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Abstract

Private Set Intersection (PSI) is a protocol where two parties with individually
held confidential sets want to jointly learn (or secret-share) the intersection of these
two sets and reveal nothing else to each other. In this paper, we introduce a natu-
ral extension of this notion to approximate matching. Specifically, given a distance
metric between elements, an approximate PSI (Approx-PSI) allows to run PSI where
“close” elements match. Assuming that elements are either “close” or sufficiently “far
apart”, we present an Approx-PSI protocol for Hamming distance that dramatically
improves the overall efficiency compared to all existing approximate-PSI solutions. In
particular, we achieve a near-linear Õ(n) communication complexity, an improvement
over the previously best-known Õ(n2). We also show Approx-PSI protocols for Edit
distance (also known as Levenstein distance), Euclidean distance and angular distance
by deploying results on low distortion embeddings to Hamming distance. The latter
two results further imply secure Approx-PSI for other metrics such as cosine similarity
metric. Our Approx-PSI for Hamming distance is up to 20x faster and communicating
30% less than best known protocols when (1) matching small binary vectors; or (2)
matching large threshold; or (3) matching large input sets. We demonstrate that the
protocol can be used to match similar images through spread spectrum of the images.
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1 Introduction

Secure computation protocols enable two or more parties to engage in distributed computa-
tion while preserving the confidentiality of their inputs. Among these, private set intersection
(PSI) has recently garnered significant research attention as a specialized secure computa-
tion protocol. PSI allows parties to compute the intersection, the common elements between
their input sets without exposing other unrelated data. Consequently, at the end of the
protocol, the parties are only aware of the shared elements, ensuring confidentiality. This
characteristic has made PSI indispensable in various applications ranging from private con-
tact discovery and business data matching to efficient data management and contact tracing.
We refer the reader to recent literature [IKN+20, PRTY19, DPT20, CM20, MPR+20, RT21,
RS21, GPR+21] and references therein.

In numerous applications, identifying an exact overlap between both parties’ datasets
might be improbable or overly restrictive. Here, discovering approximate matches – elements
that share a “distance” under a specified threshold – becomes increasingly relevant. In the
rapidly evolving landscape of privacy-preserving data analysis, these secure protocols adept
at identifying such approximate matches are gaining traction, signifying their potential in
recognizing analogous elements spanning datasets. This can be useful in various applications,
such as:

• Biometric data: If two parties have databases of biometric data (like fingerprints or
facial features represented as vectors), they may want to find matches, or near matches
due to variations in sampling biometric data, without revealing the entirety of their
databases [Dau09, UCK+21].

• Genomic data: Parties might be interested in finding genomic sequences that are close
matches without revealing sensitive genomic data [MKHSO17, WHZ+15] as similarities
of such data are already useful in medical diagnoses or resulting features in biology.

• Security: Traditional methods of identifying malicious network traffic often rely on
exact signature matches or IP addresses [MPDC19] to pinpoint known security threats,
potentially missing out on novel or slightly altered malicious payloads. With near
match intersection, network security tools can detect and flag traffic patterns that
closely resemble known attack signatures, even if they are not an exact match, or cover
ranges of potentially malicious IP addresses [CSF+07, WACL10].

• Image data: In fields such as computer vision and image processing, parties may seek to
perform similar image matching without disclosing the entirety of their image datasets.
This is particularly relevant in applications where identifying similar images can aid in
tasks such as object recognition, content-based image retrieval, and image classification,
contributing to advancements in fields like autonomous vehicles, surveillance systems,
and medical imaging analysis.

Distance-Aware PSI. Recently, Chakraborti et al. [CFR23] introduced a variant of PSI,
called distance-aware PSI (DA-PSI). In this setting, two parties jointly compute a set of pairs
of elements, one from each of their individual datasets, that are within a specified threshold

2



based on a particular distance metric. More precisely, given input sets A,B ⊆ U for the
two parties, and a distance metric δ defined on U , the objective of DA-PSI is to securely
compute a set S = {(a, b) ∈ A×B : δ(a, b) ≤ d}, with d being a pre-defined threshold.

Nevertheless, a significant challenge associated with existing DA-PSI protocols is their
extensive communication complexity. This complexity limits their practicality, especially in
contexts demanding fast or nearly instantaneous feedback. In particular, the communication
and computation complexity of the DA-PSI protocol for the Hamming distance in [CFR23]
is O(n2), where n represents the size of sets A and B. Such scalability issues render these
protocols impractical for analyzing extensive data sets.

Structure-Aware PSI. Garimella et al. [GRS22] introduced another related PSI variant
called structure-aware PSI (sa-PSI). In this setting, the receiver’s set adheres to a specific
structure, for instance, a union of fixed-radius balls based on a particular distance metric.
The output is the same as the standard PSI for the receiver, but the efficiency (computation
and communication) is only influenced by the structure of the receiver’s set. In the case
of the union of balls, the efficiency would depends on the number of balls present in the
receiver’s set, rather than the total number of individual elements.

The sa-PSI concept is broad since the sender’s set structure can vary widely. Nonetheless,
a primary area of interest within sa-PSI centers around the previously mentioned case of a
union of disjoint balls with a fixed radius. Considering a distance metric δ and a ball radius
d, sa-PSI is similar to DA-PSI with distance threshold d. However, the distinctions lies in
their outputs: DA-PSI yields a set of pairs to both parties, when viewing in terminology
of sa-PSI, include both the sender’s elements and the centers of the receiver’s balls, while
sa-PSI only outputs to the party with structured set. When this result made known to the
other party, the centers are still concealed. Notably, in a semi-honest model, parties involved
in an sa-PSI protocol can subsequently exchange data to discern these pairs, suggesting that
sa-PSI implies DA-PSI under these conditions, but not the other way around. While the
sa-PSI protocol in [GRS23] is linear in the number of balls, their construction is specifically
for the ℓ∞ norm for integral vectors.

1.1 Approximate PSI

Here, we consider another setting of PSI where elements are from a metric space, i.e., a set U ,
equipped with a distance metric δ. Instead of computing the intersection or precise matches
of elements from each set, we consider approximate matches (with respect to δ), which are
pairs of elements that have distance at most d. When d = 0, this setting is equivalent to the
standard PSI. When d > 0 and the protocol output is the set of pairs of matches, the variant
is called DA-PSI by [CFR23]. Given that both input sets have size n, the upper bound
for matched pairs is n2. This creates challenges to avoid the quadratic communication as
in [CFR23].

To reduce the excessive communication costs, we introduce an additional constraint: for
any a ∈ A and b ∈ B, either δ(a, b) ≤ d or δ(a, b) ≥ td for some t ≥ 2. This allows for
clustering elements from A and B, that are within distance d of each other. Each cluster in
each input set is represented by only one element from that cluster. By only considering the
representations of the clusters, we further assume that elements a, a′ ∈ A satisfy δ(a, a′) ≥ td,
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and each element in A can match with at most one element in B and vice versa. Finally, one
party (or both) outputs which elements in their set near-match with elements in the other
party’s set. Our proposed PSI variant offers flexibility: it can output either one party’s
elements (as in sa-PSI), both parties’ own elements, or element pairs (as in DA-PSI). We
call this problem an approximate PSI (Approx-PSI), and t the gap distinguishing matches
from non-matches. The setting in the first variant is similar to sa-PSI for the structure of
the union of disjoint fixed-radius balls with center (t−1)d apart, with additional assumption
on non-structure side that elements must also be far apart.

Nevertheless, imposing such a restriction is difficult when honest parties are unaware of
the counterpart’s elements. Our approach assumes both input sets lie within a subset S ⊆ U ,
where every pair of elements in this subset is either near or far apart. This condition allows
functionality to simply check if input sets are subsets of S, and encapsulates the preceding
one for individual sets.

Such condition has various applications when the distance is generally of concern. For
instance, this set may contain a compilation of texts and their small-error-induced variants.
A single base text could have close relatives with just a handful of typographical mistakes,
while remaining entirely distinct from other base texts within the same set. Similarly, it
could be a set of ID numbers engineered with error-correcting properties or checksums. In
these sets, tiny changes can make elements look very similar to the original, even though
they’re different. This makes it important to have good ways to tell these small differences
apart from the big ones.

We note that when such condition does not hold across the input sets, our protocol
remains correct when elements within each set are clustered and only represented by elements
that are far apart. The false negatives only occurs for the omitted elements clustered around
representatives as the transitive property of being near no longer holds.

Our goal is to find an approximate PSI protocol with linear communication complexity in
n, the size of both input sets, improving the result directly implies by the DA-PSI of [CFR23].

Euclidean and angular distance. The Euclidean distance metric measures the straight-
line distance between two points in a multi-dimensional space and is especially useful for
capturing the geometric relationships among sets of continuous variables. Unlike other met-
rics that focus on discrete modifications or element-wise comparisons, the Euclidean distance
offers a holistic view of the positional relationship between entire vectors, making it suitable
for a wide range of applications that require assessing the similarity or dissimilarity between
multi-attribute entities.

Angular distance measures the angle between two vectors in a multi-dimensional space,
focusing on their directions rather than absolute position. This metric is useful for assess-
ing the orientation or alignment between vectors, making it ideal for applications like text
similarity in natural language processing or preference analysis in recommendation systems.
Unlike Euclidean distance, which measures linear spacing, angular distance evaluates how
parallel or divergent vectors are, highlighting relationships based on direction rather than
distance.

The integration of Euclidean and angular distance metrics into Approx-PSI protocols has
vast potential, particularly in fields requiring spatial or multi-dimensional analysis. In ma-
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chine learning and data science, for example, such protocols could be invaluable for securely
conducting k-means clustering or nearest neighbor searches across distributed datasets. In
financial analytics, Approx-PSI with Euclidean or angular distance can enhance fraud detec-
tion algorithms by identifying not just the occurrence of similar transactions across multiple
datasets but also the closeness of those transactions in a multi-dimensional feature space,
such as amount, location, and time. Likewise, in medical research, Approx-PSI could enable
disparate healthcare organizations to securely compare patient data, finding similarities in
symptoms, treatment responses, or other multi-dimensional health metrics, without com-
promising individual privacy. The ability to calculate the Euclidean distance between inter-
secting elements securely expands the utility of Approx-PSI beyond mere set intersection,
allowing for more nuanced, privacy-preserving analytics in multi-dimensional data environ-
ments.

Edit distance. Edit distance (specifically,Levenshtein distance) serves as a crucial tool
for assessing the similarity between two sequences, such as strings of text, genetic data,
or time-series numerical data. By accounting for the minimum number of single-character
edits—insertions, deletions, or substitutions—required to transform one sequence into the
other, edit distance metrics offer a fine-grained understanding of sequence similarity or dis-
parity. In disciplines ranging from computational biology and linguistics to data mining
and cybersecurity, the capability to efficiently measure or estimate edit distance forms the
backbone of numerous fundamental operations such as sequence alignment, clustering, and
anomaly detection [WHZ+15]. Hence, edit distance plays an indispensable role in quantita-
tive analysis across multiple fields.

