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Abstract—Machine-learning systems continue to advance at a
rapid pace, demonstrating remarkable utility in various fields
and disciplines. As these systems continue to grow in size and
complexity, a nascent industry is emerging which aims to bring
machine-learning-as-a-service (MLaaS) to market. Outsourcing
the operation and training of these systems to powerful hardware
carries numerous advantages, but challenges arise when needing
to ensure privacy and the correctness of work carried out
by a potentially untrusted party. Recent advancements in
the discipline of applied zero-knowledge cryptography, and
probabilistic proof systems in general, have led to a means of
generating proofs of integrity for any computation, which in turn
can be efficiently verified by any party, in any place, at any time.

In this work we present the application of a non-interactive,
plausibly-post-quantum-secure, probabilistically-checkable argu-
ment system utilized as an efficiently verifiable guarantee that a
privacy mechanism was irrefutably applied to a machine-learning
model during the training process. That is, we prove the correct
training of a differentially-private (DP) linear regression over
a dataset of 60,000 samples on a single machine in 55 minutes,
verifying the entire computation in 47 seconds. To our knowledge,
this result represents the fastest known instance in the literature
of provable-DP over a dataset of this size. Finally, we show how
this task can be run in parallel, leading to further dramatic
reductions in prover and verifier runtime complexity. We believe
this result constitutes a key stepping-stone towards end-to-end
private MLaaS.

Index Terms—Differential Privacy, Machine-Learning, Linear
Regression, Zero-Knowledge Cryptography, Probabilistic Check-
able Proofs, ZK-STARK.

I. INTRODUCTION

The advent of cloud computing and software-as-a-service
systems illustrates an unfolding trend in which many orga-
nizations have outsourced large aspects of their computing
infrastructure to specialized external service providers, who
in turn provide streamlined and robust access to networked
hardware and software, often at a much lower cost than self-
hosting such infrastructure. With the outsourcing of sensitive
computing tasks, there arises a need for security infrastructure
that allows for a consumer of such services to be confident
that their information is protected and handled according to
their specific needs.

Machine-learning, particularly generative systems, have
continued to advance at a rapid pace, demonstrating utility
in a wide variety of manners. A Delloitte study [1] found
that at least 50% of surveyed organizations planned to use
some form of machine-learning system in 2023. The growing

utility of these systems has largely coincided with their ever-
increasing complexity and dependence on vast troves of data
used in the learning process. Training a machine-learning
system is a computationally and financially expensive process,
which is often conducted using specialized hardware such as
graphics processing units (GPUs). Access to this hardware is
offered through a variety of commercial services, and it is the
interaction with these services that presents security challenges
for anyone who wishes to leverage a machine-learning system
using outsourced hardware on sensitive training data.

Our penultimate result in this work shows how an MLaaS
operator can employ novel cryptographic techniques with min-
imal hard assumptions to provide statements of computational
integrity to a consumer, such that 1.) [2] The consumer is
convinced with high probability that the work was carried
out correctly and 2.) The verification of such a computation
requires a proportionally small amount of work. We argue
that there is limited utility of a proof system which requires
the consumer of this service to perform the same amount
of work as the MLaaS operator, particularly during an ML
training process. We then apply this mechanism to a relatively
open problem in privacy-preserving machine-learning (PPML)
literature, which is the proving of correct application of
differential-privacy during a training process. We discuss our
design in depth in further sections.

A. Privacy-Preserving Machine-Learning

The literature arising from the intersectional disciplines of
theoretical cryptography and applied machine-learning is rich
with technical achievements in secure multi-party computation
(MPC) protocol design towards the goal of realizing machine-
learning (ML) systems that can be operated securely and
privately. There are abundant[3][4][5] examples of secure
privacy mechanisms and constructions that can be readily
leveraged in a variety of applications. This work advances
the field by exploring the robust and efficient application
of cryptographically provable privacy mechanisms towards
machine-learning training processes.

