsistency, the client
runs a bisection game [29] with the conflicting servers to identify the invalid chains. Still, a long-range
attacker can “defeat” the bisection game by providing a valid chain, and the client will see two valid yet
different chains differing at an epoch. To resolve this issue, the client asks both servers for the timestamps
of that epoch and accepts the chain with blocks that have the older timestamp.

In a PoS blockchain augmented with our proposed framework, it is much harder for an attacker to
convince clients to follow a chain generated through a long-range attack. To be able to beat the honest
server, the attacker has to prepare the timestamp roughly by the time the blockchain emits an authentic
checkpoint; otherwise, the attacker cannot produce a timestamp older than the honest server’s and fails to
convince the client. Without our defense, an attacker was able to launch an attack by collecting enough
old keys in the future, hence the name “long-range”. Now, our defense confines the attacker’s window of
opportunity to a very short period just when the authentic checkpoint is emitted.
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Consistency with Prior Impossibility Result. Note that our protocol is consistent with Lewis-Pye
and Roughgarden’s impossibility result [23], which dictates that any PoS blockchain without time-dependent
cryptographic primitives is vulnerable to long-range attacks, as we use VDF to construct an InPoSW as a
time-dependent external resource.

Agnostic to PoS Selection Schemes. Our framework works with any PoS blockchain that produces
finalized checkpoints, and is independent of the underlying PoS block selection schemes, e.g., Ethereum’s
GHOST [14] and Ouroboros [21], providing a modular design and high flexibility for deployment.

Efficient InPoSW. As the servers need to timestamp checkpoints produced at different times, they should
embed each checkpoint into PoSW instances, which is usually implemented by VDFs or graph-labeling
(a.k.a. hash-based) PoSW. VDFs only allow “inserting” data at the beginning of evaluation; thus, running a
standalone VDF instance for each data is necessary, implying the servers’ computation and storage overhead
is linear to the number of inserted data. Graph-labeling PoSW, on the other hand, naturally supports
inserting new data during its evaluation. Yet, it requires significantly more storage, computation, and
communication on both the servers and the users, mostly due to its sampling techniques when producing
proofs. Therefore, we propose a new construction that combines VDFs with the principle of skip-list.
Compared to running a VDF, our construction achieves overhead which is logarithmic (instead of linear) to
the number of inserted data. Meanwhile, we do not require expensive graph-labeling sampling techniques
which greatly reduces the overhead on both sides. Other than defending against long-range attacks, InPoSW
may be useful for other applications, e.g., providing cost-efficient large-scale timestamping service.

Incentive of Servers. Our method does not have a direct monetary incentive to the servers. However,
by strengthening the security of the blockchain, the servers can earn the blockchain a better reputation and
protect their assets on the blockchain, indirectly benefiting them. Their incentives are also analogous to
those stemming from other volunteer services such as blockchain explorers.

2 Preliminaries

Basic Notations. We use X = (x1, . . . , xm) to denote an array, X[i] to denote the ith item in X, i.e., xi,
X||y to denote a new array constructed by X appended by y. We use [m] to denote an array (1, 2, . . . ,m),
∅ to denote an empty array or set, and (xi)i∈I to denote an array consisting of xi with i in an index array
I. When the context is clear, e.g., when I = [m] is indices of all the blocks in a blockchain of length m, we
may omit I in the subscript. When we say time, we refer to the real-time (a.k.a. wall-clock time). Elapsed
time is the period of time since a prover started timestamping.

Definition 1 (Blockchain) A blockchain BC produced w.r.t. a blockchain scheme Π is an array BC =
((B1, st1,FP1), . . . , (Bm, stm,FPm)) where Bi is a block containing transactions, sti the state after executing
all the transactions in (Bj)j∈[i] according to Π’s rules, and FPi is a finality proof for Bi and sti.

Ethereum, for example, has a finality gadget that produces checkpoints signed by 2/3 of validators [3, 14].
A signed checkpoint for an epoch is the finality proof for all the blocks in that epoch. Because of Ethereum’s
security assumptions and the slashing mechanism, no adversary can produce another 2/3-validator-signed
checkpoint for the same epoch, at least within a few weeks. Yet, because of long-range posterior key
corruption, an attacker might be able to produce another block in the future. We formalize this concept in
the following definition.

Definition 2 (T -Uncorrupted-Finality) A blockchain scheme Π with T -uncorrupted-finality is for any
blockchain BC = ((Bi, sti,FPi))i∈[m] produced w.r.t. Π, Π guarantees that once FPm is produced, then within
time T , no adversary under the security assumption of Π can produce another chain BC ′ = ((B′

i, st
′
i,FP

′
i))i∈[m]

such that st′m ̸= stm, but an honest user would accept BC ′ over BC even seeing both chains.
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This definition captures the security requirement that once a blockchain finalizes a block, then within a
relatively short period of time, there should be no other valid fork of the same (or greater) length. Most
blockchains fit into this definition (with various parameter T ) because finality is their core requirement.

Bootstrap Protocol is needed by clients who either connect to the blockchain for the first time or have
been disconnected from it for an extended period of time. During bootstrapping, a client connects to multiple
servers to obtain succinct commitments of the latest state of the blockchain. As long as one of the servers is
honest, the client should correctly decide which commitment to accept, in case there is a conflicting output
from the servers. While existing bootstrapping protocols work well without the presence of a long-range
attacker, our goal is to augment those protocols to defend against such attacks as well. We describe the
formal definition in Appendix B

Definition 3 (Augmented Security against Long-Range Attack) A blockchain scheme ΠT with T -uncorrupted
finality coupled with a bootstrap protocol Bootstrapβ achieves T ′-extended-finality, where T ′ = T ′(T, β),
against long-range posterior corruption attack, if a new user of ΠT running Bootstrapβ can be considered
joining a new blockchain scheme that attains T ′-uncorrupted-finality under the security assumption of ΠT

and Bootstrapβ.