When coupled with edit distance metrics, Approx-PSI opens up new avenues for secure,
privacy-preserving computations that require nuanced understandings of data similarity.
For example, in genomic research, Approx-PSI could enable two entities to securely identify
shared genetic markers and evaluate the minutiae of those markers’ sequences. Similarly, in
the area of natural language processing, Approx-PSI can facilitate secure collaborative filter-
ing or content recommendation by accounting for the edit distance between text strings. By
enabling the secure comparison of sequences without compromising the confidentiality of the
data, Approx-PSI protocols incorporating edit distance metrics stand to significantly advance
the state of secure, multi-party computations where sequence similarity are of concern.

1.2 Related Work

PSI for approximate or near-matches for Hamming distance has been studied in the con-
text of securely comparing biometric or fuzzy data [OPJM10, HEKM11, UCK+21]. Secure
Hamming distance comparison can be turned into DA-PSI or Approx-PSI protocols by com-
paring all n2 pairs of elements [OPJM10, HEKM11]. Uzun et al. [UCK+21] allows comparing
multiple elements at once using fully homomorphic encryption (FHE).

Chakraborti et al. [CFR23] formally defined and constructed the first DA-PSI for Ham-
ming distance that the communication and computation complexity do not depend on the
element size (ℓ). Thus, the resulting protocol is more efficient when d ≪ ℓ. However, their
protocol is quadratic in the number of elements. Additionally, they also constructed DA-PSI
for integers with their difference as distance with linear communication complexity.
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Table 1: Asymptotic communication of our protocols in comparison to existing works. The
protocol for the Euclidean distance assumes that all input vectors are within a ball of constant
radius. We assume log n < λ < ℓ to simplify some notations.

Metric Protocol Gap Communication

ℓ∞ [GRS23] O(1) O(nλ2ℓ+ λdℓ)

Hamming

[CFR23] 1 O(n2d2λ)

Ours

O(log n) O(nλℓ)
O(log n/ log log n) O(n(polylog n)λℓ)
O(log log n) n1+o(1)λℓ

t = O(1) O(n1+ 1
t−1λℓ)

Euclidean (ℓ2) Ours
O(log n) O(n(polylog n)λ2)

O(1) O(n1+ϵλ2)

Angular Ours
O(log n) O(n log2 nλ2)

O(1) O(n1+ϵλ2)

Edit Ours
2O(

√
log ℓ log log ℓ) log n O(nλ2ℓ2 log ℓ)

2O(
√
log ℓ log log ℓ) O(n1+ϵλ2ℓ2 log ℓ)

Garimella et al. [GRS22] defined and constructed the sa-PSI protocol for the case of
disjoint balls of u-bit integer vectors with ℓ∞ norm, and a more efficient one where centers
of the balls are far apart. The original protocols is secure against semi-honest adversaries,
and later improved in [GRS23] using derandomizable function secret sharing to be secure
against malicious adversaries.

1.3 Our Results

In this work, we present Approx-PSI protocols for three distance metrics: Hamming distance,
Euclidean distance (and the related cosine similarity) and edit distance. We summarize our
results in Table 1.

Hamming distance. Our main result is an Approx-PSI protocol for Hamming distance

for gap t ≥ 2 with Õ(n1+ 1
t−1 ) communication. For t = O(log n), the protocol has near linear

Õ(n) communication, and only gains poly-logarithmic or sub-linear multiplicative factor for
t = O( logn

log logn
) or O(log log n), respectively.

Our protocol draws inspiration from [CFR23], where they constructed a DA-PSI for the
Hamming distance. In their work, they introduced an efficient subprotocol that securely
compares the Hamming distance between two elements. Notably, the communication com-
plexity of this subprotocol depends solely on the threshold d and the security parameter, and
remains independent of the element size ℓ. Nevertheless, their DA-PSI protocol executes this
subprotocol across all n2 pairs to find all potential matches. Such an approach inevitably
results in quadratic communication and computation in the size of input sets. Circumvent-
ing this quadratic efficiency is inherently challenging in standard DA-PSI, given that match
count could go up to n2.

However, our Approx-PSI can be reduced to the case where elements of the same set
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Table 2: Number of calls to subprotocols in our Approx-PSI for Hamming distance.

Gap
Number of Calls

secret-shared PSI secret-shared
Hamming dis-
tance comparison
and vector multi-
plication

O(log n) O(log n+ λ) O(n(log n+ λ))

O(log log n) O(no(1)(log n+ λ)) n1+o(1)(log n+ λ)

t = O(1) O(n
1

t−1 (log n+ λ)) O(n1+ 1
t−1 (log n+ λ))

are far apart, capping the match count at a maximum of n. This offers a way to bypass
the exhaustive comparison of all n2 pairs. Our strategy incorporates an additional phase
to eliminate non-matching pairs. To achieve this, we adopt the random projection idea
from [KOR98]. First, both parties jointly sample a random subset of positions. Then, every
party calculates a set of element projections based on these agreed positions. Elements in
a matched pair are more likely to have identical projections, as opposed to elements that
are far apart. These projections then undergo an exact match evaluation, leveraging the
traditional PSI for security. Finally, the probability can be amplified by repeatedly and
independently sampling positions, and computing intersections of projections.

However, the outputs of intermediate steps of the aforementioned method disclose more
about the distance between elements in the input sets than what the intended Approx-PSI
outcome should reveal. Consequently, both the PSI subprotocol and the secure Hamming
distance comparison subprotocol must output secret shares of their respective results. While
there exist known PSI protocols that output secret shares, prominent among them being
circuit-based PSI like the protocol in [RS21], the secure Hamming distance comparison sub-
protocol deployed in [CFR23] is not suitable to be compiled to output secret shares. To
addressing this challenge, we either rely on generic garbled circuit technique, or substantially
modify the subprotocol using the techniques from [GS19, KMWF07]. Combining these sub-
protocols gives a Approx-PSI for Hamming distance. Our construction provides a reduction
from Approx-PSI to the standard PSI (with secret-shared output) using secret-shared Ham-
ming distance comparison test and other secret-shared operations with numbers shown in
Table 2.

Euclidean distance. As the Euclidean distance is one of the most used distance metrics,
there is a long line of work on embedding Euclidean distance or its related metrics such
as cosine distance and angular distance into the Hamming distance. The ideas follow from
the Johnson-Lindenstrauss lemma [JL84]. The recent line of work [PV14, OR15, HS20,
DS20, DM21] gives low distortion of balls or the unit sphere centered at the origin in RN

with Euclidean metric or angular metric into binary string with Hamming distance. We
construct the Approx-PSI using the similar method as the one with the edit distance.
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Cosine similarity and Angular distance. Since cosine similarity, cosine distance and
angular distance can be computed from the Euclidean distance, the Approx-PSI for Eu-
clidean distance naturally gives the Approx-PSI for these metrics as well. Many Johnson-
Lindenstrauss-styled embeddings are done directly for the angular distance [PV14, OR15].
We briefly discuss the Approx-PSI for the angular distance from these direct embeddings
as well. This implicitly give us a second way to reach the cosine similarity as it has tighter
connection to the angular distance.

Edit distance. Ostrovsky and Rabani [OR07] showed how to embed edit distance metric
in Hamming distance metric with bounded distortion. Such embedding could not be used to
construct standard DA-PSI as the distortion could turn a match into a non-match and vice
versa. However, the Approx-PSI tolerates some degree of distortion. Thus, we can embed
elements in Hamming distance metric, securely compute matches and look up the original
elements in the result.

Implementation and Application in Image Matching We optimize and implement
our Approx-PSI protocol in various parameter settings for Hamming distance and angular
distance. We also present Approx-PSI for similar image matching using a variant of dis-
crete cosine transform [CKLS97] that can match images that are resized, blurred or bright-
ness/contrast adjusted through the angular distance metric embedding. This application
demonstrates the adaptability of our Approx-PSI that can further be used to securely match
any objects with similar embedding.

2 High-Level Overview of our Approach

In this section, we provide an informal overview of our approximate PSI protocol, starting
from the protocol for Hamming distance. The basic idea of construction is inspired by the
DA-PSI for the same distance metric in [CFR23]. Their strategy is to securely comparing
the Hamming distance between two binary strings and applying this comparison for each
element pair across two input sets. However, this approach incurs quadratic communication
and computation complexity when both parties hold identically sized input sets.

In order to overcome this limitation, we consider three primary aspects:

Input Restriction: We limit the potential inputs to those that result in at most linear
number of matches. This effectively translates to scenarios where each element in one input
set corresponds to just one element in its counterpart. For meaningful enforcement of this
condition, we impose a structure for all elements in both input sets: every pair of elements
should be either near or far apart. Such a structure mirrors real-world scenarios where legit-
imate texts or numbers differ substantially, while their errors deviate only in few character
or digit counts. The parties then consolidate their elements, ensuring each cluster is repre-
sented just once within their input set. This streamlined input set, now with at most linear
number of matches, aligns with our goal for linear communication.
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Efficient Matching: Despite the linear match limit, the necessity of comparing every
possible pair still results in quadratic communication. Utilizing the technique in [KOR98],
we minimize the comparisons to a near-linear count. Here, each binary vector is projected
to a shorter vector based on randomly and independently selected positions. This reduces
the problem of near-matching to exact matching. If two vectors differ by a few position, the
probability that none of those position are chosen is high, leading to matching short vectors.
This exact matching is securely and efficiently computed using standard PSI. Repeating
this process logarithmic number of times ensures that our protocol finds all approximate
matches except with negligible probability. On the other hand, if the number of selected
positions is too small, an excessive number of vectors, even the non-matching ones, project,
or “collide”, into identical vectors. This scenario inadvertently raises the potential match
count, leading back to near-quadratic communication. We meticulously adjust the position
selection probability, ensuring minimal collisions while preserving actual matches. This
results in a reduction from Approx-PSI to logarithmic number of standard PSI.

Information Leakage: The process of projecting and comparing the projections poten-
tially leaks information, even with PSI. For instance, vectors with identical projection failing
the Hamming distance check might inadvertently disclose some bits of a party’s vector to
the other party. To hide these intermediate results, we use secret-share version of both PSI
and the Hamming distance comparison test. While ready-to-use PSI protocols that output
secret shares of results exist, such as the circuit version in [RS21], efficient Hamming distance
checks outputting secret shares remain unknown. A standard technique transforming one to
output secret shares would result in a less efficient subprotocol with communication depend-
ing on the length of the binary inputs. Our goal is to maintain the efficiency in [CFR23]
– one that is independent of input length. The subprotocol in [CFR23] also reveals both
parties’ inputs when matched, which forces their DA-PSI to output the result in pairs rather
than only to the owner of each matched element. As our Approx-PSI may be customized to
give the result to one party, we cannot follow their approach directly.