Historically, the privacy mechanism we select for this work
is applied solely by a MLaaS operator, which then has no
concrete means of proving that the mechanism actually was
involved in subsequent computations as agreed to the con-
sumer. The best the consumer can do in this situation is place
trust in a possibly malicious MLaaS operator that their data
was trained over privately. (We define the notion of ”private
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training” in further sections). This work develops a means for
the consumer to act as a verifier in an Interactive-Oracle-Proof
(IOP) model and perform a small amount of work to verify
that the result of training could only have been obtained by
correct execution of an agreed-upon set of steps.

B. Zero-Knowledge Cryptography and Proofs of Computa-
tional Integrity

This work draws from an active field of cryptography
surrounding the study and application of argument systems,
specifically those of the probabilistically-checkable and non-
interactive variety. The celebrated results of [6] realize a proof
system consisting of a series of interactions between a prover
P and a verifier V, in which P tries to convince V of the truth of
some statement, or, in a more applied context, that the output
of a computation was obtained by computing over some input.
[6] shows that while V could re-run the entire computation and
compare outputs with P, a logarithmic-size, non-deterministic
sampling of an argument provided by P, will, with extremely
high probability, be sufficient to satisfy V that the output was
obtained correctly, and conversely otherwise. We define this
protocol between P and V below.

1) Protocol Attribute Constraints: In probabilistic poly-
nomial time, we strive for the following properties for a
robust and efficient proof system under random oracle assump-
tions:[6]

Completeness: True statements can always be proven by a
prover and will always be accepted by a verifier, except with
negligible probability. Formally: For every instance-witness
pair (x,w) in a relation R, Pr [Vp (x,Pp(x,w)) = 1] = 1 for
probability p taken over P and any randomness from P or V.

Soundness: A prover should not be able to deceive a
verifier into accepting a false statement as true, except with
negligible probability. Formally: For every instance x not in
the language of R and every malicious prover P̃ submitting
at most a polynomial number of queries to a random oracle,
Pr

[
Vp

(
x, P̃p

)
= 1

]
is negligible in the security parameter.

[4] shows how a quantifiable lower-bound of security can
be derived from the soundness parameter, which confers a
configurable level of n−bit security directly from the security
of the choice of underlying hash function.

Succinctness: We define the relationship between the work
done by P and V in our construction. Strictly speaking, if
Ω(n) is the amortized asymptotic upper bound of complexity
for proof generation and verification respectively, then for our
construction, we strictly require that Ω(n)P ≤ quasi(n) and
for Ω(n)V ≤ polylog(n). In other words, we restrict the upper
bound on the work done by the prover as quasi-linear, and
the work performed by the verifier as poly-logarithmic. This
definition of succinctness leads to a construction uniquely
suited to the SaaS setting. An ML operator can perform a
computationally expensive algorithm, the result of which can
be verified for correctness in logarithmic time (and size) with
respect to the computation itself. This is a significant result
with important ramifications: a hypothetical computation re-
quiring 10,000,000 steps can be verified with only 23 queries.

Minimal Hard Assumptions: Wherever possible, we desire
the protocol to rely on minimal cryptographic hard assump-
tions. The result from [?] satisfies this requirement through
the use of only a secure hash function as the underlying prim-
itive, then paired with error-correcting codes, which ultimately
lead to plausibly post-quantum-secure computational integrity
statements. We do not simulate a quantum adversary in this
work, but the security of our scheme follows naturally from
the underlying construction [7] in use.

The previously defined parameters for our protocol are
realized through the application of a form of cryptographic
non-interactive proof scheme resembling a zero-knowledge
scalable transparent argument of knowledge [8] to a machine
learning algorithm known as a differentially-private linear
regression [9]. We make a subtle divergence from the nomen-
clature of [8] in our usage of the term ”computational integrity
statements”, by observing that such statements do not require
perfect zero-knowledge in our scheme.