This definition captures the idea that, without modifying the blockchain scheme (i.e., no hard-fork), and
by having new users execute the bootstrap protocol with the aid of some servers, launching a long-range attack
will be significantly harder, as the bootstrap protocol offers an extended period for uncorrupted finality. We
denote by β an “amplifying” parameter stating how much additional security it provides. Looking ahead,
our methodology provides multiplicative amplification; namely, T ′ = T · β. Sections 5.1 and 6 show the
theoretic and estimated concrete parameters of our augmented uncorrupted finality.

Bisection Games. Our construction for the bootstrap protocol relies on bisection games to exclude invalid
commitments of the blockchain. For a blockchain with m blocks, Tas et al. [29] instantiate bisection games
with O(logm) communication rounds and bandwidthbetween the prover and the verifier and with O(logm)
local computations. Yet, as bisection games are not critical to our conceptual contribution, we postpone its
formal introduction to Appendix C.

Definition 4 (InPoSW) An insertable PoSW scheme InPoSW = (Gen,Eval,Verify) is a tuple of algorithms
performing the following:

• Gen(1λ,∆T )→ pp, where ∆T is the time interval between two insertions. (The rest of the algorithms
implicitly take the pp as input).

• Eval(stN , aux) → stN+1 takes an old state stN as input and generates the new state stN+1. Eval also
takes an optional input aux. If aux is not ⊥ (null), Eval inserts the auxiliary data aux into the state, and
timestamps this data since then. Each evaluation should timestamp that ∆T unit of time has elapsed.

• Verify(x, k, stN ) → 1/0 verifies with the aid of P ’s state stN that x was inserted k∆T ago into a
predecessor of stN .

The algorithm should satisfy the following properties:

• Completeness. If x is inserted to a predecessor of stN and has been time-stamped for k · ∆T time
elapsed via Eval, then Verify(x, k, stN ) run with a honest prover and a honest verifier outputs 1.

• Soundness (or sequentiality1). With negligible probability, a PPT adversary A can produce stN that
makes Verify(x, k, stN ) output 1 but A has less than (1−O(1))·k·∆T sequential execution time since
the insertion of x.

1Soundness guarantees an adversary cannot have significantly less sequential execution time than an honest prover to
construct a valid proof.
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Figure 1: The server’s workflow for defending long-range attacks. When the blockchain emits a finalized
checkpoint, the server inserts the new checkpoint and the finality proof into its ever-going InPoSW evaluation
for timestamping.

• Succinctness. The communication and computation cost of Verify imposed to the verifier should be
O(poly(λ, log∆T , logN))

Traditional PoSW [8, 15, 24] can be considered as InPoSW with a large ∆T and the prover can only run
Eval once. InPoSW crucially requires “insertability” on top of PoSW. It allows the prover to timestamp many
pieces of data received at different times: after every ∆T , the prover has an opportunity to “insert” newly
arrived data. Additionally, InPoSW supports recurrent invocation of Eval to support ever-going timestamp-
ing. Incremental PoSW [18, 6] also supports ever-going evaluation (but still no insertability). Yet, it cannot
support soundness and succinctness simultaneously, as we will see in Section 4.1.

Verifiable Delay Function can be considered as a special case of (Traditional) PoSW that additionally
requires the output to be unique, unpredictable, and provable. VDFs can be based on various hardness
assumptions, e.g., lattice-based schemes [22]. Yet, most practical VDF schemes are based on repeated

squaring [12, 30, 27] in unknown order groups, where computing x2t mod N for a (e.g., RSA) modulus N
and a known x is believed to be most efficiently computed by t sequential iterative squaring. Wesolowski [30]
proposes a practical VDF scheme believed to offer (1−O(1))·t-sequentiality, where a PPT adversary can only
compute faster than the honest party by a small fraction. More impressively, its output and proof are merely
two group elements (the former can be shortened to two integers), and the verification is efficiently done by
a few exponentiation and multiplication. Yet, the prover needs to store up to

√
t group elements during the

evaluation. The formal definition is postponed to Appendix B

3 Protocol Description

Timestamping Blockchains. We first describe how a server timestamps a PoS blockchain, without chang-
ing the underlying consensus protocol. We assume the blockchain produces a checkpoint for each epoch via
a finality gadget, e.g., by letting the last block be signed by the 2/3-majority of the validators Periodically,
the blockchain emits a new checkpoint. The server inserts it into the ongoing InPoSW sequence by taking its
hash as the auxiliary input to the next state, as shown in Figure 1. Aggregating all checkpoints into a single
InPoSW is critical for cost-efficiency because the server only needs to allocate resources to that instance.

Client’s Synchronization. When a (light) client wants to synchronize with the blockchain, it connects to
multiple servers to acquire the commitment of the most recent blockchain’s state. With an honest server and a
malicious server, the client will see two different commitments. Similar to many light client protocols [29, 13],
the client runs a bisection game with both servers to identify the latest common prefix of both chains and
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Figure 2: Client’s Workflow. In case two servers provide contradicting blockchains, the light client runs a
bisection game with the servers to ensure both blockchains are valid (otherwise, accept the only valid one).
Then, the servers provide the proofs of InPoSW of their first differing checkpoints. The client accepts the
blockchain with a valid proof and more amount of work.

then identifies which chain has the older timestamp via InPoSW.Verify, as shown in Figure 2. The client
accepts the chain provided by the server who provides a valid proof with more sequential work.

4 Construction of InPoSW

4.1 Challenges of Constructing InPoSW

Building InPoSW from Graph-Labeling PoSW at first glance seems to be a good blueprint as it can achieve
insertability with slight modification. Most graph-labeling PoSW schemes [16, 25, 18, 7, 6] follows the same
paradigm: The prover hashes the input into a label, then it repeatedly hashes the last label and (the hashes
of) some of the previous labels to compute the latest label, forming a directed acyclic graph where an edge
indicates input to the hash, and the nodes are hash labels. For succinct verification, the hashing graph is
formed in a way that enables efficient opening of the labels.

