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Abstract

In this paper we explore efficient ways to prove correctness of elliptic curve pairing
relations. Pairing-based cryptographic protocols such as the Groth16 and Plonk SNARKs
and the BLS signature scheme are used extensively in public blockchains such as Ethereum
due in large part to their small size. However the relatively high cost of pairing computation
remains a practical problem for many use cases such as verification “in circuit” inside a
SNARK. This naturally arises in recursive SNARK composition and SNARKs of BLS based
consensus protocols.

To improve pairing verification, we first show that the final exponentiation step of pairing
verification can be replaced with a more efficient “residue check,” which can be incorporated
into the Miller loop. Then, we show how to reduce the cost of the Miller loop by pre-
computing all the necessary lines, and how this is especially efficient when the second pairing
argument is fixed in advance. This is the case for BLS signatures with a fixed public key, as
well as for KZG based SNARKs like Plonk and two of the three Groth16 pairings. Finally,
we show how to improve of the protocol of [gar] by combining quotients, which allows us to
more efficiently prove higher degree relations. These techniques also carry over naturally to
pairing verification, for example on-chain verification or as part of the BitVM(2) protocol for
Bitcoin smart contracts. We instantiate algorithms and show results for the BN254 curve.
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1 Introduction

Pairing based cryptography has found numerous applications, in particular with respect to pub-
lic blockchains. The two primary uses of pairing based cryptography in blockchains are the
BLS[BLS04] signature scheme and Succinct Non-interactive Arguments of Knowledge (SNARKs)
like Groth16 [Gro16] and Plonk [GWC19]. In both cases, the additional structure that pairings
provide over ordinary elliptic curves allows for lower communication costs. For example, BLS
signatures support non-interactive aggregation which is exploited by Ethereum’s Proof-of-Stake
(PoS) protocol, and pairing based SNARKs yield protocols with constant sized, concretely small
proofs and with constant time verifiers. Often, when other proof systems are used, they are
wrapped with a pairing based SNARK before being posted on chain. However, these benefits
come at the cost of a much more computationally expensive and mathematically complicated
primitive.

More recently, pairings have been used both to instantiate proof systems and as the target of
proof systems. For example, if one wanted to construct a proof of Ethereum’s consensus protocol
to construct a bridge to another blockchain [Suc], they would need to prove the correct execution
of a pairing. One might also need to produce such a proof when constructing a recursive zero
knowledge proof. That is, a proof that proves knowledge of some number of distinct, valid proofs.
In some cases it is possible to avoid proving pairings in circuit, for example by using folding
schemes [KST21], but often it is not. When aggregating different types of proofs [BCL+20] in
different proof systems it is often impossible to avoid verifying pairings in circuit.

Pairing computations, except for the Weil pairing [Mil04], consists of two parts: the Miller
loop and the final exponentiation. Of the two, the final exponentiation is generally more ex-
pensive, especially when using optimal pairing optimizations [Ver08]. Existing implementation
of pairings in arithmetic circuits such as [Hou22] and [gar] adopt the straightforward approach
of directly checking a pairing computation in a circuit. That is, they first check that each step
of the Miller loop was correctly computed, and then check that the final exponentiation was
correctly computed. Our approach is able to replace the final exponentiation computation with
one short exponentiation and substantially reduce the cost of verifying the Miller loop.

1.1 Contributions

Our primary contribution is a more computationally efficient protocol for verifying elliptic curve
pairings. To construct this protocol, we exploit the highly structured nature of pairing computa-
tion, and exploit the fundamental differences between computing pairings and verifying pairings.
This protocol can be used to reduce the arithmetic circuit size required to prove pairings within
SNARKs, and can be used to reduce the costs of verifying pairings in extremely resource con-
strained environments. In particular, our techniques can help to reduce the cost of on-chain
verification of pairings, both directly as in Ethereum and via higher level protocols like BitVM
or BitVM2 [bita] on Bitcoin. In so doing, we introduce a number of optimizations that may be of
independent interest. Throughout, we focus on the BN family of curves, but all our optimizations
readily generalize.

Final Exponentiation First, we replace the final exponentiation of the Tate pairing with an
r-residue check. This immediately replaces the final exponentiation with an exponentiation one
third the length in the case of BN curves. Then, we show how to use the same Frobenius structure
of an optimal pairing to perform the r residue check even more efficiently, further reducing the
exponent by a factor 4 for BN. Finally, we show how the r-residue check can integrated into
the Miller loop directly, saving all the extension field squaring operations. In cases where the
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optimal ate lattice has very low hamming weight, this almost entirely eliminates the cost of the
final exponentiation.

Line Precomputation Second, we replace the Miller loop’s line computation with “witness-
ing” lines. That is, providing them as auxiliary inputs to the circuit. In the case of variable
second argument pairings this produces a modest savings since verifying the correctness of the
lines is cheaper than computing them. In the case of fixed second argument pairings, as in most
KZG SNARKs and significant part of Groth16, this allows us to pre-compute all the lines and
eliminate much of the overall cost of the Miller loop.

Randomized Extension Arithmetic Third, we improve on the work of Garaga [gar] to
reduce the cost of extension field arithmetic for pairings. Similarly, we exploit the isomorphism
between elements of extension fields and elements of polynomial quotient rings, which allows
us to test extension field relations by evaluating polynomials at a random challenge. However,
we use an additional challenge to first combine all the relations into a single random linear
combination and provide a single quotient. This allows us reduce commitment costs by both
avoiding committing to O(n) quotients and by using higher degree Fqk arithmetic.

1.2 Related Work

Housni [Hou22] analyzed the costs of computing pairings over Rank-1 Constraint Systems. Their
analysis has the same observation that affine coordinate representation of points yields a better
performance in circuits given that inversions can be replaced with multiplications. They further
build efficient short addition chains that optimize number of additions instead of doublings, and
show that computation of (S+Q)+S yields a slightly better result than computation of 2S+Q.
Circom-pairing [Cir] also uses affine coordinate representation and they use an approach similar
to ours of showing that points are co-linear.

Garaga [gar] utilizes randomized polynomial testing technique which reduces Fqk arithmetic
to testing equality of polynomials in Fq by the Schwartz-Zippel lemma. We note that they commit
to a quotient polynomial per multiplication whereas we commit to single quotient polynomial
by utilizing one separation and one evaluation challenge. All of the above mentioned approaches
perform the final exponentiation inside the circuit.

2 Techniques

Tate pairing computation is expensive, but it is also highly structured, and we are able to exploit
this structure to efficiently verify pairings. Most of our contributions follow a similar pattern:
rather than check some expensive computation directly by carrying it out, we provide some
auxiliary information and use that to verify the computation much more efficiently. This form of
optimization is very common in SNARK design, for example in how most SNARKs check modular
inversion. Computing an inverse is, relatively to multiplication, a very expensive operation
and involves either computing the extended euclidean algorithm or a large exponentiation. By
contrast, checking an inversion is very simple: to show that y−1 = x we can simply check xy = 1.

2.1 Eliminating the Final Exponentiation

The first optimization we introduce of this form allows us to eliminate the so called ‘final expo-
nentiation’ of pairing computation. The Tate pairing, and related pairings like the Ate pairing,
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output an element of an equivalence class F∗/(F∗)
r
. Two elements x, y ∈ F are equivalent if there

exists some c ∈ F∗ such that xcr = y. Because the Tate pairing is only well defined up to this
equivalence, we need some way to normalize its output to check for equality. This normalization
is called the final exponentiation, and consists of clearing the r residue part of the output by

computing x 7→ x(qk−1)/r. In our previous example we see that if xcr = y then after the final
exponentiation

y(q
k−1)/r = (xcr)

(qk−1)/r
= x(qk−1)/rcq

k−1 = x(qk−1)/r.

The final exponentiation is very expensive, both because qk − 1 is concretely very large and
all arithmetic is carried out over Fqk . While there are some tricks that one can exploit to reduce
this cost by using cyclotomic factors of qk−1, it remains large. Our optimization avoids this cost
by instead providing c as auxiliary input and directly checking xcr = y. In this way we replace
an exponentiation by (qk − 1)/r with an exponentiation by r, which in general is much cheaper.

