Hash-based Direct Anonymous Attestation

Liqun Chen* Changyu Dong! Nada EL Kassem*
Christopher J. P. Newton* Yalan Wang*

Abstract

Direct Anonymous Attestation (DAA) was designed for the Trusted
Platform Module (TPM) and versions using RSA and elliptic curve cryp-
tography have been included in the TPM specifications and in ISO/IEC
standards. These standardised DAA schemes have their security based
on the factoring or discrete logarithm problems and are therefore inse-
cure against quantum attackers. Research into quantum-resistant DAA
has resulted in several lattice-based schemes. Now in this paper, we pro-
pose the first post-quantum DAA scheme from symmetric primitives. We
make use of a hash-based signature scheme, which is a slight modifica-
tion of SPHINCS+, as a DAA credential. A DAA signature, proving the
possession of such a credential, is a multiparty computation-based non-
interactive zero-knowledge proof. The security of our scheme is proved
under the Universal Composability (UC) model. While maintaining all
the security properties required for a DAA scheme, we try to make the
TPM’s workload as low as possible. Our DAA scheme can handle a large
group size (up to 25 group members), which meets the requirements of
rapidly developing TPM applications.

1 Introduction

Direct Anonymous Attestation (DAA) [7] is a group type of anonymous sig-
nature scheme, which allows users in a group to sign messages such that the
signatures can be verified using a group public key, and the actual signers’ iden-
tities are not revealed (beyond the fact that they belong to the group). Unlike
group signatures [21], DA A signatures are not traceable, there is no group tracer
who can find out which signer created a given signature. However, DAA has two
properties that aim to stop a malicious signer from abusing anonymity: rogue
key-based revocation and user-controlled linkability. These two properties were
designed for using DAA in a remote attestation service that allows a Trusted
Platform Module (TPM) to serve as a root of trust for attesting to the host plat-
form that it is embedded in. The first property guarantees that a TPM whose
key has been revealed will not be allowed to make any attestation reports. The

*University of Surrey, {liqun.chen, nada.elkassem, c.newton, yalan.wang}@surrey.ac.uk
fGuangzhou University, changyu.dong@gzhu.edu.cn

second property allows a user to include a basename in the signature. If the
same basename is used for two signatures then they can be linked, even though
the anonymity of the signer is maintained. This property allows a verifier to
build a revocation list based on a link token which is a deterministic function
of the TPM’s key and a basename.

When using a TPM in a platform’s attestation service, the group signer’s role
is split into two with a principal signer (the TPM) and an assistant signer (the
host). They jointly create attestation reports on the state of the platform. These
reports include information on the boot sequence and the software running in
the host. These attestation reports convince a remote verifier that the computer
platform it is communicating with is running on top of the trusted computing
technology and using the correct software and hardware. Using DA A allows such
attestations to be made in a privacy-preserving manner. That is, the verifier can
check that an attestation report originates from a legitimate TPM, but it does
not learn the identity of the particular TPM that generated the DAA signature.

The first RSA-based DAA scheme was standardised as part of the Trusted
Computing Group’s TPM 1.2 specification [53] published in 2004. The TPM
specification was updated in 2014 and this newer TPM 2.0 specification [54] sup-
ports elliptic curve based DAA (EC-DAA) and an Intel variant called Enhanced
Privacy ID (EPID) [11]. All of these versions of DAA (RSA-DAA, EC-DAA and
EPID) have also been standardised by ISO/IEC as standard ISO/IEC 20008-
2 [44]. Since the first proposal of DAA, many extensions and works to improve
security and efficiency have been proposed [8, 9] 10, 13| 15, 17, 18, 23| 26 27
28, 291, 30, 40l [59]. Researchers have also paid attention to studying the security
model and proofs of DAA| e.g. [16] 27, 56, 58].

As reported by the Trusted Computing Group (TCG), which is the indus-
try standards body that develops the TPM specifications, more than a billion
devices include TPM technology; in particular almost all enterprise PCs, many
servers and embedded systems make use of the TPM as trusted hardware an-
chors.

Authentication and attestation are important mechanisms used to protect
computer systems and with increasing attention and awareness being given to
privacy concerns, practical interest in DAA is growing. An anonymous attesta-
tion service is particularly important in automotive applications such as vehicle-
to-vehicle communication, where the tracking of drivers should be prevented but
the authenticity of the communication must also be guaranteed [41, 57]. A DAA
protocol has also been integrated into the Fast IDentity Online (FIDO) authen-
tication framework [14]. Another DA A-based application is a privacy-enhancing
cloud service architecture to protect user’s data, using DAA to let users control
the extent of data sharing among their service accounts [55].

DAA schemes that are currently supported by the TPM are based on either
the factorization problem (for RSA-DAA) or the discrete logarithm problem (for
EC-DAA and EPID). Since the factorization and discrete logarithm problems
are known to be vulnerable to quantum computer attacks, all standardised DAA
schemes are not post-quantum secure, i.e. an adversary with a powerful quan-
tum computer could break the TPM’s security and privacy. There is therefore

a need to update the standard DAA schemes to be quantum resistant. Many
proposed post-quantum cryptographic primitives are built on the top of code-,
hash-, lattice-, isogeny- and multivariate-based problems, and could possibly be
used as the basis for the development of post-quantum DAA schemes. Recently,
El Bansarkhani et al. [1], El Kassem et al. [36, B7, [46], Chen et al. [24], and
Chen et al. [22] proposed several post-quantum DAA schemes from lattice as-
sumptions. Due to their expensive storage and computational cost, research in
lattice-based DAA is still ongoing.

Among all post-quantum approaches, the symmetric key approach is consid-
ered as the most conservative approach. The security of symmetric primitives is
the most well-understood and easier to evaluate, hence it serves as a safety net if
the security of other approaches were endangered by newly discovered threats.
Symmetric primitives have been used to build several variants of anonymous
signature schemes, such as group signatures [12], 35l [47, 52| [60] 6], ring signa-
tures [38, [47] and EPID [5]. However, due to the use of a single Merkle tree for
membership credentials in a group, these group signature and EPID schemes
can only handle a small group size, which is not suitable for TPM use.

Our contribution. In this paper, we propose the first DAA scheme from
symmetric primitives, which meets all the requirements on DAA, particularly:

o Signer splitting: To allow the DAA signer role to be split between a TPM
and its host, we introduce a novel approach to splitting an MPC-in-the-Head
scheme into two portions. The TPM keeps the key material secure and per-
forms a small part of the work. Most of the work necessary is done by the
host. The TPM and the host’s contributions work together seamlessly to form
a DAA signature.

e Support a large group size: our DAA scheme can support a large group size
(up to 2%9). To achieve this, we make use of a slightly modified SPHINCS+
signature rather than a Merkle signature as a group membership credential.

e Security proof: the security of the proposed DAA scheme is proved under the
Universal Composability (UC) model [16].

The remaining part of this paper is arranged as follows: Section [2] describes
relevant preliminaries, Section [3| presents the proposed DAA construction, Sec-
tions [4] to [7] provide security notions and proofs, and finally Section [§] concludes
this paper.

2 Preliminaries

2.1 Hash-based signatures

Digital signature schemes can be built exclusively using cryptographic hash
functions. In a hash-based signature scheme, a private key is composed of a
series of randomly generated strings, while the corresponding public key is ob-
tained by applying hash functions to the private key. Early hash-based signature

schemes, such as the Lamport scheme [49] and the Winternitz scheme [50], were
one-time signatures (OTS), meaning that each key pair can only be used to
sign a single message. The Merkle signature scheme [50] is the first hash-based
few-time signatures (FTS). It generates several OTS key pairs and aggregates
their public keys using a Merkle tree. The root of the tree serves as the overall
public key. Every signature uses one OTS private key, and it is comprised of
the corresponding OTS and the Merkle tree authentication path for the OTS
public key. As a result, the verifier can authenticate the signature using only
the Merkle tree root. More recent FTS schemes, such as FORS [3], can be more
efficient, as they utilize a large set of secret random strings that can be obtained
from a pseudorandom function applied to the private key. Signatures are then
generated by selecting elements from the set based on the message to be signed.
While each signature discloses some secret strings in the set, the set size is large,
and the number of signatures can be controlled to make it infeasible to forge
a signature by mixing and matching secret strings from previously generated
signatures.

All previously discussed multi-time signature schemes are characterized as
stateful, as the signer is required to maintain a state containing information
such as the number of signed messages and the keys utilized. In comparison,
SPHINCS+ [3] is a stateless hash-based signature scheme. It employs a hyper-
tree, i.e., a tree of trees, to organize OTS and FTS key pairs. Each SPHINCS+
signature constitutes a chain of signatures, with the initial signature Xy being
generated from the message, and each subsequent signature 3J; being a signature
of the public key that verifies the preceding signature >, _1. By using the root
public key, the authenticity of the signature chain can be verified. Although
SPHINCS+ also has an upper limit on the number of signatures that can be
generated per key pair, it can be set to an extremely large value (e.g. 260),
making it highly unlikely to reach this limit in practical scenarios. SPHINCS+
has been chosen as one of the three digital signature schemes by the National
Institute of Standards and Technology (NIST) to become a part of its post-
quantum cryptographic standard [51].

2.2 MPC-in-the-head and Picnic-style signatures

This is a paradigm for zero-knowledge proofs introduced by Ishai et. al. [42].
Roughly speaking, given a public value x, the prover needs to prove knowing
a witness w such that f(w) = . To do so, the prover simulates, by itself, an
MPC (multi-party computation) protocol between m parties that realizes f, in
which w is secretly shared as an input to the parties. After simulation, the
prover commits to the views and internal state of each individual party. Next,
the verifier challenges the prover to open a subset of these commitments, checks
them and decides whether to accept or not. If the MPC realizes f properly,
then obviously this protocol is complete, meaning a valid statement will always
be accepted. The protocol is also zero-knowledge because only the views and
internal states of a subset of the parties are available to the verifier, and by
the privacy guarantee of the underlying MPC protocol, no information about

w can be leaked. For soundness, if the prover tries to prove a false statement,
then the joint views of some of the parties must be inconsistent, and with some
probability, the verifier can detect that. The soundness error of a single MPC
run can be high, but by repeating this process independently enough times, the
soundness error can be made negligible. The interactive ZK proofs can be made
non-interactive through techniques such as Fiat-Shamir transformation.

There are multiple frameworks for constructing MPC-in-the-head ZK proofs,
e.g., IKOS [42], ZKBoo [39], ZKB++ [20], KKW [47], Ligero++ [4], Limbo [32],
BBQ [31], Banquet [2], BN++ [45], Rainer [33] and AIMer [48]. They follow
the same paradigm, but are different in the underlying MPC protocols and have
different concrete/asymptotic efficiency. In this paper, to describe our scheme,
we do not need to touch the low level details, hence we will use MPC-in-the-
head (for Boolean circuits) in an abstract way. We will use the following syntax
to describe a ZK proof:

m = P{(public params);(witness)|relation to be proved}

For example, to prove the same key sk is used in two different instantiations
of a pseudorandom function F' with different data inputs, we write:

™ = P{(Oh Pl), (CQ,PQ)); (sk)|Cl = F(Sk,P1) A\ CQ = F(Sk,PQ)}

MPC-in-the-head has been used to generate signature schemes from a sym-
metric key setting. As the first scheme is named Picnic [19] 20, [62], this type
of signature is called a Picnic-style signature, in which the secret signing key
is k and the public verification key is a pair (¢, p), and the key pair satisfy the
equation ¢ = E(k,p) where F is a block cipher, k is a secret key, and p and ¢
are respectively a plaintext and ciphertext block. Signing a message m essen-
tially is to generate a non-interactive MPC-in-the-head proof of knowing the
private key:

7 =P{(c,p)); (k)lc = E(k,p)}(m)

Note that this signature is based on the Fiat-Shamir transformation. The
message m is included as a part of the input for the challenge hash in the
transformation. Again, to describe our scheme, we do not need to explain the
details of the F algorithm, and any secure Picnic-style signature scheme can be
used.