During the sequential evaluation of the PoSW graph, one can easily insert new data into the new node in
the hashing graph by taking it as additional input for the hash. SNACK [7] formalizes the modification for
any PoSW scheme. However, known graph-labeling schemes cannot achieve both soundness and succinctness,
even for SNACK and the state-of-the-art [6]. During verification, these schemes rely on sampling the PoSW
hash graph’s nodes, and the prover sends to the verifier the openings of these sampled nodes to show their
labels’ consistency. The number of samples grows linearly with the total evaluation time, and therefore, the
total proof size.

To show that the prover has done at least α ∈ [0, 1] fraction of the total number of sequential hashing N
with overwhelming probability, i.e., a cheating prover can at most skip (1 − α) ·N sequential hashing, the
prover needs to provide τ samples of in its proof such that s ≥ ατ + other terms, requiring τ ≥ log s/ logα.
The critical issue is that to prove the skipped evaluation time is bounded by a value ∆T (e.g., the insertion
interval or a small portion of a blockchain’s uncorrupted period), α has to grow with N . To illustrate, we
denote by δH the computation time needed for a work (hashing). If we fix α for all N , the time difference
between an honest prover’s and a cheating one’s work (1 − α)N∆T increases as N increases, allowing the
adversary to skip more evaluation time.

To bound an adversary’s skipped time by ∆T , we need to maintain an inequality (1− α)δHN ≤ ∆T by
adjusting α, requiring α ≥ 1−∆T /(δHN). The needed number of sample τ for N is linear to N :

τ ≥ log s/ logα ≥ log s/ log (1− ∆T

δHN
)
(∗)
≈ log s/

−∆T

δHN
= NδH ·

− log s

∆T

Note that
(∗)
≈ holds because log(1− x) ≈ −x for x ≈ 0, and ∆T ≪ δHN when we want to prove for some

meaningful amount of work N . Finally, because the proof size is τ times the size of the opening for each
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Figure 3: The overview of our InPoSW construction. Each horizontal arrow indicates a VDF evaluation
VDF.Eval(sti, vci) with evaluation time proportional to the arrow’s length. The solid ones are finished
evaluations, while the dotted ones are still ongoing. Each evaluation takes as input a vector commitment
vc boxed on the left. Each vc merges all the data that has an arrow pointing to it, including the output of
previous VDF.Eval(·) and the inserted data xi. To verify, say, x1 is inserted at time ∆T , the prover sends
all the openings of vcs and VDF proofs on the shortest path from x1 to the latest finished evaluation, which
are in green.

challenge, it is linear to the elapsed time NδH , violating the poly-logarithmic complexity requirement for
verification.

It might be tempting to reduce verification cost by proving a constant fraction of work, instead of proving
the prover can at most skip a constant amount of work. In this case, the protocol sticks to a constant α and
needs not to increase the number of samples (τ) in the proof. However, such a proof system will allow an
adversary to eventually outrun the honest server to forge a proof, regardless of how other components of the
system improve, e.g., even if a perfect VDF is invented.

Verifiable Delay Function is helpful for building InPoSW because most VDF schemes do not resort to
sampling techniques like graph-labeling PoSW. Thus, the prover does not need to provide linearly larger
proofs as the number of evaluations grows. Nevertheless, VDFs alone do not provide insertability because
the prover has to commit to the data in the beginning and perform sequential computation based on this
dataalone, and no new data can be inserted once the evaluation has started. Whenever the prover inserts new
data, it needs to start a new standaloneVDF instance. On top of the cost of running each VDF, the prover’s
storage and computation grows by another factor linear to the number of inserted data, while a (basic) VDF
can only prove sequentiality for a pre-defined period T . On the other hand, our definition ofInPoSW requires
the prover to perform a continuous evaluation and provide proof based on the accumulated evaluations.

4.2 Construction overview

At a high level, our construction relies on the concurrent evaluation of VDFs in a skiplist style, as illustrated
in Figure 3. For a prover P that has been running for time N ·∆T , it will be evaluating log2 N VDFs, each
of which is set up to prove time linear to ∆T times 20, 21, . . . , 2⌈log2 N⌉, respectively. Data can be inserted
as part of a new VDF’s input when P starts evaluating a new one. To prove to a verifier that data xt was
inserted at time t ·∆T , P sends the proofs of VDFs evaluated between time t ·∆T and now. Because of the
skiplist structure, P sends at most O(logN) proofs by omitting the proofs of VDFs whose evaluation period
is entirely overlapped by another VDF’s evaluation.

Prover Evaluation. As illustrated in Figure 3, P arranges the VDFs evaluation in a skiplist style. First
P starts evaluating a VDF for time O(∆T · 20). When this VDF’s evaluation is done, P takes this VDF’s
output (and any inserted data) as input to the next VDF for the same period of time O(∆T ·20). Meanwhile,
P starts evaluating another VDF with the same input but for time O(∆T · 21). In general, when P finishes
evaluating a VDF for time O(∆T ·2i) for some integer i, P starts evaluating another VDF for time O(∆T ·2i)
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• Parameters: P decided a bound time resolution ∆T at Setup

• Input:

– P : previous state stN and an auxiliary data aux (which can be null ⊥)

• Output:

– P obtains a new state stN+1 after evaluation with time ∆T

• Procedure:

– // AUX, VC, and VDF are defined as arrays

– P retrieves (N,AUX,VC,VDF) = stN

– P stores the auxiliary data into AUX[N ]← H(aux)

– P gathers the outputs of just finished VDFs for a vector commitment

outs = (VDF [i][N/2i].output){i∈N | 2i divides N and 2i<N}

vc = VecCom.Commit(outs||aux)

// is are the position of ‘1’ bit 1 in N.