Note that this optimization admits a convenient generalization: to show x, y are equivalent
we can instead show xc′s = y where s = rt. This follows straightforwardly since letting c =
c′t gives xcr = y. In many cases over an extension field, there exist s of this form where
computing xs is much cheaper than computing xr. This family of optimizations is essentially
the same as that used to construct the Ate pairing [HSV06] and involves finding a short linear
combination of Frobenius endomorphisms that vanishes mod r. This poses some technical
issues if gcd(t, qk − 1) ̸= 1, but nevertheless yields substantially better performance than raising
to r. We use the same linear combination to generate s and to instantiate the Ate pairing, which
yields further performance improvements.

2.2 Precomputing Lines

The other part of pairing computation is the Miller loop. When computing a pairing e(P,Q),
at each step of the Miller loop computation we need to compute a line through some points
T,Q and then to evaluate the line at P . Instead of computing the lines, we simply provide the
coefficients λ, µ as auxiliary input. Then, we show that the line l : y = λ ·x+µ passes through T
and Q by checking l(T ) = O and l(Q) = O. From this, we can easily evaluate l(P ). We further
show that the optimizations of various works [ABLR13, BDM+10] that exploit twists and line
normalizations are also compatible with this technique in section 5.

We extend this optimization to the situation when the second argument of the pairing is
fixed. This is the case in SNARKs based on KZG [KZG10] such as PLONK [GWC19]. The
lines used by the Miller loop computation only depend on the second argument to the pairing,
so when it is fixed we can precompute all the lines and drop the l(T ) = l(Q) = O checks. It is
also possible to “hard code” the lines into the computation, which is especially useful in Bitcoin
script where input size is severely constrained.

3 Preliminaries

In this section we briefly revisit some definitions and facts about the pairings that will be useful
later. We will assume some familiarity with number theory and elliptic curves, and refer the
reader to Washington [Was03] for more background on this topic.

3.1 Elliptic Curves

Let q = pn and Fq be a finite field of characteristic p > 3 with q elements and gcd(n, p) = 1. Let
E be an elliptic curve defined over Fq and E(Fq) the group of points over this field. Suppose
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that r | #E(Fq) and r2 ∤ #E(Fq). It therefore follows that the full r-torsion E[r] of the curve is
defined over Fqk , i.e. E[r] ⊂ E(Fqk)

Recall that a divisor of an elliptic curve is a formal integer linear combination of points on
the curve, and that a divisor is principal if it is precisely the zeros (poles) of a rational function
of the curve. It is well known that the group of elliptic curve points is isomorphic to the divisor
class group of the curve. This follows with some work from the familiar formula for Weierstrass
point addition, since each line is a rational function of the curve and P,Q,−(P +Q) are collinear.

3.2 Tate Pairing

For every P ∈ E(Fqk), define fs,P to be a rational function with divisor

(fs,P ) = s(P )− ([s]P )− [s− 1](O)

This function is called Miller function and it is determined uniquely up to multiplication by non
zero elements of Fqk . Note that this function is well defined for all s and P since it has degree
0, s − 1 − (s − 1) = 0, and s(P ) − (sP ) = O. Additionally, when P is of order s the divisor
simplifies to (fs,P ) = s(P )− s(O).

Evaluation of fs,P is well defined for all Q ̸= P,O. To define the Tate pairing of P with Q,
let R ̸= O, P −Q. We then define the pairing to be

t(P,Q) = fr,P (Q+R)/fr,P (R).

This is a well defined, non-degenerate bilinear pairing of the following groups:

t : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ F∗
qk/(F

∗
qk)

r
.

Note that the output of the pairing is an element of the quotient group F∗
qk/(F

∗
qk)

r
. This

means that outputs of the pairing are only unique up to multiplication by an r residue. To
test whether two pairings produce the same output, it is necessary to normalize the output by
performing a final exponentiation. Raising to the h = (qk − 1)/r clears the r-residue part of the
output of the pairing leaving only an r-root of unity.

When R lies in a proper subfield of Fqk and fs,P is suitably normalized, then fs,P (R) also lies

in the subfield. In that case, fs,P (R)(q
k−1)/r = 1 for all R and we can simply define the pairing

as
t(P,Q) = fr,P (Q).

3.3 The Miller Loop

In both the Tate and Ate pairings, we need to compute the functions fs,Q(P ). While fs,Q is
technically in the function field of the curve, it has a number of coefficients proportional to
s, which is far too large to work with. To deal with this problem, Victor Miller proposed an
iterative algorithm [Mil02] for computing these evaluations. He uses the additive identity of
Miller functions to compute fs,Q(P ) from smaller Miller functions and line evaluations in an
addition chain. This is essentially the same principle used to compute modular exponentiations.
This algorithm runs in O(log s) field multiplications and it is used for computing both Weil and
Tate pairings.

By lT,P (Q) denote evaluation of a line passing through points T, P at Q and similarly by
vP (Q) denote evaluation of a vertical line passing through P evaluated at Q. Then Miller’s
algorithm can be computed with Algorithm 1:
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Algorithm 1: Miller’s algorithm for elliptic curves

Input: r =
∑L

i=0 si2
i for si ∈ {0, 1} where sL = 1 and P,Q ∈ E[r], P ̸= Q

Output: fr,P (Q)
1 T ← P, f ← 1
2 for i = L− 1 to 0 do
3 f ← f2 · lT,T (Q)/v[2]T (Q)
4 T ← [2]T
5 if si = 1 then
6 f ← f · lT,P (Q)/vT+P (Q)
7 T ← T + P

8 end

9 end
10 return f

Later works, like Optimal Pairings [Ver08], found more optimizations to reduce complexity
of a Miller loop by shortening it’s length. Barreto et al. [BKLS02] also observed that, when
embedding degree k is even, vertical lines can be omitted since their evaluations lie in the
subfield of Fqk , and therefore they vanish after the final exponentiation. We instantiate results
for BN [bn] curve thus we also state the steps of optimal Miller’s loop computation over BN
curve. Let t be a parameter of the curve, let πp : E 7→ E be the Frobenius endomorphism given
by πp(x, y) 7→ (xp, yp) and let λ = 6t+ 2 + p− p2 + p3 [Ver08], then optimal Miller’s algorithm
over BN curve is obtained by evaluating fλ,Q(P ) and it is can be done with the Algorithm 2:

3.4 Final Exponentiation

Computing final exponentiation näıvely would be extremely expensive, as h has about 11 times as
many bits as q for BN curves. Scott et al. [SBC+08] are able to perform the final exponentiation
much more efficiently by exploiting the cyclotomic factorization of the final exponentiation. That
is, in embedding degree 12 curves they more efficiently perform h = (q12 − 1)/r exponentiations
by splitting h into three coefficients as

h =
q12 − 1

r
= (q6 − 1) · (q2 + 1) · q

4 − q2 + 1

r

This yields a number of convenient properties and opportunities for optimization. For ex-
ample, after raising a field element to the power (q6 − 1) it becomes a ‘unitary element’ where
inverses can be computed via conjugation. As we discussed in the technical overview, computing
frobenius operations is essentially free. Since they are able to perform inversions very cheaply,
they can use signed digits when computing the exponentiation.

While this optimization is crucially important for computing pairings, it is not necessary for
verifying pairings. This is because inversions cost no more than a single multiplication to check.
Nevertheless, we also use signed digits when computing the final exponentiation, and later the
Miller loop. The steps are outlined in the Algorithm 3.

3.4.1 Frobenius operator

The efficiency of pairing computation lies in the fact that computing cq for arbitrary c in the
quadratic extension field Fq2 , which is defined by a quadratic polynomial of the form x2−u = 0,
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Algorithm 2: Optimal ate Miller loop over Barreto–Naehrig curves.

