
Universal Vector Commitments

Ojaswi Acharya1, Foteini Baldimtsi2, Samuel Dov Gordon2, Daniel McVicker2,
and Aayush Yadav2

1 University of Massachusetts Amherst
oacharya@umass.edu

2 George Mason University
{foteini, gordon, dmcvicke, ayadav5}@gmu.edu

Abstract. We propose a new notion of vector commitment schemes
with proofs of (non-)membership that we call universal vector commit-
ments. We show how to build them directly from (i) Merkle commit-
ments, and (ii) a universal accumulator and a plain vector commitment
scheme. We also present a generic construction for universal accumu-
lators over large domains from any vector commitment scheme, using
cuckoo hashing. Leveraging the aforementioned generic constructions,
we show that universal vector commitment schemes are implied by plain
vector commitments and cuckoo hashing.

1 Introduction

The problem of set membership (and non-membership) is ubiquitous in mod-
ern cryptography. Applications such as the revocation of authentication cre-
dentials, verifiable databases and cloud storage rely on efficient proofs for set
(non-)membership [CL02, BCD+17, SMP23, ZKP17, TBP+19, BdM94, BP97].
More recently, set (non-)membership has gained increased attention because of
its role in blockchain systems [BBF19]. One could imagine, for instance, a system
where users are able to demonstrate ownership of digital assets by proving that
they appear in some large public set.

Two of the most prominent mechanisms that support set (non-)membership
proofs are cryptographic accumulators and vector commitments. Briefly, a cryp-
tographic accumulator [BdM94] is a compact representation, acc, of a set of
elements S over some domain. It allows a prover to generate a short proof of
membership (resp. non-membership) for any element that is accumulated (resp.
not accumulated) in acc. A verifier can efficiently verify such proofs without
accessing the entire set, using only the current digest acc. An accumulator is
dynamic if it supports efficient updates by allowing changes to acc through inser-
tion (or deletion) of elements. Furthermore, an accumulator that supports both
proofs of membership and non-membership is a universal accumulator (UA).

A vector commitment scheme (VC) [CF13] allows one to succinctly commit
to an ordered sequence of n values x = [x1 · · · xn] in a way that one can later
prove that the value xi is the ith committed element. For VCs, a generalized
notion of key-value commitments (KVaC) has also been suggested [AR20]. A
KVaC commits a map of key-value pairs with unique keys, where each key is
associated with only one value.

2 Acharya et al.

The case for universal vector commitments. Vector commitments have so far
been defined to only support proofs of membership (i.e., a value xi is in the ith

position of the commitment). However, in certain applications, and usually for
accountability reasons, one might also be interested in proving that a value is
not in the commitment. Supporting non-membership proofs is thus an essential
feature for accountable VCs, that is missing from existing formalizations.

Consider for example a supply chain management system where a VC is
used to store various states of a product (a case where order matters), but non-
membership proofs may be needed to demonstrate that a certain product or
component is not part of the supply chain at a given point in time, which can
be essential for detecting counterfeit goods or unauthorized substitutions.

Other applications of VCs with a non-membership functionality include stor-
age of blockchain transactions where a user wants to prove exclusion of a token
from a transaction block [Kon19], or distributed file-storage where the usual
proofs of retrievability of a file [JK07, Fis19] could be extended to also include
proofs that a certain illicit file is not being stored by the server.

Overview of our contributions

Defining universal vector commitments. In Section 3 we present the first formal
definition of a universal vector commitments (UVC) by extending the notion
of vector commitment schemes to include proofs of non-membership. In gen-
eral, such proofs of non-membership would allow one to prove that a value is
not at any position of the committed vector. This is analogous to a universal
accumulator where one can generate proofs for elements that are not accumu-
lated. The importance of formally defining UVCs and their security properties
is further emphasized by the fact that although there exist constructions that
realize the definition of UVC [Kon19, GV20], a formal description of its security
requirements is lacking.

Concrete constructions for universal vector commitments. A straightforward
way of building a UVC is to consider a Merkle tree with number of leaves equal
to the domain size of the underlying set, with non-members represented as a leaf
node with some generic null value. Indeed, this approach was made somewhat
practically efficient using a Sparse Merkle tree (SMT) [DPP16] for the specific
case of proofs of exclusion (of tokens from a transaction block) [Kon19]. In par-
ticular, the tokens excluded from the transaction are represented as (the hash
of) null nodes in a Merkle tree, and the corresponding proof of exclusion as the
Merkle path to the leaf. However, despite the use of SMT, the overall storage
requirement of this approach grows in proportion to the domain size.

Towards building secure UVCs, we present two new constructions in Sections
4 and 5. Our first, more practical, construction based on Merkle commitments is
a translation of the ‘key accumulator’ given by Goyal and Vusirikala [GV20]. Im-
portantly, it offers compact proofs of inclusion/exclusion, and is asymptotically
space-optimal (among Merkle tree-based approaches). Our second construction

Universal Vector Commitments 3

describes a generic way to build UVCs from a (plain) VC and a UA, demonstrat-
ing an interesting theoretical connection between these primitives (see Figure 1).

A generic construction for universal accumulators. Given the conceptual sim-
ilarities of VCs, UAs and KVaCs, one wonders about the relationship between
these primitives. Interestingly, it was shown by Boneh et al. [BBF19] that VCs
can be built from UAs. In a recent concurrent work, Fiore et al. [FKP23] gave a
generic way to obtain UAs (and KVaCs) using VCs and Cuckoo Hashing (CH),
thus closing the circle on a longstanding question. In this work, we also present
a generic construction in Section 6 for (updateable) UAs from any VC, using
Cuckoo Hashing. Our generic construction thus gives one of the first UAs sup-
porting large domains (as opposed to the one from [CF13]). Looking ahead, the
two techniques are quite similar — although, [FKP23] take the opposite approach
of arriving at UAs from the KVaC construction, whereas we build both primi-
tives directly. More generally we observe that our VC + CH abstraction gives
many important primitives that we summarize in Figure 1. A particularly inter-
esting observation here is that UVCs are implied by the VC + CH abstraction;
this follows as a consequence of our two aforementioned generic constructions.

UA
VC

(6.1)

CH

[BBF19]

+

(5.1) UVC

Fig. 1. The relationship between VCs, UAs and KVaCs.

Further, by appropriately instantiating our generic construction for UAs, we
obtain (i) a UA from the SIS problem that is comparably efficient with existing
lattice-based constructions and (ii) the first UA based on the standard RSA
assumption.

Lastly, we outline even more applications of the VC + CH abstraction to-
wards building KVaCs, and verifiable Registration-based Encryption [GV20]3 in
Appendix A.

2 Preliminaries

We denote the set of all positive integers up to k as [k] := {1, . . . , k} and the
set of all non-negative integers up to k as [0, k] := {0} ∪ [k]. We use lowercase
bold-face letters to denote vectors and uppercase bold-face letters for matrices.
For a vector x, xi denotes its i

th element. We summarize all important notation
in Table 1.
3 Due to space constraints, and the narrow scope of this particular observation, we
limit the associated discussions only to the appendix.