– P stores VC[N ]← vc (and implicitly the auxiliary data for openings)

– For each i that 2i divides N :

∗ P prepares pp = VDF.Setup(λVDF,∆T · 2i) for proving runtime ∆T · 2i.
∗ P start evaluating VDF.Eval(pp, vc) and store this running process into VDF [i][N/2i]. Once the evaluation is

done, P can retrieve the output and proof from this array.

– P stores and outputs stN+1 = (N + 1,AUX,VC,VDF)

• Computation (counting from the beginning):

– P performs O(N∆T ) sequential and O(N∆T log(N∆T )) total computation.

• Storage: P stores O(N · (∆T · λVDF · logN + poly(λVDF, logN∆T )) bits, storing:

– Results of O(N) computed VDFs, each with poly(λVDF, logN∆T ) bits.

– Commitments and their auxiliary data with O(λhash ·N · logN) bits.

– Data for O(logN) ongoing VDFs, each of which takes O(∆T ·N · λVDF) bits.

Figure 4: InPoSW.Eval where P internally proceeds into the next state for timestamping in our skiplist-style
construction and possibly inserts a new data.

and, if no VDF for time O(∆T · 2i+1) is evaluating, P also starts evaluating one. The newly started VDFs
take as input the vector commitment of the outputs of all VDFs finished at that time. We describe the full
protocol in Figure 4.

Verification. Now, we illustrate how P with state stN can prove to a verifier V that data x is inserted
at time t · ∆T , and that sequential computation has been performing until now N · ∆T . As illustrated in
Figure 5, P retrieves from stN the VDF proofs on the shortest path from node t to node N . In addition, P
needs to prove these proofs are “connected” in a way that on the path, a VDF takes input from its previous
VDF’s output (except the very first VDF). P can reveal all the inputs to each VDF, which includes the
output of its previous VDF. To slightly reduce communication cost, P can replace concatenation by a vector
commitment, e.g., a Merkle root, when merging inputs for a VDF. Now, the opening for a VDF’s input is
O(log log T ) instead of O(log T ).

Setup. Let P set pp = (λ,∆T ) and st0 = (0,AUX = ∅,VC = ∅,VDF = ∅).

Theorem 1 Our construction of InPoSW shown in Figure 4 and 5 is complete, sound and succinct.

We provide a formal proof for the above theorem in the Appendix.
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• Parameters: P decided a bound time resolution ∆T at Setup.

• Input:

– P and V input k and data x on which they agree to verify that x was inserted k ·∆T ago

– P inputs its current state stN

• Output:

– V outputs 0/1 indicating if it accepts P ’s proof

• Procedure:

– P retrieves (N,AUX,VC,VDF) = stN

– P sends N and t = N − k to V

– P and V compute z = 2⌊log2 t⌋ and a running index j = N

– While j > t:

∗ P and V find the largest i ∈ Z such that

· if j > z, 2i divides j; // i is the position of the least significant non-zero bit in j.

· otherwise, j − 2i ≥ t // i is the position of the most significant non-zero bit in j − t.

∗ P retrieves and send to V

· VDF’s pub. param., output, and proof (pp, y, π) = VDF [i][j/2i−1]
· (vector-committed) input vc = VC[j].Com

∗ V verifies them by computing b = VDF.Verify(pp, vc, y, π).

∗ If j ̸= N ,

· P sends to V πvc = VecCom.Open(vc′, y, i)

· V verifies bvc = VecCom.Verify(vc′, y, i, πvc) and updates b = b ∧ bvc

∗ If b = 0, V outputs 0 and aborts.

∗ P and V updates j = j − 2i and marks vc′ = vc

– P sends to V πvc = VecCom.Open(vc′, H(x), last index)

– V computes b = VecCom.Verify(vc′, H(x), last index, πvc)

– V outputs b

• Computation: P and V perform

– V performs O(logN · (poly(λVDF, logN∆T + λH · log logN))) comp. due to

∗ ≤ 2 log2 N VDFs verification, each with poly(λVDF, logN∆T ) comp.

∗ ≤ 2 log2 N VecCom verification, each with O(λH · log logN) comp.

– P performs O(logN · log logN · λH) computation due to

∗ retrieving ≤ 2 log2 N VDF proofs

∗ constructing ≤ 2 log2 N VecCom openings, each with O(log logN · λH) comp.

• communication:

– P sends to V O(logN(poly(λVDF, logN∆T ) + λH · log logN)) bits

∗ ≤ 2 log2 N VDFs proof tuples, each with poly(λVDF, logN∆T ) bits.

∗ ≤ 2 log2 N commitments and openings, each with O(λH · log logN) bits.

Figure 5: InPoSW.Verify. Note that this protocol is non-interactive because the verifier does not send data
to the prover.

5 Construction of Bootstrap against Long-Range Attacks

Our construction BootBiPoSW = (Setup,Prepare,Verify) in Figure 8 (in the Appendix) shows how an honest
prover prepares the timestamps running the bootstrap protocol in the future. Setup and Prepare are solely
invoked by a prover when synchronizing with the blockchain and updating its state. Verify is invoked by a
verifier V and a group of provers to help the verifier get a vector commitment of the authentic and updated
blockchain.
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PoSW Scheme Prover Storage Proof Size
GL-PoSW

(SNACKs [7])
O(N ·∆T · λH) O(N · log2(N ·∆T ) · λH)

Our InPoSW
w/ Blackbox VDF

O(N · (∆T · λVDF · logN + poly(λVDF, logN∆T )) O(logN · (poly(λVDF, logN∆T ) + λH · log logN))

Our InPoSW
w/ Efficient VDF [30]

O(logN · (N · (λVDF + λH) +
√
N ·∆T · λVDF)) O(logN · (λVDF + λH · log logN))

Table 1: Asymptotic Cost of Insertable PoSW. Verification computation complexity is roughly similar to the
proof size complexity. N is the number of evaluations. ∆T is the time interval between insertion λH and
λVDF are the security parameters of the hash function and VDF, respectively.