Input: P ∈ G1, Q ∈ G2

Output: fλ,Q(P )

1 Write s = 6t+ 2 =
∑L

i=0 si2
i where si ∈ {−1, 0, 1} and sL = 1

2 T ← Q, f ← 1
3 for i = L− 2 to 0 do
4 f ← f2 · lT,T (P )
5 T ← [2]T
6 if si = 1 then
7 f ← f · lT,Q(P )
8 T ← T +Q

9 end
10 if si = −1 then
11 f ← f · lT,−Q(P )
12 T ← T −Q

13 end

14 end
15 Q1 ← πp(Q), Q2 ← πp(Q1), Q3 ← πp(Q2)
16 f ← f · lT,Q1

(P ), T ← T +Q1

17 f ← f · lT,−Q2
(P ), T ← T −Q2

18 f ← f · lT,Q3
(P ), T ← T +Q3

19 return f

Algorithm 3: Exponentiation in Fqk

Input: a ∈ Fqk , a
−1 ∈ Fqk , e =

∑L−1
i=0 si2

i for si ∈ {−1, 0, 1}
Output: ae

1 assert!(a · a−1 = 1)
2 c = a
3 for i = L− 2 to 0 do
4 c← c2

5 if si = −1 then
6 c← c · a−1

7 end
8 else if si = 1 then
9 c← c · a

10 end

11 end
12 return c
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is simply conjugation [GG87, Theorem 11.6]. More generally for c = c0 + uc1 it follows that

(c)
q2i

= c and (c)
q2i−1

= c for c = c0 − uc1 and i ∈ N. Beuchat et al. [BDM+10] further
use the fact that extension Fqk can be represented as a sextic extension of the quadratic field,

i.e., Fqk = Fq2 [W ]/(W 6 − u). Then an element from Fqk can be represented as
∑5

i=0 aiW
i

for W p = u(p−1)/6W and ai ∈ Fq2 . After precomputation of γi = ui(p−1)/6 for i ∈ [1, 5], the
Frobenius operator can be computed as follows:

fp = (a0 + a1W + a2W
2 + a3W

3 + a4W
4 + a5W

5)
5
=

5∑
i=0

γiaiW
i

Which requires just a few Fq multiplications and Fq2 conjugations. Similar asymptotics are
obtained for other powers of qi and we use identical approach for raising to power qi in our
paper. Exact steps can be found in the paper [BDM+10, Appendix A].

3.5 Ate Pairing

The Ate pairing is simply an optimized version of Tate pairing where we replace r with some
multiple of r that is more efficient to compute. This works because of two identities of Miller
functions:

fa+b,Q(P ) = fa,Q(P )fb,Q(P )laQ,bQ(P )

fab,Q(P ) = fa,Q(P )bfb,aQ(P ).

In particular when rQ = O, it follows from the second that frt,Q(P ) = fr,Q(P )tft,rQ(P ) =
fr,Q(P )t. The trick of the Ate pairing is finding some s = rt such that fs,Q is more efficient to
compute by exploiting the Frobenius endomorphism

Specifically, we want to find some short linear combination of powers of q mod r that vanishes

φ(k)−1∑
i=0

ciq
i ≡ 0 mod r.

Then by applying the identities of the Miller function, we can write fs,Q in terms of fqj

ci,Q

which are all much cheaper to evaluate. Concretely, many pairing curves used in practice have
very low hamming weight ci that dramatically improve performance of pairings. So long as
gcd(t, r) = 1, this transformation of the problem is sound.

The specifics of this are outside the scope of this paper and we point to Optimal Pair-
ings [Ver08] for more details.

4 Eliminating the Final Exponentiation

To test whether two pairings are equal, we need to test if their outputs lie in the same equivalence
class. Conventionally one does this by normalizing them via a final exponentiation by h =
(qk − 1)/r since a0 ∼ a1 =⇒ ah0 = ah1 as

(ah0/a
h
1 ) = brh = bq

k−1 = 1.

In this section, we show how to replace this final exponentiation with a series of progressively
less expensive, equivalent checks. We have tried to keep this section relatively self contained
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with respect to number theoretic background information. However, for interested readers we
recommend [HH39] for additional background on number theory and [Was03] for background on
elliptic curves.

The Miller loop for the Tate pairing, and its optimal variants, outputs an element of Fqk

not necessarily an r root of unity. As a result, equivalent Miller loop computations may output
different elements of Fqk . However, the non-degeneracy of the pairing guarantees that the r root of
unity part of these outputs will be the same. Equivalently, we can say that the output of the Miller
loop is a member of an equivalence class in the group F∗

qk/(F
∗
qk)

r
. Here (F∗

qk)
r
= {cr : c ∈ F∗

qk},
so two elements a1 ∼ a2 are equivalent if there exists some b ∈ Fqk such that a1/a2 = br. Now
we can recover the formal definition of the un-reduced Tate pairing

t : G2 ×G1 → F∗
qk/(F

∗
qk)

r
.

4.1 Soundness of Residue Check

The core insight of our paper is that in order to test if pairings are equal, it is enough to test if
outputs of the Miller function lie in the same equivalence class directly. This is expressed in the
following theorem, which states that a pairing product equals 1 if and only if the product of the
associated Miller loops equals an r residue.

Theorem 1. ∏
i

e(Pi, Qi) = 1 ⇐⇒ ∃c ∈ F∗
qk :

∏
i

fr,Qi
(Pi) = cr

Proof. Let x =
∏

i fr,Qi(Pi)

Completeness (if direction) Suppose 1 =
∏

i e(Pi, Qi) = (
∏

i fr,Qi(Pi))
h
= xh. Since r2 ∤

pk − 1 we have that gcd(r, h) = 1 and h′ = h−1 mod r is well defined. Then observe that
xhh′

= 1h
′
= 1. Note that hh′ = 1 + rs by construction so xhh′

= x1+rs so c = x−s and x = cr.

Soundness (only if direction) Suppose
∏

i fr,Qi
(Pi) = cr. Raising both sides to the power

of h we find that
∏

i e(Pi, Qi) = (
∏

i fr,Qi
(Pi))

h
= crh = 1.

Note that the effective form of the theorem can be obtained via contraposition. That is, to
show that if the pairing product is not 1 then there is no cr simply take the contraposition of
the “only if” direction.

4.2 Optimal Exponentiation

In the previous section we showed that the final exponentiation can be replaced with just com-
puting cr, and in this section we develop a method for optimal exponentiation by r. The straight-
forward way of computing it with square and multiply algorithm 3 doesn’t produce a significant
reduction in number of Fqk operations compared to computing full final exponentiation. The
key insight is that we can apply the same method that is used for Miller loop shortening which
utilizes the efficiency of computing Frobenius operator 3.4.1.
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4.2.1 Hasse bound

To build an intuition of how the exponentiation cr can be optimized, recall the Hasse theo-
rem [Sil09, Theorem 1.1] that provides an estimate of the number of points on elliptic curves
over a finite fields.

Hasse theorem. Let E be an elliptic curve over finite field Fq. Then the order of E(Fq)
satisfies

|q + 1−#E(Fq)| ≤ 2
√
q

and the quantity t = q + 1−#E(Fq) is called the trace of Frobenius.
Assume that we are working with curve which cofactor is 1. Then #E(Fq) = r and from

the Hasse theorem we can conclude that r = q + 1 − t. Now recall that computing cq
i

3.4.1 is
significantly cheaper than the classic square and multiply approach 3. Therefore computation
of cr is dominated by the exponentiation ct. Again, from Hasse theorem we know that t is
bounded by O(

√
q), thus straightforward exponentiation cr will run in O(log2(q)) where the

exponentiation ct will run in O(log2(
√
q)).

So, at high level the idea for optimization is trying to express r as some polynomial
∑

i=0 aiq
i

and try to minimize coefficients ai.

4.2.2 Optimal λ

Optimal Pairings [Ver08] shows that the most optimal pairing is obtained from finding the
shortest vector v in the lattice spanned by the following rows:

L :=


r 0 0 . . . 0
−q 1 0 . . . 0
−q2 0 1 . . . 0
...

...
. . .

−qφ(k)−1 0 . . . 0 1


Then they prove that λ =

∑
i=0 viq

i = 0 mod r and that coefficients vi are the smallest
possible. Therefore, we can use the exact same λ to obtain the most optimal exponentiation.
The only problem is that λ ̸= r but λ is such that r|λ. Therefore we proceed to show that the
computation cr can be soundly replaced with computation of cλ. Further all the squarings of the
exponentiation cλ can be embedded into computation of the Miller loop and thus we are able to
replace the final exponentiation with just a few Fqk multiplications.