2.3 DAA concept
A DAA scheme involves the following players:

e An issuer manages the group membership, decides who can be a group
member, and issues group membership credentials.

e Group members create DAA signatures. Each member is formed by two
entities: the TPM serves as a principal signer and the host an assistant signer.

e Verifiers verify DAA signatures. A verifier also has two other roles: as a
linker to check whether two given signatures using the same basename were
created by the same signer or not; as a revocation authority to decide

whether a group member should be removed from the group based on the
verifier local revocation.

A DAA scheme consists of the following algorithms/protocols:

Init(n): In the initialization algorithm, the issuer takes a security parameter
n as the input, and outputs a master (group) key pair (mpk, msk). The
master public key mpk is made public and the master secret key msk is
stored privately by the issuer. In all other algorithms and protocols, we will
assume mpk along with the security parameter n as an implicit input for all
parties. The issuer also initializes its internal states.

Join(msk): the joining protocol is an interactive protocol between the issuer
and the user (a TPM and its host) who wants to join the group. The issuer
has a private input msk and the user does not have input. At the end of the
protocol, the issuer outputs a decision: accept or reject. If reject, then
stop. If accept, the user obtains its signing key gsk, = (sk,, cred,) where
sk, is a secret key, and cred,, is a group membership credential. sk, is chosen
and held by the TPM, and cred, is generated by the issuer and is given to
the host. The issuer also updates its internal states.

Sign(gsk,, msg, bsn): the signing algorithm allows a TPM and its host to
produce a signature ¥ on a message msg € {0,1}* using its signing key gsk,.
If a basename bsn %1, 3 will include a link token.

Verify(msg, bsn, 3, keyRL, linkRL): the verification algorithm allows a ver-
ifier to verify whether a signature ¥ is a valid signature of msg/bsn and
whether the signing key has been listed on a rogue key list keyRL or whether
a link token in the signature has been listed on a link revocation list linkRL.

Link(msg, 31, msg1, 2o, bsn): the linking algorithm allows a verifier to check
whether given two DAA signatures ¥; and Y5 with the same bsn value are
signed using the same gsk, or not.

Revocation the revocation algorithm allows a verifier to add a revealed signing
key in keyRL and to add a link token from a signature generated by a revoked
signer in linkRL.

A DAA scheme needs to satisfy multiple security requirements, including:

Correctness covers three aspects: (1) an honest user can successfully join
the group, despite the existence of malicious users; (2) a signature generated
by an honest and not revoked group member should always be valid when
being verified; (3) user-controlled linkability, i.e., two valid signatures with
the same bsn values and signed under the same gsk, should be linked to each
other.

Anonymity means that a DAA signature does not reveal the identity of
its signer, i.e., an adversary cannot distinguish which one of the two honest

signers has signed a targeted message while both signers and the message are
at the adversary’s choice. Furthermore, given two signatures, w.r.t. two dif-
ferent basenames, the adversary cannot distinguish whether both signatures
were created by one honest signer or two different signers.

e Non-frameability means that even if the rest of the group, as well as the
issuer and the host of an honest TPM, are corrupted, they cannot falsely
attribute a signature to the TPM who did not produce it. This property
covers three special cases: (1) no adversary can create a signature w.r.t. a
basename that links to another signature created by an honest TPM for the
same basename; (2) when the issuer and all TPMs are honest, no adversary
can provide a signature on a message msg w.r.t. a basename bsn when no
TPM signed this (msg, bsn) pair; (3) When the issuer is honest, an adversary
can only sign in the name of corrupt TPMs. More precisely, if n TPMs are
corrupt, the adversary can create at most n unlinkable signatures for the same
basename.

These requirements will be described in detail under the DAA UC model in
Section [} Note that the host in a secure DAA scheme is trusted to correctly
execute the protocol and to maintain anonymity. This trust requirement is nec-
essary, as the host is a contributor to a DAA signature, so a malicious host is
able to not provide correct input or to break anonymity by demonstrating the
connection between a DAA signature and the corresponding TPM’s public key
and credential. We assume that the host represents the user so it is interested
in creating valid DAA signatures and maintaining user privacy. However, for
non-frameability, there is no requirement for the host to be trusted. Without
the TPM, the host can neither receive a DAA credential nor generate a DAA
signature. Several types of TPM have been considered in applications: (1) con-
crete hardware TPM, (2) integrated TPM, (3) firmware TPM, (4) virtual TPM,
and (5) software TPM. Although the TPM tamper-resistant property level de-
creases from the highest case (1) to the lowest one (5), the trust requirements
on the host are the same.

3 Construction

3.1 F-SPHINCS+ and M-FORS

To construct a DAA scheme from symmetric primitives, the first design choice
is to select group membership credentials. A credential essentially is a signature
on the user’s keys generated by the issuer. Because we use only symmetric prim-
itives, the credential can be in the form of the following: (1) a Merkle signature;
(2) a SPHINCS+ style signature; (3) a Picnic-style signature. The first option
is ruled out because it cannot handle a large group size. The last option is also
ruled out because of practical considerations: we have to create a ZKP on that
another ZKP (i.e. the Picnic-style signature) is valid. Unfortunately, the circuit
for verifying a Picnic-style signature is too big, which results in prohibitively

high computation costs and large proof size. Therefore, we focused on utilizing
a SPHINCS+ style signature as the group credential.

In the above descriptions, we said “SPHINCS+ style” rather than “SPHINCS+".
This is because SPHINCS+- is still too heavy when being verified in zero knowl-
edge. The main problem comes from the WOTS+ signature scheme. In WOTS+,
verification involves verifying k blocks of d-bit strings. When verified in the
clear, each block requires at most 2% — 1 hash operations to verify and the exact
number of hash operations required depends on the content of the block. How-
ever, in a zero-knowledge proof, we will have to hash each block exactly 2¢ — 1
times then choose the right hash value in the chain blindly, to ensure the verifier
is oblivious about the content of the block. Hence in total, (2% — 1) - k hashes
are required to verify a WOTS+ signature. Plug in concrete parameters, that
means 510 hashes at 128-bit security, and 990 hashes at 256-bit security. The
circuit implementing the hash function typically has 103 AND gates. So veri-
fying one WOTS+ signature requires a circuit with over a million AND gates
and in total we need to verify h WOTS+ signatures, where h is at least 7 in
SPHINCS+.

To fix the problem, we propose a new variant of SPHINCS+ called F-
SPHINCS+. As depicted in Fig. [T} in F-SPHINCS+ we use a hyper-tree that
is a tree of M-FORS trees. = The M-FORS signature scheme is depicted in

Public key

(€] mrors

/<
oo
oo

\ HH!H
o
nn _______ n ______ nn

Hyper—tree

Figure 1: F-SPHINCS+ signatures.

Fig. Recall that FORS is a few-time signature scheme such that each key
pair can be used to sign up to ¢ signatures. M-FORS, short for Merkle FORS,
differs from FORS in that, the public key is generated as the root of a Merkle
tree. The leaf nodes in this Merkle tree are the root nodes of Merkle trees that
authenticate each block of the hash value being signed. So with M-FORS, the
hyper-tree in F-SPHINCS+ is a g-ary tree such that the public key in a child
node is signed by the signing key in the parent node, and the signing key in
the leaf node signs the actual message hash. An F-SPHINCS+ signature then
contains a list of h + 1 signatures, where h is the height of the hyper-tree. The

pk=(T4

mty

To

@ | ¢
e S A

prf(sh,- lnnnnnuuu [T] D

Hashvaluef‘10”01HOOHll‘f‘2|1|0|3‘

Figure 2: M-FORS signatures.

benefit of M-FORS over XMSS that is used in the original SPHINCS+ scheme
is the lower verification cost. To verify a message hash that is k& blocks of d-bit
string, the cost is d - k + k — 1 hash operations. This is much less than the
(2¢ — 1) - k hashes for verifying a WOTS+ signature. On the other hand, the
signing time is more than that of WOTS+. However, this is a lesser concern
because in our case signing will be done in the clear (while verification needs to
be done with zero knowledge).

We now describe M-FORS and F-SPHINCS+. M-FORS consists of the
algorithms below. For readability and the page limitation, we abstract away
certain low-level details such as how the Merkle trees are built.

e keyGen(seed, n,d, k,aux): it takes as input a random seed seed, a security
parameter n, two positive integers d and k, and aux that is either an empty
string or some optional data. If seed is an empty string, an n-bit random
string will be chosen and assigned to it. Then a pseudorandom function
prf is used to expand seed into k lists (X(O),~-- ,X(k_l)), where each x(*)
contains 2¢ distinct n-bit pseudorandom strings. Then k + 1 Merkle trees
T = (mtg,--- ,mty) are built. In particular, each of mtg,--- ,mty_; has 2¢
leaf nodes. The jth leaf node in mt; is the hash of xy). The leaf nodes of
mtg are ro,--- ,Tk—1 that are the roots of (mtg,--- ,mty_1). keyGen outputs
(pk, sk, param), such that the public key pk = ry, where 7 is the root of mty,
the private key sk = seed, and the public parameters mp = (n, d, k, aux).

e sign(sk, MD, mp): to sign a message hash M D € {0,1}*4, parse it into k
blocks, each block is interpreted as a d-bit unsigned integers (po,- - ,Pr—1)-
Then for the i-th block p;, x(¥ and mt; (obtained by expanding sk) are used
to generate authpath(®, which is the authentication path of the p;-th leaf
node in the i-th Merkle tree. Then (X,(,?, authpath() is put into the signa-
ture. The signature is a list of k pairs o = {(xé?, authpath(®), ... (x §,’i 11),
authpath(*~1)}.

e recoverPK(o, M D, mp): This algorithm outputs the public key recovered from
a signature o and the message hash M D. First M D is parsed into k blocks

(pby-+ ,Ps_,). Then for 0 < i < k — 1, o; = (2;,authpath®) and p. are
used to re-generate a Merkle tree root and get the value 7} (p) is used to
determine the order of the siblings at each layer). Finally, r(,---,7}_, are
used to compute mt), and its root 7}, is returned.

o verify(o, pk, M D, mp): to verify a signature, call recoverPK(o, M D, mp). If
the recovered public key is the same as pk, accept the signature, otherwise
reject.