Cost Analysis. The worst-case cost of our bootstrap protocol is the sum of the cost of the bisection game
and the insertable PoSW. Our bootstrap protocol is succinct as both sub-protocols are succinct, meaning that
the overall verification cost is poly-logarithmic to the number of blocks (and elapsed time) and polynomial
to the security parameters. As our insertable PoSW is non-interactive, the bootstrap protocol can be made
non-interactive if the bisection game (for the blockchain scheme)is also non-interactive.

Server Maintenance. Our construction also allows easy maintenance. When the server wants to shut
down old hardware and upgrade to new ones, it can wait until a time slot whose index is a power-of-2, i.e.,
the time is ∆T · 2i. In this case, the server only needs to transfer a (succinct) vector commitment to the
new equipment, minimizing the downtime due to data transfer. The proofs of prior VDF evaluation can
be transferred later as they do not affect the ongoing evaluation. On the other hand, due to its sampling
technique, graph-labeling PoSW requires the server to transfer the entire graph to the new hardware, which
might be equivalent to GB or TB of data and lead to disruption.

5.1 Security

Theorem 2 For a blockchain scheme Π with TΠ-uncorrupted-finality, by coupling with the bootstrap protocol
BootBiPoSW using VDF with (1−ϵ)·T -sequentiality, Π achieves TΠ·(1/ϵ)-extended-finality against long-range
attacks.

We provide a formal proof for the above theorem in the Appendix. Looking ahead, our scheme guarantees
that if there exists a VDF where adversaries can at best evaluate the VDF, for example, 1% faster, we can
augment the security of a T -uncorrupted-finality blockchain to achieve 100 · T -augmented-security.

6 Performance Estimation with Concrete Parameters

Here, we estimate the storage and communication costs of insertable PoSW schemes which will dictate the
operational costs imposed on the server (the prover) and the verification costs of the client (the verifier).
Our estimation shows that verification with our InPoSW construction with a properly chosen VDF scheme
requires only sending KB-size proofs, i.e., light-client friendly.

Asymptotic Comparison. Table 1 shows the asymptotic prover storage cost and proof size. In contrast
to SNACKs’ proof size which is linear to the number of evaluations N , our InPoSW’s proof size is logarithmic
to N , achieving succinctness. We show the asymptotic cost of our InPoSW by plugging a constant-proof-size
VDF scheme [30]. With this VDF scheme, storing a tuple of VDF proof and output merely costs λVDF+2λH

bits. During each VDF’s evaluation, the prover needs to memorize ≈
√
N ·∆T · λVDF bits.

Computation complexity for Verification is roughly similar to the proof size. For SNACKs, the
verifier needs to compute O(N · log2 N) hashes. The most expensive computation of our adopted VDF [30] is

12
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Figure 6: Prover Storage of SNACKs [7] and our InPoSW with Concrete Parameters. Our construction
achieves >22× storage reduction assuming the PoSW instances have been running for 10 years.
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Figure 7: The Worst-Case Proof Size of SNACKs [7] and our InPoSW with Concrete Parameters. Our
construction achieves >17900× proof size reduction assuming the PoSW instances have been running for 10
years.
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computing O(λH) exponentiation in a O(λVDF)-bit group during each verification. Although computational
cost is dominated by O(logN · λH) exponentiation, it is logarithmic to N and thus more efficient than
SNACK verificationand is light-client friendly.

Concrete Parameters. Ethereum serves as our reference for estimation. For our scheme, we set ∆T ≈ 3.6
minutes, which is the estimated time for the computation of 233 squares2 and allows timestamping of every
new checkpoint upon its arrival. Ethereum emits finality checkpoints around every 6 minutes. Also, since
the estimated time for ≥ 33% validators to withdraw and become unstaked is at least 189 days [2, 1], an
adversary cannot corrupt the finality of Ethereum within 189 days. While we can increase ∆T to achieve
a smaller proof size, we keep it to 3.6 minutes for generality purposeswith other PoS blockchains.We pick
λVDF = 2048 as suggested in [30], and we also set λH = 256 as in most blockchain systems. For SNACKs,
we adopt RandomX [5] as the hash function for PoSW, which is ASIC-resistant and optimized for general-
purpose CPUs. RandomX also has a much lower hash rate3 than other commonly used hash functions, e.g.,
SHA256. It is to SNACKs’ advantage because it implies less prover storage and smaller proofs. We also set
the soundness parameter as ϵ = 2−40 for SNACKs’ verification.

Augmented Security. As explained above, a posterior long-range attack is only possible 189 days after
a signed checkpoint is produced. With a VDF where an adversary can at best evaluate 5% faster4, our
protocol can extend the uncorrupted period to 189 · 20 days, equivalent to >10 years. For a VDF where
an adversary might compute 1% faster, the extended uncorrupted period is >51 years. Therefore, even in
the worst case, our protocol instantiated over the current state of Ethereum would provide protection for a
sufficiently long period in the past.

Concrete Computation Cost. When our schemes have been running for 10 years, our construction
needs ≈ 20 parallel VDF instances. Thus, the prover might need ≈ 20 processors for evaluation, which
is well within the reach of GPUs or FPGA. For the verifier, the verification is mostly computing group
exponentiation and multiplication over ≈ 20 sets of group elements, which can be efficiently done with a
mobile device in a few seconds.

Concrete Prover Storage. Figure 6 plots the estimated prover storage of SNACKs and our InPoSW
with [30] using the parameters above. When the system has been running for 10 years, SNACKs requires
storing ≈ 12TB, while our scheme requires ≈ 546GB, achieving an order of magnitude (> 22×)reduction.

Concrete Proof Size. Figure 7 shows the estimated worst-case proof size of SNACKs and our InPoSW
with [30]. When the system has been running for 10 years, sending a SNACKs proof takes ≈ 337MB, while
our scheme’s proof takes only ≈ 20KB, which is >17969× reduction in communication cost.

7 Related Works

Non-Time-Dependent Protection. Winkle [10] requires changes to the consensus protocol, the delegate
mechanism (to resolve slow converge issue) incurs a degree of centralization, and no external resource is
involved to circumvent the impossibility result.