Further define m such that λ = m · r and d = gcd(m,h) where h = (qk − 1)/r. Then we have
the following claims:

Theorem 2. ∏
i

e(Pi, Qi) = 1 ⇐⇒ ∃c ∈ F∗
qk :

∏
i

fr,Qi
(Pi) = cλ/d

Proof. If
∏n

i=0 e(Qi, Pi) = 1 then from theorem 1 we know that
∏n

i=0 fr,Qi
(Pi) = cr and it

follows that ord(c)|h. Further by definition of d we know that m
d ∤ h and similarly m

d doesn’t
divide any divisor of h, therefore gcd(md , ord(c)) = 1. This means that there exists m′ such that

m
d ·m

′ = 1 mod ord(c). Thus for c it holds that (cm
′
)
(m/d)

= c from which we conclude that

output of a Miller loop can always be reduced to cm
′
which is is λ

d -th residue.

On the other side raising both sides to power h, it’s easy to see that
∏

i fr,Qi
(Pi)

h
= (c

m
d )

rh
=

1 =
∏n

i=0 e(Qi, Pi)

11



We saw that output of the Miller loop is always λ
d -th residue, but in general, when ord(c)|d,

it might not be a full λ-th residue. However the major cost reduction comes from explicitly
replacing final exponentiation with the exponentiation cλ. Therefore we propose a method of
‘scaling’ a Miller loop outputs in order to make them λ residues. We still need to make sure
that this ‘scaling’ firstly doesn’t break soundness, i.e., if the output of Miller loop wasn’t a r-th
residue then it should also not be an r-th residue after this modification. Secondly we prove
that this operation is complete or in other words if the Miller loop output is not a λ residue
honest P should always be able to perform ‘scaling’ and make it a λ residue. Last but not least,
‘scaling’ and proving that the output is a λ residue (i.e., computing cλ) should still be cheaper
than proving that Miller loop outputs are r-th residues (i.e., computing cr).

With the following lemma we prove that if the Miller loop output is not r-th residue, then
multiplying it with r-th residues can’t make it one.

Lemma 1. Let a and u be such that ar = u, If
∏n

i=0 e(Qi, Pi) ̸= 1 then there is no c ∈ F∗
qk such

that
∏n

i=0 fr,Qi
(Pi) · u = cr.

Proof. When
∏n

i=0 e(Qi, Pi) ̸= 1 then
∏n

i=0 fr,Qi
(Pi) = wi ·sr for some s ∈ F∗

qk where i ̸= 0 and w

is r-th root of unity in F∗
qk . Suppose the opposite, there is a c ∈ F∗

qk such that wi ·sr ·u = cr. Then

wi = ( c
s·a )

r
, from the definition of r-rh root of unity (wi)

r
= 1. This implies that ( c

s·a )
r2

= 1, so
ord( c

s·a ) = r2 which is contradiction since r2 ∤ qk − 1.

We know that result of multiplying two non quadratic residues will be a quadratic residue [IR90,
Proposition 5.1.2]. This follows from multiplicative property of Legendre symbol and can be gen-
eralized from quadratic to d-th residues [CL69] [DD95]. As noted, Miller loop outputs are always
λ
d residues. So in order to make them full λ residues we need to make them d-th residues. This
can be done by finding a proper non d-th residue a and multiplying Miller loop output with a
will make it a d-th residue. More specifically, if b is non d-th residue, then b(q−1)/d = wi and

(wi)
d
= 1. Therefore the goal is to find a such that a(q−1)/d = w−i then b · a will be a d-th

residue. We prove that there always exists such a and that it is additionally r-th residue, which
by lemma 1 preserves the soundness.

Lemma 2. Let b be a non d-th residue. Then there always exists a such that it is non d-th
residue but it is r-th residue and a · b is a d-th residue.

Proof. Let h = ds · f such that d ∤ f . Let a be an element such that ord(a) = ds. Since r is
prime, gcd(ds, r) = 1 thus a is clearly r-th residue. To see that a is non d-th residue, simply
suppose the opposite, i.e., there is b such that bd = a. Since ord(a) = ds this would imply that
ord(b) = ds+1 which is a contradiction since ds+1 ∤ h and thus ds+1 ∤ qk + 1.

Since b is non d-th residue b(q
k−1)/d = wi for some i ̸= 0 and (wi)

d
= 1. Further since a is

also non d-th residue, then all ai for i ∈ [1, d−1] are also non d-th residues. Therefore computing

(ai)
(qk−1)/d

for i ∈ [1, d− 1] will be a permutation of d-th roots of unity and thus for some j it

will hold that (aj)
(qk−1)/d

= w−i, thus aj will be non d-th residue used for scaling the Miller
loop output.

From this we state the final and most important theorem of our paper which shows that
testing the equality of pairings can be reduced to potentially scaling the Miller loop output with
di-th root of unity and then checking that it is λ-residue.

Theorem 3. ∏
i

e(Pi, Qi) = 1 ⇐⇒ ∃c, u ∈ F∗
qk :

∏
i

fr,Qi(Pi) = cλu ∧ udi

= 1

12



Proof. To show this, it suffices to show that there exists an x if and only if there exists c, u such
that xr = cλu and udi

= 1.
To simplify, since gcd(d, rm) = 1 there exists v = u(rm)−1 mod di

such that vrm = u. There
also exists m′ = m−1 mod qk − 1, so we can rewrite the equation as xrm′

= (cdv)rmm′
. Letting

y = xm′
, and noting that x = ym, we need to show there exists a y iff there exists c, v such that

y = cdv where vd
i

= 1.
Clearly, if there exists c, v then there exists y. The decomposition of y into such a c and v

follows from the Tonelli-Shanks lemma [Ton91]. Thus, given x we can compute c and v from xm′

using Tonelli-Shanks and let u = vrm. Given c, u we can let x = (cdu(rm)−1 mod di

)m.

There is an additional optimization that we can exploit to simplify the final protocol. If the
di primitive roots of unity lie in a proper subfield of Fqk , then we can omit the check that udi

= 1.
The reason for this is that all elements of all subfields are always r residues, since r | Φk(q) by

assumption. For many curves where d and i are small, checking udi

is an insignificant cost, but
in general it may not be.

4.3 Computing Residue Witness for the BN254 curve

In this section we describe how to compute a witness c over the BN254[bn] curve. We also
describe how to compute auxiliary witness when using the ‘optimal’ exponentiation by λ.

4.3.1 Parameters

The BN[BN05] family of curves is parametrized by the polynomials

q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

t(x) = 6x2 + 1

It has embedding degree 12, which means r(x) | q(x)4 − q(x)2 + 1. Valid BN curves occur for
x0 ∈ Z where both q = q(x0) and r = r(x0) are prime. The curve currently implemented for
Ethereum smart contracts is a BN curve with x = 4965661367192848881[alt], commonly called
BN254.

For BN254, we will further define the following variables

h =
q12 − 1

r
= 33 · l where gcd(l, 3) = 1

λ = 6x+ 2 + q − q2 + q3,

m =
λ

r
,

d = gcd(m,h) = 3,

m′ =
m

d
.

Equivalently λ = 3rm′. Since gcd(λ, q12 − 1) = 3r, for a Miller loop output f it is always
possible to find a value c such that f = cλ, the best we can do is find some u a cubic non-residue
and c such that f = cλu. However, since 33 | q12 − 1 we need to use a modified Tonelli-Shanks
algorithm to compute c.

13



4.3.2 Finding c

We split this computation into three parts.

1. Compute r-th root

2. Compute m′-th root

3. Compute cubic root

From section 4.2.2 we know that the Miller loop output will always be r-th and m′-th residue
but it might not be a cubic residue. Therefore, before computing cube root we have to make
sure that either the Miller loop output is a cubic residue or we have to multiply it with a proper
non cubic residue as in lemma 2 to make it one.

Computing r-th Root. Recall that r2 ∤ q12 − 1 and equivalently gcd(r, h) = 1. Therefore r
has a well defined inverse mod h, which we can compute r′r = 1 mod h. If f = cr for some c,
then fh = crh = 1. Let c = fr′ and observe that cr = frr′ = f1+hs = f where rr′ = 1 + hs.
This is analogous to computing square roots when p = 3 mod 4 [AGO24].

