
Isotropic Quadratic Forms, Diophantine Equations
and Digital Signatures

Martin Feussner
Department of Informatics

University of Bergen
Bergen, Norway

martin.feussner@uib.no

Igor Semaev
Department of Informatics

University of Bergen
Bergen, Norway

igor.semaev@uib.no

Abstract—This work introduces DEFI - an efficient hash-
and-sign digital signature scheme based on isotropic quadratic
forms over a commutative ring of characteristic 0. The form is
public, but the construction is a trapdoor that depends on the
scheme’s private key. For polynomial rings over integers and
rings of integers of algebraic number fields, the cryptanalysis is
reducible to solving a quadratic Diophantine equation over the
ring or, equivalently, to solving a system of quadratic Diophantine
equations over rational integers. It is still an open problem
whether quantum computers will have any advantage in solving
Diophantine problems.

Index Terms—digital signatures, isotropic quadratic forms,
Diophantine equations

I. INTRODUCTION

Subset sum problem is usually treated as finding 0, 1-
solutions to a linear Diophantine equation in n variables. More
precisely, given positive integers a1, . . . , an, a it is to decide
whether or not there exist xi in {0, 1} such that

x1a1 + . . .+ xnan = a.

This problem is known to be NP-complete [1]. Obviously, the
subset sum problem is equivalent to solving (deciding) the
system of multivariate quadratic Diophantine equations

x1a1 + . . .+ xnan = a, x2
1 − x1 = 0, . . . , x2

n − xn = 0.

To decide whether or not a more general system of multivariate
quadratic Diophantine equations

f1(x) = 0, . . . , fm(x) = 0, (1)

where x = (x1, . . . , xn) ∈ Zn, and fi ∈ Z[x], and deg fi ≤ 2,
is solvable in integers is therefore at least NP-hard. Finding
explicit integer solutions to (1) is generally difficult. In this
work a new hash-and-sign digital signature scheme called
DEFI is presented. The security of the scheme is based on the
hardness of computing isotropic vectors for quadratic forms
over commutative rings of characteristic 0. For polynomial
rings R over Z and rings of integers of algebraic number
fields the cryptanalysis is reducible to solving quadratic Dio-
phantine equations over R or equivalently to solving systems
of quadratic Diophantine equations over Z such as (1). For
instance, for Section V parameters forging a signature is
equivalent to solving a quadratic Diophantine equation over

R = Z[X]/(X64+1) in 3 variables or equivalently to solving
a system of m = 64 multivariate quadratic Diophantine
equations over Z in n = 192 variables. Also, there is a
restriction on the solution size.

No modular transforms are used in the digital signature al-
gorithm in this work, all calculations are performed in the ring
of integers. Therefore, the security of the proposed algorithm
does not rely on solving multivariate polynomial equations
over finite fields as with Matsumoto-Imai [2] and Hidden Field
Equations (HFE) [3] cryptosystems and their derivatives. Also,
advances in solving common lattice problems such as Shortest
Vector Problem (SVP) and Closest Vector Problem (CVP) does
not seem to undermine the new scheme, see Sections IV-E and
V below.

Several cryptographic schemes were claimed to be con-
structed upon the hardness of the subset sum problem and
Diophantine equations. The most famous one is the Merkle-
Hellman public key crypto-system, where a super-increasing
vector, the scheme private key, was hidden with a modular
linear transform to get the public key. The scheme was broken
in [4]. Its variations were broken too, see [5] for a survey. Also,
digital signature scheme [6] based on a quadratic congruence
modulo a composite integer and its extensions were broken,
see [7]. A number of key exchange protocols built on the
difficulty of solving general Diophantine equations and finding
equivalence for binary quadratic forms over rational integers
were published in [8] and [9] respectively, see also the
references in those publications. The cryptographic schemes
above differ from the current proposal.

The idea of the new scheme and its cryptanalysis are due
to Semaev, the implementation and all computer experiments
are due to Feussner.