2This estimation bases on the best figures in VDF Alliance’s VDF contest for optimizing hardware for repeated squaring.
3The best-known CPU chip can generate ≈ 1300 sequential hashes per second [4]
4VDF Alliance Competition shows that the performance of the winner’s implementation and the first runner-up’s differ by

<4.5%.
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Timestamps as Protection. Solana blockchain timestamps all its blocks and names it consensus protocol
as proof-of-history. It produces a new block by hashing the previous block together with the new transactions,
with the shortest possible interval between hashes like PoSW. However, it requires changes to the underlying
PoS consensus protocol. Also, it is not light-client friendly because to verify a blockchain that has gone
through T units of time, the client needs to verify an O(

√
T )-size proof with T total computation. In

contrast, our framework does not need to change the PoS consensus protocol, and the client only verifies
O(polylog T )-size proof with O(polylog T ) total computation.

Both Babylon [28] and Pikachu [11] timestamp checkpoints by putting them on an external proof-of-
work blockchain such as Bitcoin. However, its security inherently relies on the security of Bitcoin’s PoW
consensus. More importantly, this solution conflicts with the vision that most PoS blockchains will become
the mainstream cryptocurrencies, eventually replacing the energy-inefficient Bitcoin. If such a vision becomes
a reality, the benefits of compromising Bitcoin for long-range attacks may outweigh the cost of launching a
51% attack on Bitcoin’s proof-of-work.

PoSAT [17] requires validators to evaluate VDFs and use the results to determine who will be the leader
in producing new blocks. The VDF evaluations guarantee the elapsed time of the blockchain, making an
adversary hard to fork another valid chain within substantially less time. However, this scheme requires
changes to the consensus protocols.

Finally, Ethereum’s finality gadgets [3], which require checkpoint signing from validators, is an imperfect
solution, as they do not provide sufficient security against posterior corruption.

Multi-Resource Blockchain Protocol. Minotaur [20] integrates two distinct types of resources to con-
struct a multi-resource blockchain. At first glance, the protocol appears resilient to long-range attacks as
it harnesses both external (computational) and internal (stake) resources [9], with the computational as-
pect seemingly offering defense against such attacks. Nonetheless, a long-range attack remains feasible if an
adversary can posteriorly corrupt a large portion of the stake and a small portion of the mining power.

PoSW in Blockchains. SNACK [7] leverages PoSW for succinct non-interactive proofs for PoW light
clients. However, SNACK differs from our framework in many aspects. First, SNACK does not timestamp
the blocks. Instead, it only proposes a generic framework to transform any graph-based PoSW sub-sampling
technique to PoW light-client proof construction. Second, as SNACK does not timestamp the blockchain, it
does not provide any security guarantee against long-range attacks. Third, our framework’s PoSW is more
efficient for aggregated timestamping.

Insertable PoSW and VDFs. Our performance estimation also shows that our scheme outperforms
SNACKs by orders of magnitude. Other graph-labeling PoSW [16, 25, 18, 6] are subsumed by SNACKs in
terms of succinctness of verification. Incremental PoSW [6, 18] reduces prover storage to polylogarithmic to
the elapsed time but their proof size is very large as they require an excessive number of samples. Vanilla
VDFs [12, 27, 27] do not support insertion and ever-going timestamps. Continuous VDF [19] supports
ever-going timestamps but is not insertable. Also, it relies on specific hardness assumptions, while our
construction uses VDFs as a black box regardless of their assumptions. Using dedicated VDFs for each
timestamped data may achieve minimal proof size but will impose unbearable computational and storage
costs on the server because these costs grow linearly with the number of inserted data times elapsed time.

Table 2 summarizes our comparisons with other long-range defense systems and related works.

8 Conclusion

To defend against long-range attacks in PoS blockchains, we propose Cumulus, which utilizes the cost-
efficient timestamp service powered by our new primitive InPoSW. Our cost estimation shows that our
InPoSW can reduce the prover’s storage and the verification cost by orders of magnitude. More importantly,
our defense system can be plugged into any PoS blockchain system for light-client without changing its
underlying consensus mechanism.
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Table 2: Comparison of our framework with Related Works
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Timestamps as a Protection ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

No Hard Fork to Adopt ✗ ✗ N/A ✓ ✗ ✗ ✗ ✓

No Centralized Server ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Light-Client Friendly ✓ ✗ ✓ ✓ ✗ ✓ N/A ✓

Energy-efficient ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
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A Formal Proofs

In this section, we provide the formal proofs of our Theorems outlined in Sections 4 and 5.
Proof of Theorem 1. We provide the following Lemmas each proving completeness, soundness and

succinctness respectively.

Lemma 1 The honest verifier V outputs 0 (reject) only if a VDF.Verify or a VecCom.Verify outputs 0. It
suffices to show that none of them will output 0 if the prover P is honest.

• No VDF.Verify outputs 0. In InPoSW.Verify, P sends the proof and output of VDF [i][j/2i − 1] (for
some i such that t < 2i ≤ j and 2i divides j) to V to verify. We can rewrite the index j/2i − 1 to
(j − 2i)/2i.

From Figure 4, we know that InPoSW.Eval starts executing VDF [i][N ′/2i] at N ′ · ∆T (for some N ′)
and this VDF should be finished after 2i ·∆T , i.e., at N

′ ·∆T + 2i ·∆T = (N ′ + 2i) ·∆T .

Plugging in N ′ = j − 2i and combining it with the fact that j ≤ N , we know InPoSW.Eval is finished
with a proof by time N ·∆T . Thus, P can provide V with a valid proof to pass VDF.Verify.

• No VecCom.Verify outputs 0. There are two locations where V invokes VecCom.Verify. We will inspect
them separately.