4 Acharya et al.

Symbol Meaning
λ security parameter
n input dimension of vector commitment
S number of accumulated elements in an accumulator
S′ maximum supported number of accumulated elements
D size of domain of individual input elements
m number of hashes in cuckoo table
ℓ image size of cuckoo table hashes

Table 1. Our notation.

2.1 Vector Commitments

We now review the definitions of vector commitments as introduced in [CF13].

Definition 1 (Vector Commitment Scheme). A vector commitment scheme
over a message spaceM is a tuple of algorithms ΠVC = (Setup,Commit,Open,
Verify) defined as follows:

• Setup(1λ, 1n)→ pp. Takes as input the security parameter 1λ and the size of
the input vector 1n where n = poly(λ), and outputs the public parameters pp.
All algorithms below take pp as input, but we omit it for notational clarity.

• Commit(x)→ (com, aux). Takes as input a vector x ∈ Mn, and outputs a
commitment com and possibly some auxiliary information aux.

• Open(com, x, i, aux) → π. Takes as input a commitment com, an element
x ∈M, an index i ∈ [n] and auxiliary information aux, and outputs a proof
π for x.

• Verify(com, x, i, π) → {0, 1}. Takes as input a commitment value com, an
element x ∈M, an index i ∈ [n] and a proof π, and outputs 0 or 1.

A vector commitment scheme must satisfy the following properties:

• Correctness: For security parameter λ and any input vector x = {x1, x2, . . . ,
xn} ∈ Mn, ∀n ≥ 1, a vector commitment scheme satisfies correctness if:

Pr

Verify(com, x, i, π) :
pp← Setup(1λ, 1n)
com← Commit(x)

∀i ∈ [n], π ← Open(com, i, x)

 ≥ 1− negl(λ).

• Position binding: For security parameter λ, for all ppt adversaries A, a
vector commitment scheme is position binding if:

Pr

Verify(com, x, i, π) = 1
∧ Verify(com, y, i, π′) = 1

:
pp← Setup(1λ, 1n)

com, x, y, i, π, π′ ← A(pp)
x ̸= y

 ≤ negl(λ).

2.2 Universal Accumulators

An accumulator may be trapdoor-based or trapdoorless. A trapdoor accumulator
is characterised by the presence of a trusted authority known as an accumulator

Universal Vector Commitments 5

manager who holds some secret trapdoor information (such as a secret key) that
allows them to perform add and delete operations on the accumulated set. Reyzin
et al. [RY16] additionally define witness-holders and third-party users of the
protocol. Trapdoorless accumulators, on the other hand, do not require a secret
trapdoor, thus dismissing the need for a manager. Instead, witness-holders acting
as provers in the protocol must keep track of the current accumulated set and
some other auxiliary information to be able to perform add and delete operations.
In our definition below, we primarily focus on the trapdoorless setting.

We now review the definitions for cryptographic accumulators, as introduced
by [BdM94] along with the universal extension of [LLX07]. Our definition con-
siders an updateable accumulator which allows for insertion and deletion without
the efficiency requirement of dynamic accumulators.

Definition 2 (Updateable Universal Accumulator). An updateable uni-
versal accumulator over some domain X is a tuple of algorithms ΠUA = (Gen,Add,
Delete,MemWitCreate,NonMemWitCreate,VerifyMem, VerifyNonMem) defined as
follows:

• Gen(1λ) → (state0, acc0). Takes input the security parameter, and outputs
an initial state state0 = (S0, aux) where S0 = ∅, and acc0 is the accumula-
tor’s initial value.

• Add(acct, statet, x) → statet+1, acct+1. Takes as input the current accu-
mulator value acct, state statet = (St, aux) where St is the set of currently
accumulated elements, and an element x ∈ X to be added to the accumulator.
Outputs the new state statet+1 = (St+1, aux) and the updated accumulator
value acct+1.

• Delete(acct, statet, x) → statet+1, acct+1. Takes as input the current accu-
mulator value acct, state statet = (St, aux) where St is the set of currently
accumulated elements, and an element x ∈ X to be deleted from the ac-
cumulator. Outputs the new state statet+1 = (St+1, aux) and the updated
accumulator value acct+1.

• MemWitCreate(acct, statet, x) → wx
t . Takes as input the current accumu-

lator value acct, state statet = (St, aux) where St is the set of currently ac-
cumulated elements, and an element x ∈ X . Outputs a membership witness
wx

t for x.
• VerifyMem(acct, x, w

x
t) → {0, 1}. Takes as input the current accumulator

value acct, an element x ∈ X and its membership witness wx
t , and outputs

0 or 1.
• NonMemWitCreate(acct, statet, x) → wx

t . Takes as input the current accu-
mulator value acct, state statet = (St, aux) where St is the set of currently
accumulated elements, and an element x ∈ X . Outputs a non-membership
witness wx

t for x.
• VerifyNonMem(acct, x, w

x
t)→ {0, 1}. Takes as input the current accumula-

tor value acct, an element x ∈ X and its non-membership witness wx
t , and

outputs 0 or 1.

The properties satisfied by an updateable universal accumulator are as follows:

6 Acharya et al.

• Correctness (for positive accumulator): For security parameter λ, and
values St = {y1, y2, . . . , yx−1, x, yx+1, . . . , yt} ⊆ X for any t ≥ 1, correctness
of the membership witness requires that

Pr

VerifyMem (acct, x, w

x
t) = 1 :

(state0, acc0)← Gen(1λ)
∀yi ∈ S, (statei, acci)← Add(acci−1, statei−1, yi)

wx
t ← MemWitCreate(acct, statet, x)

 = 1

• Correctness (for negative accumulator): For security parameter λ, and
values {y1, y2, . . . , yt} ⊆ X for any t ≥ 1, correctness of the non-membership
witness requires that for any x ∈ X

Pr

VerifyNonMem (acct, x, w
x
t) = 1 :

(pp, state0, acc0)← Gen(1λ)
∀i ∈ [t− 1], (statei, acci)← Add(acci−1, statei−1, yi)
x ∈ St−1 ⇒ (statet, acct)← Delete(acct−1statet−1, x)

x /∈ St−1 ∧ yt ̸= x⇒ (statet, acct)← Add(acct−1, statet−1, yt)
wx

t ← NonMemWitCreate(acct, statet, x)

= 1

A universal accumulator is correct if it satisfies correctness for both positive
and negative accumulators. In terms of security, an accumulator should satisfy
the soundness property of set binding.

• (Strong) Set binding: For security parameter λ, for all ppt adversaries A
the set-binding property with respect to membership requires that for every
x ∈ X

Pr

VerifyMem(acct, x, w

x
t) = 1 ∧

VerifyNonMem(acct, x, w
x
t) = 1 :

(pp, state0, acc0)← Gen(1λ)
(x, acct, w

x
t , w

x
t)← A(pp, state0, acc0)

 ≤ negl(λ),

Both notions have a natural intuitive appeal. Correctness requires that for
every element in (resp. not in) the accumulator, an honest prover can provide
a correct witness of membership (resp. non-membership). Soundness says that,
with all but negligible probability, a dishonest prover must not be able to simul-
taneously provide a membership and a non-membership witness for the same
value.