II. ISOTROPIC QUADRATIC FORMS

Suppose R is any commutative ring of characteristic 0
with unity and without zero divisors, a module over Z with
finite or infinite basis α0, α1, . . . , αm−1, For a ∈ R
where a = a0α0 + a1α1 + . . . + am−1αm−1, ai ∈ Z the
function |a| = max0≤i<m |ai| defines a norm on R. Also, if

y = (y1, y2, . . . , yn) ∈ Rn, then we set |y| = max1≤i≤n |yi|.
Let

f(x1, . . . , xn) =
∑

1≤i≤n

ciix
2
i +

∑
1≤i<j≤n

2cijxixj (2)

be a quadratic form over R. Denote x = (x1, . . . , xn), then
f(x) = xTCx, where C ∈ Rn×n is a symmetric (n × n)-
matrix with entries cij ∈ R. The quadratic form is called
isotropic if it may represent 0. That is f(z) = 0 for a non-zero
vector z ∈ Rn; the vector z is called isotropic. The security of
the present digital signature scheme is based on the hardness
of computing isotropic vectors z ∈ Rn for the form f(x).
It is well known that given one solution to the homogeneous
quadratic equation f(x) = 0, it is possible to calculate all
other solutions over R by parametrisation [10]. However, in
the proposed digital signature scheme some entries of the
target isotropic z ∈ Rn are prescribed by the hash value of a
message. That makes the method inefficient for forgeries.

How to create an isotropic quadratic form f(x) over R
is shown in this section below. In Section III, we explain
how to construct an isotropic vector z for f(x). The vector
z is a concatenation of the hash value h of the message
and its signature y. To verify the signature, one checks that
f(z) = 0 in R. When R = Z[X]/(q), where (q) is the
ideal in Z[X] generated by a monic irreducible polynomial
q = q(X) ∈ Z[X], the cryptanalysis of the scheme is
presented in Section IV. Numerical parameters are proposed in
Section V, they provide 128-bit security of the scheme which
corresponds to the NIST security category 1 according to [11].
The performance of the scheme is there provided too.

Let r, s, n be positive integers such that s ≥ 2 and n = r+s.
Let J be a diagonal matrix of size n×n with diagonal entries
±1 as

J = Diag (±1, . . . ,±1,±1),

where both 1 and −1 may occur. Suppose B ∈ Rn×n is a
matrix of size n×n over R and of rank n (the rows of B are
linearly independent over R). It is easy to see that

f(x) = f(x1, . . . , xn) = (Bx)TJ(Bx) = xTCx, (3)

where C = BTJB ∈ Rn×n, is an isotropic quadratic form.
For matrices B specified in Section III isotropic vectors are
easy to calculate.

III. SIGNATURE SCHEME

A. Private Key

Private key of the signature scheme is a matrix B ∈ Rn×n,
constructed with blocks as

sizes r s
r B11 0
s B21 B22

,

where Bij are matrices over R of sizes according to the
definition above and the matrix B22 is invertible in Rs×s. For
efficiency reasons, the entries of B11, B21, B22, B

−1
22 may be

taken of relatively small norms. To construct B22, formulae in
Section III-F may be used.

B. Public Key

Public key of the signature scheme is the matrix C =
BTJB ∈ Rn×n which determines the quadratic form (3).

C. Signature Generation

Let M be a message and h ∈ Rr encodes its hash value.
One may take the entries of h of small norms.

1. Given M , compute h ∈ Rr.
2. Set Z ′ = B11h ∈ Rr. Generate randomly Z ′′ ∈ Rs

such that ZTJZ = 0, where Z = (Z ′|Z ′′) ∈ Rn. See
Section III-G, where the construction is specified for
r = 1, s = 3.

3. Compute y ∈ Rs by

y = B−1
22 (Z ′′ −B21h) .

4. The signature for M is y.
In the variation of the scheme presented in Section V, an
additional parameter δy is used. The generated signature y
is correct if |y| < δy .

D. Signature Verification

Let M,y be a signed message.
1. If y /∈ Rs, then reject. Otherwise, compute h ∈ Rr.
2. Set z = (h|y) ∈ Rn. If

f(z) = zTCz = 0,

then accept the signature, otherwise reject.
In Section V, the signature is rejected if |y| ≥ δy .