Perfect zero-knowledge in our result follows trivially from
the application of [8] with surprisingly little overhead, but it
is not necessarily a requirement for our protocol because the
MLaaS operator and consumer are assumed in this setting to be
the only parties involved in the computation, both having ac-
cess to the same sensitive data and resulting machine-learning
model. However, since the proof itself is zero-knowledge
following the application of [8], it indeed reveals nothing of
the model or dataset used in the computation, and could be
passed to any public, untrusted party for safe and efficient
verification.

C. Differential Privacy

We begin by introducing differential privacy, which we
show can be provably applied during a machine learning
training process. Differential privacy is presented formally:

Definition I.1. (ϵ, δ) - Differential Privacy [10], [11]: A
randomized algorithm M with domain N|X| is (ϵ, δ) - differen-
tially private if for all S ⊆ Range(M) and for all x, y ∈ N|X|

such that ||x− y||1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp(ϵ)Pr[y ∈ S] + δ (1)

Where:
• M: A randomized algorithm (query(db) + noise, or

query(db+noise))
• S: All possible outputs of M that could be guessed
• x: Entries in database (N)
• y: Entries in parallel database (N ± 1)
• ϵ: Maximum distance between a query on N(x) and the

same query on N(y)
• δ: The probability of some given information being

leaked
We emphasize that this definition holds for a single query

and not for multiple queries, and that it does not imply that
an algorithm is differentially private, rather it is a measure
of how much privacy is leaked to an observer given a single
query on a database. The notion of a parallel database N ± 1
is meant to signify a database that differs by a single entry
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from N. Definition 2.4 then shows that ϵ and δ are measures
of by how much the probability distributions of the entries of
N differ from N ∓ 1.

1) Epsilon (ϵ): [11] shows how ϵ is a metric of privacy loss
at a differential change in a database, such as when an entry
is added or removed. ϵ is defined as the maximum distance
between a query on database N versus the same query on
database N ± 1. It is necessary to examine the effect that
differing values of ϵ has on the privacy of a given database
query.

δ is a value typically defined to be an exceedingly small
bias that represents the possibility that some information is
leaked from a given query over a database. It is common in
literature to choose δ to be ||N||−1, or the inverse of the size
of the given database to be processed.

(ϵ, δ = 0) differential privacy indicates that an adversary
cannot distinguish whether the output of an algorithm M was
produced by processing N versus N ± 1. As the value of ϵ
approaches zero, the privacy guarantees offered by such values
becomes increasingly similar. Conversely, larger values of ϵ
indicate that there exists an adversary that can distinguish with
higher probability whether the output of M was obtained from
either N or N ± 1.
ϵ-DP thus facilitates control over how much privacy can

be ”added” to a given database query. Smaller values of
ϵ require that queries over N and N ± 1 produce similar
outputs. In the following sections, we show precisely how this
can be achieved in terms of various probability distribution
mechanisms.

2) Laplace Mechanism: A numeric database query can be
defined as:

f : N|X| → Rk

Such a query maps a database to k real numbers. We
proceed to define l1 sensitivity, which is a measure of how a
mapping will respond to adjacent datasets different by only a
single entry:

Definition I.2 (l1 sensitivity:). [10] The l1-sensitivity of a
function f : N|X| → Rk is:

∆f = max
x, y ∈ N|X|

||x− y||1 = 1

||f(x)− f(y)||1. (2)

Definition 3.1 provides a means by measuring the maximum
effect of a single entry x in a database on the output of the
function f , which in turn helps to quantify the amount of noise
that should be added to the output of f in order to hide the
presence of x from the output of f . We proceed to define the
Laplace distribution, which can be leveraged as a source of
noise to incorporate into f .