For comparison, we also show the more standard soundness assumption used
in prior constructions of universal accumulators, which we refer to as weak set
binding. The main difference is that weak binding restricts the adversary to
interacting with the accumulator via oracles, hence we may assume that the
accumulator is constructed honestly according to the protocol.

Universal Vector Commitments 7

(Weak) Set binding: For security parameter λ and accumulated set At,
for all ppt adversaries A the set-binding property with respect to membership
requires that for every x ∈ X

Pr

(VerifyMem(acct, x, w

x
t) = 1 ∧ x ̸∈ St) ∨

(VerifyNonMem(acct, x, w
x
t) = 1 ∧ x ∈ St) :

(pp, state0, acc0)← Gen(1λ)
(x, St, w

x
t)← AAdd,Delete(pp, state0, acc0)

 ≤ negl(λ),

2.3 Cuckoo hashing

Let hi : U → {1+(i−1) · ℓ, . . . , ℓ+(i−1) · ℓ} for i ∈ [m] be hash functions
associated with table T, such that |T| = mℓ.

• insert(x,T)
1. If lookup(x) ̸= ⊥, do nothing and return T.
2. For i = 1 to m do:

- If T [hi(x)] = ∅, set T [hi(x)]← x and return T.
- Otherwise, swap x↔ T [hi(x)].

3. If x ̸= ∅, call insert(x,T).
4. Return T.

• delete(x,T)
1. For i ∈ [m], set T [hi(x)]← ∅ if T [hi(x)] = x.
2. Return T.

• lookup(x,T)
1. Set pos← ⊥.
2. For i ∈ [m], set pos← hi(x) if T [hi(x)] = x.
3. Return pos.

Fig. 2. Cuckoo hashing

Cuckoo hashing [RP04] is a type of open-addressing technique that gives a
dictionary with worst-case constant lookup and deletion, and expected amortized
constant-time insertion operations. The main idea is to maintain multiple hash-
tables, each keyed by a different hash function. A value is inserted by keying
into the first table and bumping any colliding value into its keyed position in the
next table. This process must be repeated for every collision, until the values
stabilize. As a value can only be one of m positions, it follows that both deletion
and lookup operations can be performed in constant time. Some additional care
is necessary with insertion as the process can fail to stabilize. This runaway
condition occurs when a particular value revisits its original position at the
beginning of the current process. The resolution to this issue is to simply stash
the orphaned value. This gives an expected amortized constant run-time for
insertion. We now formally describe this construction, and direct the reader to
the original paper [RP04] for a thorough analysis.

8 Acharya et al.

A cuckoo hash comprises of a hash table, T ∈ Umℓ. With each chunk of length
ℓ, there is an associated hash function hi : U → {1+(i−1) · ℓ, . . . , ℓ+(i−1) · ℓ}.
For any key x ∈ X ⊆ U we have that x is stored in at most one position hi(x).

Remark 1. The recent work of Yeo [Yeo23] proposes a more direct cryptographic
treatment of cuckoo hashing with the goal of achieving negligible construction
failure probability — ie., the probability that a set of n elements can not be added
into the hash table according to a randomly sampled hash function. While we
do not formally state Yeo’s result here, we find that it is readily applicable to
our work.

3 Universal Vector Commitments

The definition of an universal vector commitment scheme, in addition to the
usual algorithms, consists of algorithms to prove and verify non-membership.
Specifically, the ProveNonMembership algorithm takes in a commitment value
com and an element x and proves that x does not belong to any component of
the vector x that corresponds to the commitment com. Formally, we have the
following definition:

Definition 3. We say a vector commitment scheme is universal if it includes
additional algorithms ProveNonMembership,VerifyNonMembership described be-
low:

• ProveNonMembership(com, x, aux) → πx. Takes as input a commitment
value com, an element x ∈M, and auxiliary information aux and outputs a
proof πx that x is not an element of vector x whose commitment is com.

• VerifyNonMembership(com, x, πx) → {0, 1}. Takes as input a commitment
value com, an element x ∈M, and a non-membership proof πx and outputs
1 if πx is a valid proof for the fact that x is not an element of vector x whose
commitment is com, and 0 otherwise.

The algorithms above have the following properties:

• Correctness (for non-membership): For security parameter λ, any input
vector x = {x1, x2, . . . , xn} ∈ Mn, and an x ∈ M but x ̸∈ {x1, . . . , xn}, a
vector commitment scheme with non-membership satisfies non-membership
correctness if:

Pr

VerifyNonMembership(com, x, πx) = 1 :

pp← Setup(1λ, 1n)
com← Commit(x)

πx ← ProveNonMembership(com, x, aux)

 ≥ 1− negl(λ).

Universal Vector Commitments 9

• Soundness (element binding): For security parameter λ, for all x ∈ M,
and for all ppt adversaries A, a vector commitment scheme has element
binding if:

Pr

Verify(com, i, x, π) ∧
VerifyNonMembership(com, x, π) = 1 :

pp← Setup(1λ)
com, x, i, π, π ← A(pp)

 ≤ negl(λ).

4 Universal Vector Commitments from Merkle Trees

We now describe our Merkle tree based construction with non-membership proofs
over a totally ordered message space M. This construction closely follows the
“key accumulator” of [GV20], re-written using the UVC syntax. Our main ob-
servation here is that this key accumulator quite readily gives an efficient vector
commitment with non-membership. As previously stated, this construction is
space-optimal among Merkle tree-based approaches since it does not require
leaves with null values for proving exclusion. Instead, non-membership of a
value x is demonstrated by proving that two committed values xlo, xhi such
that xlo < x < xhi are adjacent in the tree4. Thus, this construction gives a
viable alternative for size and space efficient proofs of exclusion using Merkle
commitments.

4.1 Construction

Let H : D → {0, 1}λ be a CRHF over some domain D. We define a vector com-
mitment scheme with non-membership ΠMT

VCNM = (Setup,Commit,Open,Verify,
ProveNonMembership,VerifyNonMembership) over message spaceM as follows:

• Commit
(
x =

[
x1 · · · xn

])
→ com. It creates a Merkle commitment to x

such that each leaf node, nodei := (0||0λ||xi||0λ) and each interior node,
nodel,r := (1||H(nodel)||Γ ||H(noder)) where nodel (resp. noder) is the node
to the left (resp. right) of nodel,r and Γ ∈M is the greatest value contained
in (the leaf of) its left subtree5. It returns the root node root =: com as the
commitment.

• Open(com, i, xi) → π. For j ∈ {i − 1, i, i + 1}, it parses the jth leaf node,
nodej as (0||0λ||x′

j ||0λ). If x′
i ̸= xi, it outputs ⊥ and continues otherwise. It

then outputs π := (pathi−1, pathi, pathi+1) where each pathj consists of the
collection of nodes from nodej = nodej to root.