The secret-share Hamming distance comparison test can be constructed simply from
garbled circuit. The resulting subprotocol is efficient for small and median size elements.
For large elements (8000 bits or more), the length-independent comparison test can be con-
structed by combining the ideas from [CFR23, GS19, KMWF07]. We use [CFR23] as a
starting point, representing binary vectors as subsets of finite field elements, whose Ham-
ming distance corresponds to the size of set difference. These subsets can be further encoded
as matrices whose subtraction corresponds to the set difference, using the idea in [GS19].
Moreover, the dimension of the matrices corresponds to the threshold value and the size of
the set difference can be tested if above or below the threshold from the determinant of the
matrix difference. The parties can jointly and securely compute the determinant using addi-
tive homomorphic encryption in [KMWF07]. Further modification of the homomorphically
encrypted output gives the secret shares of the result. Finally, we utilize generic secret-
sharing scheme operations for addition and multiplication to manipulate the secret shares
between steps of our protocol.

We then combine the Approx-PSI protocol for Hamming distance with low distortion
embedding from edit distance by [OR07], Euclidean distance by [DM21] and angular distance
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by [DS18] to construct Approx-PSI protocols for these distance metrics. We take advantage
of the gap to guarantee that the pairs of elements that are near or far apart remain so after
the embedding. Using the relationship between Euclidean distance, angular distance and
cosine similarity, we also obtain the Approx-PSI protocol for cosine similarity.

Similar Image Matching Application: Approx-PSI enables various applications match-
ing “similar” objects as long as they can be transformed into metric space with known em-
bedding into binary vectors with Hamming distance metric. In particular, digital images can
be transformed into real vectors through discrete cosine transform (DCT) [CKLS97] that are
preserved under several image manipulations such as resizing and blurring. Applying such
transformation followed by binary embedding [DS18], we obtain an Approx-PSI that can
match similar images from two sets of images without revealing other non-matched images.

3 Preliminaries

We denote the set {1, 2, . . . , n} by [n]. Let x ∈ {0, 1}∗. We denote the length of x by |x|. For
i ∈ [|x|], we denote by xi the ith character in x. We use λ to denote the security parameter.
We use the standard definition of negligible functions and computational indistinguishabil-
ity [GM84]. We denote by Prr[A] the probability of an event A over coins r, and Pr[A] when
r is not specified. We denote by E[X] the expectation of a random variable X. For a finite
set S, we denote a← S a uniformly random choice of a from S. For a randomized algorithm
A, let A(x; r) denote running A on an input x with random coins r. If r is chosen uniformly
at random with an output y, we denote y ← A(x).

3.1 Approximate PSI

We consider the setting of two parties with input sets A,B whose elements are drawn from a
subset S of the universe U , equipped with a distance metric δ : U ×U → R≥0. The subset S
has the property that any pair of elements must be either near or far from each other. More
specifically, for any elements a, b ∈ S, either δ(a, b) ≤ d (called matched, close, or near) or
δ(a, b) ≥ td (called non-matched, or far) for some d > 0 and t > 1. We call d the threshold
and t the gap.

The approximate PSI (Approx-PSI) functionality is defined in Figure 1. The goal of
the Approx-PSI is to find pairs of elements, one from each input set, that are near, i.e.,
approximate matches. We allow three possibilities for the output: only one party receives
their matched elements;each party receives matched elements in their respective set; or both
parties receive a set of matches pairs.

We note that any matched elements can be grouped by the following lemma.

Lemma 3.1. Let δ be a distance metric on U . Let S ⊆ U such that for any a, b ∈ S, either
δ(a, b) ≤ d or δ(a, b) ≥ td for some t > 1. Let a, a′, b ∈ S such that δ(a, b) ≤ d. Then

1. δ(a′, b) ≥ td if and only if δ(a, a′) ≥ (t− 1)d

2. δ(a′, b) ≤ d if and only if δ(a, a′) ≤ 2d
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FS
Approx−PSI

Parameters. set size n, threshold d

Functionality.

1. Upon receiving a message (inputS, A) from the sender with A ⊆ S and |A| = n,
store A; otherwise, ignore the message.

2. Upon receiving a message (inputR, B) from the receiver with B ⊆ S and |B| = n,
store B; otherwise, ignore the message.

3. If both A and B are stored, compute M = {(a, b) ∈ A×B : δ(a, b) ≤ d};
otherwise, abort. Let MA = {a : (a, b) ∈M} and MB = {b : (a, b) ∈M}.

4. Send MB to the receiver. Optionally, send MA to the sender, or send M to both
parties.

Figure 1: Ideal functionality for approximate private set intersection

Proof. 1. Suppose δ(a′, b) ≥ td. Then by the triangle inequality,

td ≤ δ(a′, b) ≤ δ(a, a′) + δ(a, b) ≤ δ(a, a′) + d.

Thus, δ(a, a′) ≥ (t− 1)d. Now suppose δ(a, a′) < (t− 1)d. By the triangle inequality,

δ(a′, b) ≤ δ(a, b) + δ(a, a′) < d+ (t− 1)d = td.

2. Suppose δ(a′, b) ≤ d. Then by the triangle inequality,

δ(a, a′) ≤ δ(a, b) + δ(a′, b) ≤ d+ d = 2d.

Now suppose δ(a, a′) > 2d. By the triangle inequality,

2d < δ(a, a′) ≤ δ(a, b) + δ(a′, b) ≤ d+ δ(a′, b).

Thus, δ(a′, b) > d.

When t > 2, if a, a′ ∈ A satisfy δ(a, a′) ≤ d, then for any b ∈ S, either they both match
with b or they are both far from b. Thus, we may group all a′ ∈ A within distance d from a
into one class represented by a. Whenever, a and b are matched (as output by FS

Approx−PSI),
then every a′ in the same class are matched to b as well. We call the process of removing
all a′ ∈ A within distance d from a representative a ∈ A clustering, and adding the a′ back
if a is matched with some b ∈ B declustering. By performing clustering and declustering in
the beginning and at the end of an Approx-PSI protocol with semi-honest parties, we may
further assume that elements of A are far apart, and so are elements of B.
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3.2 Distance Metrics

In this work, we consider two distance metrics for binary strings: Hamming distance and
edit distance. We let ℓ denote the length of the string, i.e., the universe U = {0, 1}ℓ.

For x, y ∈ {0, 1}ℓ, the Hamming distance between x and y, denotedH(x, y), is the number
of positions i ∈ [ℓ] such that xi ̸= yi. We also denote H(x) = H(x, 0), the Hamming weight of
x. The edit distance (also known as Levenstein distance) between x and y, denoted ed(x, y),
is the minimum number of insert, delete and substitute operations (one character at a time)
needed to convert x to y.

In many practical contexts, the distance metric most frequently employed to measure
the separation between two points or vectors in space is the Euclidean distance. When the
vectors are normalized, we can consider them on a unit sphere and measure the shortest
path on the sphere connecting two vectors. This distance is called angular distance. The
Euclidean distance between two vectors can be computed from their dot product or angular
distance, and vice versa. We refer to Appendix A for their formulas and relationship.

4 Building Blocks: Secret-Shared Operations

Our construction requires several operations whose outputs are secret shared between two
parties to hide the intermediate results. In particular, the building blocks are secret-shared
PSI, secret-shared Hamming distance comparison test, and operations on secret-shared data
including scalar-vector multiplication.

4.1 Secret Sharing

In this work, we consider only a two-party secret sharing for binary strings. For a secret
s ∈ S, secret sharing of s are denoted Share(s) → ([s]0, [s]1) (or [s]S, [s]R when the shares
belong to the sender and the receiver in PSI, respectively) where for any s, s′ ∈ S and
i ∈ {0, 1}

{[s]i : Share(s)→ ([s]0, [s]1)} = {[s′]i : Share(s′)→ ([s′]0, [s
′]1)}.

The secret can then be reconstructed by Recon([s]0, [s]1) = s. When it is clear from context,
we may omit the subscript and only denote the shares by [s] when each party operates on
their own share. We also denote the process when a party sends (and authenticates, in the
malicious setting) their share to the other party to allow the later party to reconstruct the
secret as opening.

In the semi-honest setting and S = {0, 1}ℓ, Share(s) simply uniformly samples [s]0, [s]1 ∈
{0, 1}ℓ conditioned on [s]0⊕ [s]1 = s. The maliciously secure variant can be done using more
complicated authenticated secret sharing [NNOB12, FKOS15].

4.2 Secret-shared PSI

Two-party PSI protocols can be constructed from various techniques resulting in different
performance and properties [PRTY19, DPT20, CM20, MPR+20, RT21, RS21, GPR+21,
CILO22, RR22, BPSY23]. In this work, we focus on PSI Payload variant, where each party’s

12



FssPSI

Parameters. element set U , payload set {0, 1}σ, set size m, output size m′ > m

Functionality.

1. Upon receiving a message (inputS, Ã) from the sender where
Ã = {(ai, ãi)) : ai ∈ U , ãi ∈ {0, 1}σ}i∈[m], store Ã.

2. Upon receiving a message (inputR, B̃) from the receiver where
B̃ = {(bi, b̃i)) : bi ∈ U , b̃i ∈ {0, 1}σ}i∈[m], store B̃.

3. If both Ã and B̃ are stored, compute π = Reorder(B) and

zj =

{
(ãi∥b̃j′) if ∃ai ∈ A, s.t. ai = bj

02σ otherwise

for j′ = π(j). Compute Share(z)→ ([z]S, [z]R). Send [z]S to the sender and [z]R
to the receiver.

Figure 2: Ideal functionality for secret-shared PSI

input consists of two sets, an elements set for intersection and a set of values associated to
the elements. The output of the protocol also contains the associated values of the elements
in the intersection. These associated values are called “payloads.” Most PSI protocols can
be configured to transfer the payloads with differing efficiency [IKN+20, CILO22].

In our Approx-PSI construction, the output of PSI Payload should be secret shared
between parties. Such protocols are often constructed using circuit-based PSI techniques
such as the circuit-based variant of the PSI protocol in [RS21]. They call the variant circuit
PSI. We simplify the variant to better serve our purpose in Figure 2. See Appendix B for
the ideal functionality in [RS21].