Computing m′-th Root. Recall that gcd(m′, q12 − 1) = 1 by construction. Therefore, we
can use exactly the same technique to compute the m′ root of f . Specifically, let m′′m′ = 1
mod q12 − 1 and observe that therefore raising to the m′′ is the inverse of raising to the m′.
Therefore, the m′ root of any element is the m′′ exponentiation.

Scaling. Before proceeding to computation of cube roots we have to ensure that field element
that we are working with is indeed a cubic residue. In other words, we can find a cube root of

f only if there is some c such that c3 = f . If f is indeed a cubic residue, then f (qk−1)/3 = 1,

otherwise f (qk−1)/3 = wi where wi is a non-trivial 3-rd root of unity. From lemma 2 we saw that

there is always a proper cubic non residue a such that (f · a)(q
k−1)/3

= 1. Again from lemma 2
we know that any 27-th root of unity will be non cubic residue (since h = 27 · l and 3 ∤ l). Thus,
for fixed 27-th root of unity a, if f is not a cubic residue then f ·a or f ·a2 is. Finally multiplying
Miller loop output by either a or a2 will preserve soundness since again by lemma 2 a is r-th
residue.

Computing Cube Root. Computing a cube root is a slightly more complex task since
gcd(3, h) ̸= 1. Intuitively this is precisely analogous to computing square roots when p = 1
mod 2i for i > 1. Therefore to compute a cubic roots we modify Tonelli-Shanks algorithm for
square roots [Ton91].

Lemma 3. With the definitions given above, given a cubic non-residue w, calculating the x and
t until t = 0 gives a polynomial time algorithm for computing the cube root.

Proof. Proof is identical to proof of Tonelli-Shanks algorithm for square roots [Ton91] when
powers of 2 are replaced with powers of 3

As in previous sections denote r′ to be r−1 mod h and m′′ to be 1
m′ mod h. Then this all

together gives the following steps for finding c.
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Algorithm 4: Modified Tonelli-Shanks for cube roots

Input: Cube residue a, cube non residue w and write p− 1 = 3r · s such that 3 ∤ s
Output: x such that x3 = a

1 exp = (s+ 1)/3
2 x← aexp

3 3t ← ord(x
3

a )
4 while t ̸= 0 do
5 exp = (s+ 1)/3
6 x← x · wexp

7 3t ← ord(x
3

a )

8 end
9 return x

Algorithm 5: Algorithm for computing λ residues over BN curve

Input: Output of a Miller loop f and fixed 27-th root of unity w
Output: (c, wi) such that cλ = f · wi

1 s = 0

2 if f (qk−1)/3 = 1 then
3 continue
4 end

5 else if (f · w)(q
k−1)/3

= 1 then
6 s = 1
7 f ← f · w
8 end
9 else

10 s = 2
11 f ← f · w2

12 end

13 c← fr′

14 c← cm
′′

15 c← c1/3 (by using modified Tonelli-Shanks 4)
16 return (c, ws)
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4.3.3 Counting Operations

In this section we outline the amount of in circuit Fq12 operations needed for computing cλ.
First of all note that finding c with Algorithm 5 is happening outside of the circuit and therefore
operations needed to compute it are not counted.

Recall that λ = 6x+2+ q− q2+ q3 and that cq, cq
2

and cq
3

can be computed in just a few F2
q

operations 3.4.1. c−q2 is just inversion and it can be done by just one multiplication inside the
circuit. Thus the exponentiation cλ is dominated by exponentiation c6x+2. Another important
observation that we make is that the exponentiation c6x+2 can be embedded into computation of
the Miller loop and thus all squarings are essentially ‘free’. Then writing 6x+2 in the form

∑
si2

i

for si ∈ {−1, 0, 1} has Hamming weight 26 and together with inverse check the exponentiation
c6x+2 requires only 27 Fq12 multiplications.

5 Precomputing Lines

A significant part of Miller function evaluation consists of line constructions and evaluations.
Lines are constructed from coordinates of points they pass through. A natural question that
arises is the choice of the coordinate system in which points should be represented. Pairings
in general can be computed over points represented in any coordinate system but depending
on a ratio between inversions and multiplications, the most popular choices are homogeneous
projective and affine coordinate systems. We show that one of the most optimal in circuit
computation is obtained from using affine coordinate system when instead of constructing line
through T,Q P additionally witnesses line coefficients (λ, µ) and proves that those coefficients
indeed define a line that passes through T,Q. We then observe that, when point Q ∈ G2 at
which pairing is computed is fixed, all line coefficients can be precomputed and hardcoded inside
the circuit. We assume that extension fields are constructed from towers [BS09] and we outline
the results for D-type twists. A similar approach can be applied to M -type twists.

5.1 Sparse Fqk multiplication

Barreto et al. [BKLS02] observed that q − 1|(qk − 1)/r, thus multiplications by elements in Fq

do not change the result of pairing, i.e. scaling elements from Fqk by arbitrary x ∈ Fq doesn’t

affect pairing output since after final exponentiation x(qk−1)/r = 1. Aranha et al. [ABLR13]
used this observation to show that line evaluations can be scaled by an element from Fq to
obtain a sparse element in Fqk . More specifically for sextic twists, normalized line evaluation will
output an element of the form (1 + g1w). Then computing (f0 + f1w) · (1 + g1w) requires less
multiplications compared to multiplying (f0 + f1w) · (g0 + g1w) for g0 ̸= 1. We utilize the same
optimization, and we compare our result with results in Aranha et al. [ABLR13] for normalized
lines.

5.2 Costs

By m̃, s̃, ã, ı̃ denote multiplication, squaring, addition and inversion in Fq(k/d) respectively and
by m denote multiplication of element in Fq(k/d) by element in Fq. Then Aranha et al. [ABLR13]
obtains the following results:

Affine. After precomputation of x′
P = −xP

yP
, y′P = 1

yP
, where P = (xP , yP ) is the point at

which lines are evaluated, doubling and addition operations together with line evaluation can be
computed in 3m̃+ 2s̃+ 7ã+ ı̃+ 4m and 3m̃+ s̃+ 6ã+ ı̃+ 4m respectively and line evaluation
lT,Q(P ) equals to 1 + λx′

Pw + y′P (λx1 − y1)w
3 where λ is the coefficient of line through T,Q.
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Homogeneous. After precomputation of xP = −xP , yP = −yP , x′
P = 3xP , where P =

(xP , yP ) is again the point at which lines are evaluated, doubling and addition operations together
with line evaluation can be computed in 3m̃+6s̃+16ã+4m and 11m̃+2s̃+8ã+4m respectively.

Since in circuit computation of inverse can be replaced with a single multiplication, it is clear
that affine representation is a better choice. We further proceed in showing that by witnessing
(λ, µ) we can save additional m̃ and m operations.

Double and evaluate. Given a point T = (x1, y1) ∈ E(Fq(k/d)) and P ∈ E(Fq) the task is
to compute (x3, y3) = T + T and g = lT,T (P ). After the same precomputation of x′

P , y
′
P naive

application of results obtained in Aranha et al. [ABLR13] will be dominated by 4m̃ and one 2s̃
(since ı̃ = m̃ in circuit). By additionally witnessing (λ, µ) one m̃ and 2m operations can be saved
in the following way.

1. Show that the pair (λ, µ) indeed define a tangent through T showing that y1−λx1−µ = O
and 2λy1 = 3x1

2. This step is dominated by 2m̃ and one s̃.

2. Compute λ2 which is simply one s̃

3. Compute x3 = λ2−2x1 and y3 = −µ−λx3 which is dominated by computing λx3, i.e. 1m̃

4. Compute lT,Q(P ) = 1 + λx′
P − y′Pµw

3 which requires 2m operations.