• Verify(com, xi, i, π) → {0, 1}. It first parses π as a set of three path collec-
tions. Then, for each j ∈ [3], it parses pathj as {nodej,1, nodej,2, . . . , nodej,dj}
for tree depth dj (thus nodej,dj

≡ nodej), and performs two types of checks:

4 For soundness, we must also show that the leaves are stored in sorted order.
5 This induces a binary search tree over the interior nodes.

10 Acharya et al.

(i) Path correctness. It checks that nodej,1 = root. Next, each node nodej,k
is in turn interpreted as (bj,k||lj,k||Γj,k||rj,k). For each 1 < k < dj , it
checks whether nodej,k+1 is a left or right child of its parent, i.e., whether
H(nodej,k+1) = lj,k or rj,k. If it is a left (resp. right) child it checks that
Γj,k′ ≤ Γj,k (resp. Γj,k′ ≥ Γj,k) for all k

′ > k. For each k < dj , it checks
that bj,k = 1 and conversely that that bj,dj

= 0.
(ii) Adjacency check. Firstly, it checks that Γ1,d1

< Γ2,d2
= xi < Γ3,d3

.
Let κ be the largest common prefix of the three paths, i.e., node1,k =
node2,k = node3,k for all k ≤ κ. It checks that Γ1,κ = Γ1,d1 , and that
l1,κ = H(node1,κ+1), and r1,κ = H(node3,κ+1). Finally, letting h2 :=
H(node2,κ+1), for all k > κ, if h2 = r1,κ it checks that r1,k = H(node1,k+1),
l2,k = H(node2,k+1) and r2,d2−1 = H(node3,d3

); otherwise if h2 = l1,κ
it checks that r2,k = H(node2,k+1), l3,k = H(node3,k+1) and l2,d2−1 =
H(node1,d1)

6.
If any of the checks fails, it outputs 0. Otherwise it outputs 1.

• ProveNonMembership(com, x)→ πx. It parses every leaf nodei as
(0||0λ||xi|0λ). It then performs a binary search on the xi’s, if the value x is
found, it outputs ⊥ and continues otherwise. Via the aforementioned binary
search, it finds leaf nodes nodelo and nodehi such that nodelo (resp. nodehi)
contains the greatest (resp. smallest) value smaller (resp. greater) than x. It
then outputs π := (pathlo, pathhi) where each pathj consists of the collection
of nodes from nodej to root.

• VerifyNonMembership(com, x, π)→ {0, 1}. It first parses π as a set of two
path collections. Then, for each j ∈ [2], it parses pathj as {nodej,1, nodej,2,
. . . , nodej,dj

} for tree depth dj (thus nodej,dj
≡ nodej), and performs two

types of checks:
(i) Path correctness. It checks that nodej,1 = root. Next, each node nodej,k

is in turn interpreted as (bj,k||lj,k||Γj,k||rj,k). For each 1 < k < dj , it
checks whether nodej,k+1 is a left or right child of its parent, i.e., whether
H(nodej,k) = lj,k+1 or rj,k+1. If it is a left (resp. right) child it checks
that Γj,k ≤ Γj,k+1 (resp. Γj,k ≥ Γj,k+1). For each k < dj , it checks that
bj,k = 1 and conversely that that bj,dj

= 0.
(ii) Adjacency check. Firstly, it checks that Γ1,d1

< x < Γ3,d3
. Let κ be the

largest common prefix of the two paths, i.e., node1,k = node2,k for all
k ≤ κ. Check that Γ1,κ = Γ1,d1 , and that l1,κ = H(node1,κ+1), and r1,κ =
H(node2,κ+1). Finally, for all k > κ, it checks that r1,k = H(node1,k+1)
and l2,k = H(node2,k+1)

7.
If any of the checks fails, it outputs 0. Otherwise it outputs 1.

Remark 2. Verification of (non-)membership can be easily extended for instances
where one of the paths is empty (this occurs at the end nodes). Without loss of

6 This checks that if the middle path is to the right of node·,κ, then the first path is
comprised of nodes going rightward, the second path is comprised of nodes going
leftward and the third path ends in a node to the immediate right of the middle
node. This is similarly extended to the case when the middle path is to the left of
node·,κ

7 This checks whether the first path is comprised of nodes going rightward, and the
second path is comprised of nodes going leftward.

Universal Vector Commitments 11

generality, assume that the left path, pathi−1) (resp. pathlo) is empty. Then, the
membership (resp. non-membership) verifier first performs the path correctness
check for the non-empty path(s). It then checks that Γ2,d2 = xi < Γ3,d3 (resp.
x < Γ3,d3) and also performs the adjacency check for node2 and node3. Lastly,
the verifier must ensure that node2 (resp. nodehi) holds the smallest value in the
tree by checking that every node along the path to the root is a left child of its
parent. It outputs 0 if any of the checks fail, and 1 otherwise.

Security. Below, we present our main theorems concerning the security of Con-
struction 4.1.

Theorem 1. Let H be a collision-resistant hash function, then ΠMT
VCNM = (Setup,

Commit, Open, Verify, ProveNonMembership, VerifyNonMembership), constructed
as in Construction 4.1 is position binding.

Proof. If an adversary A, given the public parameters of the protocol, outputs
(com, x, y, i, π, π) such that x ̸= y and

Verify(com, x, i, π) = Verify(com, y, i, π) = 1

for some i ∈ [n], then somewhere along the paths to x and y, consider two

distinct nodes node
(x)
i,k and node

(y)
i,k such that node

(x)
i,k−1 = node

(y)
i,k−1. Clearly, such

a pair of nodes must exist since otherwise root(x) ̸= root(y). We can thus define
adversary ACRHF that uses A to break collision-resistance of H. Specifically, it

finds two such nodes, ν0 := node
(x)
i,k and ν1 := node

(y)
i,k and returns them. Since

node
(x)
i,k−1 = node

(y)
i,k−1, it follows that H(ν0) = H(ν1). □

Theorem 2. ΠMT
VCNM = (Setup, Commit, Open, Verify, ProveNonMembership,

VerifyNonMembership), constructed as in Construction 4.1 is element binding.

Proof. This essentially follows from the path correctness and adjacency check of
the membership and non-membership proofs. Concretely, suppose an adversary
A, given the public parameters of the protocol, outputs (com, x, i, π, π) such that

Verify(com, i, x, π) = VerifyNonMembership(com, x, π) = 1

for some i ∈ [n]. Then, one of two cases must hold:

• Case I. (x ∈ x) : In this case A must find two adjacent leaf nodes
node−1, node+1 in the tree such that x−1 < x < x+1 for a valid proof of
non-membership. However, if such a pair of values existed then either the
adjacency check fails during membership verification, or the leafs are not in
sorted order. In the latter case, the path correctness condition is violated,
as the Γ values will violate the total order over the induced binary search
tree on the interior nodes. Thus if A is able to find such a pair of nodes,
membership verification will fail.

12 Acharya et al.

• Case II. (x /∈ x) : In this case, A simply can not produce a valid middle
path such that Γ2,d2

= x. Thus it can not produce a successful proof of
membership.