Here, the intersection of m-element sets is mapped to a slightly larger set m′ > m
(concretely m′ ≈ 1.27m in [RS21]). In the original version each party also learns a secret
shared bit indicating if each element is in the intersection, thus hiding even the intersection
size. In our work, we only need the protocol to output the shares of the payloads, and not
the actual PSI elements, in any order. Since the construction in [RS21] executes a garbled
circuit in the last step, we simply modify the circuit to only output the payload parts.

The protocol in [RS21] is already quite efficient, and can be further improved using more
recent oblivious key-value stores (OKVS) in [RR22, BPSY23] and VOLE setup [BCG+22]
resulting in a high-performance protocol. The communication and computation cost of the
secret-shared PSI when instantiated with the protocol above is linear in the number of
elements O(λn) [RS21].
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FssHamCom

Parameters. element size ℓ, threshold Hamming distance d

Functionality.

1. Upon receiving a message (inputS, [a]S, [b]S) from the sender where
[a]S, [b]S ∈ {0, 1}ℓ, store ([a]S, [b]S).

2. Upon receiving a message (inputR, [a]R, [b]R) from the receiver where
[a]R, [b]R ∈ {0, 1}ℓ, store ([a]R, [b]R).

3. If both ([a]S, [b]S) and ([a]R, [b]R) are stored, compute a = Recon([a]S, [a]R) and
b = Recon([b]S, [b]R). Let out = 1 if H(a, b) ≤ d and out = 0 otherwise. Send
[out]S and [out]R, secret shares of out to each party.

Figure 3: Ideal functionality for secret-shared Hamming distance comparison test

4.3 Secret-shared Hamming distance comparison test

Similar to the DA-PSI for Hamming distance in [CFR23], our Approx-PSI protocol utilizes
a subprotocol for computing the Hamming distance. Unlike to one in [CFR23] that outputs
both input binary strings to both parties when matched, our protocol takes secret shares
of the strings as input, and outputs secret share of a single bit indicating whether the
Hamming distance between the two inputs is within a certain threshold or not. We define
the functionality FssHamCom in Figure 3.

We note that the secret-share inputs of FssHamCom can be added locally to obtain different
inputs with the same Hamming distance. More specifically, H(a, b) = H(a⊕ b) where [a⊕ b]
can be locally computed from [a] and [b] for additive secret sharing. Thus, we only need to
construct one with secret shares output. However, we cannot simply convert the protocol
in [CFR23] in the final step to output secret share as their immediate results reveal other
party’s input if they are matched.

The simplest way to realize this functionality is to through garbled circuit. However,
the communication complexity of the resulting protocol will depend on the length ℓ. To
obtain length-independent communication as in [CFR23], we consider a more complicated
technique as follows.

As in the beginning of the protocol in [CFR23], we consider a binary vector of length ℓ as
an ℓ-subset whose elements indicated by each bit of the vector. The Hamming distance can
then be computed from the set difference. We use the idea from [GS19] that transforms a
subset into a sparse polynomial and then evaluates the polynomial at various points to form
a d×d matrix. The matrices has the property that the size of the corresponding set difference
is below d if and only if the subtraction of the matrices is singular. This property can be
checked securely using a secure determinant computation from [KMWF07]. As the protocol
in [KMWF07] uses an additive homomorphic encryption. We can further modify it to output
a secret share of the indicator result. The resulting protocol has communication complexity
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Õ(d2) and computation complexity of Õ(ℓ+d2) similar to the protocol in [CFR23]. We refer
to Appendix C for the detailed construction. We note that for most concrete parameters,
the simpler garbled circuit method yields better result as the constant in the big O for d2 is
quite large, and ℓ is generally not too large relative to d2.

4.4 Secret-shared vector multiplication

The final functionality used in our work is the secret-shared vector multiplication described
in Figure 4. Both parties hold secret shares of a bit c and a binary vector v⃗, and would like
to compute the product cv⃗, and output as secret shares between two parties.

FssVMult

Parameters. element size ℓ

Functionality.

1. Upon receiving a message (inputS, [c]S, [v⃗]S) from the sender, store ([c]S, [v⃗]S).

2. Upon receiving a message (inputR, [c]R, [v⃗]R) from the receiver, store ([c]R, [v⃗]R).

3. If both ([c]S, [v⃗]S) and ([c]R, [v⃗]R) are stored, compute c = Recon([c]S, [c]R) and
v⃗ = Recon([v⃗]S, [v⃗]R). If c ∈ {0, 1} and v⃗ ∈ {0, 1}ℓ, compute o⃗ut = cv⃗, and
Share(o⃗ut)→ ([o⃗ut]S, [o⃗ut]R). Send [o⃗ut]S and [o⃗ut]R to the sender and the
receiver, respectively.

Figure 4: Ideal functionality for Secret-Share Vector Multiplication

The functionality can be implemented using standard techniques for multiplication on
secret shares such as using setup triples using OT or HE preprocessing in the semi-honest
model, or using the standard frameworks for maliciously secure secret-shared operations such
as TinyOT [NNOB12], Tinier [FKOS15] and MD-SPDZ [Kel20] in the malicious model. See
Appendix D for a concrete protocol in the semi-honest model using OT. Using OT extension
techniques, the (amortized) communication and computation is O(ℓ) and o(1), respectively,
per multiplication.

5 Gaining intuition about the problem: false starts

The starting point of our constructions is the Approx-PSI protocol for Hamming distance.
We begin by constructing an insecure version using the idea from [KOR98]. First, we ran-
domly select a subset of position I ⊆ [ℓ] such that each i ∈ [ℓ] is chosen independently
with probability p. We project every element of A,B ⊆ {0, 1}ℓ onto the position in I.
We denote the projection of individual element a ∈ {0, 1}ℓ by aI = (ai1 , ai2 , . . . , ai|I|) for
I = {i1, . . . , i|I|}, and denote the sets of projections AI = {aI : a ∈ A}, and BI defined
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similarly. We also denote the reverse map by I−1
A (c) = {a ∈ A : aI = c} for c ∈ {0, 1}|I|.

When it is clear from context, we may drop the set to I−1(aI). For each c ∈ AI ∩ BI , we
can compute the probability that H(a, b) ≤ d when c = aI = bI . By repeatedly sampling I,
independently, and merging all pairs (a, b) from each projection, the probability that we fail
to find any matched pairs is negligible.

We note that the goal of [KOR98] is to efficiently approximate the Hamming distance
between vectors, while security is not their concern. This version of the protocol is thus
not secure even when we use PSI to compute AI ∩ BI . When a projected vector is in the
intersection, it reveals that they share the same bits for the positions in I, even when they
are not matched. We will fix this leakage in the final version of the protocol. Here we analyze
the correctness.

For i ∈ [k], where k is the number of repeats, the parties choose Ii ⊆ [ℓ] by choosing each
position independently with probability p. Let q = (1− p)d.

Lemma 5.1. When k ≥ (ln 2) logn+λ
q

, the probability that there exists a ∈ A, b ∈ B such that

H(a, b) ≤ d but aIi ̸= bIi for all i ∈ [k], is negligible.

Proof. Let a ∈ A, b ∈ B such that H(a, b) ≤ d. We have

Pr[aI ̸= bI ] = 1− Pr[aI = bI ] ≤ 1− (1− p)d = 1− q ≤ e−q.

Then
Pr[aIi ̸= bIi∀i ∈ [k]] ≤ e−kq,

and
Pr[aIi ̸= bIi∀i ∈ [k], ∃(a, b) ∈ A×B,H(a, b) ≤ d] ≤ ne−kq

by the union bound on A as each a ∈ A has at most one b that is matched. When kq ≥
(ln 2)(log n+ λ), we have negligible probability.

This lemma guarantees that any matched pair will be found from at least one of the
projections as long as the protocol repeats sufficiently many times, which is only O(log n+λ)
when q is constant.

Now we analyze the probability for non-matched pairs. Our goal is rule out as many
non-matched pairs as possible to ensure that the number of remaining pairs to be checked is
near-linear, and thus near-linear communication. To increase the probability that the pair
a, b such that H(a, b) ≥ td are not projected to the same vector, we first consider the case
when t = log n. In other words, for any a ∈ A and b ∈ B, either H(a, b) ≤ d or H(a, b) ≥ td
where t = log n. We will ease this assumption in the later sections.

5.1 First attempt (that does not work for most parameters)

Here we show that under the condition λ = O(log n), any pair (a, b) with H(a, b) ≥ td will
not be projected to the same element with high probability.

Lemma 5.2. Assuming λ = O(log n) and 1
q
= 2λ/ logn+2, the probability that there exists a, b

such that H(a, b) ≥ td and aIi = bIi for some i ∈ [k] is negligible.
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Proof. Let a ∈ A, b ∈ B such that H(a, b) ≥ td. We have

Pr[aI = bI ] ≤ (1− p)td = qt.

When t = log n, we have qt = qlogn = 2log q logn = nlog q. Then

Pr[aIi = bIi∃i ∈ [k]] ≤ knlog q,

and

Pr[aIi = bIi∃i ∈ [k],∃(a, b) ∈ A×B,H(a, b) ≥ td] ≤ n2knlog q

=
k

nlog(1/q)−2
.

Assuming λ = O(log n), we may choose 1
q
= 2

λ
logn

+2 = O(1). Then k = O(log n) = O(λ),
and the above probability is k

2λ
, which is negligible.

In this case, by projecting A and B onto the coordinates in Ii for i ∈ [k] with probability

p = 1 − q
1
d = 1 − 2−

λ
logn

+2

d , and computing the intersection AI ∩ BI , each party learns the
elements that matched with another party’s elements with overwhelming probability without
additional direct comparison. We could construct a secure Approx-PSI protocol by merging
the result of the intersection from each round.

The assumption λ = O(log n) is probable in some cases as λ is a statistical security
parameter. For example, we may choose λ = 40 and n = 220, which gives q = 1

16
. When

d = 4, each position is chosen with probability 0.5. However, in the general case when λ
is much larger than log n, the number of rounds k will be exponential in λ

logn
, so is the

communication from computing the intersections. Thus, we need a different method to
separate the non-matched pairs.

In term of security, we note that when I is jointly chosen uniformly, and the intersection
is computed using a PSI protocol, the resulting protocol is secure as the intermediate result
Cj can be computed from the projection of each party’s output.

5.2 Second attempt (that is too complicated to obtain security)

Now we consider a more complicated solution when λ≫ O(log n). In this case, the projection
alone cannot completely rule out the false positive, i.e., the case when H(a, b) ≥ td but
project to the same vector, while keeping the number of rounds (k) in poly-logarithmic.
Each party needs to run a 2PC protocol to compare every pair of a ∈ A and B ∈ B (such
as the one in [CFR23]) that project to the same c. Repeat this k (to be determined later)
times with independently sampled I where λ is the security parameter.