The hyper-tree nodes in F-SPHINCS+ are addressed by a pair (a,b) where
a is its layer and b is its index within the layer. The root node is at layer 0, and
the layer number of all other nodes is the layer number of its parent plus 1. All
nodes within a layer are viewed as an ordered list, and index each node in the
list from left to right, starting from 0. F-SPHINCS+ consists of the following
algorithms:

e keyGen(n,q,h): This algorithm outputs (sk, pk, fp). It takes as input a se-
curity parameter n, the degree of non-leaf nodes in the hyper-tree ¢, and
the height of the hyper-tree h. Then it chooses d,k that are the parame-
ters for the underlying M-FORS signature scheme. The public parameters
are fp = (n,q,h,d, k). It also chooses an n-bit random string as the pri-
vate key sk. It generates the M-FORS key pair for the root node by calling
genNode((0,0), sk, fp), and set the public key pk to be the M-FORS public
key pko,o-

o genNode(nodeAdr, sk, fp): This algorithm generates a node in the hyper-
tree given the address nodeAdr = (a,b). With the private key sk used as
a seed, the algorithm first generates a subseed with a pseudorandom func-
tion seed, , = prf(seed, a||b), then it calls M-FORS key generation algorithm
M-FORS .keyGen (seed, p, n,d, k,a||b). The output (pkqp, Ska b, Mmpq,p) is the
content of the node at (a,b).

e mHash(msg, gr):This algorithm produces message hash and the leaf node
index used in generating the F-SPHINCS+ signature. The input msg is
the message to be signed, gr is a random string. The algorithm produces
MDl||idx < Hs(msg||gr), where Hs : {0,1}* — {0, 1}¢F+(082)" ig 5 public
hash function, M D is d- k bit long and idx is interpreted as an (log, q) - h bit
long unsigned integer.

e sign(msg, sk, fp): This algorithm produces the F-SPHINCS+ signature as
a chain of M-FORS signature along the path from a leaf node to the root
node of the hyper-tree. It chooses an n-bit random string gr. Then obtain
MD||idx < mHash(msg, gr). A leaf node at (h,idz) is then generated by
calling genNode((h, idz), sk, fp). The M-FORS signing key sk, ;q, is used to
sign M D and generate og. The parent node of (h,idx) is then generated by
calling genNode((h —1,b), sk, fp) where (h— 1,b) is the address of the parent
node. Then the parent secret key skp_1 4 is used to sign the child public key
Dk idz, and the signature is 01. Repeat the signing process until obtaining

10

oy, that is signed by sko o on pkyp for some b'. The F-SPHINCS+ signature
is then ¥ = (gr, (00, ,0n)).

o verify(msg, X, pk, fp): This algorithm verifies every M-FORS signature chained
upin X. Given X = (gr, (09, -+ , o)), first compute M D||idx < Hsz(msg||gr).
Then obtain pkq < recoverPK(oo, M D, mpy), pk1 < recoverPK(o1, pko, mp1),
repeat until pky, < recoverPK(op, pkn—1, mpn). If pk = pky,, accept the sig-
nature, otherwise reject.

Remark 1 In M-FORS algorithms, we use two tweakable hash functions [3]
Hy:{0,1}* — {0,1}" and Hy : {0,1}* — {0,1}4*. Almost all hash operations
are done using Hy. Hs is only used to map the k-th Merkle tree to the k - d-bit
M-FORS public key, so that when used in F-SPHINCS+ the public key is of
the right size to be signed by the parent node. If M-FORS is to be used as a
stand-alone signature scheme, these two hash functions can be the same.

Remark 2 The tweakable hash functions follow Construction 7 for tweakable
hash functions in [3]. Namely, the hash of an input M is produced by calling a
hash function with additional input as H (P||ADD||M), where P is a public hash
key and ADD acts as the tweak. The tweak is the address where the hash opera-
tion takes place within the hyper-tree, and it is a five part string aq||b1||v||az]||bs:

e (a1,b1), where 0 < a3 < h,0 < by < 2% — 1, is the address of an hyper-tree
node. Within the node, an M-FORS key pair that is based on k + 1 Merkle
trees are stored.

e 0 <wv <k is the index of a Merkle tree in the M-FORS key pair stored in the
hyper-tree node (ai,b1). When 0 < v < k — 1, the Merkle tree (of height d)
is used to sign the v-th block of the message; when v = k, the Merkle tree (of
height [log, k) is used to accumulated the roots of all the previous Merkle
trees into the public key.

e (ag,bs) is the address of an Merkle tree node. When 0 <v <k—1,0<ay <d
and 0 < by <2%2—1; Whenv =k, 0 < as < [logy k] —1 and 0 < by < 292 —1.

The security analysis of F-SPHINCS+ is given in Section [4]

3.2 The DAA scheme

Overall, the DAA signature scheme is designed in this way: the issuer generates
an F-SPHINCS+ key pair as the group master key pair. When a user (including
a TPM and its host) joins the group, the TPM generates a secret signing key.
The issuer decides whether the user should be admitted into the group, if so a
group credential is generated as an F-SPHINCS+ signature on an entry token
(a commitment of the user’s signing key). The credential is accessible to the
host. When signing a message, the TPM and its host work together to produce
an MPC-in-the-head (MPCitH) non-interactive zero-knowledge (NIZK) proof
to show it possesses a group credential and the signature is generated on the
hash of the message and a random data string under the key authorized by the

11

group credential. We have created a novel approach that allows the TPM and
its host each to make a partial signature and a DAA signature is a combination
of these two. In particular, the TPM proves its possession of the signing key
and the host proves the credential. These two proofs are glued seamlessly in
a zero-knowledge manner. Verifying the DAA signature involves checking the
NIZK proof so the verifier is convinced of a group membership. Each DAA
signature also includes a link token, essentially it is a pseudorandom function
output of a basename bsn produced using the signing key as a secret. This
link token will be used for user-controlled linkability, key-based revocation and
link-based revocation.
We now present the concrete construction of algorithms and protocols.

e Initialization Init(n): Given a security parameter n, the issuer does the
following: Choose the hyper-tree node degree g and the tree height h, the
values (d, k) for the underlying M-FORS scheme, a pseudorandom function
prf, three hash functions H; : {0,1}* — {0,1}"*, Hy : {0,1}* — {0,1}%*, Hj :
{0,1}* — {0,1}%++(00820)'h "and a keyed pseudorandom function F : {0, 1}" x
{0,1}™ — {0,1}"; Run (sk,rpk, gp) + F-SPHINCS+ .keyGen(n, g, h), where
(rpk, sk) is the F-SPHINCS+ key pair, gp = (n,q, h,d, k) are the hyper-tree
parameters; Publish mpk = (gp, rpk, H1, Hs, Hs, F, prf) and keep msk =
sk private. The issuer provides a non-interactive zero-knowledge (NIZK)
proof w7 to demonstrate that the key pair is generated correctly, meaning that
the secret and public keys are associated with each other. This NIZK proof
can be achieved by signing its own public key rpk using F-SPHINCS+sign,
which is similar to the issuer creating a group membership credential in the
joining protocol described below. In addition, the issuer initializes a group
list GL, and each verifier initializes two revocation lists: a key revocation list
keyRL and a link token revocation list linkRL. All these lists are empty
when initialized.

e DAA joining protocol Join(msk, mpk): The joining protocol is run between
a user (a TPM and its host) and the issuer. Note that this protocol involves
the authentication of the TPM by the issuer. The issuer has an authentic
copy of the TPM’s endorsement key, which is used to establish a secure and
authenticated channel between the TPM and the issuer. In the following
protocol description, it is assumed the existence of such a channel, and the
reader is recommended to find the detail regarding how to establish such a
channel from [25]. The protocol includes the following steps:

1. A unique session ID u is assigned to the user. For simplicity we can think
the session ID as a monotonically increasing counter, and each invocation
of the joining protocol will increase it by 1. Alternatively, the value u can
be computed from the TPM’s endorsement key, which is unique to the
TPM.

2. The TPM chooses a random secret key: sk, vid {0,1}™ as its signing key.

3. The host computes the group identifier gid = H; (rpk) and sends it to its
TPM.

12

4. The TPM then generates and returns its entry token et, = F'(sk,, gid)
together with the NIZK proof m,:

mu : P{(gp, gid, et.);(sku)|etu = F(sku, gid)}

5. The host then chooses a random string cr & {0,1}" and computes a
commitment ¢t = Hj(ety||cr). The host sends (u,ct) to the issuer to
request joining the group.

6. Upon receiving (u, ct), the issuer checks whether an entry with the same
u is in GL. If yes, rejects the user. Otherwise, if the issuer would like

to accept the user, the issuer chooses a random string gr, ¥i3 {0, 1}
and sends it to the host, who responds by sending (et,,cr,m,) back.
The issuer verifies ¢t = Hj(ety||ler) and the NIZK proof m,. If both
verifications pass, the issuer computes the group credential (gr,,S) <+
F-SPHINCS+sign(ety||gru, msk, gp); otherwise the issuer rejects the user.
The credential is sent to the TPM through the secure and authenticated
channel between the TPM and issuer and then forwarded it to the host.
The issuer adds (u, ety, gr.,S) to GL.

7. The user, if accepted by the issuer, sets its group membership secret key
gsky = (sku, gru, S). More specifically, the TPM will record sk, and the
host will record the remaining values.

e DAA signature generation DSig(gsk,, msg, bsn): To produce a DAA sig-
nature on a message msg and a basename bsn, the TPM and its host jointly
create a DAA signature using gsk, = (sky, gr., S) as follows:

1. The host computes the link identifier lid = H;(bsn), the signature identifier
sid = Hy(msg||str), where str & {0,1}", and the group identifier gid =
H, (rpk), and sends these three identifier values to the TPM.

2. The TPM computes the group membership entry token et,, = F'(sk,, gid),
the signature link token slt = F(sk,,lid) and the signature signing token
sst = F(sky, sid) together with the NIZK proof mp,. The TPM then sends
sst and mp, back to the host.

o P{(gp, sid, gid, lid, slt, hk, cety); (sku, sst, ety)]
slt = F(sku, lid) A sst = F(sku, sid) A ety = F(sky, gid)
A hk = Hy(sst) A cet, = F(sst, ety)}

Note that mp, proves that these three tokens are computed under the same

sk, and also provides a hook (hk, cet,,), which allows the host to carry on
proving the group credential for et,,.

3. The host then computes mt,||idv = Hs(ety||gr,) and com = Hi(sst||pks||

-+ ||rpk)}, where pkp, - - -, rpk are the public keys for verifying the signa-

tures in S, from the layer h to layer 0 (the public key at the layer 0 is rpk).

13

Here Hj(et,||gry) is used as F-SPHINCS+.mHash(et,, gr,,). The host also
computes an NIZK proof mp,:

oy P{(gp, rpk, slt, com, hk, cety); (etu, sst, gru, S ={on, - ,00})]
hk = H,(sst) A cety = F(sst, ety) A mity||ide = Hs(etu||gra)
A pky, = recoverPK(op,, mty, (n,d, k, (h,idz)))
A pkn—1 = recoverPK(op_1, pkn, (n,d, k, (h — 1, le—mj))) AR
q
A rpk = recoverPK (oo, pk1, (n,d, k, (0,0)))
A com = Hi (sst||pkn|| - - - ||rpk) }

4. The signature ¥ = (str, slt, com, mp), where mp is the combination of
mp, and mp,, i.e., mp = (mp,, m,). hk and cet, appearing in both mp, and
7, Play the role that glues these two MPCitH instances together. From a
verifier’s point of view, mp produces the following NIZK proof:

m P{(gp, rpk, gid, sid, lid, slt, com);
(Skzuetua sst, gru, S = {0h7 T 700})|
slt = F(sku, lid) A sst = F(sky, sid) A ety = F(sku, gid)
A miy||ide = Hs(ety||gr.)
A pkp, = recoverPK (o, mty, (n,d, k, (h,idx)))
A pkp—1 = recoverPK(op_1, pkn, (n,d, k, (h — 1, LZdTmJ))) AR
A rpk = recoverPK (oo, pk1, (n,d, k, (0,0)))
A com = Hy (sst||pknl| - - ||rpk)}

More details of mp will follow in Section (3.3

e DAA signature verification DVf(msg, bsn, ¥, keyRL, linkRL) : Given
Y = (str, slt,com,mp), msg, bsn, together with two revocation lists keyRL
and linkRL, the verifier first rejects X if (bsn, slt) € linkRL. Otherwise,
the verifier recomputes lid = Hy(bsn), and Vsk; € keyRL computes sit* =
F(skX,lid). If any slt* = slt, rejects X. Otherwise, the verifier verifies p.
Accept if the verification succeeds; otherwise reject.

e DAA link algorithm Link(X,Y’) : Given two valid DAA signatures ¥ =
(str, slt,com, mp) and X' = (str’, slt’, com’,) associated with the same bsn,
the verifier checks if sit = sit’ holds. If so output linked, otherwise not linked.

e DA A revocation There are two cases to revoke the group membership of the
user u: (1) Given sk, a verifier adds it in keyRIEL (2) Given a pair (bsn, sit)
associated with a DA A signature signed by the user u to be revoked, a verifier
adds this pair in linkRL.