Add and evaluate. Given points T = (x1, y1), Q = (x2, y2) ∈ E(Fq(k/d)) and P ∈ E(Fq)
the task is to compute (x3, y3) = T + Q and g = lT,Q(P ). After the same precomputation of
x′
P , y

′
P naive application of results obtained in [ABLR13] will be dominated by 4m̃ and one s̃

(since ı̃ = m̃ in circuit). By additionally witnessing (λ, µ) one m̃ and 2m operations can be saved
in the following way.

1. Show that the pair (λ, µ) indeed define a line through T and Q by showing that y1−λx1−
µ = O and y2 − λx2 − µ = O. This step is dominated by 2m̃.

2. Compute λ2 which is simply one s̃

3. Compute x3 = λ2−x1−x2 and y3 = −µ−λx3 which is dominated by computing λx3, i.e.
1m̃

4. Compute lT,Q(P ) = 1 + λx′
P − y′Pµw

3 which requires 2m operations.

We proceed to define a line object and it’s functionalities that we utilize in the Miller loop
computation. In the Algorithm 6 we outline all the steps of modified Miller loop that takes line
coefficients as an input. Then we argue further optimizations where Miller loop is computed at
predetermined point Q. For this purpose we define an indexer with the Algorithm 7 and another
modification of Miller loop with Algorithm 8

Line object Define a ‘line’ object that is determined by (λ, µ) ∈ F2
q(k/d) and has the following

functionalities:

1. line.is tangent(T ) :: E(Fq(k/d))→ bool: returns true if line is a tangent through point T

2. line.is line(T,Q) :: E(Fq(k/d)) × E(Fq(k/d)) → bool: returns true if line passes through
points (T,Q)

3. line.evaluate(P ) :: E(Fqk)→ Fq(k/d) : evaluates line in P

4. line.double(T ) :: E(Fq(k/d))→ E(Fq(k/d)): given point T returns 2T

5. line.add(T,Q) :: E(Fq(k/d))×E(Fq(k/d))→ E(Fq(k/d)): given points T and Q returns T +Q
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Algorithm 6: Miller loop with precomputed lines

Input: Q ∈ E(Fq(k/d)), P ∈ E(Fq),L :=

[line(λ0, µ0), line(λ1, µ1), . . . , line(λn−1, µn−1)], e =
∑L−1

i=0 si2
i for

si ∈ {−1, 0, 1} and n = L− 1 +
∑L−2

i=0 |si|
Output: fe,Q(P )

1 T ← Q, f ← 1
2 lc← 0
3 for i = L− 2 to 0 do
4 l← L[lc], lc← lc+ 1
5 assert l.is tangent(T )
6 f ← f2 · l.evaluate(P )
7 T ← l.double(T )
8 if s2i = 1 then
9 Q′ ← Q if si = 1 else −Qj

10 l← L[lc], lc← lc+ 1
11 assert l.is line(T,Q′)
12 f ← f · l.evaluate(P )
13 T ← l.add(T,Q′)

14 end

15 end
16 return f

5.3 Predefined Q

Protocol such as Plonk or more specifically KZG polynomial commitment scheme is verified by
checking equality of pairings in predetermined fixed points Q1, Q2 ∈ G2. We observe that in
this setting all line coefficients (λi, µi) together with all accumulation point T coordinates do not
depend on P . Thus we delegate this computation to indexer I (7) that computes all lines and
points which are then hardcoded into the circuit. This is one time computation that is also being
performed by the verifier, thus checking correctness of lines can be fully omitted from Miller loop
computation (8).

5.4 Counting Operations

We show that affine coordinate representation is more suitable for in circuit computations and
that additional optimizations can further reduce curve operations. Further we show that when
computing pairings in predefined points all computations depending on lines can be reduced only
to 2m operations, i.e.line evaluations.

Bellow we count the asymptotic number of multiplications needed to compute a Miller loop.
Let sk denote squaring of full Fqk element and ˜spk denote multiplication of one full Fqk element
with one sparse Fqk element (that is in general obtained from normalized line evaluation). With-
out loss of generality we assume that accumulator f in Miller loop is always a full field element
in Fqk . Operations are counted for computing fe,Q(P ) where e =

∑L−1
i=0 for si ∈ {−1, 0, 1} and

sL−1 = 1. Using {−1, 0, 1} representation achieves smaller or equal Hamming weight compared
to {0, 1} representation, thus requires less multiplications overall. Accumulator f is squared and
scaled by line evaluation output at each of L − 1 steps of the loop and additionally scaled by
another line evaluation whenever si ∈ {−1, 1}. Additionally at each of L− 1 steps a tangent line
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Algorithm 7: Indexer for fixed point Q

Input: Q ∈ E(Fq(k/d)) and e =
∑L−1

i=0 si2
i for si ∈ {−1, 0, 1}

Output: L
1 L← []
2 T ← Q
3 for i = L− 2 to 0 do
4 L.push(line(T, T ))
5 T ← 2T
6 if s2i = 1 then
7 L.push(line(T, siQ))
8 T ← T + siQ

9 end

10 end
11 return L

Algorithm 8: Miller loop in fixed Q

Input: Q ∈ E(Fq(k/d)), P ∈ E(Fq),L := I(Q) and e =
∑L−1

i=0 si2
i for si ∈ {−1, 0, 1}

Output: fe,Q(P )
1 f ← 1
2 lc← 0
3 for i = L− 2 to 0 do
4 l← L[lc]
5 f ← f2 · l.evaluate(P )
6 if s2i = 1 then
7 l← L[lc+ 1]
8 f ← f · l.evaluate(P )

9 end
10 lc← lc+ 2

11 end
12 return f
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is constructed from accumulator point T , that line is evaluated at P and T is doubled. Then,
whenever si ∈ {−1, 1} another line is constructed from T, siQ, that lines is evaluated at P and

T is set to be T + siQ. Let A be
∑L−2

i=0 |si| and m̃, s̃ and m be defined as in 8.2, then we obtain
following operation count.

Affine. At each step f is squared and scaled with sparse l that is obtained from line evalua-
tion. This together produces (L− 1) · (sk+ spk) operations. Further whenever si ∈ {−1, 1} f is
scaled by another sparse element, which produces A · spk operations. Checking that pair (λ, µ)
defines a tangent line through T takes 3m̃+ s̃ operations and doubling T takes m̃+ s̃ operations.
Evaluating line in P takes 2m operations and in total it adds to (L−1)·(4m̃+2s̃+2m). Similarly
when si ∈ {−1, 1} checking that pair (λ, µ) defines a line that passes through (T, siQ) takes 2m̃
and updating T takes m̃+ s̃ operations. Finally evaluating line at P again takes 2m operations
which in total adds to A · (3m̃ + s̃ + 2m). Note that this operations correspond to computing
line.is tangent(T ), line.double(T ), line.is line(T, siQ) and line.add(T, siQ) accordingly.

Affine with predefined Q. When Q is predetermined then all lines can be precomputed
in the indexing phase (7) and hardcoded into the circuit. Then both checking correctness of
lines and updating T can simply be omitted, which removes all m̃ and s̃ operations. Again,
at each step f is squared and scaled with sparse l that is obtained from line evaluation. This
together produces (L− 1) · (sk+ spk) operations. Also for si ∈ {−1, 1} scaling f adds A · spk
operations. Main optimization follows from the fact that P only needs to evaluate lines at P
which is produces (L− 1 +A) · 2m operations.