Unfortunately, the above method may not give a linear number of comparisons as the
number of possible pairs for each projection can be super-linear. To resolve this problem, the
parties must select a “good” projection that only results in a linear number of comparisons.
However, revealing the “good” projection also reveal the structure of the set. So, we con-
struct a special-purpose PSI that outputs ⊥ (privately as secret shares) when the projection
produces too many collisions.
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We define a “good” projection I ⊆ [ℓ] by I such that, for all a ∈ A, |I−1(aI)| ≤ τ for a
fixed constant τ ≥ 2. The PSI is modified to a special-purpose private multiset intersection
that only outputs when I is good. Instead of having I as an additional input to PSI, both
parties’ input sets must be a multiset. That is a set where each element is associated with
an integer representing the number of repeating of that element. In this case, the number
associating to aI is |I−1(aI)|. The protocol may only output ⊥ when there exists aI in the
intersection whose |I−1(aI)| ≥ τ for some constant τ .

Both parties will perform the special-purpose PSI on the projected sets for k′ ≥ k rounds.
We will show that for some choice of k′, the number of “good” rounds is at least k.

Lemma 5.3. For k′ = 8k, τ = 2 and q = 1
4
, the probability that there are less than k good

projections is negligible.

Proof. From the proof of the above lemma,

Pr[I is not good] = Pr[|I−1(aI)| ≥ τ, ∃a ∈ A] ≤ 1

τnlog(1/q)−2
.

For i ∈ [k′], let Xi be an indicator that Ii chosen in round i is not good. Let X =
∑k′

i=1 Xi

Then

E[X] =
k′∑
i=1

E[Xi] ≤
k′

cnlog(1/q)−2
.

Choose τ = 2, q = 1
4
and k′ = 8k. Since Xi’s are independent, by Chernoff bound, we have

Pr[X ≥ k′ − k] ≤ Pr[X ≥ 7

4
· 4k] ≤ e

− ( 34 )24k

11
4 ≤ 2−k

which is negligible.

We could construct a secure Approx-PSI protocol by privately compare all pairs that
projected to the same elements in the output of the special-purpose PSI in each round, and
merging the results from all rounds as before.

For this solution, we need the special-purpose variant of PSI for multisets. While this
idea is potentially doable theoretically, it may be difficult to construct efficiently. Moreover,
the intermediate result, in particular, that of the bad projections, reveals some information
that cannot be infer from the final result. Thus, the output may need to be secret shared,
which further complicating the possible construction.

6 Approx-PSI Protocol

In this section, we show how to build on the previous two ideas to achieve an efficient and
secure approximate PSI protocol. The independently repeating projection from the first
idea already gives us the matches as long as we could keep the number of rounds small. The
“good” or “bad” projection from the second idea, on the other hand, could be improved
to make sure that the projection is not dropped entirely. So, we redefine the definition of
the “bad” projection to be the union of the condition in the first idea and the condition for
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the second idea for both sets. In particular, for a pair (a, b) that is close, we call I bad for
(a, b) if one of the following holds: (1) aI ̸= bI (2) |I−1(aI)| ≥ 2 (3) |I−1(bI)| ≥ 2. When a
projection is bad for (a, b), aI is dropped from AI if (2) holds, or bI is dropped from BI if
(3) holds. In the event of (1), they do not show up in the intersection anyway (unless as a
different pair (a, b′) or (a′, b)). This allows other pairs to proceed and get discovered without
dropping the whole projection as in the second idea.

For i ∈ [k], where k will be determined later, we choose Ii ⊆ [ℓ] by choosing each position
independently with probability p. Both parties project their sets to coordinates in Ii, denoted
AIi and BIi , respectively. Let q = (1 − p)d. For a ∈ A, b ∈ B such that H(a, b) ≤ d, we
define

BAD(a, b) = {I ⊆ [ℓ] : aI ̸= bI or |I−1
A (aI)| ≥ 2 or |I−1

B (bI)| ≥ 2}
We assume that for any a ∈ A and b ∈ B, either H(a, b) ≤ d or H(a, b) ≥ td.

Lemma 6.1. When k ≈ (nt)
1

t−1 (λ+logn)

1− 1
t

, the probability that there exists a ∈ A, b ∈ B such

that H(a, b) ≤ d but Ii ∈ BAD(a, b) for all i ∈ [k] is negligible.

Proof. Let a ∈ A, b ∈ B such that H(a, b) ≤ d. We have

Pr[aI ̸= bI ] = 1− Pr[aI = bI ] ≤ 1− (1− p)d = 1− q.

Fix an element a ∈ A that is projected to aI . Let Xa′ be an indicator that a′I = aI . Then

E[|I−1(aI)|] =
∑
a′∈A

E[Xa′ ] = n(1− p)td = nqt.

By the Markov’s inequality,

Pr[|I−1(aI)| ≥ 2] ≤ nqt

2
.

Similarly,

Pr[|I−1(bI)| ≥ 2] ≤ nqt

2
.

By the Union bound, we have the probability that I is bad for (a, b) is at most

1− q + nqt.

Now we consider this probability as a function of q, f(q) = 1 − q + nqt. When t > 1, the
function takes the minimum value when f ′(q) = −1 + ntqt−1 = 0. Solving the equation
above gives q = 1

(nt)
1

t−1
. In this case, the above probability becomes

α(n, t) = 1− 1

(nt)
1

t−1

+
n

(nt)
t

t−1

= 1− β(t)

n
1

t−1

where β(t) = 1

t
1

t−1

(
1− 1

t

)
. Then the probability that Ii are bad for all i ∈ [k] is at most

α(n, t)k. Thus, the probability that for some close pair (a, b), all Ii’s are bad is at most

nα(n, t)k =
1

2λ
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when k = λ+logn
log(1/α(n,t))

. Using an approximation log(1− x) ≈ −x, we have

k ≈ n
1

t−1 (λ+ log n)

β(t)
=

(nt)
1

t−1 (λ+ log n)

1− 1
t

We note that the second and the third condition of bad interval imply that the projections
are set, not multiset, and the number of pairs in the intersection is at most n, which means
the number of comparison is at most nk.

Now we analyze this result for different asymptotic cases of t > 1.

• When t = O(log n):
log(nt)

1
t−1 = logn+log logn

logn−1
= O(1). Thus, k = O(λ+ log n).

• When t = O(log n/ log log n):
log(nt)

1
t−1 = logn+log logn−log log logn

logn/ log logn−1
= O(log log n).

Thus, k = O((log n)(λ+ log n)).

• When t = O(log log n):
log(nt)

1
t−1 = logn+log log logn

log logn−1
= O(log n/ log log n).

Thus, k = O(n
1

log logn (λ+ log n)) = no(1)(λ+ log n).

• When t = O(1):
k = O(n

1
t−1 (λ+ log n)).

Now, the remaining of this section, we construct a Approx-PSI protocol from a number
of functionalities: the secret-shared PSI, the secret-shared Hamming distance comparison,
and the secret-shared vector multiplication.

We obtain the following protocol assuming the above functionalities. The correctness of
the protocol is from Lemma 6.1.

Now we show that this protocol is secure by constructing a simulator. By symmetry,
suppose an adversary corrupting the receiver. For each j ∈ [k], the simulator jointly samples
Ij and compute the projections honestly. It simulates FssPSI receiving B̃Ij from the adversary

and returning shares of 0. The simulator uses B̃Ij to reconstruct B′ and sends to FApprox−PSI

and obtain the output P ⊆ A × B. We may assume that the comparison is done after
finishing all intersection first. The simulator simulates FssHamCom by using P to compute out
for each b ∈ B′ and simulates secure multiplication to create shares of correct output. We
refer to Appendix E for more details.

6.1 Communication and Computation of the Approx-PSI Proto-
col

In this section, we analyze the performance of our Approx-PSI protocol. The protocol
consists of one instance of FssPSI in each of the k rounds. n′ instance of FssHamCom and FssVMult
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Algorithm 1: Approx-PSI

Input : Sets A,B ⊆ {0, 1}ℓ, |A| = |B| = n
Output: {a ∈ A : ∃b ∈ B,H(a, b) ≤ d} and {b ∈ B : ∃a ∈ A,H(a, b) ≤ d}

1 Each party replaces their input set by a representation of each cluster. We still
denote their clustered inputs by A and B ;

2 for j = 1 to k do
3 The parties jointly sample Ij ⊆ [ℓ] such that each i ∈ [ℓ] has probability

p = 1− 1

(nt)
1

d(t−1)
to be in Ij;

4 The parties project every element in their sets into coordinates in Ij. If two
elements have the same projection, remove both of them. The original element
are attached to its projection as payload. The projection sets are denoted as
ÃIj = {(aIj , a) : a ∈ A} and B̃Ij = {(bIj , b) : b ∈ B};

5 Each party sends ÃIj and B̃Ij to FssPSI and receives shares of the intersection

[z] ∈ ({0, 1}2|I|)n′
;

6 foreach i ∈ [n′] do
7 Each party sends shares [zi] to FssHamCom and receives shares of [outi]. ;
8 Both parties send the shares of [outi] and [zi] to FssVMult, and obtains shares

[z̃i];

9 end

10 Each party stores all shares of [z̃i] in Z̃j (separately as Z̃A
j and Z̃B

j )

11 end

12 For each j ∈ [k] and for each [z̃] = ([a], [b]) ∈ Z̃j, open [a] to the sender and [b] to
the receiver; let A′

j and B′
j denoted the opened values ;

13 The party computes {a : a ̸= 0ℓ ∈ A′
j,∃j ∈ [k]} and {b : b ̸= 0ℓ ∈ B′

j,∃j ∈ [k]}, and
outputs the elements in the set and their cluster in the original input set ;

in each of the k rounds. We instantiate the functionalities used to construct the Approx-
PSI in Algorithm 1 as we discussed in Section 4, and compute theoretical communication
complexity and computation complexity of the protocol.

The communication and computation of FssPSI when instantiated with circuit PSI of [RS21],
with or without later improvement, is O(n(ℓ+λ)). Here n′ = O(n). The communication and
computation of FssHamCom instantiated using garbled circuit is O(ℓ). The communication and
computation of FssVMult instantiated using OT as described in Appendix D are O(ℓ) when
amortized. Other subprotocols are simply sending data or local computations as shown in
Table 3. We remark that replacing the secret-shared Hamming distance comparison test by
ones with communication independent of ℓ does not improve the asymptotic complexity of
the overall protocol.

Here, the number of rounds k depends on the gap t as proved in Lemma 6.1. We conclude
the following corollary.

Corollary 6.2. The protocol in Algorithm 1 when FSS−PSI ,
FssHamCom and FssVMult are instantiated as described above has the communication and com-
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Table 3: Communication and computation complexity of each subprotocol in Approx-PSI
for Hamming distance.