Definition I.3. The Laplace Distribution: The Laplace distri-
bution centered at zero with scale b is the distribution with the
probability density function:

Lap(x|µ, b) 1
2b

exp
(
−|x− µ|

b

)
(3)

The Laplace distribution is represented as two symmetric
exponential distributions with an additional location
parameter[12]. The Laplace mechanism then will run
algorithm f and perturb each input with noise drawn from
the Laplace distribution. The particular amount of noise to be
added to an input is obtained by calculating the l1 sensitivity
of f(query)

ϵ , with the added condition that δ = 0, and thus the
Laplace mechanism achieves (ϵ, 0) differential privacy.
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Definition I.4. [10] The Laplace Mechanism: Given any
function f : N|X| → Rk, the Laplace mechanism is defined
as:

ML(x, f(·), ϵ) = f(x) + (Y1..., Yk) (4)

Where all Yi are independently identically distributed ran-
dom variables drawn from Lap (∆f

ϵ ) . Formally stated:
The Laplace Mechanism: Given any function f : N|X| →

Rk, the following definition of F (x) satisfies ϵ-differential
privacy:

F (x) = f(x) + Lap(
S

ϵ
) (5)

Where S is the sensitivity of f , and Lap(Sϵ ) denotes
sampling from the Laplace distribution with center 0 and
scale S. We use sensitivity in this setting to quantify the
change in output from f when the input database changes
by exactly a single entry. We have thus presented a definition
of differential privacy in terms of the Laplace mechanism. If
we consider our problem space to be that of measuring the
accuracy of computing f , the Laplace mechanism provides a
general-purpose approach in which we can achieve differential
privacy.

D. (ϵ, 0) Differentially-Private Regressions Over Linear Sub-
spaces

A linear regression is a simple form of machine-learning
algorithm which attempts to find a line passing through a set
of points such that the distance, referred to further as the error
of each predicted value with respect to the line is minimized.



4

For a domain of values x = (x1...xn)
T mapped to a range

of features y = (y1...xn)
T :

x̃ =
1

n

n∑
i=1

xi, ỹ =
1

n

n∑
i=1

yi

with ncov(x, y) = ⟨x − x1, y − y1⟩

and nvar(x, y) = ⟨x − x1, x − x1⟩ = n · var(x)

The linear regression, in matrix notation, is defined as Y =
α · x + β + e:

y1

y2

.

.

.

yn


= α



1 x1

1 x2

. .

. .

. .

1 xn


+



β1

β2

.

.

.

βn


+ e

For a noise distribution Fe(0, σ
2
e) and cost function ”mean

squared error” defined as:

L(θ) =
1

n

n∑
i=0

(yi − (αxi + βi))
2

We select the compact (ϵ, 0)-DP NoisyStats algorithm as
a means of introducing differential privacy which perturbs
values in the β vector with noise drawn from the Laplace
mechanism. As specified in [13], we fail if the denominators
of noisy versions of ncov and cov become less than or equal
to zero.

Algorithm 1 NoisyStats: (ϵ = 2, 0)-DP [4]

Data: {(xi, yi)}ni=1 ∈ ([0, 1]× [0, 1])
n

Privacy Params: ϵ
Hyperparams: none
Define ∆1 = ∆2 = (1− 1/n)
Sample L1 ∼ Lap(0,3∆1/ϵ)
Sample L2 ∼ Lap(0,3∆2/ϵ)
if nvar(x)+L2 > 0 then

α̃ = ncov(x,y)+L1

nvar(x)+L2

∆3 = 1/n · (1 + |α̃|)
Sample L3 ∼ Lap(0,3∆3/ϵ)
β̃ = (ỹ − α̃x̃) + L3

return α̃+ β̃
else

return ⊥
end if

Algorithm 1 produces β, which is now (ϵ, 0) differentially-
private. This technique for private regression modeling is well-
studied and common in relevant literature.[13][14] The novelty
of our approach lies in the pairing of this scheme with a
cryptographic computational attestation of integrity, such that
our protocol definition from section B is satisfied. Perhaps
most importantly, however, is how we shift the workload of the
computation from the verifier to the prover, which is presented
further.

E. Differential Privacy Variations

Differential-privacy is amenable to instantiation over vary-
ing hyperparameter choices. This allows for a choice of
privacy budget which is suitable to the task at hand.