Thus we conclude that such an adversary A can not exist. □

It follows that Construction 4.1 is a secure vector commitment scheme with
non-membership.

Efficiency analysis. Assuming the size of the message space, |M| = 2λ, the
total amount of storage needed to hold the full tree is O(nλ) which is asymp-
totically optimal. Further, both membership and non-membership proofs are
of size O(log n). Verification for a proof of (non-)membership requires checking
the correctness conditions for all O(log n) nodes, as well as adjacency conditions
between pairs of paths in time O(log n). The time to verify is thus also O(log n).

5 Universal Vector Commitments from Universal
Accumulators

We now describe our construction of an universal vector commitment, assum-
ing a universal accumulator and a vector commitment scheme without non-
membership. We present the construction below.

The main idea is straightforward — the commitment to a vector of values
according to ΠGen

UVC consists of, both, a commitment according to ΠVC as well as
the accumulated value of x according to ΠUA. The opening of a commitment
for some value xi ∈ x requires opening it to the position i and demonstrating
that xi is in the accumulated set. For non-membership of a value, the committer
simply provides a proof that the value is not in the accumulated set. Intuitively,
this scheme has non-membership soundness as the set-binding of the underlying
accumulator ensures that a dishonest committer cannot simultaneously open a
commitment to a value and also disprove that it was accumulated.

5.1 Construction

Let ΠUA be a universal accumulator scheme with strong set binding and ΠVC

a vector commitment scheme with strong position binding. We define a vector
commitment scheme with non-membershipΠGen

UVC = (Setup,Commit,Open,Verify,
ProveNonMembership,VerifyNonMembership) as follows:

• Setup(1λ, 1n) → pp. It obtains the parameters for the vector commit-
ment as ppVC ← VC.Setup(1λ, 1n), and initialises the universal accumulator,
(state0, acc0) ← UA.Gen(1λ). It outputs the protocol’s public parameters
pp := (ppVC, state0, acc0).

Universal Vector Commitments 13

• Commit
(
x =

[
x1 · · · xn

]
, aux = (state0, acc0)

)
→ com. It creates a com-

mitment to the vector x as com′ ← VC.Commit(ppVC,x). Then, for each
i ∈ [n], it accumulates xi as (statei, acci) ← UA.Add(acci−1, statei−1, xi).
Finally it returns com := (com′, accn) as the full commitment and auxiliary
value aux := staten.

• Open(com, i, xi, aux = staten) → π. It parses com as (com′, accn). It then
runs the vector commitment opening algorithm πVC ← VC.Open(com′, i, xi)
as well as the accumulator membership algorithm πUA ← UA.MemWitCreate(
accn, staten, xi). It returns the opening full proof π := (πVC, πUA).

• Verify(com, xi, i, π)→ {0, 1}. It parses π as (πVC, πUA), and com as (com′, accn).
It returns the outcome of VC.Verify(com′, i, xi, πVC) ∧ UA.VerifyMem(accn, xi, πUA).

• ProveNonMembership(com, x, aux) → πx. It parses com as (com′, accn). It
then creates an accumulator non-membership proof πx ← UA.NonMemWitCreate(
accn, staten, x) and outputs it.

• VerifyNonMembership(com, x, πx) → {0, 1}. It parses π as (πVC, πUA), and
com as (com′, accn). It returns the outcome of UA.VerifyNonMem(accn, x, πx).

Security. Below, we present our main theorems concerning the security of Con-
struction 5.1.

Theorem 3. Let ΠUA be a universal accumulator and ΠVC be a vector commit-
ment, then
ΠGen

UVC = (Setup, Commit, Open, Verify, ProveNonMembership, VerifyNonMembership),
constructed as in Construction 5.1 is position binding.

Proof. If an adversary A, given the public parameters of the protocol, outputs
(com, x, y, i, π, π) such that x ̸= y and

Verify(com, x, i, π) = Verify(com, y, i, π) = 1

for some i ∈ [n], then an adversary AVC can use A to break the position
binding property of ΠVC, since for the above equality to hold, we must have that

VC.Verify(com0, x, i, π) = VC.Verify(com0, y, i, π) = 1 . □

Theorem 4. Let ΠUA be a universal accumulator and ΠVC be a vector commit-
ment, then
ΠGen

UVC = (Setup, Commit, Open, Verify, ProveNonMembership, VerifyNonMembership),
constructed as in Construction 5.1 is element binding.

Proof. Suppose an adversary A, given the public parameters of the protocol,
outputs (com, x, i, π, π) such that

Verify(com, i, x, π) = VerifyNonMembership(com, x, π) = 1

for some i ∈ [n], then an adversary AUA can use A to break set binding
property of ΠUA, since we must have that

UA.VerifyMem(com1, x, π) = UA.VerifyNonMem(com1, x, π) . □

14 Acharya et al.

Thus, given a universal accumulator ΠUA, and a vector commitment ΠVC,
Construction 5.1 is a secure vector commitment scheme with non-membership.

6 Universal Accumulators from Vector Commitments

We give a generic technique for obtaining a universal accumulator from a vector
commitment scheme using cuckoo hashing. At a high level, the idea is to use a
vector commitment on a cuckoo hash table containing elements from the set S
being accumulated. A proof of membership for some element x ∈ S is then a
commitment opening to the position of x in the cuckoo hash table, and a proof
of non-membership for some element x /∈ S is a commitment opening to all
positions that x could have been in the cuckoo hash table.

The resulting universal accumulator has the same membership proof size
as the underlying vector commitment scheme while non-membership proofs are
a factor of m larger (typically a small constant). Similarly, both prover and
verifier computation is asymptotically the same as that of the vector commitment
scheme. Notably, if the underlying vector commitment scheme supports sub-
vector openings or batch proofs, the membership proofs for the accumulator
scheme can also trivially be aggregated or batched respectively. Unfortunately,
this does not translate to non-membership proofs as the proofs grow linearly
with the number of aggregated (resp. batched) proofs.

6.1 Construction

Let ΠVC be a vector commitment scheme over the message spaceM, let H : D →
M\ {0} be a CRHF over some domain D, and let H = {hi :M\ {0} → {1+
(i − 1) · ℓ, . . . , ℓ + (i − 1) · ℓ} | ∀i ∈ [m]} be a family of public hash functions
associated with a cuckoo hash ΠCH = (lookup, insert, delete). Then we define an
updateable universal accumulator scheme as follows:

• Setup(1λ, 1ℓ, 1m) → pp. It sets up the public parameters for the pp ←
VC.Setup(1λ) and outputs pp. All algorithms below take pp as input but we
omit it for notational clarity.

• Gen(1λ)→ (state0, acc0). It creates an empty cuckoo table T0 := 0ℓ·m and
defines the set, S0 := ∅, to be accumulated. It creates the initial commitment
acc0 ← VC.Commit(T0), and outputs the initial state state0 := (T0, S0) and
acc0.

• Add(acct, statet, x)→ statet+1, acct+1. It updates St+1 := St∪{x}, Tt+1 :=
CH.insert(H(x),Tt) and sets the new state statet+1 := (St+1,Tt+1). Finally
it computes the new accumulation value acct+1 ← VC.Commit(Tt+1) and
outputs statet+1, acct+1.