E. Verification Proof

Let M,y be a correctly generated signature. For z = (h|y)
we have

B21 h+B22 y = Z ′′

and
Bz =

(
B11 0
B21 B22

)(
h
y

)
=

(
Z ′

Z ′′

)
= Z.

So,
f(z) = zTCz = [Bz]TJ [Bz] = ZTJZ = 0.

F. How to Generate B22

Set
B22 = P1E1P2E2 . . . PkEkF (4)

for randomly generated elementary and permutation matrices
Ei and Pi respectively and a unimodular matrix F ∈ Rs×s

which is easy to invert and hard to guess. The number k is a
parameter, see explicit constructions in Section V. Then

B−1
22 = F−1E−1

k P−1
k E−1

k−1P
−1
k−1 . . . E

−1
1 P−1

1 .

A matrix E ∈ Rs×s is called elementary if E =
Diag(1, . . . , 1) + Vij , 1 ≤ i, j ≤ s, i ̸= j, where Vij ∈ Rs×s

is such that

Vij [u, v] =

{
b ̸= 0 if (u, v) = (i, j),

0 if (u, v) ̸= (i, j).

Then E−1 = Diag(1, . . . , 1) + V ′
ij , where

V ′
ij [u, v] =

{
−b if (u, v) = (i, j)

0 if (u, v) ̸= (i, j).

G. How to Generate Z

Set r = 1, s = 3, n = 4. The construction may be easily
extended to larger parameters. Fix B11 = 1 in the definition
of B and J = Diag(1, 1,−1,−1). Then

1) set Z1 = Z ′ = h. To construct Z ′′ = (Z2, Z3, Z4) ∈ R3

do the following.
2) Take randomly u1, u2 ∈ R such that u2−u2

1u2 = 2v for
some v ∈ R. For instance, one may take u1 = 1 + 2v1
for some v1 ∈ R, then v = −2u2(v1+ v21). Or one may
take u2 = 2v2 for some v2 ∈ R. Then v = v2(1− u2

1).
For efficiency, one may take u1, u2 of relatively small
norms.

3) Set

Z2 = v + u2u
2
1 − Z1u1,

Z3 = v + Z1u1,

Z4 = u1u2 − Z1,

and Z = (Z1, Z2, Z3, Z4).
Therefore,

ZTJZ = Z2
1 + Z2

2 − Z2
3 − Z2

4

= Z2
1 − (u1u2 − Z1)

2 + (v + u2u
2
1 − Z1u1)

2

−(v + Z1u1)
2

= (2Z1 − u1u2)u1u2

−(2v + u2u
2
1)(2Z1u1 − u2u

2
1)

= (2Z1 − u1u2)u1u2 − (2Z1 − u1u2)u1u2

= 0.

IV. CRYPTANALYSIS

The security of the scheme depends on the basis ring R not
counting the parameters r, s, n. Let R = Z[X]/(q), where
(q) is the ideal in Z[X] generated by a monic irreducible
polynomial q = q(X) of degree m with integer coefficients.
We set |a|, a ∈ R to be the maximum in absolute values of the
coefficients of a polynomial of degree < m which represents
a modulo q(X) and call that a max-norm. To simplify some
arguments below, we may assume that R is the ring of integers
of the algebraic number field K = Q(α), where α is a root
of q(X).

A. Private Key Recovery

Given public matrix C recover a matrix B ∈ Rn×n such
that C = BTJB. That equation may be written as a system
of (n2 + n)/2 quadratic Diophantine equations in n(n − r)
variables, the entries of B21, B22, over R and is generally
hard to solve. If the entries of B are represented by very
sparse polynomials a guessing strategy may work to recover
them. That is to be avoided when choosing the parameters,
see Section V.

B. Forgery Attack over Z
One may write the form (3) as

f(x) = xTCx = f0(x̄)+f1(x̄)α+ . . .+fm−1(x̄)α
m−1, (5)

where fi(x̄) are quadratic forms over Z the variables of which
are the coefficients of the polynomials xi = xi0+xi1α+ . . .+
xim−1α

m−1 and

x̄ = (x10, x11, . . . , xnm−1).