Tt is an open problem for creating a validation check on keyRL that doesn’t take O(N)
time, where N is the size of the list.

14

3.3 The proof mp

The most important part in the DAA signature ¥ = (str, slt, com, 7 =
(mp,, T,)) is the proof mp. In this section we dissect it to show the design
rationale and explain two changes we made to MPC-in-the-Head, which greatly
improves the efficiency and may be of independent interest.

As ¥ is a signature of a message msg, the foremost thing 7p needs to prove
is that the signer knows a group signing key gsk, = (sky, gry, S) and it was
used to sign msg. Besides that, mp also needs to prove that gsk, is authorized
by the issuer. To do that, in mp the following is done:

1. Tt proves that the same signing key sk, is used to generate three values et,,,
slt and sst, where et,, is bound with the group root public key rpk (as it is
computed from gid = H;(rpk)), slt is bound with the base name bsn (as it
is computed from lid = Hj(bsn)), and sst is bound with the message msg
and random string str (as it is computed from sid = Hy(msg||str)). slt is
revealed in Y, and et, and sst are hidden.

2. It proves that two revealed values slt and com are produced using the same
sky. It binds com to sst (by using sst in computing com). The commitment
com also binds ¥ to all public keys used to blindly verify the signatures in

S.

3. It proves that mt,, which is computed from et,, is signed under a private
key in a leaf node of the hyper-tree generated by the group issuer. This is
done by verifying all the signatures in S such that mt, and o produce the
leaf public key pkj,, which in turn with o, _; produces pky_1, and so on until
reaching the root. The last public key produced is rpk which is published
by the group issuer. All public keys recovered in this process match those
committed in the commitment com.

The first challenge for implementing 7 with MPCitH comes from splitting
the signer role into two parts, the principal signer TPM and the assistant signer
host, where the TPM holds sk, and the host holds S. A straightforward choice
is to let the TPM and host be involved in the same MPCitH instance. This will
result in a large communication cost between these two entities. Our solution
is to split mp into two MPCinH instances, 7, and 7p,, each is performed by one
entity. The difficulty now is how to glue these two instances together seamlessly
in a zero-knowledge manner. We let (sst,et,) serve as a hidden hook and
hk = H;(sst) and cet, = F(sst,et,) as a commitment of sst and et,. Both
mp, and mp, include the same MPCitH proofs of hk and cet,. The collision-
resistance property of the functions F' and H; guarantees that the same pair
of (sst,et,) are in mp, and mp,. The preimage resistance property of these two
functions guarantees that neither et, nor sst is revealed. The MPC instance of
is shown in MPCitH
Let us first introduce the notation used in such an MPCitH algorithm: [x]
means that the value z is secret-shared when using an MPC algorithm, meaning
that it is known by the prover but not the verifier. MPC_X means the MPC

7TDT

15

MPCitH 1: mp, — MPC instance for the TPM’s part of mp
Public: gp = (n, ¢, h, d, k), sid, gid, lid, slt
Private: [sk,]

Output: sit’', hk, cet,

Check: slt’ = slt A hk' = hk A cet!, = cety,

slt’ = MPC_F([sky], lid);

[sst] = MPC_F([sk,], sid);

[et.] = MPC_F([sk.], gid);

hk" = MPC_H1([sst]);

cetl, = MPC_F([sst], [etu]);

U W N

subroutine implementing the function X (e.g. MPC_F, MPC_H1, MPC_H2 and
MPC_H3 implement F'; Hy, Hy and H3). This notation will be used throughout
the paper. Based on [43], in an implementation MPC_F can be used as a building
block for the hash functions that we need.

In MPCitH the TPM performs the MPC_F algorithm four times and
the MPC_H1 algorithm once when computing the signature link token sit =
MPC_F([sk.], lid), the signature signing token [sst] = MPC_F([sk,], sid), the
entry token [et,] = MPC_F([sk,], gid), the hash value hk = MPC_H1([sst]),
and the connection entry token cet, = MPC_F([sst], [et,]). These five opera-
tions are performed in the same MPCinH knowledge-proof routine, where sk,
sst and et, are kept secret. The TPM outputs the proof along with sit’, hk,
and cet,.. The proof demonstrates that the same sk,, value was used in steps 1)
- 3), and steps 4) and 5) are used to pass sst and et,, to the host, which allows
the latter to carry on the MPCinH knowledge-proof mp, for the DAA credential
associated with et,. In an implementation this reduces to 5 calls to MPC_F.

The second challenge for implementing 7 with MPCitH comes from the cost
of h+1 M-FORS signature verifications required by the proof in 7p,. Recall that
in an M-FORS signature (Section also the example in Figure, the message
hash to be signed is broken into k£ blocks, and each block is authenticated with
a Merkle-tree of height d. Then the k& Merkle tree roots are organized into a
new Merkle tree whose root is the public key. Verifying the full signature means
to check whether the public key can be recovered from the message hash, the
secret strings corresponding to the hash blocks (x;?), and the hashes along the
Merkle tree authentication paths. In total, to verify a single M-FORS signature,
k-(d+1)+ (k—1) = kd+ 2k — 1 hashes are needed, which is in the order of 10?
for a practical setting (with an extra factor of 2 if implementing with MPC_F).
The h+1 factor means that if implemented naively, the MPC used in 7, would
need to call thousands of times the sub-procedure that implements the hash
function, and the size of the circuit for the whole MPC can go easily above
a million-gates. Even worse, to reduce the soundness error, the same circuit
needs to be executed tens to hundreds of times in an MPCitH proof. Thus, a
naive implementation of mp, will result in a very large signature size and a high
computational cost.

16

Sain il

prt,) : L o TR T o T B P o o o
\

Hash value = [10]01]00]11]=[2]1]0]3]

Figure 3: M-FORS Patial Verification.

Our more efficient strategy for implementing 7p, is: in MPCitH, rather than
repeating t times a MPC procedure in which the M-FORS signatures are fully
verified, we run ' > k MPC procedures in which the M-FORS signatures are
partially verified, one block in each run (see the example of partial verification in
Figure . More precisely, we extend the M-FORS with the following algorithms:

e partial-sig(c, M D,i,mp): to extract a partial signature of the i-th block of
MD from o = {(xq, authpath(o)), oo (e, authpath(kfl))}. The Merkle
tree mty, can be recomputed from o. The partial signature is 9, ; = (x;, auth-
path(i)7 authpath(k’i)) where (z;, authpath(i)) is a copy of the i-th pair in
o, and authpath(k’i) is the authentication path of r; (the root of the i-th
Merkle tree) in mty.

e partial-rec(0,,pi, i, mp): This algorithm recovers the public key from 0, ;
and p;. Given 9,; = (v,authpath, authpath’), first compute the Merkle
tree root r; from (z,authpath,p;), then compute the Merkle tree root pk
from (r;, authpath’,i). Output pk.

With partial-rec, only one path is used to recover the M-FORS public key instead
of k paths.

The MPC procedure for proving the v-th block in mp, is shown in MPCitH
The first 2 steps of this algorithm are the same as steps 4) and 5) in MPCitH
This duplication can glue the TPM part 7, and the host part 7, together.

The host uses partial signatures in the MPC. Recall that in the group signing
key gsk,, alist S = {o}, -, 00} of h+1 signatures are stored, one for each layer
in the hyper-tree of F-SPHINCS+. The signer can extract a partial signature
for the v-th block from each signature, i.e. {9y, v, '+, Oppwt- In Line(8] an
MPC subroutine MPC_pRec that implements partial-rec is used. This subroutine
uses the input to compute the corresponding public key at the I[-th layer in
the hyper-tree (stored in [M] and also appended to [COM]). After the last
iteration, [COM] is hashed and [M] is revealed. The results will be checked
by the verifier to see whether they match com and rpk. If so, the signer is likely

17

MPCitH 2: m, - MPC instance for the v-th block in the host’s part

of Tp
Public: gp = (n, ¢, h, d, k), rpk, com, v, hk,cet,
Private: [sst], [etu], [g7u], [Oop 0], -5 [Ooo,v]

Output: pko, hk', cet!,, com’

Check: pko = rpk A hk' = hk A cet!, = cet,, N com’ = com

hk' = MPC_H1([sst]);

cet!, = MPC_F([sst], [etu]);

[]| lide] = MPCH3([et,]l gr]):

[M] = [t]

[COM] = [sst];

fori=h; 1 >0;l—— do
parse [M] into k blocks [po],- - - , [px—1], each block is d-bit;
[M] = MPC_pRec([0s, »], [po], [idz], gp, I, v) ;
[COM] = MPC_HL([COM]||[M]);
lidz] = [Lidz/q]];

end

com’ = [COM];

pko = Reveal([M]);

© 00 N O ok W N

[S S G SO
W N = O

to possess valid partial signatures along the path from the idz-th leaf node to
the root node in the hyper-tree.

Why does this strategy make sense? In an MPCitH proof, the same proce-
dure is run multiple times. Each run has a soundness € that a cheating prover
can get away without being detected. Thus ¢ runs are needed so that €’ is
negligibly small. In our case, the main cost of the MPC procedure comes from
verifying all the M-FORS signatures. The full verification requires every block
of the message digest or the child public key to be verified. Our observation
is that if a prover has to cheat, then it has to cheat in more than 1 blocks
with a high probability. If the prover has to cheat in n out of k£ blocks, then
using partial verification with ¢, such that ¢’ - n/k > t, ensures that the prover
has to cheat in more than ¢ runs, and hence with a negligible success probabil-
ity. As we analyzed, an implementation with full signature verification requires
t-(h+1)-(k-d+2k—1) calls to the MPC hash procedure. The partial verification
based implementation, on the other hand, requires only ¢’-(h+1)-(d+14[log k1)
MPC hash calls. The improvement is roughly £

37 times.
The soundness analysis of 7p is given in Section

4 Security Analysis of F-SPHINCS+

The standard security definition for digital signature schemes is existential un-
forgeability under adaptive chosen-message attacks (EU-CMA). It can be ex-
tended to few-time signature by limiting the adversary’s call to the sign oracle to

18

Experiment Expgigg‘CMA (n)

- (sk,pk) < kg(n), where kg is the key generation algorithm.

- (M*,0%) «+ A®9"(k)(pk), and A can query the sign oracle at most g,
times

- Return 1 iff vf(pk, M*,0*) = 1 A M* & {M;}} |, where vf is the ver-
ification algorithm and {M;}?% ;| is the set of messages queried by the
adversary in the previous step.

Figure 4: ¢,-EU-CMA game.

qs times where ¢, is the maximum number of signatures that the few-time signa-
ture scheme is allowed to generate for each signing key. Let STG = (kg, sign,vf)
be a gs-time signature scheme, Fig. [shows the ¢,-EU-CMA game.