• Delete(acct, statet, x) → statet+1, acct+1. It updates St+1 := St \ {x},
Tt+1 := CH.delete(H(x),Tt) and sets the new state statet+1 := (St+1,Tt+1).
Finally it computes the new accumulation value acct+1 ← VC.Commit(Tt+1)
and outputs statet+1, acct+1.

Universal Vector Commitments 15

• MemWitCreate(acct, statet, x)→ wx. If x ̸∈ St, it sets wx to ⊥ and returns.
Otherwise, it looks up the index i← CH.lookup(H(x),Tt) for x in the Cuckoo
Hash, and sets wx ← VC.Open(pp, acct, i) and outputs it.

• VerifyMem(acct, x, w
x
t)→ {0, 1}. It returns the outcome of∨

i∈[m]

VC.Verify(pp, acct, hi(H(x)),H(x), wx) .

• NonMemWitCreate(acct, statet, x) → wx. If x ∈ St, it sets wx to ⊥ and
returns. Otherwise, it sets

wx :=
⋃

i∈[m]

(Tt[hi(H(x))],VC.Open(pp, acct, hi(H(x)))) .

• VerifyNonMem(acct, x, wx) → {0, 1}. It parses wx as {(yi, πi)
m
i=1}. and

returns the outcome of∧
i∈[m]

VC.Verify(pp, acct, hi(H(x)), yi, πi) = 1 ∧ H(x) ̸= yi .

It should be noted that in our universal accumulator construction, we do not
formally describe a mechanism for updating an existing proof for some element.
Instead, proof updates are done by re-running the witness creation algorithms
on the new accumulator value. While we do not rule it out entirely, an efficient
proof update is nonetheless challenging in our generic construction for the simple
reason that when an element is added into the set, a new commitment to the
updated table must be generated and every opening proof is now with respect
to this new commitment.

Security. Below, we present our main theorems concerning the security of Con-
struction 6.1. Due to space constraints, we provide the proofs in Appendix ??.

Theorem 5. Let ΠVC= (Setup, Commit, Open, Verify) is a vector commitment
and H be a family of hash functions, then Π = (Gen, Add, Delete, MemWitCreate,
VerifyMem, NonMemWitCreate, VerifyNonMem) constructed as given in Con-
struction 6.1 is a universal accumulator.

Proof. As a lemma, we first argue that the values inserted and deleted from the
cuckoo table Ti at each time i ∈ [t] form a one-to-one correspondence with the
elements added and removed from the accumulated set Si at the same time. If
not, i.e. we have some i, j ∈ [t] such that yi ̸= yj yet H(yi) = H(yj), then we
have a break in the CRHF.

To show the correctness of VerifyMem, suppose the accumulator currently
represents state St, and x ∈ St. This implies there exists an j ∈ [t] such that
the operation performed was Add(pp, accj−1, statej−1, x) and for any k ∈ [t] such
that the operation was Delete(pp, acck−1, statek−1, x), k < j. Thus H(x) has been
inserted into the CH table and not been removed. Recall that once an element is

16 Acharya et al.

inserted into a cuckoo table, it always exists at a location defined by its image
under some hash hi, with future operations only swapping which of the m hashes
it uses. This implies there exists some i ∈ [m] such that position i in Tt is H(x),
which is the value returned by CH.lookup(H(x),Tt). By the correctness of ΠVC,
VC.Verify(pp, acct, hi(H(x)),H(x), wx) = 1 with probability 1−negl(λ). Hence by
union bound VerMem(pp,acct,x, MemWitCreate(pp,acct,statet,x)) accepts with
probability
bounded below by 1− negl(λ).

Our proof of correctness for VerifyNonMem proceeds similarly: x ̸∈ S im-
plies there is no i, j such that position j of Tt = hi(H(x)). By the correct-
ness of VC.Verify, VC.Verify(pp, acct, hi(H(x)), yi, πi) = 1 with all but negligible
probability for each i ∈ [m], thus VerifyNonMem accepts with all but negligible
probability.

We now argue our accumulator is strong set binding. Suppose an adver-
sary is able to provide x, acct, w

x
t , and wx

t which breaks the set binding prop-
erty. From the correctness of VerifyMem, there exists an i ∈ [m] such that
VC.Verify(pp, acct, hi(H(x)),H(x), w

x
t) = 1. From the correctness of VerifyNonMem,

wx
t includes (yi, πi) such that VC.Verify(pp, acct, hi(H(x)), yi, πi) = 1 and yi ̸=

H(x). This violates the position binding property of ΠVC. □

Efficiency analysis. One can easily verify that our public parameter and mem-
bership proof sizes are exactly the same as the parameter and proof size of the
vector commitment scheme over a vector of m · ℓ elements. Note that since each
element is from the image of a CRHF H(·), the size |M| of each element is O(λ)
rather than O(log |D|). As for our nonmembership proof, we output m copies of
a vector commitment opening along with elements from the VC message space,
hence the size is O(m ·V), where V is the size of a single VC opening proof over
Mmℓ. Thus, we achieve our claimed domain-independence.

By applying the result of [Yeo23], we can build a cuckoo table with negligible
failure probability (and hence an accumulator with all but negligible correctness)

using m = O
(√

λ
log S′

)
hashes, each containing ℓ = O(S′) cells. In practice, it

is sufficient to set m to some small constant, e.g. m = 2. However, this leads to
failure probability 1

poly(λ) ; by including a definition of the cuckoo hash functions

along with the accumulator rather than as a one-time setup, we may use the
standard strategy of resampling the hash functions and creating a new table
whenever a failure occurs. With this we achieve the desired correctness proba-
bility at the cost of larger (expected) runtime and O(λ) additional accumulator
size. Note that allowing the accumulator to use (potentially maliciously-chosen)
hash functions does not break the security of the accumulator, as strong sound-
ness only relies on the hashes being public deterministic functions. At worst,
adversarially-chosen cuckoo hashes reduces the efficiency of insert and delete
operations.

Optimizing for small domains. Our above construction and analysis assumes
that logD ≫ λ. In smaller domains where this is not the case, it is concretely

Universal Vector Commitments 17

more efficient to omit the CRHF and instead operate directly onM = D. More
precisely, we define our cuckoo table T as a vector over D and during insert,
delete, and lookup we use x as input rather than H(x). This adds a factor
of logD to our accumulator and proof sizes, leading to the results claimed in
Table 2.

6.2 Instantiations

Scheme Setup Assumption Binding |acc| |wx| |wx|
[YAY+18] Public SIS Weak logD logS logD logS logD
[dCP23] Public SIS Strong logD log2 S′ logD log2 S′ logD
[GV20] Public SIS Strong logD logS logD logS logD

Our Claim (1) Public SIS Strong logD logS′ logD logS′ logD
Table 2. Comparison of Lattice-based universal accumulator schemes. For brevity we
omit terms derived from the security parameter λ.

By appropriately instantiating our generic construction, we show that one
can obtain an efficient universal accumulators from SIS and standard RSA.