Step Subprotocol Comm. Comp.

1. Clustering data - O(nℓ)
2. Repeat k times
2.1 Sampling projections O(ℓ) O(ℓ)
2.2 Projecting vectors - O(nℓ)
2.3 SS-PSI O(n(ℓ+ λ)) O(n(ℓ+ λ))
2.4 Repeat n′ = O(n) times
2.4.1 SS Ham. comp. test O(ℓ) O(ℓ)
2.4.2 SS Vector Mult. O(ℓ) O(ℓ)
2.5 Opening share O(nℓ) -
3. Combining result - O(nkℓ)

Total O(nk(ℓ+ λ)) O(nk(ℓ+ λ))

putation complexity O(γ(t)n1+ 1
t−1 (λ+ log n)(ℓ+ λ)) where γ(t) = t

1
t−1

1− 1
t

.

When t = log n, logn
log logn

or log log n, the above communication is O(n(λ+ log n)(ℓ+ λ)),

O(n polylog(n)(λ+ log n)(ℓ+ λ)) or n1+o(1)(λ+ log n)(ℓ+ λ), respectively.
When log n = O(λ) and ℓ = O(λ), the above communication can be further simplified to

O(n1+ 1
t−1λ2), O(nλ2), O(n polylog(n)λ2) or n1+o(1)λ2, respectively. These assumptions are

reasonable for most concrete parameters.

7 Other Distance Metrics

We can construct Approx-PSI for different distance metrics by embedding the set (U , δ)
into the set of binary strings equipped with the Hamming distance ({0, 1}ℓ′ ,H). We take
advantage of the gap between the matched and non-matched pairs to remain so under the
embedding. This method does not work for standard DA-PSI (gap t = 1) as the distance
distortion caused by embedding could cause matched pairs to become non-matched pairs, or
vice versa.

We consider three main distance metrics, namely, edit distance, Euclidean distance and
angular distance. As we discussed in Chapter 2, the Euclidean distance implies cosine sim-
ilarity, cosine distance and angular distance. However, embedding directly into the angular
metric gives a better result, which we will use in our main application. We refer to Ap-
pendix F for more details.

8 Implementation and Optimization

In this section, we discuss implementations of our Approx-PSI protocol for Hamming distance
and Approx-PSI protocol for image matching through angular distance.
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8.1 Practical Parameters for Approx-PSI for Hamming Distance

In Section 6, we analyze the number of rounds as a function of security parameter, gap and
the number of elements. The exact numbers are shown in Appendix G.

When the gap is t = log n, the protocol needs to run for about 80 rounds to ensure that
the probability that protocol would fail is at most 2−40. This is the number of times the
underlying PSI protocol is executed. For the smallest possible gap t = 3, the number of
rounds approximately double whenever the input sizes quadruple. Assuming the underlying
PSI is linear time, then for this fixed t = 3, the Approx-PSI protocol is O(n1.5).

8.2 Practical Parameters for Approx-PSI for Angular Distance

As our main application is matching images using Approx-PSI for angular distance, we
describe here the practical parameters for the setting. We use the embedding in Appendix F.3
to embed a real (unit) vector with angular distance metric as a binary vector with Hamming
distance metric.

Since embedding real vectors with angular distance into binary vectors with Hamming
distance incurs some error δ, and the size of the binary vectors is proportional to δ−2, we
would like to set the error to be just small enough that the protocol is correct, but not too
small as that will increase the running time of the Approx-PSI protocol.

We denote 0 < t1 < t2 be the threshold for match and non-match for the angular
distance, respectively. We note that the angular distance of two uniformly sampled real
vectors is closer to 0.5 as their size get larger. For example, two random 4096-dimensional
vectors have angular distance between 0.45-0.55 with overwhelming probability. Thus, in no
circumstance we should set t2 larger than 0.45.

Using the analysis in Appendix F.3, one example of the parameters is t1 = 0.0225, t2 =
0.4, δ = 0.05 for the angular distance. This results in binary vector length of ℓ = 213 ≈ 8000,
match threshold in Hamming distance of d = 512 and gap t = 6.

8.3 Approx-PSI for Similar Image Matching

In this section, we describe how to use our Approx-PSI to match similar images. We consider
an image as a matrix of numbers, one for each pixel. A natural way to compare the images
is comparing the distance of their matrices either by Euclidean or angular metrics. However,
some change in the pixels that may be not alter the image, i.e., almost indistinguishable to
human eyes, may cause the distance to be sufficiently far apart. Thus, we consider image
transformation methods that map images to vectors in a way that standard image alterations,
such as resizing, blurring or adjusting brightness, barely change these vectors.

We first consider the spread spectrum in [CKLS97]. Here the matrix of image pixels is
transformed into another matrix via discrete cosine transform (DCT). The resulting matrix
has its significant values near the upper left corner. These values represent the structure of
the image in that they resist many image alterations including the ones mentioned above.
As in [CKLS97], our protocol computes the DCT of an image, and only extract a submatrix
from the upper left corner as the image representation. In [CKLS97], this representation is
used to add watermark back to the image.
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Figure 5: Running Time in seconds and Communication in logscale of MB of Approx-PSI,
DA-PSI and garbled circuit baseline for set size n = 100, and (a) - (b) fixed threshold d = 6;
(c) - (d) fixed element size ℓ = 8192. Our Approx-PSI uses gap t = 8, 16 and security
parameter λ = 5 to match the error rate of 0.05.

However, using the DCT submatrix (as a vector) do not solve our problem due to its
structure mentioned above. For any image, its DCT tends to has larger numbers (in mag-
nitude, could be positive or negative) in the upper left positions. This results in the vectors
representing two different images do not have enough angular distance required for our
Approx-PSI. We solve this problem by re-scaling the values with respect to their positions.
In particular, for m ×m submatrix, we divide the (i, j) position of the matrix by 1 + i + j
for 0 ≤ i, j ≤ m − 1. Experimentally, this modification makes most pairs of the vectors
representing two different images having the angular distance at least 0.4. When an image
is altered by resizing, blurring or adjusting brightness and contrast, the modified DCT re-
sulting in angular distance of within 0.02 for most images, depending on the magnitude of
alterations.

8.4 Implementation and Performance

We implement our Approx-PSI in C++ using EMP-Toolkit1 for communications, OTs (for
secret sharing operations) and garbled circuits. We use volepsi2 for the underlying OPPRF
protocol in modified circuit PSI in [RS21]. We use opencv3 for image processing, image
alterations and DCT transformation. All of our implementations are singled-threaded.

1https://github.com/emp-toolkit
2https://github.com/Visa-Research/volepsi
3https://github.com/opencv/opencv
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First, we compare our Approx-PSI with the DA-PSI for the Hamming distance by match-
ing their error rate of 0.05, which translated to our security parameter of λ = 5, and a garbled
circuit baseline. Since we do not have the code for the DA-PSI, we try to match their re-
sources as much as possible, and take their numbers directly from [CFR23]. Thus, the
comparison is only roughly estimated. From Figure 5 (a) and (b), our protocol outperforms
DA-PSI in both communication and running time for short binary vectors, up to ℓ = 2048
for communication and up to ℓ = 4096 for running time, for the gap t = 8 without parallel
computation. Even when ℓ = 1024, our protocol is 10-20 times faster depending on the
gap. From Figure 5 (c) and (d), even for large element size ℓ = 8192, our protocol also
outperforms DA-PSI when matching threshold are above 4 bits for running time and 16 bits
for communication, which are minuscule relative to the total length of the vectors. As an
example, in our image matching application, the threshold d = 512 is used for this element
size.

Table 4: Communication and Running time of Approx-PSI for Hamming distance with
element size ℓ = 128, threshold d = 4, gap t = log n and security parameter λ = 40 for
various set size n = 256, 1024, 4096, resulting in number of rounds k = 96, 89, 86, respectively.

Step communication (MB) running time (s)
n 256 1024 4096 256 1024 4096

Projection 0.01 0.01 0.01 0.004 1.45 4.859
SS-PSI 214.57 848.65 3279.3 15.13 59.28 226.78
SS Ham. comp. 243.58 902.85 3483.4 22.54 83.58 324.9
SS Vector Mult. 4.52 16.71 64.41 0.659 2.285 8.652
Open & output 3 11.12 42.92 0.365 1.256 4.71

Total 465.68 1779.3 6870 38.7 147.85 569.9

Second, we demonstrate the performance of our Approx-PSI for the Hamming distance in
various parameters. Table 4 shows the communication and running time of our Approx-PSI
protocol when input size increase, breaking down by main steps, for much larger security
parameter of λ = 40, and the gap t = log n. Both communication and running time of
our protocol are near linear in the input size. Thus, it is scaled better when the input sets
are large, compared to the quadratic complexity of the previous works. We note that the
secret-shared Hamming distance comparison test step dominating both communication and
running time, followed by the secret-shared PSI. Thus, they are the main targets for further
improvement. While it is not directly comparable due to different distance metrics, the sa-
PSI protocol in [GRS23] communicates around 30-100 GB for n = 2700 balls under different
conditions. Thus, our

Finally, we demonstrate the performance of our Approx-PSI for matching images using
the modified DCT and the angular distance metric in Table 5. The transformation steps from
images to modified DCTs and then to binary vectors are much faster than the Approx-PSI
itself. The first transformation requires no interaction, while the second only requires the
parties to agree on a PRG seed to generate random hyperplanes. Thus, the communication
of the transformation steps is negligible.
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Table 5: Communication and Running time of Approx-PSI for image matching with modified
DCT of size 32× 32 = 1024, ℓ = 8192, threshold d = 512, gap t = 6 and security parameter
λ = 40 for various set size n = 32, 64, 128, resulting in number of rounds k = 91, 110, 131,
respectively.

Step communication (GB) running time (s)
n 32 64 128 32 64 128

Images to DCT vectors - - - 0.16 0.32 0.64
DCT vectors to binary vectors - - - 1.95 3.23 5.77
Approx-PSI 1.91 4.64 11.05 322 768 1842

Total 1.91 4.64 11.05 324 772 1849
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A Euclidean distance, Cosine Similarity and Angular

distance

Here we give formulas for the distances in Euclidean space, and their relationship. For any
x, y ∈ RN , with x = (x1, . . . , xN) and y = (y1, . . . , yN), we have

• Euclidean distance:

∥x− y∥2 =

√√√√ N∑
i=1

(xi − yi)2;

• cosine distance:
δcos(x, y) = 1− x · y

∥x∥2∥y∥2
;

We note that 1 − δcos(x, y) =
x · y

∥x∥2∥y∥2
is called the cosine similarity between x and

y. In numerous analytical and computational contexts, cosine similarity serves as a
prevalent metric to determine the degree of similarity or alignment between two data
sets.