Forging the signature for a message M with the hash h =
(x1, . . . , xr) is thus equivalent to solving the system of
quadratic Diophantine equations

f0(x̄) = 0, . . . , fm−1(x̄) = 0,

where the variables

xij , 1 ≤ i ≤ r, 0 ≤ j < m

are fixed by the entries of h. That is a system of m Diophantine
equations in (n− r)m variables. Such equations are generally
hard to solve as discussed in Section I.

C. Forgery Attack over R

In order to forge the signature for a message M , one may
compute its hash h ∈ Rr and set (x1, . . . , xr) = h. One then
randomly chooses xr+1, . . . , xn−1 from R with bounded max-
norms. One may try to calculate z ∈ R such that f(x) = 0,
where x = (x1, . . . , xr, xr+1, . . . , xn−1, z), as

f(x) = cnnz
2 + 2(cn1x1 + cn2x2 + . . .+ cnn−1xn−1)z

+ g(x1, . . . , xn−1) = 0.

Denote a = 2(cn1x1 + cn2x2 + . . . + cnn−1xn−1) and b =
g(x1, . . . , xn−1). If cnn ̸= 0, then z satisfies the quadratic
equation

cnnz
2 + az + b = 0 (6)

with roots (−a±
√
a2 − 4bcnn)/2cnn. One of the roots is in

R if and only if

v = a2 − 4bcnn = u2 (7)

for some u ∈ R, and

2cnn|a− u or 2cnn|a+ u. (8)

We calculate the probability of the conditions with an heuristic
argument. Let D = max |a2 − 4bcnn|, where the maxi-
mum is taken over all possible values of x1, . . . , xn−1 with
bounded max-norms as above. Condition (7) implies that
NormK/Q(v) ∈ Z is a square of magnitude Dm. The proba-
bility that an integer of such magnitude is a square is D−m/2.
That is very small for the proposed parameters in Section V.
The probability of (8) is around 2 |NormK/Q(2cnn)|−1, that is
of magnitude |2cnn|−m. We conclude that this forgery is not
efficient for cnn ̸= 0. If cnn = 0, then (6) has a root in R if
and only if a divides b in R which happens with exponentially
small probability too.

More generally, for a parameter l such that 1 ≤ l ≤ n−r−1
one randomly chooses xr+1, . . . , xn−l from R with bounded
max-norms. One then tries to calculate z1, . . . , zl ∈ R such
that f(x) = 0, where x = (x1, x2, . . . , xn−l, z1, . . . , zl). The
unknowns z1, . . . , zl must satisfy

g(z1, . . . , zl) = 0 (9)

for a quadratic polynomial g(z1, . . . , zl) in l variables with
coefficients from R. Since the problem is Diophantine, it is
difficult to decide whether (9) is solvable or not and calculate
the solutions. Even for R = Z an efficient algorithm to solve
a general binary quadratic Diophantine equation may not exist
as the minimal solution size in bits may depend exponentially
in the size of input as with negative Pell equation, see [12].

D. Adapting Attack

Given signed message M,y, one may try to construct an-
other signature y′ for M . Let x = (h|y) = (x1, . . . , xn−1, xn).
Therefore z = xn is a root in R of the quadratic equation (6).
If another root

x′
n = −a/cnn − xn ∈ R,

then one constructs another signature M,y′ as
f(x1, . . . , xn−1, x

′
n) = 0. However, x′

n ∈ R if and
only if cnn divides a in R. For random a this happens with
probability |NormK/Q(cnn)|−1. This probability is of order
|cnn|−m, and is very small even for moderate m. One may
try to modify at least one of xi, r + 1 ≤ i ≤ n in a similar
way. The success probability is

1−
n∏

i=r+1

(1− |NormK/Q(cii)|−1). (10)

It is easy to compute NormK/Q numerically given the roots of
the polynomial q(X). The probability (10) is therefore easy
to compute. It is very low for the parameters in Section V as
< 2−347 for 104 public keys C.