To briefly summarize the VC of [LLNW16]: it is a Merkle Tree using a hash
function derived from a public random matrix, with an additional step at each
layer to ensure the output is “small” in terms of the SIS problem. We may make
our construction dynamic by adding the improvements of [LNWX17], which
note that an update to one element of the input only requires updates to proofs
holding nodes on that element’s path to the root. The output of the hash (and
thus the size of the accumulator) is a single element from the domain, and an
opening proof is logS domain elements. Verification consists of recomputing the
root hash from the opened element and the siblings along the path to the root.
For our instantiation, our domain is fixed-size due to the CRHF. The input size
is the total number of cells in the cuckoo table rather than the total number of
accumulated elements, i.e. O(mℓ) = O(S′) instead of O(S). So,

Claim 1. Together with the vector commitment of [LLNW16] (or [LNWX17])
based on the SIS assumption, we have a universal accumulator based on SIS.

In Table 2 we compare our instantiations with the state-of-the-art lattice-
based universal accumulators [YAY+18, dCP23, GV20]. Our instantiations have
competitive accumulated values and proof sizes for both membership and non-
membership.

Now, to briefly summarize the VC of [CF13]: given a large semiprime modulus
N we have n bases s1 to sn and exponents e1 to en corresponding to the indices
in our VC. The commitment stores values mi ∈M as sµi

i , and the commitment
c is the product of these values. An opening proof for µi is the ethi root mod
N of πi = Πj ̸=is

µj

j , yielding the simple verification algorithm c = sµi

i · π
ei
i . The

construction supports batch updates for both commitments and proofs for the
same cost as one update, thus our instantiation can easily support updating

18 Acharya et al.

all changes to the cuckoo table as a result from a single add or delete with no
additional overhead. So,

Claim 2. Together with the vector commitment of [CF13] based on the standard
RSA assumption, we have a universal accumulator based on standard RSA.

6.3 Generically Upgrading to VCs to UVCs

Finally, we observe that there is a compiler from any plain vector commitment
scheme to an universal vector commitment scheme:

Claim 3. Let ΠVC be a vector commitment scheme, and let ΠUA be a universal
accumulator built using ΠVC using Construction 6.1. Then the Construction 5.1
using ΠVC and ΠUA is a secure universal vector commitment scheme.

This construction’s opening proof consists of a ΠVC opening proof plus a ΠUA

membership proof, which as discussed in section 6 is itself a single ΠVC opening
proof. The non-membership proof is a single ΠUA non-membership proof, which
as discussed in section 6 is m ΠVC opening proofs, and m = 2 for typical pa-
rameters. Thus our compiler adds non-membership proofs with just a factor of
2 overhead on the original commitment scheme for both proof types.

7 Conclusion

We proposed the notion of universal vector commitment schemes that extend
plain vector commitments with proofs of non-membership that allow one to prove
that a value is not at any position of the committed vector. We also presented
two constructions for universal vector commitments, the former of which offers
practical efficiency while the latter offers some theoretical insights into our new
primitive. We believe that the ability for vector commitments to provide non-
membership proofs presents exciting practical opportunities for building more
accountable systems. In particular, we gave the example of proofs of exclusion
in blockchain-based transactions [Kon19], as well as in increasing accountability
in distributed file-storage system by extending the usual proofs of retrievabil-
ity [JK07, Fis19] to also include proofs of exclusion of illicit files.

We also presented a generic construction for universal accumulators using a
vector commitment and a cuckoo hash. Importantly, we pointed out that this
technique is broadly applicable to not just universal accumulators, but to many
other related primitives including universal vector commitments.

Bibliography

[AR20] Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value
commitments for blockchains and beyond. In Advances in Cryptol-
ogy – ASIACRYPT 2020: 26th International Conference on the The-
ory and Application of Cryptology and Information Security, Dae-
jeon, South Korea, December 7–11, 2020, Proceedings, Part III, page
839–869, Berlin, Heidelberg, 2020. Springer-Verlag.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching tech-
niques for accumulators with applications to IOPs and stateless
blockchains. In Alexandra Boldyreva and Daniele Micciancio, edi-
tors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 561–586,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna
Lysyanskaya, Leonid Reyzin, Kai Samelin, and Sophia Yakoubov.
Accumulators with applications to anonymity-preserving revocation.
In 2017 IEEE European Symposium on Security and Privacy (Eu-
roSP), pages 301–315, 2017.

[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: A de-
centralized alternative to digital signatures. In Tor Helleseth, edi-
tor, Advances in Cryptology — EUROCRYPT ’93, pages 274–285.
Springer Berlin Heidelberg, 1994.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and
fail-stop signature schemes without trees. In Walter Fumy, edi-
tor, Advances in Cryptology — EUROCRYPT ’97, pages 480–494.
Springer Berlin Heidelberg, 1997.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their
applications. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public-Key Cryptography – PKC 2013, pages 55–72, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 61–76, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[dCP23] Leo de Castro and Chris Peikert. Functional commitments for all
functions, with transparent setup and from sis. In Advances in Cryp-
tology – EUROCRYPT 2023: 42nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part III, page 287–320,
Berlin, Heidelberg, 2023. Springer-Verlag.

[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse
merkle trees. In Billy Bob Brumley and Juha Röning, editors, Se-

20 Acharya et al.

cure IT Systems, pages 199–215, Cham, 2016. Springer International
Publishing.

[Fis19] Ben Fisch. Tight proofs of space and replication. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 324–348, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany.

[FKP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo com-
mitments: Registration-based encryption and key-value map com-
mitments for large spaces. In Jian Guo and Ron Steinfeld, editors,
Advances in Cryptology – ASIACRYPT 2023, pages 166–200, Sin-
gapore, 2023. Springer Nature Singapore.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and
Ahmadreza Rahimi. Registration-based encryption: Removing
private-key generator from IBE. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages
689–718, Panaji, India, November 11–14, 2018. Springer, Heidelberg,
Germany.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-
based encryption. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 621–
651, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Hei-
delberg, Germany.

[JK07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for
large files. In Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson, editors, ACM CCS 2007, pages 584–597, Alexan-
dria, Virginia, USA, October 28–31, 2007. ACM Press.

[Kon19] Georgios Konstantopoulos. Plasma cash: Towards more efficient
plasma constructions, 2019.

[LLNW16] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: Logarithmic-
size ring signatures and group signatures without trapdoors. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptol-
ogy – EUROCRYPT 2016, pages 1–31, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with
efficient nonmembership proofs. In Jonathan Katz and Moti Yung,
editors, Applied Cryptography and Network Security, pages 253–269,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[LNWX17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-
based group signatures: Achieving full dynamicity with ease. In Di-
eter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, Applied
Cryptography and Network Security, pages 293–312, Cham, 2017.
Springer International Publishing.

[RP04] Flemming Friche Rodler Rasmus Pagh. Cuckoo hashing. Journal of
Algorithms, 51:122–144, 2004.