• angular distance:

δθ(x, y) =
arccos

(
x·y

∥x∥2∥y∥2

)
π

.

When x, y are unit vectors, i.e., in the unit sphere SN−1, this distance is also called
geodesic distance as it is the length of the shortest path on the sphere connecting x
and y.

The cosine distance has values between 0 and 2 inclusive while the angular distance has
values between 0 and 1 inclusive. Clearly,

δθ(x, y) =
arccos(1− δcos(x, y))

π
,

and

∥x− y∥22 = ∥x∥22 + ∥y∥22 − 2(x · y)
= ∥x∥22 + ∥y∥22 − 2∥x∥2∥y∥2(1− δcos(x, y)).
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The cosine distance and the angular distance do not concern the length of x, y when they
are nonzero vectors. In this case, we may assume that x, y ∈ SN−1, a unit sphere in RN .
Under this condition,

∥x− y∥2 =
√

2δcos(x, y).

Thus, secure computation of the Euclidean distance implies secure computation of the
cosine distance and cosine similarity as well.

B Circuit PSI

We describe the ideal functionality for circuit PSI from [RS21] in Figure 6.

FcPSI

Parameters. element set U , payload set {0, 1}σ, set size m, a map
Reorder : Um → {π : [m]→ [m′], injective} with m′ > m

Functionality.

1. Upon receiving a message (inputS, A, Ã) from the sender where
A = {a1, . . . , am} ⊆ U and Ã = {ã1, . . . , ãm} ∈ {0, 1}σ}, store (A, Ã).

2. Upon receiving a message (inputR, B, B̃) from the receiver where
B = {b1, . . . , bm} ⊆ U and B̃ = {b̃1, . . . , b̃m} ∈ {0, 1}σ}, store (B, B̃).

3. If both (A, Ã) and (B, B̃) are stored, compute π = Reorder(B), and uniformly
samples c0, c1 ← {0, 1}m′

and z0, z1 ← ({0, 1}2σ)m′
conditioned on{

c0j′ ⊕ c1j′ = 1, z0j′ ⊕ z1j′ = (ãj′∥b̃j′) if ∃ai ∈ A s.t. ai = bj

c0j′ ⊕ c1j′ = 0, z0j′ ⊕ z1j′ = 02σ otherwise

for j′ = π(j). Send c0, z0 to the sender and c1, z1, π to the receiver.

Figure 6: Ideal functionality for circuit PSI [RS21]

C Length-independent Secret-Shared Hamming Dis-

tance Comparison

We give more details on the protocol realizing FssHamCom which has communication complex-
ity O(λd2), independent of the length of an element. The protocol combines the ideas from
three different protocols from [CFR23, GS19, KMWF07].

We obtain the protocol in Algorithm 2. Let (KeyGen,Enc,Dec) be an additive homomor-
phic encryption. Let p be a prime integer such that p > 2ℓ and p > (4d2 + 2d)2λ.
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Algorithm 2: Secret-Shared Hamming Distance Comparison Test

Input : a, b ⊆ {0, 1}ℓ
Output: [out]S, [out]R ∈ {0, 1} where out = [out]S ⊕ [out]R = 1 if H(a, b) ≤ d and

out = 0 otherwise
1 Parties compute Pa =

∑
i∈{0,1,...,ℓ−1} x

2i+ai and Pb defined similarly;

2 Parties jointly sample u← Fp;
3 Parties compute an (2d+ 1)× (2d+ 1) matrix

Ha =

Pa(u
0) · · · Pa(u

2d)
...

...
Pa(u

2d) · · · Pa(u
4d)


and Hb defined similarly;

4 Sender generates KeyGen→ (pk, sk) and sends (pk,Ha = Encpk(Ha)) to Receiver;
5 Receiver computes H = Ha − Encpk(Hb) (denote H = Ha −Hb), samples

u⃗, v⃗ ← F2d+1
p ;

6 Parties interactively compute Hkv⃗ for k = 1, . . . , 4d+ 1;
7 Receiver computes u⃗THkv⃗ for k = 1, . . . , d, and MH , and encryption of the minimal

polynomial mH of H.;
8 Parties evaluate garbled circuit that decrypts and secret shares an indicator that the

constant term of MH is zero.

The correctness of the protocol follows from the fact analyzed in [GS19] that det(Ha −
Hb) = 0 if and only if H(a, b) ≤ d. We utilize the homomorphic encryption method
in [KMWF07] to compute the determinant from the minimal polynomial of the matrix,
which can be computed from u⃗THkv⃗.

From the analysis in [KMWF07], the protocol above has communication and computation
complexity of O(λd2polylog d). When adding the local transformation in the first step, the
computation complexity is O(λ(ℓ+ d2polylog d)).

D Secret-Shared Scalar-Vector Multiplication from OT

Using OT, we can easily realize FssVMult in the semi-honest model. Let FOT be the 1-out-of-2
OT functionality.

As wS = rR ⊕ ([c]S · [v]R), we have [out]S = ([c]S · [v]S)⊕ ([c]S · [v]R) = [c]S · ([v]S ⊕ [v]R).
Similarly, [out]R = [c]R · ([v]S ⊕ [v]R). Using OT extension techniques, the (amortized)
communication and computation can be reduced to o(1) [Sch18, BCG+19].
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Algorithm 3: Secret-Shared Vector Multiplication

Input : [v]S, [v]R ⊆ {0, 1}ℓ, [c]S, [c]R ∈ {0, 1}
Output: [out]S, [out]R ∈ {0, 1}ℓ where

out = [out]S ⊕ [out]R = ([c]S ⊕ [c]R) · ([v]S ⊕ [v]R)
1 Sender samples rS ← {0, 1}ℓ and sends (inputS, rS, rS ⊕ [v]S) to FOT. Receiver sends

(inputR, [c]R) to FOT and receives wR;
2 Receiver samples rR ← {0, 1}ℓ and sends (inputS, rR, rR⊕ [v]R) to FOT. Sender sends

(inputR, [c]S) to FOT and receives wS;
3 Sender outputs [out]S = ([c]S · [v]S)⊕ rS ⊕ wS, and Receiver outputs

[out]R = ([c]R · [v]R)⊕ rR ⊕ wR.

E Proof of Security for Approx-PSI for Hamming dis-

tance

Here we proof the security of our main protocol.

Theorem E.1. The protocol in Algorithm 1 is secure in the FssPSI, FssHamCom and FssVMult

hybrid model.

Proof. By symmetry, it suffices to construct a simulator S for the case when an adversary
corrupting the receiver. For each j ∈ [k], S follows the protocol to jointly sample I. It
simulates FssPSI to learn B̃I and outputs a secret share of 02|I|n

′
, instead of z, to S. S stores

B̃I . It also simulates FssHamCom and FssVMult, and outputs a random secret share of 0 and
02|I|n

′
, instead of out and z̃, to S, respectively. After k rounds, S uses the stored B̃I ’s to

reconstruct the receiver’s set B∗. It sends B∗ to FApprox−PSI to learn the set of Hamming
close pairs. Finally, S computes openings for each [z̃] ∈ Z̃I ’s that gives the Hamming close
pairs for each I.

We prove the indistinguishability through the following hybrids:

• H0: This is the real world interaction.

• H1: Same asH0 except S simulates the functionalities honestly. This hybrid is identical
to H0.

• H2: Same as H1 except S outputs shares of 02|I|n
′
instead of the correct output of

FssPSI. It then replaces the adversary’s input for FssHamCom with the correct one from
the adversary’s input to FssPSI. This hybrid is identical to H1 as single shares of 0

2|I|n′

and z are identically distributed.

• H3: Same asH2 except S outputs shares of 0 instead of the correct output of FSS−Ham−Compare.
It then replaces the adversary’s input for FssVMult with the correct shares of the out-
put of FssHamCom. This hybrid is identical to H2 as a single share of 0 and outi are
identically distributed.

• H4: Same as H3 except S outputs random shares instead of the correct output of
FssVMult. When S opens the shares in the final step, it opens to the correct outputs of
FssVMult. This hybrid is identical to H3 as each share of c̃′’s is uniformly random.
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• H5: Same as H4 except S uses B̃I to reconstruct B∗ from the payload and fill the rest
with the special element ⊥. It uses B∗ to compute outputs in each step instead of B.
Note that B∗ may be smaller than B when there is an element that always collides
with others when projected to coordinates in I in every round. We show that such
elements occurs with negligible probability.

Claim. Except with negligible probability, B∗ = B.

Proof. Clearly, B∗ ⊆ B. We need to show that except with negligible probability, every
element of B appears in B∗. Note that b ∈ B does not appear in B∗ only when its projection
collides with another element in every round. In each round, the probability of such event
is at most nqt

2
by the proof of Lemma 6.1. Thus, the probability that B∗ ̸= B is at most(

nqt

2

)k

which is negligible for the choice of k in the lemma.

• H6: Same as H5 except S sends B∗ to FApprox−PSI and no longer interact with the
sender. It uses B∗ to compute openings for each C̃I ’s.

F Other Distance Metrics

Here we give more details about the embedding from three other distance metric into Ham-
ming distance metric.

F.1 Edit Distance

Our protocol relies on the low distortion embedding by Ostrovsky and Rabani [OR07].

Theorem F.1 ([OR07]). There exists a polynomial time algorithm ϕ that for every δ > 0,
ϕ = ϕ(·, ℓ, δ) : {0, 1}ℓ → {0, 1}ℓ′ such that ℓ′ = O(ℓ2 log(ℓ/δ)) satisfying for any x, y ∈ {0, 1}ℓ

2−O(
√
log ℓ log log ℓ)ed(x, y) ≤ H(ϕ(x), ϕ(y)) ≤ 2O(

√
log ℓ log log ℓ)ed(x, y)

with probability at least 1− δ.

We note that asymptotically logM ℓ < 2O(
√
log ℓ log log ℓ) < ℓϵ for any large constant M and

small constant ϵ > 0. Applying the embedding and Approx-PSI for Hamming distance gives
the following corollary.

Corollary F.2. There exists a Approx-PSI for edit distance with gap t′ = 2O(
√
log ℓ log log ℓ)t

with communication and computation O(n1+ 1
t−1 ℓ2(log n+ λ)2).

Proof. Let d, t be the threshold and the gap of the underlying Approx-PSI for Hamming
distance, respectively. By Theorem F.1, for any a ∈ A and b ∈ B such that ed(a, b) ≤ d′,

H(ϕ(a), ϕ(b)) ≤ 2O(
√
log ℓ log log ℓ)ed(a, b) ≤ 2O(

√
log ℓ log log ℓ)d′.
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For any a ∈ A and b ∈ B such that ed(a, b) ≥ t′d′,

H(ϕ(a), ϕ(b)) ≥ 2−O(
√
log ℓ log log ℓ)ed(a, b) ≥ 2−O(

√
log ℓ log log ℓ)t′d′.