Definition 1 (¢,-EU-CMA). Let SIG be a digital signature scheme. It is said
to be qs-EU-CMA secure, if for any adversary A, the following holds:

Sueclii " OMA(AWm) = Pr[BxplE O (n) = 1] < negl(n)

Theorem 1. Following the definitions of SM-TCR (single function, multi-
target-collision resistance), SM-DSPR (single function, multi-target decisional
second-preimage resistance), TSR (target subset resilience), and ITSR (inter-

leaved target subset resilience) given in [3], for suitable parameters, n,d, k, h,q,
the F-SPHINCS+ signature is ¢"-EU-CMA secure if:

e Hy is SM-TCR and SM-DSPR secure;

e Hy is TSR secure with at most q queries;

o Hs is ITSR secure with at most ¢" queries;
e prfis a secure pseudorandom function.

Proof. To successfully forge an issuer’s signature on a message M chosen by the
adversary, there are the following mutually exclusive cases:

1 Let MD|lide = Hs(M||gr) for some gr. In the forged signature, all secret
strings corresponding to M D = pol|---||pk—1, i.e. {xz(,? K7+, are the same
as generated from leaf,;q,’s secret key. This case consists of the following

sub-cases:

1.1 The adversary learns all secret strings from signatures obtained in the
query phase.

19

1.2 Some secret strings are not leaked from previous signatures, and for each
of them, the adversary either:

1.2.1 learns it by breaking the pseudorandom function that is used to
expand the secret key into x;;

1.2.2 or learns it by looking at their H; hash values and find the pre-
images.

2 Let MD||ide = H3(M]||gr) for some gr. In the forged signature, some secret
strings corresponding to MD = pol|---|[px—1, i.e. {xz(,? k=L are NOT the
same as generated from leaf;s,’s secret key. Then let S be the list of h + 1
M-FORS signatures in the forged signature, we can find ¢ such that when
verifying the i-th signature (0 < ¢ < h), we obtain the same public key as
would be generated by the signer, but for all 0 < j < i, we obtain a different
public key as would be generated by the signer. This means:

2.1 The adversary has found at least one second-preimages of H; so that
some Merkle trees in the ith signature are computed with the second-
preimages. They end up having the same roots as the trees computed
by the issuer.

2.2 The adversary knows all secret strings corresponding to the public key
produced from verifying the (¢ — 1)th signature. This public key is dif-
ferent from the public key at the same location generated by the issuer.
This can be done by either:

2.2.1 learning all from previous signature queries;
2.2.2 or breaking the pseudoranodm function;
2.2.3 or finding some pre-images of Hj.

Given the above, we analyze the F-SPHINCS+ signature scheme through a
series of games:
Game 0: The original EU-CMA game in which the adversary needs to forge a
valid issuer’s signature after g5 queries.
Game 1: Exactly as Game 0 except all output of prf are replaced by truly
random n-bit strings. We eliminate from the above list Case 1.2.1 and 2.2.2 by
this modification. Since each call to prf uses a secret key and a distinct value
as input, assuming prf is a pseudorandom function, we have:

|Succ@™O(A(n)) — Succ® ™ (A(n))| < negl(n)

Game 2: Game 2 differs from Game 1 in that we consider the adversary lost
if the adversary outputs a forgery by breaking the ITSR security of Hz. This
modification eliminates from the above list Case 1.1. The winning condition in
Figure [] is changed to:

- Return 1 iff ITSR(H3, M*) =0Avf(pk, M*,0*) =1ANM* & {Mz}fi1
The predicate IT SR is defined as the following:

20

e Let M™ be the message that the adversary chooses to generate the forgery
on, and gr* the random string used by the adversary to compute M D*||idz* =
Hy(M]|gr*).

e Parse MD* = pjl|---||pj_, where each p} € [0,2% — 1]. From the above
we obtain a set C* = ((idz*,0,p), - , (idz*, k — 1,p5_1)).

e For each message queried in the query phase M; (1 < i < ¢"), and gr;
the random string, compute M D;||idx; = H3(M;||gr;) and obtain C; =
((idmia Ovpi,0)7 R (Zd'r’u k— 17pi,k:71>)-

e Return 1 iff C* C U?il Ci.

We can see that ITSR(Hsz, M*) = 0 iff the adversary can break the ITSR
security of H3. Hence, we have:

|Succ® ™ (A(n)) — Succ® ™ (A(n))| < Succg;?ﬁ (A) < negl(n)

Game 3: Game 3 differs from Game 2 in that we consider the adversary lost
if the forgery contains a second preimage for an input to H; that was part of a
signature returned as a signing-query response. Here the second preimage can
be included explicitly in the signature, or implicitly observed when verifying the
signature. This eliminates from the above list Case 2.1. Then we have:

|Succ®™e2(A(n)) — Succ® ™3 (A(n))| < Succ}?}JKZTCR(A) < negl(n)
Game 4: Game 4 differs from Game 3 in that we consider the adversary lost
if the adversary outputs a forgery by breaking the TSR security of Hs, which
allows the adversary to forge an intermediate signature in S, and then any

signature earlier in the chain. This eliminates from the above list Case 2.2.1.
The winning condition in Figure [] is changed to:

- Return 1 iff TSR(Ha, M*) = 0 A ITSR(Hs, M*) = 0 Avf(pk, M*,0*) =
h
LAM* ¢ {M;}]_,.
The predicate TSR is defined as the following:

e The adversary chooses an intermediate node in the hyper-tree at address
(a,b), and two n-bit string L*, R*.

e For each signature obtained in the query phase, if S; includes a signature
generated using the secret key in node (a,b) over the public key in one
of its child node, parse this public key into k& blocks, each of d-bit pk; =

pioll - [|pik—1, and generate a set C; = {(j,pi ;) ;:(;
e Compute pk* = Hj(aux||k||0]|0]|L*||R*), parse pk™ into p§l| - - - ||p}_;, and

generate a set C* = {(j,p})}5Z).

e Return 1iff C* C JL, C;.

21

Note that each M-FORS public key is the root of a Merkle tree generated
from pseudorandom strings. Also for each intermediate node in a hyper-tree, it
has at most ¢ children, hence no more than ¢ signatures signed by the secret key
in this intermediate node can be obtained by the adversary. So TSR(Hy, M*) =
0 iff the adversary can break the TSR security of Hs. Hence, we have:

|Succ“™ 3 (A(n)) — Succ™* (A(n))| < Succr, (A) < negl(n)

Now the cases in which the adversary can forge a signature are all eliminated
except Case 1.2.2 and 2.2.3, which requires the adversary to find a pre-image of
at least one hash value produced by H;. The success probability of finding a
pre-image is as analyzed in [3]:

Succrmet(4) < 3. Succzﬁ/{gTCR(A) + AdVZJIV{I)_DSPR(A) < negl(n)
So overall, the advantage of the adversary is negligible. O

TSR security of H,. In any case, ¢ signatures can be generated under the
secret key of a non-leaf node in the hyper-tree. Assuming the adversary knows
all of them, then for each block of the chosen pk*, the probability of the secret
string has been leaked is 1 — (1 — 2%)‘7, so all secret string have been leaked is
1-@1- 2—161)‘1)’“. For d = 16,q = 1024,k = 68, this probability is 27468:87 if
k = 35, this probability is 2721939,

ITSR security of Hs. For a leaf node of the hyper-tree, it may have been used
to sign - signatures out of the total g5 signature queries. So the probability that

all secret string of a chosen message M being leaked through query is:

1 X 1. 1
Z(l—(l_ Qd)’y)k<qv>(1— qj)qs 'YqTA/

ol

For d = 16,q = 1024,k = 68, h = 6, ¢, = 290, this probability is 2740732 if
k = 35, this probability is 27208-95,

5 Soundness Analysis of 7

In 7mp, k instances of MPC are run. In the ith instance, the partial verification
procedure is used to verify every M-FORS signature in S, but only the i-th
block of the hash value being signed. Out of the k blocks, the adversary may
have learned the secret strings correspond to A; blocks through queries, and
has to cheat in all the remaining k — A; blocks. For each MPC instance, the
verifier opens the views of a subset of the MPC parties and a cheat prover can be
detected with a probability 1 — e. Therefore, if using an MPC protocol without
pre-processing, then the soundness error is;

k

> Pry =]

=0

22

If using an MPC protocol with pre-processing, then the adversary can also cheat
in the pre-processing phase. If the adversary cheats in Ay (out of M) copies of
pre-processing data, and not being detected when checking the pre-processing
data (the probability is denoted as Succ?"®(Aq, k, M)), then it needs to cheat in
k — A1 — Ao MPC instances. The soundness error is:

k E—X1
ZPY[)\l =i (Z Succ?™ (g, k, M) ,ekAl,\2>

=0 A2=0

As a concrete example, let us consider a case in which we implement 7 using
KKW [47]. Then we have:

Pr[A; =i] = <Ij) (1—(1- Qfd)q)i((l . 27d)q)k—i7
pre (W 22) 1
Succ? (Mg, k, M) = (Zﬂfi) L e=w

In the above, d, k,q are the parameters for the M-FORS signature, M is the
number of pre-processing data generated, and N is the number of MPC parties.
When d = 16,k = 70,q = 1024, M = 1120, and N = 16, then the soundness
error is 272°7-76%: when d = 16,k = 35,¢ = 1024, M = 560, and N = 16, then
the soundness error is 27128987,

6 UC Security Model for DAA

Security in the Universal Composability (UC) framework follows the simulation-
based paradigm, where a protocol is secure when it is as secure as an ideal
functionality that performs the desired tasks in a way that is secure by design.
In this framework, an environment £ passes inputs and outputs to the protocol
parties. The network is controlled by an adversary A that may communicate
freely with £. The framework includes an ideal world and a real world. In the
ideal world, the parties forward their inputs to the ideal functionality F, which
then (internally) performs the defined task and creates outputs that are for-
warded to £ by the parties. A real-world protocol II is said to securely realize a
functionality F, if the real world is indistinguishable from the ideal world, mean-
ing that for every adversary performing an attack in the real world, there is an
ideal world adversary (often called simulator) S that performs the same attack
in the ideal world. More precisely, a protocol II is secure if for every adversary
A, there exists a simulator S such that no environment £ can distinguish exe-
cuting the real world with II and A, and executing the ideal world with F and
S. Another key point of UC, towards reducing the computational complexity of
the specified protocol, is the composition theorem: It guarantees composition
with arbitrary sets of parties and executed computational tasks. This ensures
that UC-security proofs, for any subroutine of F, are also transferred to the
security model of the entire protocol II.

23

M; — H

N

V\I\F/MJ/H]

Ideal World

7

Real World

Figure 5: UC security model for DAA

Now we employ the UC model for the security of our DAA protocol II. Fig-
ure [5| depicts the network topology of the real and ideal worlds. The endmost
goal is to prove the completeness and soundness of the DAA protocol by prov-
ing that an adversary cannot gain any significant advantage when monitoring
the operations and interacting tasks that take place in the real world; i.e., be
indistinguishable from the case where all the DAA internal phases are executed
in the ideal world. Security of our DAA protocol II is captured by the fact
that every attack A mounted in the real world, S carries out in the ideal world.
Protocol security is implied since such attacks cannot be mounted in the ideal
world. We have then that the output £ retrieved from the execution of II in
the ideal world with S and from the execution of II with the real-world entities
and A are indistinguishably distributed. This ensures that a real-world DAA
protocol IT securely realizes all internal cryptographic tasks (e.g., JOIN, SIGN,
VERIFY, and LINK) if for any real-world adversary A that interacts with the
DAA players, running II, there exists an ideal world simulator S that interacts
with the ideal functionality F, and the notional entities executing DAA protocol
so that no probabilistic polynomial time environment £ can distinguish whether
it is interacting with the real world adversary A or the ideal world adversary S.

We follow the UC security model for DAA given by Camenisch et al. in [I6],
where the ideal functionality F assumes static corruptions, i.e., the adversary
decides upfront which parties are corrupt and makes this information known to
the functionality. The UC framework allows us to focus the analysis on a single
protocol instance with a globally unique session identifier sid. F uses session
identifiers of the form sid = (Z, sid’) for some issuer Z and a unique string sid’.