Universal Vector Commitments 21

[RY16] Leonid Reyzin and Sophia Yakoubov. Efficient asynchronous accu-
mulators for distributed pki. In Vassilis Zikas and Roberto De Prisco,
editors, Security and Cryptography for Networks, pages 292–309,
Cham, 2016. Springer International Publishing.

[SMP23] Daria Schumm, Rahma Mukta, and Hye-young Paik. Efficient cre-
dential revocation using cryptographic accumulators. In 2023 IEEE
International Conference on Decentralized Applications and Infras-
tructures (DAPPS), pages 127–134, 2023.

[TBP+19] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Char-
alampos Papamanthou, Nikos Triandopoulos, and Srinivas Devadas.
Transparency logs via append-only authenticated dictionaries. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 1299–1316. ACM, 2019.

[YAY+18] Zuoxia Yu, Man Ho Au, Rupeng Yang, Junzuo Lai, and Qiuliang
Xu. Lattice-based universal accumulator with nonmembership ar-
guments. In Willy Susilo and Guomin Yang, editors, Information
Security and Privacy, pages 502–519, Cham, 2018. Springer Inter-
national Publishing.

[Yeo23] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parame-
ters, robustness and applications. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,
pages 197–230, Cham, 2023. Springer Nature Switzerland.

[ZKP17] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. An
expressive (zero-knowledge) set accumulator. In 2017 IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2017, Paris,
France, April 26-28, 2017, pages 158–173. IEEE, 2017.

22 Acharya et al.

A More Generic Constructions from Cuckoo Hashing

As we previously asserted — the vector commitment and cuckoo hashing ab-
straction turns out to be quite useful for building many related primitives. This
is also summarized in the figure below.

UA
VC

UVC

(6.1)

KVaC

RBE

(A.2)

CH

[BBF19]

+

[FKP23]

(5.1)

WE+
[FKP23]

[FKP23]

vRBE

(A.1),

[AR20]

Fig. 3. Extended relationship between VCs, UAs, KVaCs and (v)RBEs.

In this section, we outline high-level constructions for Key-Value Commit-
ments [AR20] and Verifiable Registration-based Encryption Scheme [GV20].
Since these are essentially observations on exiting work, we do not give formal
definitions of these objects and instead direct the reader to the cited literature.

A.1 Dynamic Key-Value Commitments

The universal accumulator construction in Construction 6.1 can be generalized
further to obtain commitments for key-value maps. In particular, we can once
again leverage the cuckoo hashing technique in a manner identical to Construc-
tion 6.1 while modifying CH.insert to insert a key-value pair x = (k, v) ∈ K × V
according to key k as shown in Figure 4. Then, if all keys are unique, updates can
be performed by changing the value in the appropriate data field and generating
a fresh commitment. The rest of the protocol behaves identically8.

The definition in [AR20] requires that a secure KVaC must satisfy key bind-
ing. Informally it says that it should be infeasible for any polynomially bounded
adversary with oracle access to Add, Delete and Update, to come up with an
honestly generated commitment and either two certificates to different values
under the same key, or a certificate for a value under a key not in the map. We
claim the the above construction satisfies this property.

Claim 4. Let ΠVC be a vector commitment scheme, then the KVaC construction
outlined above is key binding.
8 This is basically also the construction in [FKP23] where they use two VCs to store
k and v separately whereas we store a single (k, v) tuple.

Universal Vector Commitments 23

Let hi : U → {1+(i−1) · ℓ, . . . , ℓ+(i−1) · ℓ} for i ∈ [m] be hash functions
associated with table T, such that |T| = mℓ.

• insert(k, v,T)
1. If lookup(k) ̸= ⊥, do nothing and return T.
2. For i = 1 to m do:

- If T [hi(k)] = ∅, set T [hi(k)]← (k, v) and return T.
- Otherwise, swap (k, v)↔ T [hi(k)].

3. If (k, v) ̸= ∅, call insert(k, v,T).
4. Return h1(k),T.

• delete(k,T)
1. For i ∈ [m], set T [hi(k)]← ∅ if T [hi(k)] = (k, ·).
2. Return T.

• lookup(k,T)
1. Set pos← ⊥.
2. For i ∈ [m], set pos← hi(k) if T [hi(k)] = (k, ·).
3. Return pos.

Fig. 4. Modified cuckoo hashing

Sketch. Note that it is impossible, by construction, for an adversary to come up
with two proofs for different values under the same key k (with respect to some
honestly generated commitment) given it can only perform a single insertion
under any k. Additionally, proving membership of a value under some key that
has not been inserted would amount to breaking position binding of the VC. So
the KVaC is key binding under insertion.

A.2 Verifiable Registration-based Encryption

Registration-based Encryption was introduced by Garg et al. [GHMR18] as an
alternative to Identity-based Encryption wherein a trusted central authority is
responsible for generating the user’s secret. In an RBE, users instead generate
their own keys and register themselves (with their public keys) with a central
authority known as the key curator, who in turn maintains the system state
and its public parameters for all registered users. Thus, an RBE facilitates a
public key infrastructure where parties can send encrypted messages knowing
only each others’ public keys (and identities), and the public parameters of the
system. To decrypt a message, the user must posses the corresponding secret key
and a piece of opening information that is retrievable via the curator. Besides
requiring traditional semantic security for encryption, an RBE scheme must have
compact public parameters, both encryption and decryption should be sublinear
in n, the number of registered users.

Verifiable RBEs were proposed by Goyal and Vusirikala [GV20] to introduce
accountability to the RBE curator. The requirement in a vRBE is that a mali-
cious curator must be able to prove unique registration (resp. non-registration)
for every registered (resp. unregistered) user. This is accomplished with the help
of two algorithms PreProve and PostProve that respectively capture the case of

24 Acharya et al.

proving that a user is not yet registered and that a user has been (uniquely)
registered. While Goyal and Vusirikala give a Merkle Tree based construction
(their curator is essentially what we use in Section 4), it is clear with hindsight
that more generally, verifiability in RBE schemes can be achieved somewhat
generically if the curator uses a UA to store the public keys.

Fiore et al. [FKP23] gave an RBE construction from VC, CH and an RBE
scheme. For security, they additionally require a new primitive called witness
encryption for vector commitments (VCWE). A VCWE encrypts a message using
a VC and a value x at index i in the committed vector. Decryption is performed
via an opening proof for (x, i) with respect to the commitment. The registration
mechanism in their RBE proceeds by inserting the users’ identities into a CH
and committing to it with the VC (notice here the resemblance with our UA
construction). To encrypt a message, a user runs the VCWE with respect to the
receiver’s identity and position in the table. Using the opening proof for their
identity in the CH as the opening information, the receiver is able to decrypt
the ciphertext successfully9.

A straightforward observation is that their registration process is also our
UA construction from Section 6. Importantly for our purposes, this means that
their curator readily gives a vRBE when instantiated as per our Construction
6.1, where the pre- and post-registration proofs are the non-membership and
membership proofs respectively and the soundness of pre- and post-registration
verifiability follow from the soundness of the UA.

9 We have omitted many technical details here as they would be redundant. Please
see [FKP23] for the construction.

	Universal Vector Commitments