The adapting attack may be extended to modifying several
entries of the signature. One has to solve a Diophantine
equation in l ≥ 2 variables similar to (9), where one solution
is given. The parametrisation produces solutions from the field
K and generally does not work for the ring R.

E. Lattice Attack

Suppose r = 1, s = 3 and Z is constructed by Section
III-G formulae. Then Z2 + Z3 = u2, where u2 ∈ R is taken
randomly each time the signature is generated. Let bij denote
the entries of the matrix B and let y = (y2, y3, y4) ∈ R3 be
the signature computed for a hash h ∈ R. We get

Z2 + Z3 − u2 = b21h+ b22y2 + b23y3 + b24y4 + b31h

+ b32y2 + b33y3 + b34y4 − u2 = 0.

Denote a = (h, y2, y3, y4, h, y2, y3, y4,−1) ∈ R9 and b =
(b21, b22, b23, b24, b31, b32, b33, b34, u2) ∈ R9. Then ab = 0 in
R, where b is an unknown vector. Let x ∈ Z9m be the vector

of coefficients of the entries of b and A ∈ Zm×9m is such that
Ax = 0 is equivalent to ab = 0.

The vector x belongs to the kernel lattice L of rank d = 8m
and of volume V =

√
detAAT . For parameters in Section

V, the average Euclidean norm of x significantly exceeds the
expected norm

√
d/2πe V 1/d of the shortest non-zero vector

in L, see [13]. For instance, for the parameters in range of
those in Section V we got that d = 512, V = 2, 44 · 10269,
where the volume was averaged over 100 samples of a. The
expected norm of the shortest non-zero vector in L was 18.38,
but the norm of the sought vector x was ≥ 29.59 for 104

random choices of b. Therefore, solving SVP in L does not
seem applicable to recover x and therefore b. Similar holds
for another equation Z4 + Z1 = u1u2, where u1, u2 ∈ R are
taken randomly each time the signature is generated.

V. PROPOSED PARAMETERS

In this section we propose parameters for DEFI-128 which
is of 128-bit security level (NIST security category 1, [11]).
Let n = 4, s = 3, r = 1,m = 64. We set q = q(X) =
Xm + 1 which is an irreducible polynomial in Z[X]. That
defines the ring R = Z[X]/(q). That is the ring of integers of
the cyclotomic algebraic number field K = Q(α), where α is
a root of q(X).

The entries of B21 ∈ R3×1, B22 ∈ R3×3, and u1, u2 ∈ R
are taken randomly according to Section III. We now define a
number of parameters which affect both the security and the
efficiency of the scheme. The entries of B21 are represented by
polynomials modulo q(X) with coefficients 0,±1,±2, where
the number of non-zero coefficients is λB21

. The matrix B22

is constructed by (4). That is as a product of k random
elementary matrices Ei and random permutation matrices
Pi and a matrix F defined below; the latter itself may be
decomposed into a product of elementary matrices.

F =

1 −y 0
x 1 y
0 x 1

 (11)

=

1 0 0
x 1 0
0 0 1

1 0 0
0 1 y
0 0 1

1 0 0
0 1 0
0 x 1

1 −y 0
0 1 0
0 0 1

 .

The non-zero entries of elementary matrices Ei and of the
matrix F are represented by polynomials modulo q(X) with
coefficients 0,±1. Let λE and λF denote the number of terms
with non-zero coefficients ±1 in those representations. Lastly,
u1, u2 (see Section 3.7, where we choose u2 = 2v2) are
represented by polynomials modulo q(X) with coefficients
0,±1,±2, where the number of non-zero entries is λu1,u2

.
We summarise the values of the above parameters in Table
I . By construction, guessing each of the entries of B21 takes

TABLE I
DEFI-128 PARAMETERS

n s r m k λB21
λE λF λu1,u2

4 3 1 64 14 24 1 17 35

around 2106 trials. Guessing F in the construction of B22 takes
2134.59 trials and guessing each of u1 or u2 takes 2130.27 trials.