Following table captures full operation count:

Q predefined Fqk operations E(Fq(k/d)) operations

false (L− 1) · (sk+ spk) +A · spk (L− 1) · (4m̃+ 2s̃+ 2m) +A · (3m̃+ s̃+ 2m)
true (L− 1) · (sk+ spk) +A · spk (L− 1 +A) · 2m

Table 1: Miller loop operation count

6 Randomized Field Arithmetic

Let F be a field and let p(X) ∈ F[X] be an irreducible polynomial. Suppose that K is extension
of F containing root of p(X), α. Denote by F(α) subfield of K generated by α over F. Then

F(α) ∼= F[X]/(p(X))

Further, this isomorphism is induced by mapping[ext]:

φ : F[X]/(p(X))→ F(α)

This essentially means that arithmetic over F(α) can be treated as arithmetic over F[X]
modulo irreducible polynomial p(X). Showing that a · b = c for a, b, c ∈ F(α) is equivalent to
showing that there exist a unique polynomial q(X) such that

a(X)b(X)− c(X) = q(X)p(X)

Where a(X), b(X), c(X) ∈ F[X]/(p(X)) are respective polynomial representations of a, b, c in-
duced by φ. Then testing this polynomial identity can be reduced to testing it in a random point
by Schwartz-Zippel lemma, which is also the approach employed by Garaga [gar]. More generally
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testing that some relation R holds for some a1, a2, . . . an ∈ F(α) can be reduced to testing that
there exist a unique polynomial q(X) such that

R(a1(X), a2(X), . . . , an(X)) = q(X)p(X)

In Garaga [gar] each Fqk multiplication is replaced by one polynomial identity check of the
form:

ai(X)bi(X)− ci(X) = qi(X)p(X)

This requires prover to commit and evaluate a quotient polynomial qi(X) for each multiplication.
We propose an optimization where by introducing another round of interaction prover commits
to only one quotient Q(X) across all Fqk multiplications. More specifically prover first commits
to all witness polynomials ai(X), bi(X), ci(X). Verifier then sends a separation challenge β and
prover then sends one quotient polynomial Q(X) claimed to satisfy relation:

n∑
i=0

βi(ai(X)bi(X)− ci(X)) = Q(X)p(X)

Verifier then samples a random evaluation challenge γ at which this relation is then checked.
Checking m relations R1,R2, . . . ,Rm spanned across n polynomials w1(X), w2(X), . . . , wn(X) ∈
F[X]/(p(X)) can be captured by the following interactive argument:

Extension Field Arithmetic IOP

1. P commits to w1(X), w2(X), . . . , wn(X) ∈ F[X]/(p(X))

2. V selects β

3. P commits to Q(X) = (
∑m

j=1 β
jRj(w1(X), w1(X), . . . , wn(X)))/p(X)

4. V selects α

5. P shows that wi,α = wi(α) and
∑m

j=1 β
jRj(w1,α, w2,α, . . . , wn,α) = Q(α)p(α)

Garaga [gar] samples an evaluation challenge by hashing the witness inside the circuit. In-
stead, when the proof system is derived from an interactive protocol (using the Fiat-Shamir
transform), we can modify the underlying protocol such that the verifier provides the additional
randomness [cha] and thus remove the need of in-circuit hashing.

Efficient Polynomial Evaluation. By committing all wi(X) column-wise efficient com-
putation of wi,α for all wi(X) can be done in the following way. Let d be the degree of all
wi(X) ∈ F[X]/(p(X)) and write wi(X) = wi,dX

d + wi,d−1X
d−1+, · · · + wi,0. Assume that

n · (d+1) is power of two. By H denote a multiplicative subgroup of F of size n · (d+1) generated
by g ∈ F and by zH denote a vanishing polynomial of H. Further prover and verifier agree and
precompute polynomial h(X) such that:{

h(gi) = 1 when i ≡ 0 mod d+ 1

h(gi) = 0 otherwise

By wi denote array of coefficients [wi,d, wi,d−1, . . . wi,0]. Then prover first commits to a
polynomial c(X) which evaluations are constructed by concatenation of all wi arrays. Verifier
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then sends an evaluation challenge α and prover commits to polynomial e(X). Prover and verifier
then engage in an interactive argument for checking that

h(X)(c(X)− e(X)) = q1(X)zH(X) (1)

(1− h(X))(e(X)− (e(g−1X)α+ c(X))) = q2(X)zH(X) (2)

The table 2 outlines polynomials h(X), c(X), e(X) evaluations for n = 2, d = 3:

Table 2: Column-wise efficient evaluation
h(X) c(X) e(X)
1 w0,3 w0,3

0 w0,2 w0,3α+ w0,2

0 w0,1 (w0,3α+ w0,2)α+ w0,1

0 w0,0 ((w0,3α+ w0,2)α+ w0,1)α+ w0,0 = w0(α)
1 w1,3 w1,3

0 w1,2 w1,3α+ w1,2

0 w1,1 (w1,3α+ w1,2)α+ w1,1

0 w1,0 ((w1,3α+ w1,2)α+ w1,1)α+ w1,0 = w1(α)

Thus when underlying proof system is an IOP[BSCS16] all extension field arithmetic can be
checked with the following IOP

Extension Field Arithmetic IOP

1. P commits to c(X)

2. V selects β

3. P commits to Q(X) = (
∑m

j=1 β
jRj(w1(X), w1(X), . . . , wn(X)))/p(X)

4. V selects α

5. P sends commitment to e(X) and opening Q(α)

6. V selects γ

7. P commits to B(X) = h(X)(c(X)−e(X))+γ((1−h(X))(e(X)−(e(g−1X)α+c(X))))
zH(X)

8. V selects v

9. P sends openings B(v), h(v), c(v), e(v), e(g−1v)

10. V checks that
∑m

j=1 β
jRj(w1,α, w2,α, . . . , wn,α) = Q(α)p(α)

11. V checks that h(v)(c(v)− e(v)) + γ((1− h(v))(e(v)− (e(g−1v)α+ c(v)))) = B(v)zH(v)

6.1 Compressing the Miller Loop

Recall that the Miller loop is essentially computed as a double-and-add addition chain. At
each step we square an accumulator, evaluate some lines, and multiply the evaluations with the
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accumulator. When encoded directly into a SNARK, the prover must commit to the accumulator
at the end of every step.

We could however “compress” multiple rounds of the Miller loop into a single computation.
For example, suppose two consecutive bits of the Miller loop were zero and instead of two
squarings we checked fi+2(P ) = fi(P )4li(P )2li+1(P ). That is, we do not commit to the value
fi+1(P ) = fi(P )2li(P ). Clearly, this is sound but when working with plain Fqk arithmetic it
dramatically increases the size of the multiplication circuit. Heuristically, without committing
to intermediate results, the number of products of F elements that we must compute grows
exponentially in the degree.

However, using randomized field arithmetic there is no such exponential increase in complex-
ity, we just increase the degree of the final quotient. In this case, the quotient degree becomes
7(k − 1) − k assuming we commit to fi and the line coefficients. That is, we add 6k − 3 to the
quotient independent of the number of rounds of the Miller loop. Compressing d rounds increases
the cost by a factor of 2d−1, so clearly there is a limit to how much we can use this trick. When
measured in commitment costs, the break even point can be calculated directly from the number
of rounds of the Miller loop. For L rounds, we need the value of d which minimizes

C = min
d

(k − 1)L/d+ (2d − 1)(k − 1)− k

When the si ̸= 0, a finer analysis is needed.

6.2 Replacing Lines with Divisors

Of the 2d−1 increase in degree, 2d−1−1 of it comes from lines, and potentially more when si ̸= 0.
To remedy this, we can combine the lines into a higher degree divisor. Consider a selection of d
digits si, . . . si+d−1 and let ti =

∑d−1
i=0 si2

i. Suppose the accumulator before bit performing these

rounds of the miller loop is Ti, and after it is Ti+1 = Ti +
∑d−1

i=0 siQ. We define the modified
divisor

div(gi) = ti(Q) + (Ti+1) + (−Ti) +

d−1∑
i=0

si(2
iQ)− ni(O).

Simple arithmetic shows that this divisor is indeed principal. Note that multiplying by this
divisor has the effect of multiplying and squaring all the lines in the Miller loop. When written
as a polynomial gi(X,Y ) = ai(X) + Y bi(X) the number of coefficients to express this divisor is
ni < 2d+2 + 1 and in general depends on how many si = 0. Using wNAF, we expect that at
most half the digits are a non-zero, so ni < 2d+1 + 1.

This again introduces an interesting trade off between the cost of committing to more quotient
degree terms and committing to larger divisors. In the case of fixed G2 inputs, we can pre-commit
to all the divisors which favors using larger d. However, it will increase the number of gates past
a certain point.

This raises an interesting issue: how do we verify that the divisors are correct in the case
with the G2 argument is not fixed. We believe that it may be possible to adapt the protocol of
Eagen [Eag22], but leave this for future work and only propose this optimization for the fixed
G2.