In this context, our research focuses on the efficacy of a
novel non-interactive argument system, specifically engineered
to enhance both the integrity and verification mechanisms es-
sential for the deployment of machine learning algorithms un-
der privacy constraints. Among the differential privacy variants
evaluated, Differentially-Private Ordinary Least Squares (DP-
OLS) is identified as the most appropriate privacy-preserving
error estimation function for a linear regression. Other differ-
ential privacy methodologies, such as Pure Differential Privacy
(Pure DP), Approximate Differential Privacy (Approximate
DP) and Rényi Differential Privacy (RDP) were also consid-
ered.

Pure DP (ε-DP), in which δ = 0, is known as the strongest
version of differential privacy [15]. Originating from a seminal
paper by Dwork et al. [16], which introduced the initial
definition of what we now recognize as Pure DP, this method
adjusts the added noise based on the ℓ1 sensitivity of the query
or queries being processed. This approach [16] shows the in-
corporation of noise scaled to a privacy parameter, ε, ensuring
that the probability of generating any particular output remains
relatively unchanged even if the data of any single individual in
the dataset is modified. Despite its strong privacy assurances,
Pure DP typically necessitates the introduction of a higher
level of noise [17], which may disproportionately compromise
the utility of simpler statistical models such as OLS. In the
context of implementing DP-OLS, Pure DP could be applied
by adding noise directly to the OLS coefficients. While the
stringent privacy guarantees of Pure DP are well-suited for
highly sensitive applications, the considerable noise added can
often markedly diminish the utility of the regression model.

Approximate DP ((ε, δ)-DP), while thoroughly investi-
gated in scenarios where achieving Pure DP is complex, is less
explored when the privacy loss parameter, δ > 0[15]. Work
by Bun, Ullman, and Vadhan [18] has identified strong lower
bounds for this type of privacy, which are nearly optimal at
δ ≈ 1

n . This level represents the weakest privacy guarantee that
still maintains practical relevance [15]. In contrast, DP-OLS
adheres to more rigid differential privacy mechanisms, closely
resembling those used in Pure DP. The (ϵ, δ) differential
privacy model, characteristic of Approximate DP, introduces
an additional parameter δ, which denotes a small probability
where the privacy guarantee might not be fully upheld [19].
For linear regression models, maintaining strong privacy with-
out significantly affecting model accuracy is crucial. While
Approximate DP may be preferable in scenarios where a
minor relaxation of privacy is acceptable to gain computational
efficiency in more complex models, DP-OLS stands out for its
strong privacy guarantees.

Rényi DP ((α, ε)-RDP), represents a natural relaxation of
the standard DP model, preserving many of its core properties
while introducing flexibility through parameterization based
on Rényi divergence [20]. Compared with (ϵ, δ)-DP, RDP pro-
vides robust probabilistic privacy guarantees without the risk
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of complete privacy breaches that are permissible under the
(ϵ, δ)-DP framework, which allows a δ probability of total in-
formation disclosure [20]. RDP’s guarantees are contingent on
outcome probabilities, thus prohibiting absolute privacy viola-
tions and preserving uncertainty even under weak parameters
[20]. However, this dependency necessitates complex baseline
risk assessments, especially challenging in large or dynamic
datasets where probabilities are elusive. Despite its theoretical
benefits, RDP’s integration into cryptographic frameworks
can be cumbersome due to the requisite precise assessments
and their complex incorporation with cryptographic proofs.
This complexity makes RDP less suited for demonstrating
the feasibility of privacy-preserving computations in practical
applications, especially those involving co-processing arrange-
ments where trust and verifiability are paramount. In contrast,
DP-OLS offers a simpler, direct method by embedding privacy
controls within the regression algorithm [21], facilitating eas-
ier application, verification, and validation in cryptographic
contexts, aligning effectively with robust, privacy-preserving
research objectives.