We check if each entry of B22 has a guessing complexity
of at least 2106 to be considered a valid B22. If this condition
is not met, then B22 is regenerated. The metric used to
evaluate the guessing complexity is very conservative as it
assumes an adversary has knowledge of the coefficients and
their frequencies in the polynomial (which obviously is not the
case). If the unique coefficients are listed as c1, c2, ..., ct and
fi refers to the frequency of ci, then the guessing complexity
is expressed as m!

f1!×...×fk!
. After guessing one entry of B

(say b22) the adversary may try to recover b32, b42 from
c = c22 − b222 = −b232 − b242 by solving an instance of SVP in
a lattice of rank 2m and of volume V = NormK/Q(c). The
last calculation may be conservatively estimated by m3 log22 V
binary operation. Recovering b22, b32, b42 thus takes > 2143

binary operations.
We now introduce bound parameters: δC1

, δC2
, δC3

and δy .
These are the bounds on the norms of the entries in the
blocks of the public key matrix C and the signature y, the
entities are to be strictly smaller than those parameters. In
the construction of C and y, if entries exceed their bounds
then they are regenerated. In the verification, the signature is
rejected if |y| ≥ δy . The blocks of C ∈ R(r+s)×(r+s) to which
these bounds apply are:

sizes r s
r C1 C2

s C2 C3

The parameters were chosen as such to result in an efficient
implementation with minimized public key and signature size,
they are provided in Table II .

TABLE II
BOUND PARAMETERS FOR DEFI-128

δC1
δC2

δC3
δy

26 28 210 217

With the given parameters, the performance is summarized
in Table III . The secret key is simply a seed for the random
number generator to generate the secret key matrices B21

and B22. The 128-bit security for h = HASH(M) ∈ R
is achieved by ensuring that the digest is represented as a
polynomial of degree < 64 with coefficients in [−8, . . . , 7].
The number of such polynomials is 1664 = 2256. Thus the
digest is 256 bits. The average time estimates (in milliseconds)
are based on 105 iterations on a laptop with Windows 10
64-bit operating system and x64-based processor: 12th Gen
Intel(R) Core(TM) i7-12800H@2.40 GHz with 16.0 GB Ram.
The reference implementation for DEFI-128 adhering to the
submission guidelines of [11] is available at [14]. Although
an optimized implementation has not yet been developed, the
timings based on the reference implementation are comparable
to those from optimized implementations of some of the fastest
secure digital signature schemes currently available [15].

TABLE III
PERFORMANCE OF DEFI-128

Public Key 800 bytes
Private Key 48 bytes
Signature 432 bytes
Public Key + Signature 1232 bytes
Key Generation 0.431 ms
Signature Generation 0.177 ms
Signature Verification 0.082 ms
Trials for a valid public key 1.458
Trials for a valid B22 1.322
Trials for a valid signature 1.044

VI. 64-BIT CHALLENGE

We also provide a 64-bit DEFI challenge. The parameters
for DEFI-64 are in Table IV and Table V . In particular, we
set R = Z[X]/(X32 + 1).

TABLE IV
DEFI-64 PARAMETERS

n s r m k λB21
λE λF λu1,u2

4 3 1 32 9 9 1 7 15

TABLE V
BOUND PARAMETERS FOR DEFI-64

δC1 δC2 δC3 δy
25 26 28 214

The challenge is to find an attack on the scheme that requires
less than 272 binary operations on a single core to deduce any
of the secret entries of matrix B or to forge a signature for
the hash of a message. The challenge is available at [16] and
contains the following files:

• C.txt - contains a public key in its uncompressed form as
a JSON array. This is matrix C ∈ R4×4 with polynomial
entries in each cell, stored sequentially following row-
major traversal.

• h.txt - contains the hash value h ∈ R1 of 10,000 random
messages with polynomial coefficients in [−8, ..., 7]. Each
hash value is stored on a separate line, formatted as a
JSON array.