The ideal functionality F is further parametrized by a leakage function
1:{0,1}* — {0,1}*, that models the information leakage occurred in the com-
munication between a host H; and its TPM M;. We define F by using two
“macros” to determine if a TPM’s signing key sk, is consistent with the internal

24

functionality records or not. This is checked at several places in the functionality
and also depends on whether the sk, belongs to an honest or corrupt TPM. The
first macro CheckTtdHonest is used when the functionality stores a new TPM
key sk, that belongs to an honest TPM, and checks that none of the existing
valid signatures is identified as belonging to this TPM key. The second macro
CheckTtdCorrupt is used when storing a new sk,, that belongs to a corrupt TPM,
and checks that the new sk, does not break the identifiability of signatures, i.e.,
it checks that there is no other known TPM key sk!,, unequal to sk,, such that
both keys are identified as the owner of a signature. Both functions output a
bit b where b = 1 indicates that the new sk, is consistent with the stored infor-
mation, whereas b = 0 signals an invalid key. We also define the JOIN and SIGN
sub-sessions by jsid and ssid. In addition F maintains a group member list ML,
a key record list DomainKeys, a signature record list Signed, and a verification
result list VerResults .

We adopt two sub-functionalities introduced in [16] and they are available to
all parties. The first one is a certificate authority functionality F., that allows
the issuer to register their public key. The second is the common reference
string functionality F.,s, which is used to provide all entities with the system
parameters comprising the random seed to generate the commitments and the
issuer’s public key. Note that for the communication between the TPM and
issuer (via the host) in the join protocol we adopt the key binding protocol
introduced in [25] that provides a secure and authenticated channel between
the TPM and the issuer even in the presence of a corrupt host, therefore no
need for the semi-authenticated channel 77 ,, in our model. We now define the

aut
algorithms that will be used inside the ideal functionality as follows:

e ukgen(n): A probabilistic algorithm that takes a security parameter n as
input and generates a key sk, for a honest TPM.

e sign(sk,, msg,bsn): A probabilistic algorithm used by a honest TPM; input
is a key sk,, a message msg and a basename bsn, and output is a signature
3.

o verify(X, msg,bsn): A deterministic algorithm that is used in the VERIFY
interface. On input of a signature X, a message msg and a basename bsn, it
outputs f = 1 if the signature is valid, and f = 0 otherwise.

e link(X1, msg1, X2, msga, bsn): A deterministic algorithm that is used in the
LINK interface. Given two signatures with the same bsn, it outputs 1 if both
31 and X5 were generated by the same TPM, and outputs 0 otherwise.

e identify(sk,, X, msg,bsn): A deterministic algorithm that is used to ensure
consistency with the ideal functionality F's internal records. It outputs 1 if a
key sk, was used to produce a signature X, and outputs O otherwise.

We explain the interfaces of the ideal functionality F in the UC framework:
Setup

1. Issuer Setup. On input (SETUP, sid) from issuer Z,

25

e Verify that sid = (Z, sid') and output (SETUP, sid) to S.
2. Set Algorithms. On input (ALG, sid, ukgen, sign, verify, link, identify) from
S,

o Check that verify, link and identify are deterministic (i).
e Store (sid, ukgen, sign, verify, link, identify) and output (SETUPDONE, sid) to
T

Join

3. Join Request. On input (JOIN, sid, jsid, M) from host H;,
o Create a join session record (jsid, M, H;, status) with status < request.
e Output (JOINSTART, sid, jsid, M;,H;) to S.

4. Join Request Delivery. On input (JOINSTART, sid, jsid) from S,

e Update the session record (jsid, M;, H;, status) to status <— delivered.
e Output (JOINPROCEED, sid, jsid, M;) to Z.

5. Join Proceed. On input (JOINPROCEED, sid, jsid) from Z,

e Update the session record (jsid, M;, H;, status) to status <— complete.
e Output (JOINCOMPLETE, sid, jsid) to S.

6. Platform Key Generation. On input (JOINCOMPLETE, sid, jsid, sk;)
from S,

Look up record (jsid, M, H;, status) with status = complete.

Abort if Z or M, is honest and a record (M, *, *) € ML already exists (ii).

If M; and H; are honest, set sk; < L.

Else, verify that the provided sk; is eligible by checking

— CheckTtdHonest(sk;) = 1 if H; is corrupt (iii) and M; is honest, or

— CheckTtdCorrupt(sk;) = 1 if M, is corrupt (iv).

e Insert (M, H;, sk;) into ML and output (JOINED, sid, jsid) to H,;.

Sign
7. Sign Request. On input (SIGN, sid, ssid, M, msg, bsn) from host H;,

o If 7 is honest and no entry (M, #;,*) exists in ML, abort.
o Create a sign session record (ssid, M;, H;, msg, bsn, status) with status <
request.
e Output (SIGNSTART, sid, ssid, l(msg, bsn), M;, H;) to S.
8. Sign Request Delivery. On input (SIGNSTART, sid, ssid) from S,

e Update the session record (ssid, M;, H;, msg, bsn, status) to status <
delivered.

e Output (SIGNPROCEED, sid, ssid, msg, bsn) to M;.
9. Sign Proceed. On input (SIGNPROCEED, sid, ssid) from M,

26

e Look up record (ssid, M, H;,msg,bsn, status) with status = delivered.
e Output (SIGNCOMPLETE, sid, ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid, ssid, X) from S,

o If M; and H; are honest, ignore the adversary’s signature and internally
generate the signature for a fresh or established sk;:

— If bsn # L, retrieve sk; from (M, bsn, sk;) € DomainKeys for (M, bsn).
If no such sk; exists or bsn = L, set sk; < ukgen(). Check CheckTtdHonest
(sk;j) =1 (v) and store (M}, bsn, sk;) in DomainKeys.

— Compute signature as ¥ < sign(sk;, msg, bsn) and check verify(X, msg,
bsn) =1 (vi).

— Check identify(¥, msg, bsn, sk;) = 1 (vii) and check that there is no M/; #
M with key sk3 registered in ML or DomainKeys such that identify(X, msg,
bsn, sk’;) =1 (viii).

o If M, is honest, store (X, msg, bsn, M;) in Signed.
e Output (SIGNATURE, sid, ssid,) to H;.

Verify

11. Verify. On input (VERIFY, sid, msg, bsn, ¥, keyRL, linkRL) from some

party V,

e Retrieve all pairs (sk;, M;) from (M;,*,sk;) € ML and (M;,*,sk;) €
DomainKeys where identify(X, msg, bsn, sk;) = 1. Set f < 0 if at least one
of the following conditions holds:

— More than one key sk; was found (ix).

— 7 is honest and no pair (sk;, M;) was found (x).

— There is an honest M; but no entry (x,msg,bsn, M;) € Signed exists
(xi).

— There is a sk!, € keyRL where identify(3, msg, bsn, ski,) = 1 and no pair
(skj, M;) for an honest M, was found, or there exists (slt’,msg’, bsn’) €
linkRL such that identify(slt’, msg’, bsn’, sk;) = 1. (xii).

o If f#£0, set f <« verify(X, msg, bsn) (xiii).

e Add (3, msg, bsn,keyRL, linkRL, f) to VerResults, output (VERIFIED,
sid, f) to V.

Link
12. Link. On input (LINK, sid, ¥, msg, ¥/, msg’,bsn # L) from some party V,

e Output L to V if at least one signature tuple (3, msg, bsn) or (X', msg’, bsn)
is not valid (verified via the verify interface with keyRL =) and linkRL =
0) (xiv).

e For each sk; in ML and DomainKeys compute b; < identify(X, msg, bsn, sk;)
and b; < identify(¥X’, msg’, bsn, sk;) and do the following:

— Set f « 0 if b; # b for some ¢ (xv).
— Set f«+ 1if b; =b;, =1 for some i (xvi).

27

o If f is not defined yet, set f < link(2, msg, X/, msg’, bsn).
e Output (LINK, sid, f) to V.

We highlight that our model catches all the security requirements discussed
in section (correctness, anonymity and non-frameability):

e The correctness of our scheme is guaranteed in our model. When an honest
signer (including both the TPM and Host) successfully creates a signature,
honest Verifiers will always accept this signature. This is due to the checks v,
vi, vii, and viii performed by F in the Sign interface.

e The anonymity in our scheme is also guaranteed by F due to the random
choice of sk; that will be later used for the construction of DAA signatures
as part of the Sign interface. In the case of corrupt devices, the Simulator
is allowed to provide a signature that will convey the signer’s identity, as the
signing key can be extracted from the respective device key pair. This reflects
that the anonymity of the DAA signer is guaranteed if both the TPM and the
Host are honest.

e The non-frameability property guarantees that a signature created by an ad-
versary cannot be linked to a legitimate signature created by the target device,
this is due to the check ix in our model. CheckTtdHonest prevents register-
ing an honest sk; in the Join interface that matches an existing signature so
that conflicts can be avoided and signatures can always be traced back to the
original signer. This ensures that honest signers are not revoked due to the
identify algorithm being deterministic in our model. Consider an adversary
alming to create a signature on a message that has not been signed by an
honest device, checks x and xi in the Verify interface ensure the scheme un-
forgeability property, which dictates that it is computationally infeasible to
maliciously forge signatures.

7 UC Security Proof of the DAA Scheme

7.1 High-level description of our proof

We start with the real-world protocol execution in Game 1. In the next game,
we construct one entity C' that runs the real-world protocol for all honest par-
ties. Then we split C' into two pieces, an ideal functionality F and a simulator
S that simulates the real-world parties. Initially, we start with an “empty”
functionality F. With each game, we gradually change F and update S accord-
ingly, moving from the real world to the ideal world, and culminating in the full
ideal functionality F being realized as part of the ideal world, thus, proving our
proposed security model presented in Section [6] The endmost goal of our proof
is to prove the indistinguishability between Game 1 and Game 16, i.e., between
the complete real world and the fully functional ideal world. This is done by
proving that each game is indistinguishable from the previous one. We use the
“a~” sign to express games indistinguishably between games.

28

The ideal functionality F is introduced in Game 3; at this stage F only
forwards its inputs to the simulator & who simulates the real world. From
Game 4 onward, F starts executing the setup interface on behalf of the Issuer.
Moving on to Game 5, F handles simple verification and identification checks
without performing any detailed checks at this stage; i.e., it only checks if the
signer belongs to a revocation list separately. In Games 6-8, F executes the Join
interface while performing checks to keep the consistency of registered keys. It
also adds checks that allow only the signers that have successfully been enrolled
to create signatures. Game 9 proves the anonymity of our protocol by letting
F handle the sign queries on behalf of honest signers. To do this, F creates
signatures using freshly generated random keys instead of running the signing
algorithm using the signer’s signing key. At the end of this game, we prove that
by relying on the ZKP constructions, an external environment will notice no
change from previous games where the real-world Sign algorithm was executed.
Now moving to Games 10 - 16, we let F perform all other checks that are
explained in Section [6]

7.2 The DAA scheme proof

Due to the limited space, we provide a sketch of the security proof of the pro-
posed DAA protocol, including a sequence of games based on the model of
Camenish et al. in [I6]. A detailed proof will be given in the full paper. The
proof in [16] is constructed under the Discrete Logarithm (DL) and Decisional
Diffie-Hellman (DDH) assumptions and the unforgeability of the Camenisch-
Lysyanskaya (CL) signatures. Other DAA signatures such as [24] [37] are proved
based on lattice hard problems, namely Ring-LWE and Ring-SIS, and the un-
forgeability is supported on the modified Boyen or Dilithium signature scheme
[6,34]. In contrast to the previous DAA schemes, our game indistinguishability
is based on the perfect simulation of the MPCitH-based NIZK proofs, the sound-
ness, completeness and zero-knowledge properties of the proofs 7z and mp, the
unforgeability of the F-SPHINCS+ signature scheme, and the security proper-
ties of the tweakable hash functions, Hy, Ho and Hj, and the pseudorandom
function F'. The sequence of games is as follows:

Proof. (sketch)

Game 1: (Real-World execution of the protocol): This is the start.