II. ZK-PROTOCOLS FOR CI STATEMENTS

At this point in the research, there are two divergent paths
leading to a result that satisfies the protocol constraints from
section B. The first means of achieving a computational
attestation of integrity for a differentially-private regression re-
sembles that of constructing an application-specific integrated
circuit (ASIC) which describes an algorithm or computation
directly as a zero-knowledge circuit using standardized con-
straint systems (R1CS, AIR, etc). The ”ASIC approach” is
thus far common in ZK literature as a consequence of the
field of study being relatively young, and as a result, few
robust general-purpose ZK frameworks and languages exist at
the time of this writing, and even fewer for a STARK-based
approach.

Despite this apparent disparity, we present the RISC-Zero
Zero-Knowledge Virtual Machine (ZKVM)[22]. It is an arith-
metized representation of the RISC-V ISA, which can exe-
cute arbitrary Rust code targeting the RISC-V architecture.
We leverage the RISC-Zero ZKVM towards measuring the
performance of a relatively straightforward implementation of
a linear regression paired with a differentially-private additive-
noise mechanism. This choice has two distinct advantages over
describing the same design as a ”zk-ASIC”:

• The RISC-Zero ZKVM accepts arbitrary Rust as in-
put, leading to not only a substantial reduction in pro-
gramming complexity as far as algorithm description is
concerned, but to significant gains in productivity and
application expressivity as well.

• As a virtual representation of a small RISC-V machine,
the RISC-Zero ZKVM is compatible with essentially any
Rust crate which can be targeted to the RISC-V ISA.
Out-of-the-box, this platform is immediately usable by a
large number of existing libraries, types and software in
the Rust ecosystem.

Overhead can be incurred by executing certain applications
on a general-purpose computing platform, and this is also

true on non-ZK computing hardware. Despite the possible
overhead incurred by leveraging a general-purpose ZK com-
puting platform, it is worth noting that the RISC-Zero ZKVM
realizes de-facto the state-of-the-art in ZK-STARK literature,
employing techniques such as preprocessing, the DEEP sound-
ness enhancement to the FRI protocol, Metal/CUDA integra-
tion, and composition of proving systems for small(and even
constant-size) proof sizes. This results in a platform that ex-
hibits remarkable performance and robust security guarantees,
despite the substantial difference in complexity between an
arithmetized ISA and a simple differentially-private regression
circuit.

III. OBSERVATIONS
A. Methodologies and Results

This subsection defines the experimental setup of this re-
search. We run our differentially-private regression within a
single RISC-Zero ZKVM on a Macbook Pro M1 Max with
32gb of RAM. We use the ”Kaggle Healthcare Dataset” which
contains a record of patients admitted to hospital care, several
factors regarding their health, and the resulting insurance
amount billed for the visit. The focus of this work remains
centered on the performance of the protocol in terms of
runtimes, and not on the prediction accuracy of the resulting
model. Thus we augment the size of the dataset from 10,000
to 60,000 samples using random copies of existing samples.
We then isolate the columns in the data to a single independent
variable and a single explanatory variable; Age vs Insurance
Cost. We then produce a regression model which predicts
patient insurance cost of a hospital visit versus their age.

1) Training and Experiment Design: We learn two hypothe-
ses: the first is based on a simple ”ordinary least squares
(OLS)” error estimator, and the second is a differentially
private version of OLS (DP-OLS). We observe that the DP-
OLS hypothesis initially diverges significantly from the OLS
hypothesis when trained on few data samples. This is an
expected result given how the data is perturbed in the DP-
OLS training, and with few samples to learn from, the noisy
hypothesis should display a strong divergence from the OLS
estimator.

As larger volumes of samples are trained over, we observe
both estimators converging to roughly the same hypothesis,
which is again the expected result. This indicates that DP-
OLS, despite the noise perturbation, is successfully learning
approximately the same hypothesis as the OLS regression. The
training procedure is conducted in a ”batched” fashion, since
we are limited by the numbers of samples we can process on
our GPU at a given iteration. We discuss this further in the
next subsection.