6.3 Alternative Bases

Efficiency of pairing computation heavily depends on the complexity of Fqk arithmetic. Working
over k degree irreducible polynomials and representing elements with tuples of k elements would
require k2 Fq operations to perform a single multiplication. Therefore the key motivation for
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using towers is to exploit the fact that there are more efficient methods for computing operations
in Fq2 and Fq3 . Specifically, by utilizing the Karatsuba method[KO62] one can compute Fq2

multiplication using 3 Fq multiplications and squaring in Fq2 by using 2 Fq multiplications.
Similar optimizations exists for cubic extensions, and therefore multiplications in Fqk can be
done in significantly less than k2 Fq multiplications. Further, in the section 3.4.1 we showed that
Frobenius operator can also be efficiently computed when using towering. Thus when computing
pairings tower representation of Fqk elements gives the best performance, however when using
Randomized Polynomial Arithmetic multiplications in Fqk are not explicitly computed inside the
circuit. Therefore instead of using towers we can represent Fqk elements as a coefficients in normal

basis, i.e., given x ∈ Fqk we represent it with array of k coefficients such that x =
∑k−1

i=0 aiα
qi

for ai ∈ Fq and some α ∈ Fqk . Then computing Frobenius operator is just a cyclic shift which
additionally reduces the constraints compared to approach we mentioned in 3.4.1.

7 Verifiable Pairings

In this section we outline all the steps that prover has to execute inside the circuit in order to
prove equality between two products of pairings over the BN curve.

7.1 Omitting d-th residue checks

In section 4.3 we showed that, for a fixed 27-th root of unity w, prover potentially has to scale
the Miller loop output by either w or w2. Denote by s the arbitrary witness that prover uses to
scale the Miller loop. To make sure that it is indeed using a correct value we can simply check
that 0 ← (1 − s)(w − s)(w2 − s). However we proceed to show that this check can be removed
from the circuit. Observe that 27|q3 − 1, thus all 27-th roots of unity lie in the Fq3 which is
subfield of Fqk . And by [BKLS02] and lemma 1 we know that x ∈ Fq3 cannot affect the pairing
output. Thus, instead of constraining that P indeed uses a correct non-cubic residue we can
simply change the circuit such that it only accepts the Fq3 elements for the scaling of the Miller
loop output. The same method can be applied to other curves when there exists a non d-th
residue that lie in the subfield of Fqk .

7.2 Multi Miller loop

Running multi pairing computation can be done by separately executing the Miller loop for each
pair of points and then accumulating results. The very common optimization for multi pairing
computation is called a multi Miller loop[Sco19]. It runs all Miller loops in parallel and at each
step all line evaluations are multiplied into the same accumulator. Then when accumulator
gets squared it essentially squares all separate accumulators at the same time. This significantly
reduces amount of Fqk operations compared to the straw man approach which separately squares
accumulator at each step of the Miller loop for each pair of points. One of the key observations
of this paper is that the exponentiation c6x+2 can also be embedded into the multi Miller loop
and thus all squarings during this exponentiation are essentially free. We outline this in the
Algorithm 9.

Given points:

[(P1, Q1), (P2, Q2), . . . , (Pn, Qn)]

Prover wishes to show that
∏n

i=0 e(Pi, Qi) = 1. For each predefined T ∈ G2 by PT denote
all line coefficients that are obtained by running indexer 7. Then prover starts by preparing
auxiliary witness, then it proves execution of the circuit defined with algorithm 9.
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Algorithm 9: Multi Miller loop with embedded c exponentiation

Input: A = [(P1, Q1), (P2, Q2), . . . , (Pn, Qn)], c, c
−1 ∈ Fqk , s ∈ Fq3 ,PQj ← I(Qj)

Output: 1 if
∏n

i=0 e(Pi, Qi) = 1
1 assert c · c−1 = 1
2 f ← c−1, lc← 0
3 Initialize array T such that T[j] = Qj for each non fixed point Qj

4 for i = L− 2 to 0 do
5 f ← f2

6 for j = 1 to n do
7 l← PQj

[lc]
8 f ← f · l.evaluate(Pj)
9 if Qj is not fixed then

10 T ← T[j]
11 assert l.is tangent(T )
12 T[j]← l.double(T )

13 end
14 if s2i = 1 then
15 f ← f · c′
16 l← PQj [lc+ 1]
17 f ← f · l.evaluate(Pj)
18 if Qj is not fixed then
19 (Q′, c′)← (Qj , c) if si = 1 else (−Qj , c

−1)
20 T ← T[j]
21 assert l.is line(T,Q′)
22 T[j]← l.add(T,Q′)

23 end

24 end

25 end
26 lc← lc+ 2
27 for j = 0 to n do

28 f ← f · s · (c−1)q · (c−1)q
2 · (c−1)q

3

29 l1:3 ← (PQj
[lc+ i])2i=0

30 f ← f · l1.evaluate(Pj) · l2.evaluate(Pj) · l3.evaluate(Pj)
31 if Qj is not fixed then
32 Q1 ← πp(Q), Q2 ← πp(Q1), Q3 ← πp(Q2)
33 T ← T[j]
34 assert l1.is line(T,Q1); T ← T +Q1

35 assert l2.is line(T,−Q2); T ← T −Q1

36 assert l3.is line(T,Q3)

37 end

38 end

39 end

40 return f
?
= 1
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Witness preparation. If some of theG2 points are fixed then by design their line coefficients
are already hardcoded inside the circuit. For each non predefined point T ∈ G2 prover computes
required line coefficients with the Algorithm 7, denote this array by LT . It then proceeds with
computing f ←

∏n
i=0 fr,Qi

(Pi) ·
∏m

j=0 fr,Sj
(−Rj). Then given f it further computes (c, wi) with

Algorithm 5.

8 On-chain verification

On-chain pairing computation can be simplified following the same approach we take for in circuit
computation. By additionally submitting c, w (a proper cubic non residue power) and all line
coefficients, final exponentiation can be omitted by checking fr,Q(P ) · w = cr. Naturally, in the
cases where Q is predefined, such as in verifying KZG, we would also benefit from precomputa-
tion of all lines through Q. However, storage for all line coefficients on-chain is too expensive. To
deal with this ambiguity we propose simply storing a verifiable merkle list commitment, cm to all
line coefficients. In other words, given line coefficients {(λ0, µ0), (λ1, µ1), . . . , (λn, µn)}, party de-
ploying contract can submit cm = H((λ0, µ0),H((λ1, µ1), . . . ,H((λn−1, µn−1), (λn, µn)))) where
H is chosen to be a hash function such that it is cheap to compute on-chain. Then, for every
proof submitted, the contract will first compute merkle list commitment to submitted lines cm′

and continue execution only if cm′ = cm, otherwise it reverts. Suppose that party A wants to
submit points P,R ∈ G1 such that e(P,Q) = e(R,S) and that Q,S ∈ G2 are predetermined.
Then following notation from section 7 contract stores cmQ and cmS that are merkle list com-
mitments to PQ and PS respectively. Then the on-chain paring equality check can be performed
with Algorithm 10.

Algorithm 10: Algorithm for proving equality of pairings over BN curve

Input: P,R, c, c−1, s ∈
Fq3 , two arrays of lines P′

Q,P
′
S claimed to be PQ,PS respectively

Output: 1 if e(P,Q) = e(R,S)
1 Compute merkle list commitments cm′

Q and cm′
S of P′

Q,P
′
S respectively

2 if cm′
Q ̸= cmQ or cm′

Q ̸= cmQ return 0

3 MillerWithC([(P,Q), (−R,S)], c, c−1, s,P′
Q,P

′
S) (Algorithm 9)

9 Conclusion

We demonstrate that verifying the equality of pairings entails a distinctly different approach
compared to their computation. Most remarkably we show that the most expensive part of
pairing, final exponentiation, can be replaced with only one ‘short’ exponentiation cλ, where
λ is the same parameter that is used for obtaining the shortest Miller loop. Further we show
that in various scenarios when G2 points at which we compute pairings are predetermined all
operations on twisted curve can be verifiably precomputed. Finally we argue that the exact same
technique can be utilized to obtain cheaper on-chain pairings verification which opens a question
of practicality of verifying SNARKs on Bitcoin[bitb].
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