Game 2: (Introducing C): An entity C is introduced; C receives all
inputs from the parties and simulates the real-world protocol for them. This is
equivalent to Game 1.

Game 3: (Reconstruction of C'): We now split C' into two parts, F and
S, where F behaves as an ideal functionality. F receives all the inputs and
forwards them to S, who simulates the real-world protocol for honest parties,
and sends the outputs to F. F then forwards the outputs to the environment €.
This game is simply Game 2 but with different structure, so Game 3 ~ Game
2.

29

Game 4: (F handles the setup queries): F now behaves differently
in the setup interface and stores the algorithms for the issuer Z. F also does
checks to ensure that the structure of sid is correct for an honest Z, and aborts
if not. In case Z is corrupt, S extracts the secret key for Z and proceeds in the
setup interface on behalf of Z. Clearly £ will notice no change, so Game 4 =
Game 3.

Game 5: (F handles the verification and linking queries): F now
performs the verification and linking checks instead of forwarding them to S.
There are no protocol messages and the outputs are exactly as in the real-world
protocol. However, the only difference is that the verification algorithm used by
F does not contain a revocation check. F performs this check separately thus
the outcomes are equal, so Game 5 ~ Game 4.

Game 6: (F handles the join queries) : The join interface of F is
now changed, and F stores the joined member information in the Member List
ML . If 7 is honest, F stores the secret key sk,, extracted from S, for corrupt
TPM’s. S always has enough information to simulate the real-world protocol
except when the issuer is the only honest party. In this case, S does not know
who initiated the join since the host does not authenticate towards the issuer in
the real world, so § can’t make a join query with F on a corrupt host’s behalf.
Thus, to deal with this case, F can safely choose any corrupt host and put it
into ML, the identities of hosts are only used to create signatures for platforms
with an honest TPM or honest host, so fully corrupted platforms do not matter.
In the only case, where the TPM has already been registered in ML, F may abort
the protocol, but Z should have already tested this case before continuing with
the query JOINPROCEED, hence F will not abort. Thus in all cases, 7 and S
can interact to simulate the real-world protocol, so Game 6 ~ Game 5.

Game 7: (F knows bsn and msg to be signed or [(msg,bsn)): F now
no longer informs S about the message and the basename that are being signed.
If the whole signer is honest, S can learn nothing about the message msg and the
basename bsn. Instead, S knows only the leakage [(msg, bsn). To simulate the
real world, S chooses a pair (msg’, bsn’) such that [(msg’, bsn’")=l(msg, bsn).
Therefore Game 7 =~ Game 6.

Game 8: (F performs pre-sign checks): If 7 is honest, F only allows
the signer that has joined to sign. An honest host will always check whether it
has joined with its TPM in the real-world protocol, so no difference for honest
hosts. Also, an honest TPM only signs when it has joined with the host before.
In the case that an honest M; performs a join protocol with a corrupt host H;
and the honest issuer, the simulator S will make a join query with F, to ensure
that M, and #H; are in ML. Therefore, Game 8 ~ Game 7.

Game 9: (F handles the sign queries, i.e., simulating the TPM
without knowing its secret): In this game, F creates anonymous signatures
for honest signers by running the algorithms defined in the setup interface. Let
us start by defining Game 9.k.k’, in this game F handles the first k¥’ signing
inputs of My, and subsequent inputs are then forwarded to S. For ¢ < k, F
handles all the signing queries with M; using algorithms. For ¢ > k, F forwards
all signing queries with M; to S who creates signatures as before. Now from the

30

definition of Game 9.k.k’, we note that Game 9.0.0 = Game 8. For increasing &/,
Game 9.k.k’ will be at some stage equal to Game 9.k + 1.0, this is because there
can only be a polynomial number of signing queries to be processed. Therefore,
for large enough k and k', F handles all the signing queries of all TPMs, and
Game 9 is indistinguishable from Game 9.k.k’. We want to prove now that
Game 9.k.k" + 1 is indistinguishable from Game 9.k.k’. Suppose that there
exists an environment that can distinguish a signature of an honest party using
sk, from a signature using a different sk/,, then the environment can break the
pseudorandom property of the function F'.

The first j < k' signing queries on behalf of M} are forwarded by F to
S, which calls the real-world protocol. Now suppose that £ is given tuples
Y = (str, slt,com,mp) and it is challenged to decide if ¥ = (str, slt, com, mp) is
calculated from uniform random r < {0,1}" or from a certified TPM secret key
sk,. In the reduction, we have to be able to simulate the TPM without knowing
the secret sk,. The issuer’s zero-knowledge proof nz for the correctness of the
master secret and public key pair allows the simulator S extracts the master
secret key. Furthermore, the zero-knowledge proof of the group membership
credential mp helps S extract the TPM’s secret key sk, for corrupt TPM and
create signatures on behalf of the TPM as in the real world scenario. Let r be a
randomly sampled key from {0,1}" that will be used to generate signatures on
behalf of honest TPMs rather than using the real TPM secret key sk,. Since
the issuer’s secret key msk can be extracted from n7 due to the soundness of the
proof w7 and getting access to F. s, then a credential can be created on et =
F(r, gid) by running the signing algorithm of F-SPHINCS+, sign(et!,, msk, gp).
After getting a credential on et],, slit and sst are calculated as functions of r,
ie. slt = F(r, lid) and sst = F(r, sid). Then all other parts of the signature
follow exactly the same as the real-world protocol (i.e. when using the TPM’s
sky). The commitment com is calculated as our defined sign algorithm and the
proof mp can then be perfectly simulated using the random secret r. Due to the
zero-knowledge property of the proof mp and the pseudorandom outputs of the
function F', we argue that an external environment cannot distinguish between
1) a signature generated using the TPM’s (sk,,et,). 2) a signature generated
by a random (r,et!). Therefore, Game 9 ~ Game 8.

Game 10 (F performs key consistency checks): When storing a new
sky, F checks CheckTtdHonest(sk,) = 1 or CheckTtdCorrupt(sk,) = 1. We want
to show that these checks will always pass. In fact, valid signatures always satisfy
slt = F(sky,lid), et,, = F(sky, gid), (g7, S) < F-SPHINCS+sign(et,,, msk, gp)
and sst = F(sky,sid). By the soundness property of mp, there exists only
one secret sk, satisfying the slt construction, and there exists one sst that
matches this signature by the soundness of the hk = MPC_H1([sst]). Thus,
CheckTtdCorrupt(sk,) = 1 will always give the correct output. On the other
hand, the keys for honest TPMs are chosen uniformly at random from an ex-
ponentially large group {0,1}", due to the large min-entropy of the uniform
distribution the probability that sampling a selected sk, is negligible for large
n with probability equal to 1/2", thus with overwhelming probability, there
does not exist a signature already using the same sk,, which implies that

31

CheckTtdHonest(sk,) = 1 will always give the correct output. Hence, Game
10 ~ Game 9.

Game 11: (F checks the correctness of the protocol): In this game
F checks that any honestly generated signature ¥ = (str, slt, com, mp) is always
valid due to the completeness property of mp and the correctness of the F-
SPHINCS+ signature. A valid proof mp on the credential ensures that the
credential has the correct structure, follows the correct authentication path,
and always leads to the issuer’s public key rpk due to the soundness of mp
and the correctness of the F-SPHINCS+ signature. Second, F makes sure
identify (3, msg, bsn, sk,,) = 1, this is also achieved in the real-world protocol due
to the soundness of m. F checks, using its internal records ML and DomainKeys
that honest users are not sharing the same secret key sk,,. If there exists a key
skl # sk, in DomainKeys such that sit = F(skl,,lid) = F(sky,lid), then this
breaks the collision resistance property of the function F. Therefore Game 11
~ Game 10.

Game 12 (F checks that valid signatures are deterministic): Add
Check (ix) to ensure that there are no multiple sk, values matching to one sig-
nature. A signature ¥ includes slt = F(sk,,, lid), com = Hy(F(sky, sid)||pks||
-+« ||rpk) and mp. Due to the soundness of the function F' and the proof mp,
and also due to the collision resistance and second-preimage properties of Hy,
two different keys cannot create the same signature and two different signatures
cannot share the same sk,. Therefore a valid signature should be identified to
one sk, only. Hence, Game 12 ~ Game 11.

Game 13 (F checks the unforgeability of the credential): To prevent
accepting a signature that was not generated by using a group membership
credential issued by an honest issuer, F adds Check (x). A credential is an
F-SPHINCS+ signature on mt,||idz, using the tweakable hash functions Hi,
H, and Hj. Following the proof of Theorem [I] in Section [} the F-SPHINCS+
signature scheme is unforgeable due to the security properties of Hy;, Hy and
Hjs, so this check is always passed and Game 13 ~ Game 12.

Game 14 (F checks the unforgeability of signatures): Check (xi) is
added to F to prevent an adversary from forging signatures using honest signer’s
credential key gsk, = (sky, gry, S). As discussed before, a DAA signature ¥ is
proof of the correct construction of slt, com and 7, which form a NIZK proof
of an F-SPHINCS+ signature associated with a single key sk,,. If the signature
is verified, due to the unforgeability of F-SPHINCS+, the binding property of
the commitment scheme used to generate com = Hi (F'(sky, sid)||pkr|| - - - ||rpk),
and the soundness of the function F' used to compute sit and com, sk, belonging
to an honest TPM must be involved. If the adversary uses a different key sk,
to create this signature. Due to the soundness of mp analyzed in Section [5] the
proof mp cannot be simulated with overwhelming probability unless sk], = sk,
so Game 14 ~ Game 13.

Game 15 (F checks the correct revocation): Check (xii) is added to F
to ensure that an honest TPM with sk, are not being revoked. If there exists
a matching revoked key sk’ (# sk,) € keyRL such that sit = F(skX,lid) =
F(sky,lid), then this breaks the collision resistance property of the function

32

F. For the same reason, there does not exist (sit’,msg’,bsn’) € linkRL such
that slt’ = F(sk],lid") = F(sky,lid") and sk, # sk,. Therefore, our protocol
ensures the correct revocation. So Game 15 ~ Game 14.

Game 16 (F checks the linkability): Checks (xv and xvi) of the ideal
functionality F that are related to link queries are now included. The output
of F based on these checks is still consistent with the output which the link
algorithm would give: If there is an sk, that matches two signatures signed
under the same bsn, by the soundness of 7 we have that the pseudonyms based
on the same sk, must be equal, resulting in link outputting 1. If there is an sk,
that matches one signature but not the other, by the soundness of 7, we have
that the pseudonyms slt that are not generated using sk, must also differ from
those generated by a different key sk!, # sk, which results in link outputting 0.
Therefore, Game 16 ~ Game 15. This concludes the proof. O

8 Conclusion

This paper proposes the first DAA scheme from symmetric primitives and this
scheme has some interesting features. We make use of a modified SPHINCS+
signature as a group membership credential and use of a Picnic-style signature
to prove the possession of that credential. Our DAA scheme splits the signer
role between a TPM and its host and allows the TPM to have a much smaller
workload than the host. This scheme can handle a large group size (up to
260) " which is suitable for rapidly increasing trusted computing applications.
This research topic is still in its early stage. Improving the performance of
this DAA scheme is challenging and it will be possible if either a more efficient
stateless hash-based signature scheme than F-SPHINCS+ or an efficient Picnic-
style signature scheme is developed.