2) Performance: Performance metrics that we are interested
in include ”Proof time versus Dataset Size”, ”Verification Time
vs Dataset Size”, and ”DP vs OLS Model Accuracy”. We
initially run the ZKVM over a smaller subset of 1200 total data
samples using our CPU as the proving hardware. By recording
the proof time at regular intervals, we observe that proof time
versus dataset time appears to scale roughly linearly, while
the verification time appears to scale roughly logarithmically,
which is the expected result.
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Fig. 1. Proving and Verification Time vs. Dataset Size
Without CUDA

B. Prediction Accuracy: Non-Private vs. Private

The below chart measures the overall accuracy of the pre-
dictions made by both the DP and the non-DP estimators. The
difference between mean absolute error for both regressions is
extremely low after training over 60,000 samples, indicating
that the DP regression makes predictions almost identical to
that of the non-DP regression. Further, the standard error of
both regressions is measured, with an extremely small delta
of 0.00001. This indicates that the DP regression slope will
make predictions well within the standard error of the non-
DP regression. These results both strongly suggest that despite
the noisy training data, the DP estimator converges to almost
exactly the same model as the non-DP estimator.

MAE OLS DP-MEA OLS ∆
9495.09 9495.12 0.03

Slope SE DP-Slope SE ∆
0.83202 0.83201 0.00001

TABLE I. Accuracy Difference Between Non-private vs DP
Model

C. Scaling Up

The RISC-Zero ZKVM is packaged with a CUDA-
compatible GPU-compute backend which dramatically im-
proves the computation time of our DP-regression training.
This comes at the cost of utilizing nearly all of the memory of
the graphics unit used in testing (a relatively modest NVIDIA
GeForce RTX 4070 Laptop GPU with 8gb of available video
RAM). We observe empirically with this hardware setup that
we can run the entire DP-regression training over 175 samples
before exceeding available RAM. We mitigate this limitation
by dividing the dataset into 343 blocks instead, verifying
each block with a single ZKVM in sequence. We obtain a
DP-proving runtime for our regression training of 9 seconds
for every 175 samples, or roughly 19 samples per second. We
use this result to sequentially prove a differentially-private re-
gression training over 60,000 (x, y) samples in approximately
55 minutes with a single GPU.

It is possible to deploy many of these ZKVMs in parallel,
and as such, proving time becomes a function of each new
node joining the system, up to an optimal number of nodes.
When considering the overhead of instantiating the ZKVM
and generating the proofs, we find that 175 samples is the
optimal number of samples for each ZKVM to prove. If 60,000
samples are evenly divided across a network of 343 single
GPUs, the entire dataset could be proven in less than 10
seconds. While 343 nodes in such a network may appear
to be a high number, the Ethereum blockchain network is
recorded [23] as having a compute power of 603,000 GHz on
average at any given time in 2021. Our GPU has a clock speed
of 1.61 GHz [24], suggesting that in 2021, there existed a
distributed network of approximately 374,534 available ”GPU
units” available for compute at any given time.

Lastly, the task of aggregating the individually computed
models into a single regression remains. This step requires
O(c) work with respect to the number of nodes in the system
and is carried out by the verifier. It is assumed at this point
that the verifier, as in our experiments, has already carried
out verification of each received proof and can trust with high
probability the correctness of each model it has received from
a node. Each linear regression model is represented by the
equation:

y = β1x+ β0

where β1 is the slope and β0 is the intercept. To combine
models from multiple parties, the slopes (β1) and intercepts
(β0) of these models are averaged.

1. Averaging Slopes:

β1 =
1

n

n∑
i=1

β1i

where n is the number of parties (or models), and β1i is the
slope of the i-th model.