Setting the right hand side of each inequality as d and td, respectively, gives t′ = 2O(
√
log ℓ log log ℓ)t.

Here we set δ = 1
n22λ

. Thus, ℓ′ = O(ℓ2(log n+ λ)).
The communication and computation of the resulting protocol is that of Approx-PSI for

Hamming distance where element size is ℓ′ = O(ℓ2(log n+ λ)).

F.2 Euclidean Distance

Similar to the Edit distance, there are embedding from the Euclidean distance to the Ham-
ming distance [PV14, HS20, DS20, DM21, DMS22]. Unlike the embedding for the edit
distance, which is complicated, the embeddings for Euclidean following the simple ideas
from the Johnson-Lindenstrauss lemma [JL84]. The original lemma concerns the dimension
reduction of vectors in RN . However, the technique can be used to constructed an embedding
into binary strings, represented by {−1, 1} instead of {0, 1}.

A hyperplane in RN is chosen randomly to cut RN into two halves. Vectors in one half
is mapped to −1 while the other half is mapped to 1. This can be computed by the sign of
inner product between the vectors and the normal vector of the hyperplane. The process is
repeated multiple times with independently chosen hyperplanes to obtain a binary vector.
The idea has been improved with better methods of chosing the hyperplanes and the analysis
of the resulting distortion. Here we choose the most recent results for our construction.

Theorem F.3 ([DM21]). There exists a polynomial time algorithm ϕ that for every 0 < ρ <
R and T ⊆ B(R) with |T | = n where B(R) is a Euclidean ball of radius R, ϕ : RN → {0, 1}ℓ
such that ℓ = O(R log(eR/ρ) logn

ρ3
), satisfying for any x, y ∈ T such that ∥x− y∥2 ≥ ρ

O( ℓ
R
)∥x− y∥2 ≤ H(ϕ(x), ϕ(y)) ≤ O(

ℓ
√

log(eR/ρ)

R
)∥x− y∥2

with probability at least 1− e−O(ℓρ/R).

While this multiplicative bound is easy to use, the condition ∥x − y∥2 ≥ ρ can be
problematic as the protocol cannot check this condition efficiently. Thus, we consider the
following additive bound which is a special case of the result in [DMS22].

Theorem F.4 ([DMS22]). There exists a polynomial time algorithm ϕ that for R > 0,
0 < δ < R/2, ρ = O(R

√
log(R/δ))) and T ⊆ B(R) with |T | = n where B(R) is a Euclidean

ball of radius R, ϕ : RN → {0, 1}ℓ such that ℓ = O
(

ρ2(logn+λ)
δ2

)
, satisfying for any x, y ∈ T ,∣∣∣∣∣

√
2πρ

ℓ
H(ϕ(x), ϕ(y))− ∥x− y∥2

∣∣∣∣∣ ≤ δ

with probability at least 1− e−O(δ2ℓ/ρ2).
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Corollary F.5. There exists a Approx-PSI for Euclidean distance with gap t with commu-
nication and computation complexity

O(n1+ 1
t−1 t2 log t(log n+ λ)2).

Proof. Let d0, t0 be the threshold and the gap for the underlying Approx-PSI for Hamming
distance, respectively. From Theorem F.6, for a pair x, y ∈ RN with dθ(x, y) ≤ d, we
have H(ϕ(x), ϕ(y)) ≤ (d + δ)ℓ ≤ d0. For a pair x, y ∈ RN with dθ(x, y) ≥ td, we have
H(ϕ(x), ϕ(y)) ≥ (td− δ)ℓ ≥ t0d0. Thus, t0 must satisfy t0(d+ δ) ≤ td− δ.

Since any two vectors in the Euclidean ball of radius R has distance at most 2R, we may
assume that R

d
= O(t). Let δ = O(d), t0 ≤ td−δ

d+δ
= O(t). We can choose ρ = O(R

√
log t). We

have ℓ = O(t2 log t(log n + λ)). This give the communication and computation complexity

of the Approx-PSI for Euclidean distance O(n1+ 1
t−1

t2 log t(logn+λ)2)

For example, when t =

√
log

(
λ

logn

)
log n, the communication isO(n(log n+λ)2R

√
log

(
λ

logn

)
).

When t =

√
log

(
λ

logn

)
, the communication is O(n1+ϵ(log n + λ)2R

√
log

(
λ

logn

)
) where

ϵ = 1
t0−1

and t0 is the constant gap of the underlying Approx-PSI for Hamming distance.

When the vectors are in SN−1, we can obtain the result for cosine similarity and cosine
distance by transformation

δcos(x, y) =
∥x− y∥22

2
.

In this case, the gap is t = log
(

λ
logn

)
t20.

F.3 Angular Distance

The same hyperplane technique above also gives results for angular distance [PV14, YCP15,
OR15, DS18]. We consider the embedding described by Dirksen and Stollenwerk [DS18] as
its embedding size is smaller, and more concrete parameters are provided. Unlike the first
two distance metrics, the angular distance for any pair of vectors are bounded between 0
and 1.

Theorem F.6 ([DS18]). There exists a polynomial time algorithm ϕ that for every T ⊆ SN−1

with |T | = n, ϕ : SN−1 → {0, 1}ℓ such that ℓ = O(log
(

n
η

)
/δ2), satisfying for any x, y ∈ T∣∣∣∣H(ϕ(x), ϕ(y))ℓ

− δθ(x, y)

∣∣∣∣ ≤ δ

with probability at least 1− η.

We combine the embedding and the Approx-PSI for Hamming distance to get the fol-
lowing result.

Corollary F.7. There exists a Approx-PSI for the angular distance where matching vectors
have angular distance at most t1 and non-matching vectors have angular distance at least t2
with communication and computation complexity O(n1+ 1

t−1 t2(log n+λ)2) where t = O(t2/t1).
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Table 6: Number of rounds for each value of gap t and number of elements in input sets
when the security parameter is λ = 40

gap t
number of elements

128 256 512 1024 4096 16384 65536

3 942 1367 1980 2864 5976 12429 25798
4 331 431 558 722 1203 1994 3293
5 189 232 285 349 521 773 1142
6 131 156 186 221 309 429 593
7 101 118 138 160 215 286 378
8 83 96 110 126 164 212 272
9 71 81 92 104 133 167 210
10 63 71 80 89 112 139 171
11 57 63 71 79 97 119 145
12 52 58 64 71 86 104 126
13 48 53 58 64 78 93 111
14 45 49 54 59 71 85 100
15 42 46 51 55 66 78 91
16 40 44 48 52 61 72 84
17 38 41 45 49 57 67 78
18 36 39 43 46 54 63 73

Proof. Let δ > 0 and ℓ as in Theorem F.6. For a pair x, y ∈ RN with dθ(x, y) ≤ t1,
we have H(ϕ(x), ϕ(y)) ≤ (t1 + δ)ℓ ≤ d. For a pair x, y ∈ RN with dθ(x, y) ≥ t2, we
have H(ϕ(x), ϕ(y)) ≥ (t2 − δ)ℓ ≥ td. Thus, t must satisfy t(t1 + δ) ≤ t2 − δ. That is
(t+ 1)δ ≤ t2 − tt1. Thus, we need t2 − tt1 > 0 and δ ≤ t2−tt1

t+1
< 1

t+1
as t2 < 1.

Setting η = 2λ and 1/δ = O(t) gives ℓ = O(t2(log n + λ)) and t = O(t2/t1). This
gives the communication and computation complexity of Approx-PSI for Angular distance

O(n1+ 1
t−1 t2(log n+ λ)2).

Here we consider t2 as a constant while t1 < t2/t becomes smaller as t increases.

G Exact Number of Rounds in Approx-PSI for Ham-

ming Distance

Here we calculate the exact number of rounds shown in Table 6 using the calculation from
Section 6.

G.1 When inputs do not conform to the structure

Now we discuss what happens when the input sets are not conform to the structure. This
means there exists some a, b ∈ A∪B such that d < δ(a, b) < td. We note that as we discuss
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the above reduction, each party must check and modify their input set such that there is
only one element representing a cluster of elements of distance at most d from one another.
There are two cases:

1. Both parties are (semi-)honest. The problematic case can only occur for a ∈ A and
b ∈ B as the party must check within their own set. The protocol after the reduction
still work correctly and securely even when the pair are projected to the same vector due
to the Hamming distance test. As the elements in each party’s set are far apart, they
will collide with negligible probability, and its match pair will be discovered in one of
the projection as analyzed. The problem could, however, arise in the declustering step.
If a and b above are hidden from the clusting process, it is possible that d < δ(a, b) ≤ 2d.
This problem could be solved by further execution of Hamming distance test on such
pairs. Though this may lead to worsen efficiency.

2. One party proceeds with bad input set. In this case, it is possible that the party’s
elements could collide more often than we analyzed. This could lead to some matched
pairs undiscovered, in addition to the problem in the first case.

In conclusion, the problem in the first case will only lead to false positive, only occur to the
elements hidden in the clustering step, and can be resolved securely by additional checks.
The second case only lead to the false negative, and only occur when one party does not
check or prepare his own set properly, whether by negligence or with malicious intent.

H Extension to the Malicious Setting

Throughout this work, we have focused on the approximate PSI in the semi-honest setting
for simplicity. In this section, we briefly explain how our Approx-PSI protocol for Hamming
distance can be extended to remain secure in the malicious setting as well, and so are the ones
for other distances. In the Algorithm 1, a malicious party may deviate from the protocol
by (1) clustering the elements incorrectly or the elements in their set do not conform to
the structure S; (2) providing incorrect element-projection pairs to FssPSI; (3) modify their
shares output from FssPSI, FssHamCom or FssVMult.

The deviation (3), as mentioned in Section 4, can be prevented using various authenti-
cated secret sharing techniques. When FssPSI is instantiated using the protocol in [RS21], we
may need to modify the circuit PSI to accommodate the secret sharing scheme we may use.

For (1), as discussed in Appendix G.1, it would result in false positive for elements in the
cluster or false negative for the elements not conforming to the structure S in the adversary’s
set. Neither of which would leak information on the honest party’s elements. In this case,
however, we need to modify the functionality to allow such mistakes.

Unlike the other two, the deviation (2) requires further machinery to fix. In particular,
the parties need to provide a zero-knowledge proof that their computed projection is correct.
Since the projection is publicly known linear map, an efficient ZKP can be incorporated into
the OKVS technique in the protocol in [RS21].

Since each of the above solution does not require more asymptotic communication, the
resulting maliciously secure protocol has the same asymptotic communication complexity as
the original protocol.
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