Acknowledgments

We thank the European Union’s Horizon research and innovation program for
support under grant agreement numbers: 101069688 (CONNECT), 101070627
(REWIRE), 779391 (FutureTPM), 952697 (ASSURED), 101019645 (SECANT)
and 101095634 (ENTRUST). These projects are funded by the UK government’s
Horizon Europe guarantee and administered by UKRI. We also thank the Na-
tional Natural Science Foundation of China for support under grant agreement
numbers: 62072132 and 62261160651. We would like to thank Qingju Wang and
Scott Fluhrer for helpful discussions. We also thank the anonymous reviewers
from PQCrypto 2023 for their valuable comments.

References

[1] Rachid El Bansarkhani and Ali El Kaafarani. Direct anonymous attestation
from lattices. TACR Cryptol. ePrint Arch., 2017:1022, 2017.

33

2]

[12]

[13]

Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Em-
manuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and
fast signatures from AES. In PKC 2021, pages 266-297, 2021.

Daniel J. Bernstein, Andreas Hiilsing, Stefan Ko6lbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS T signature framework.
In ACM CCS, pages 2129-2146, 2019.

Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A
new optimized sublinear IOP. In ACM CCS, pages 2025-2038, 2020.

Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-quantum EPID sig-
natures from symmetric primitives. In CT-RSA, pages 251-271, 2019.

Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for
fully secure short signatures and more. In International Workshop on Public
Key Cryptography, pages 499-517, 2010.

Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In ACM CCS, pages 132-145, 2004.

Ernie Brickell, Liqun Chen, and Jiangtao Li. A new direct anonymous
attestation scheme from bilinear maps. In International Conference on
Trusted Computing, pages 166—178, 2008.

Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions of
direct anonymous attestation and a concrete scheme from pairings. Inter-
national Journal of Information Security, 8:315-300, 2009.

Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further re-
ducing TPM resources. Trust, 6101:181-195, 2010.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities. IEEE Trans.
Dependable Secur. Comput., 9(3):345-360, 2012.

Maxime Buser, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, and Shifeng
Sun. DGM: A dynamic and revocable group Merkle signature. In ES-
ORICS, pages 194-214, 2019.

Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick,
and Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for provably
secure anonymous attestation. In IEEE S€P, pages 901-920, 2017.

Jan Camenisch, Manu Drijvers, Alec FEdgington, Trustonic Anja
Lehmann, and Rainer Urian. FIDO ECDAA algorithm., 2018.
http://fidoalliance.org/specs/fido-v2.0-1d-20180227/
fido-ecdaa-algorithm-v2.0-id-20180227 .html.

34

http://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
http://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

[15]

[16]

[17]

[18]

[19]

[20]

[23]

[24]

[25]

Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attes-
tation using the strong Diffie-Hellman assumption revisited. In TRUST,
pages 1-20, 2016.

Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally compos-
able direct anonymous attestation. In PKC, Part II, pages 234-264, 2016.

Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attesta-
tion with subverted TPMs. In CRYPTO, pages 427-461, 2017.

Matthew Casey, Liqun Chen, Thanassis Giannetsos, Chris Newton, Ralf
Sasse, and Jorden Whitefield. Direct anonymous attestation in the wild.
Presentation at Real World Crypto 2019, https://rwc.iacr.org/2019/
slides/DAA.pdf.

Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Vladimir
Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, Xiao Wang, and Greg Zaverucha. The Picnic signature
scheme design document. https://microsoft.github.io/Picnic/, 2020.

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In ACM CCS, pages 1825-1842, 2017.

David Chaum and Eugene van Heyst. Group signatures. In FUROCRYPT,
pages 257-265, 1991.

Liquan Chen, Tianyang Tu, Kunliang Yu, Mengnan Zhao, and Yingchao
Wang. V-LDAA: A new lattice-based direct anonymous attestation scheme
for VANETS system. Security and Communication Networks, 2021:1-13,
2021.

Liqun Chen. A DAA scheme requiring less TPM resources. In Information
Security and Cryptology (Inscrypt 2009), pages 350-365, 2010.

Liqun Chen, Nada El Kassem, Anja Lehmann, and Vadim Lyubashevsky.
A framework for efficient lattice-based DAA. In Proceedings of the 1st ACM
Workshop on Cyber-Security Arms Race, pages 23-34, 2019.

Liqun Chen, Nada El Kassem, and Christopher JP Newton. How to bind a
TPM’s attestation keys with its endorsement key. The Computer Journal,
page bxad037, 2023.

Liqun Chen and Jiangtao Li. Flexible and scalable digital signatures in
TPM 2.0. In ACM CCS, pages 3748, 2013.

Liqun Chen, Paul Morrissey, and Nigel P Smart. On proofs of security
for DAA schemes. In International Conference on Provable Security, pages
156-175, 2008.

35

https://rwc.iacr.org/2019/slides/DAA.pdf
https://rwc.iacr.org/2019/slides/DAA.pdf
https://microsoft.github.io/Picnic/

[28]

[29]

Liqun Chen, Dan Page, and Nigel P Smart. On the design and implemen-
tation of an efficient DAA scheme. In CARDIS, pages 223-237, 2010.

Liqun Chen and Rainer Urian. DAA-A: Direct anonymous attestation
with attributes. In International Conference on Trust and Trustworthy
Computing, pages 228-245, 2015.

Yu Dai, Fangguo Zhang, and Chang-An Zhao. Fast hashing to G5 in direct
anonymous attestation. Cryptology ePrint Archive, 2022/996.

Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: Using AES in picnic signatures. In SAC, pages
669-692, 2020.

Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tan-
guy. Limbo: Efficient zero-knowledge MPCitH-based arguments. In ACM
CCS, pages 3022-3036, 2021.

Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus
Schofnegger, and Greg Zaverucha. Shorter signatures based on tailor-made
minimalist symmetric-key crypto. In ACM CCS, pages 843-857, 2022.

Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-Dilithium: A lattice-
based digital signature scheme. TACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 238-268, 2018.

Rachid El Bansarkhani and Rafael Misoczki. G-Merkle: A hash-based
group signature scheme from standard assumptions. In PQCrypto, pages
441-463, 2018.

Nada El Kassem. Lattice-based direct anonymous attestation. PhD thesis,
University of Surrey, 2020.

Nada El Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani,
Jan Camenisch, Patrick Hough, Paulo Martins, and Leonel Sousa. More
efficient, provably-secure direct anonymous attestation from lattices. Future
Generation Computer Systems, 99:425-458, 2019.

Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In PKC,
pages 181-200, 2007.

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
zero-knowledge for boolean circuits. In USENIX Security, pages 1069-1083,
2016.

Ulrich Greveler, Benjamin Justus, and Dennis Loehr. Direct anonymous
attestation: enhancing cloud service user privacy. In On the Move to Mean-
ingful Internet Systems: OTM 2011: Confederated International Confer-
ences: CooplS, DOA-SVI, and ODBASE 2011, Proceedings, Part II, pages
577-587, 2011.

36

[41]

[42]

[43]

[44]

Christopher Hicks and Flavio D Garcia. A vehicular DAA scheme for
unlinkable ecdsa pseudonyms in v2x. In EuroSéP, pages 460-473, 2020.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21-30,
2007.

ISO/IEC 10118-2:2010. Information technology — Security techniques —
Hash-functions — Part 2: Hash-functions using an n-bit block cipher. Stan-
dard, International Organization for Standardization, 2010.

ISO/IEC 20008-2: 2013. Information technology - Security techniques -
Anonymous digital signatures - Part 2: Mechanisms using a group public
key. Standard, International Organization for Standardization, 2013.

Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-
knowledge proofs and post-quantum signatures. Cryptology ePrint Archive,
2022/588.

Nada EL Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani,
Jan Camenisch, Patrick Hough, Paulo Martins, and Leonel Sousa. Lattice-
based direct anonymous attestation (LDAA). Cryptology ePrint Archive,
2018/401.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In ACM CCS, pages 525-537, 2018.

Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae
Moon, Joohee Lee, Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon,
et al. AIM: Symmetric primitive for shorter signatures with stronger secu-
rity. Cryptology ePrint Archive, 2022/1387.

Leslie Lamport. Constructing digital signatures from a one-way function.
Tech. Report: SRI International Computer Science Laboratory, 1979.

Ralph C. Merkle. A certified digital signature. In CRYPTO, pages 218-238,
1989.

NIST. NIST announces first four quantum resistant cryptographic
algorithms, 2022. https://www.nist.gov/news-events/news/2022/
07/nist-announces-first-four-quantum-resistant-cryptographic-
algorithms|

Masoumeh Shafieinejad and Navid Nasr Esfahani. A scalable post-quantum
hash-based group signature. Designs, Codes and Cryptography, 89:1061—
1090, 2021.

TCG. TPM 1.2 Main Specification. Rev 116, Trusted Computing Group,
March 2011.

37

https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-
algorithms

[54]

[55]

[57]

[61]

[62]

TCG. Trusted Platform Module 2.0 Library Specification. Rev 01.59,
Trusted Computing Group, November 2019.

Han-Zhang Wang and Liu-Sheng Huang. An improved trusted cloud com-
puting platform model based on DAA and privacy CA scheme. In 2010
International Conference on Computer Application and System Modeling

(ICCASM 2010), pages 13-33, 2010.

Stephan Wesemeyer, Christopher JP Newton, Helen Treharne, Liqun Chen,
Ralf Sasse, and Jorden Whitefield. Formal analysis and implementation of
a TPM 2.0-based direct anonymous attestation scheme. In AsiaCCS, pages
784-798, 2020.

Jorden Whitefield, Liqun Chen, Thanassis Giannetsos, Steve Schneider,
and Helen Treharne. Privacy-enhanced capabilities for VANETS using di-
rect anonymous attestation. In IEEFE Vehicular Networking Conference
(VNC), pages 123-130, 2017.

Jorden Whitefield, Liqun Chen, Ralf Sasse, Steve Schneider, Helen Tre-
harne, and Stephan Wesemeyer. A symbolic analysis of ECC-based direct
anonymous attestation. In FuroS&P, pages 127-141, 2019.

Kang Yang, Liqun Chen, Zhenfeng Zhang, Christopher J. P. Newton,
Bo Yang, and Li Xi. Direct anonymous attestation with optimal TPM
signing efficiency. IEEE Transactions on Information Forensics and Secu-
rity, 16:2260-2275, 2021.

Mahmoud Yehia, Riham AlTawy, and T Aaron Gulliver. GM™M7T: A revo-
cable group Merkle multi-tree signature scheme. In CANS, pages 136-157,
2021.

Mahmoud Yehia, Riham AlTawy, and T. Aaron Gulliver. Security analysis
of DGM and GM group signature schemes instantiated with XMSS-T. In
Inscrypt, pages 61-81, 2021.

Gerg Zaverucha. The Picnic signature algorithm specification. Supporting
Documentation in https://github.com/Microsoft/Picnic, 2020.

38

https://github.com/Microsoft/Picnic

	Introduction
	Preliminaries
	Hash-based signatures
	MPC-in-the-head and Picnic-style signatures
	DAA concept

	Construction
	F-SPHINCS+ and M-FORS
	The DAA scheme
	The proof D

	Security Analysis of F-SPHINCS+
	Soundness Analysis of D
	UC Security Model for DAA
	UC Security Proof of the DAA Scheme
	High-level description of our proof
	The DAA scheme proof

	Conclusion