2. Averaging Intercepts:

β0 =
1

n

n∑
i=1

β0i

where β0i is the intercept of the i-th model.
The combined model is then given by:

y = β1x+ β0

IV. COMPARISON TO OTHER WORKS

We assess the literature surrounding the topic of provable-
DP to be relatively sparse. The closest result to ours is found
in confidential-DP[25]. To the best of our understanding, this
work is derived from a zero-knowledge construction contained
within the EMP toolkit [26], itself based on an argument
system referred to as ”Wolverine” [27]. To the best of our
knowledge, confidential-DP does not report a verifier runtime,
and so we are left to assess the complexity of the underlying
argument system in use. This implies that by [27], confidential-
DP obtains an O(n) prover and an O(n) verifier. By contrast,
our work obtains an O(n) prover and an O(polylog(n))
verifier. confidential-DP is an interactive argument system,
requiring the proving and verifying parties to be online and
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communicating during the execution of the protocol. Our
result is non-interactive, the prover and verifier only exchange
a single message to instantiate the protocol, and a single
message from the prover is sent containing the result and proof
of correctness. Both results are zero-knowledge. The verifying
party need not be the same who initiated the protocol. A proof
of correctness is zero-knowledge and reveals nothing except
that the argument is correct.

Protocol DP Model Prover Verifier Online

This work NoisyStats,
(ϵ = 2, 0) Linear O(n) O(logn) No

confidential-
DP

DP-SGD,
ϵ = 0.55,
δ = 10−5

Logistic O(n) O(n) Yes

TABLE II. Summary of Protocols

Other observed differences between results are that
confidential-DP classifies images, while our model predicts
labels from data points represented as pairs of single floating-
point numbers. Confidential-DP reports a total proving time
of 100 hours over the CIFAR10/MNIST dataset, while we
observe a 55 minute proving time over our Kaggle dataset. We
remark however that runtime in this context is not a mean-
ingful comparison of performance between the two results,
since the tasks are performed over different data with different
model architectures.

Lastly, confidential-DP proves only the DP portion of their
training. They first extract features from the training data with
a deep network, then classify those features with a DP-logistic
regression. This is done because describing an entire deep
network (particularly the computation graphs and gradients
for back-propagation) as a ZK-circuit remains a highly non-
trivial and contrived task. Our work proves the correctness of
the entire training process, however our training regimen is a
comparatively simple model consisting of a compact number
of operations that are readily programmed into the ZKVM.

V. CONCLUSION

This work shows a robust and efficient means of cryp-
tographically proving and verifying the correct execution of
an agreed-upon machine-learning training process. We believe
our construction results in an attestation of integrity which
shows machine-learning algorithms, (albeit simple algorithms,
for the time-being) are well-suited to this particular form
of non-interactive argument system, demonstrating a practi-
cal application of introducing an ”asymmetry” into a heavy
computation in order to leverage powerful hardware which
may exist in a different physical or temporal location. Our
result shows how a verifying party can apply this framework
to efficiently obtain an irrefutably correct machine-learning
model from an untrusted but powerful outside source.

Argument systems of this variety facilitate what seems at
first to be a counter-intuitive, yet intriguing and powerful
result; by working in concert with a prover, the verifier has
learned the exact same machine-learning model, but appears
to have done so with only O(polylog(n)) work with respect
to the dataset size[6]. As the dependence on outsourced

ML hardware continues to grow, we anticipate the need for
secure ”co-processing” solutions of this nature to expand in
kind. We believe this work shows that state-of-the-art ZKVM
constructions are equipped to play a unique role in the growth
of privacy-preserving machine-learning.

We believe that this research plays a vital role in the de-
velopment of completely private end-to-end machine-learning,
in which distinct and distrustful parties (model operators
and consumers) may interact with each other in complete
privacy. During the inference phase of this research, the
model itself and the data to be classified are revealed out of
necessity. This could be hypothetically be remedied by recent
advancements in the field of fully-homomorphic encryption.
[28] demonstrates the practical feasibility of conducting re-
gressions over encrypted data, while [29] leverages the RISC-
Zero ZKVM to prove fully-homomorphic computations over
encrypted ciphertexts. Future work targets the understanding
of the costs of fully homomorphic and provable differentially-
private regressions and classifications using the ZKVM, along
with other frameworks and tools.
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