For a VecCom.Verify within the while loop, V checks if P can open the prior vc′ (retrieved from VC[j]),
which is the input to a VDF starting time j ·∆T , to y. Note that y is the output of the just verified
VDF stored in VDF [i][j/2i − 1], supposed to finish at (j/2i − 1) ·∆T + 2i∆T = j ·∆T . According to
Figure 4, P has committed y to VC[j]. Thus, P can successfully open vc′ to y.

For the final VecCom.Verify in Figure 5 , V checks if P can open vc′ = VC[j] to H(x). Because the
while loop ends when j = t, and because x was inserted at (N − k) ·∆T = t ·∆T as aux = H(x), P can
successfully open it. □

Lemma 2 Here, we call the adversary by P because it takes the role of the prover, despite of acting mali-
ciously, and interacts with V . At a very high level, we show that P must have executed VDFs with (1−ϵ)·k·∆T

sequential execution time and that x was inserted to the VDF at the beginning.
First, P must have sequentially executed the VDFs checked in the while loop, and for any two adjacent

VDFs verified in the loop, the VDF started later has to wait for the previously started VDF to finish. When
P starts evaluating the later VDF, say, at time j · ∆T · (1 − ϵ), this VDF takes at input vc = VC[j]. As
P has to open vc to y at a fixed position i, P has to compute y by finishing the previous VDF [i][j/2i − 1];
otherwise, P either breaks the sequentiality of VDF to “predict” y or breaks the binding properties to open vc
to y at a fixed position.

Secondly, the total sequential execution of these VDFs (which are checked in the while loop) is k·∆T ·(1−ϵ).
Every time j decreases by 2i (for some i ∈ N), V verifies if the checked VDF has sequential execution time
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2i ·∆T · (1− ϵ); otherwise, it breaks the sequentiality of the VDF set up with VDF.Setup(λVDF,∆T · 2i). As j
decreases from N to t = N − k, the total sequential execution time is (N − (N − k)) ·∆T = k ·∆T · (1− ϵ).

Finally, P must have inserted x into the input commitment of the first VDF in the above VDF sequence,
i.e., VC[t], which started at k ·∆T ago. If x was not inserted but P can open the inputted vector commitment
to H(x), P breaks the binding property of VecCom or the collision resistance of the hash function.

As a PPT adversary can only break the sequentiality of VDF, the binding properties of VecCom, and
the collision resistance of the hash function with negligible probability, P can only break the soundness with
negligible probability. □

Lemma 3 The communication and computation cost counted in Figure 5 shows InPoSW.Verify imposes only
O(poly(λ, log T, logN∆T )) cost to the verifier. □

Proof of Theorem 2. We prove it by contradiction. Assume an adversary A who is under the
security assumption Π and can break the TΠ · (1/ϵ)-extended-finality security even if Π is coupled with
BootBiPoSW. Then, A will can also break T -uncorrupted-finality of Π: As A can break the TΠ · (1/ϵ)-
extended-finality security, then for a verifier V and an honest prover P with a blockchain BChonest and
prepared bootstrap state sthonest, A can produce some forks {BCi}i and bootstrap state {sti}i such that
after running BootBiPoSW.Verify, V obtains a commitment vc that is not committed to BChonest. There are
only two cases where BootBiPoSW.Verify outputs a wrong commitment.

• Case 1. BiGame outputs a commitment set of the blockchain but none of the commitment inside is
committed to BChonest. By the completeness of BiGame, it only happens with negligible probability.

• Case 2. A commitment of BChonest is in BiGame’s commitment set but not in the final commitment
set of BootBiPoSW. It happens only if A provides a BCA such that BCA[prefix+ 1] should be chosen
over BChonest[prefix+1] and also provided a InPoSW timestamp proof for BCA[prefix+1] showing that
TA · ∆T ≥ Thonest · ∆T = Treal, where Treal is the elapsed time from the checkpoint is produced until
the verification. However, due to TΠ-uncorrupted-finality of Π, A has to start producing the VDF
output and proof TΠ later than the honest server. Due to the (1 − ϵ) · t-sequentiality of the VDF, A
cannot acquire the output and proof in time if TΠ+(1− ϵ) ·TA ·∆T ≤ Thonest ·∆T except for negligible
probability. It implies TΠ + (1 − ϵ) · Treal ≤ Treal (by replacing TA ·∆T and Thonest ·∆T by Treal), and
thus TΠ · (1/ϵ) ≤ Treal. Hence, after the checkpoint being produced, A has to wait until TΠ · (1/ϵ) of
time passes, which is our extended uncorrupted finality. Or, A breaks the soundness of InPoSW, which
happens with only negligible probability.

B Formal Definition

Definition 5 (Bootstrap Protocol) A bootstrap protocol for some blockchain scheme Π is a protocol
Bootstrap where n provers P1, . . . , Pn interact with a verifier V . Each prover Pi has knowledge of a chain
BCi and a commitment vci of BCi. After the interaction, the verifier outputs a index of the prover i and
accepts this prover’s commitment vci. Assuming at least one of the provers is honest,

• Completeness: With overwhelming probability, if a prover Pi is honest, and the protocol execution
outputs a commitment vck, then vci and vck should open to the same blockchain BC.

• Soundness: With overwhelming probability, if there is a chain BCj chosen over BCi w.r.t. Π, then
i should not be chosen as the output index.

Definition 6 (Verifiable Delay Function) A VDF = (Setup,Eval,Verify) is a triple of algorithms as fol-
lows:

• Setup(λ, t) → pp = (ek, vk) where λ is the security parameter, t is the desired puzzle difficulty that
specifies the elapsed time intended to prove, and ek and vk are the evaluation key and verification key,
respectively. (The rest of the algorithms implicitly take pp as input.)
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• Setup:

– Input: P inputs a security parameter λ.

– Output: V receives a state st1

– Procedure:

1. P stores λ and implicitly uses it in other procedures.

2. P uses λ and Π (the blockchain scheme) to decides ∆T

3. P invokes stInPoSW = InPoSW.Gen(λ,∆T )

4. P fetches the latest blockchain BC and compute Bs = (Bi)i

5. P computes vc = VecCom.Com(Bs) and st′InPoSW = InPoSW.Eval(st′InPoSW, vc)

6. P outputs st = (BC,VC = (vc), st′InPoSW)

• Prepare:

– Parameters: P has λ and ∆T .