• y.txt - contains the signature y ∈ R3 generated for the
corresponding hash value. Each signature is stored on a
separate line following row-major traversal, formatted as
a JSON array.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “Computers and Intractability:
A Guide to the Theory of NP-Completeness,” Series of Books in
the Mathematical Sciences (1st ed.), New York: W. H. Freeman and
Company, 1979.

[2] T. Matsumoto and H. Imai, “Public Quadratic Polynomial-Tuples for Ef-
ficient Signature-Verification and Message-Encryption,” in Eurocrypt’88,
LNCS vol. 330, pp. 419–453, Springer, 1988.

[3] J. Patarin, “Hidden Field Equations (HFE) and Isomorphisms of Polyno-
mials (IP): two new Families of Asymmetric Algorithms,” in Eurocrypt
’96, LNCS vol. 1070, pp. 33–48, Springer, 1996.

[4] A. Shamir, “A polynomial-time algorithm for breaking the basic Merkle
- Hellman cryptosystem,” IEEE Trans. on Information Theory. vol. 30
(1984), pp. 699–704.

[5] A. M. Odlyzko, “The Rise and Fall of Knapsack Cryptosystems,” AT&T
Bell Laboratories Murray Hill, New Jersey 07974.

[6] H. Ong, C. P. Schnorr, and A. Shamir, “An efficient signature scheme
based on quadratic equations,” Proc. 16th ACM Symp. Theor. Comput.
(STOC’84), pp. 208–216.

[7] D. Estes, L. M. Adleman, K. Kompella, K. S. McCurley, and G.
L. Miller, “Breaking the Ong-Schnorr-Shamir signature scheme for
quadratic number fields,” in Crypto’85, LNCS 218, pp. 3–13, Springer,
1986.

[8] H. Yosh, “The key exchange cryptosystem used with higher order
Diophantine equations,” IJNSA, vol. 3 (2011), no. 2, pp. 43–50.

[9] K. V. Prasamsa1, P. A. Kameswari, K. N. Raju, T. Surendra, and
D. M. Devi, “A key exchange algorithm with binary quadratic forms
to design complex security framework,” Advances in Mathematics:
Scientific Journal, vol. 10 (2021), no. 1, pp. 589–595.

[10] L. J. Mordell, “Diophantine equations,” Academic Press, London and
New York, 1969.

[11] National Institute of Standards and Technology, “Post-Quantum
Cryptography Standardization,” NIST. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization. [Accessed: May 3, 2024].

[12] J. C. Lagarias, “On the computational complexity of determining the
solvability or unsolvability of the equation X2 −DY 2 = −1,” Trans.
Amer. Math. Soc. 260 (1980), pp. 485–508.

[13] P. Q. Nguyen, “Hermite’s constant and Lattice Reduction,” The LLL
Algorithm, Survey and Applications, pp. 145–178, Springer, 2010.

[14] M. Feussner, ”DEFI128,” GitHub repository, [Online]. Available:
https://github.com/martinfeussner/DEFI/tree/dd038b3/DEFI128.

[15] PQShield, “NIST Signatures Zoo,” PQShield. [Online]. Available:
https://pqshield.github.io/nist-sigs-zoo/. [Accessed: May 3, 2024].

[16] M. Feussner, ”DEFI64 Challenge,” GitHub repository, [Online]. Avail-
able: https://github.com/martinfeussner/DEFI/tree/dd038b3/DEFI64
Challenge.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://github.com/martinfeussner/DEFI/tree/dd038b3/DEFI128
https://pqshield.github.io/nist-sigs-zoo/
https://github.com/martinfeussner/DEFI/tree/dd038b3/DEFI64 Challenge
https://github.com/martinfeussner/DEFI/tree/dd038b3/DEFI64 Challenge

	Introduction
	Isotropic Quadratic Forms
	Signature Scheme
	Private Key
	Public Key
	Signature Generation
	Signature Verification
	Verification Proof
	How to Generate B22
	How to Generate Z

	Cryptanalysis
	Private Key Recovery
	Forgery Attack over Z
	Forgery Attack over R
	Adapting Attack
	Lattice Attack

	Proposed parameters
	64-bit Challenge
	References