– Input: P inputs its previous state stN

– Output: V receives the updated state stN+1

– Procedure:

1. P parses (BC,VC, st′InPoSW) = stN and fetches the latest blockchain BC′

2. If BC′ ̸= BC, P compares them, retrieves the new blocks Bs = (Bi)i and computes vc =
VecCom.Com(Bs); otherwise, x = ⊥

3. P computes st′InPoSW = InPoSW.Eval(st′InPoSW, vc)

4. P stores stN+1 = (BC′,VC||vc, st′PoSW )

• Verify:

– Parameters: All prover {Pi} and the verifier V agree on λ, ∆T , and also TΠ, the uncorrupted finality
of Π.

– Input:

∗ Each Pi inputs its state sti

∗ V inputs nothing

– Output: V outputs i and vc, which are the index of the prover and the vector commitment of a blockchain
that V accepts, respectively.

– Procedure:

1. Each Pi parses its sti to get BCi and sends to V its vci = VecCom(Bsi), where Bs = (Bj)j in BCi.

2. V checks if all {vci}i are the same. If so, outputs any i and vci and halt.

3. V gets (IBiGame, prefix) = BiGame(BC1, . . . , BCm) by interacting with all {Pi}i
4. If vci = vcj for all i, j ∈ IBiGame, V outputs (i, vci) by randomly choosing a i ∈ IBiGame otherwise,

proceeds to the next step.

5. For each i ∈ IBiGame, V asks Pi for the finality proof BCi[prefix+1].FinalPf at the first differing block.

6. Iterating through each i ∈ IBiGame, if V finds that for the current i:

∗ InPoSW.Verify(sti.stInPoSW, ti, vci)
?
= 1 and vci can be opened to Bi[prefix+ 1].B

∗ no other all other j ∈ IBiGame such that BCj [prefix+1] should be chosen over BCi[prefix+1] and

InPoSW.Verify(stj .stInPoSW, tj , vcj)
?
= 1 and vcj can be opened to Bj [prefix + 1].B and tj∆T ≤

(ti + 1) ·∆T + TΠ.

then V outputs i and vci and halts.

Figure 8: Construction of our Bootstrap Protocol BootBiPoSW for augmenting a PoS blockchain scheme Π
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• Eval(x)→(y, π) takes an input x and produces an output y and a proof π.

• Verify(x, y, π) → 0/1 is a deterministic algorithm which takes an input x, output y and proof π and
outputs 1 or 0.

VDF should satisfy the following properties:

• Correctness. A VDF V is correct if for all λ, t parameters (ek, vk) ← Setup(λ, t), and all x ∈ X, if
(y, π)← Eval(ek, x) then Verify(x, y, π) = 1.

• Soundness. A VDF is sound if for all algorithms A that run in time O(poly(t, λ)),

Pr
[
Verify(x, y, π) = 1

∣∣ pp = (ek, vk)←R Setup(λ, t)
]
≤ negl(λ)

• σ(t)-Sequentiality. For a function σ(t) and given a randomly chosen x and pp ←R Setup(λ, t), no
adversary with poly(λ) processors can produce, in parallel time σ(t), an output yA such that yA = y
where (y, π) := Eval(pp, x) with non-negligible probability.

• Succinctness. Algorithm Verify must run in total time polynomial in log t and O(λ). Notice that
Verify is much faster than Eval.

C More Definitions

To be self-contained, we provides the definitions of vector commitments and bisection games. Yet, our
protocol only uses a subset of the functionalities of vector commitments, and Merkle Tree suffices for our
uses.

Definition 7 (Vector Commitment) VecCom consists of the following functionality.

• VecCom.Setup(1λ, q): Given the security parameter k and the size q of the committed vector (with
q = poly(k)), the key generation outputs some public parameters pp (which implicitly define the message
space M).

• VecCom.Com(m1, . . . ,mq) : On input a sequence of q messages m1, . . . ,mq ∈ M and the public pa-
rameters pp, the committing algorithm outputs a commitment string C and an auxiliary information
aux.

• VecCom.Open(m, i) : This algorithm is run by the committer to produce a proof πi that m is the i-th
committed message. We also implicitly let the prover to read its auxiliary data.

• VecCom.Verify(vc,m, i, πi): The verification algorithm accepts (i.e., it outputs 1) only if π is a valid
proof that C was created with a sequence m1, . . . ,mq such that m = mi.

They satisfies the following properties:

• Position Binding. A vector commitment satisfies position binding if for all i = 1, . . . , q and for every
PPT adversary A, the following probability (which is taken over all honestly generated parameters) is
at most negligible in λ:

Pr

[
VecCom.Verify(vc,m, i, π) = 1∧
VecCom.Verify(vc,m′, i, π′) = 1 ∧m ̸= m′

∣∣∣∣ (C,m,m′, i, π, π′)← A(pp)

]

• Succinctness: The computation cost of VecCom.Verify should be O(poly(logm,λ)). The size of a
vector commitment vc and the proof π for openings should be of O(poly(logm,λ)) size.
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Definition 8 A bisection game is a protocol BiGame that includes a number of provers P1, . . . , Pn providing
its chain BC1, . . . , BCm, respectively, and a verifier V . Running BiGame(BC1, . . . , BCm) with the provers,
the verifier receives an index set I and an block index prefix. Assuming at least one of the provers is honest,
and at least one of BC is a valid blockchain, BiGame satisfies the following properties:

• Completeness: With overwhelming probability, if all blocks and states in BCi are valid, then i ∈ I.
In addition, prefix is the maximum j such that a block Bj and state stj exists in all BCi for i ∈ I.

• Soundness: If BCi is not a valid chain, then i ̸∈ I.
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