
Regev Factoring Beyond Fibonacci: Optimizing Prefactors

Seyoon Ragavan
MIT

sragavan@mit.edu

April 25, 2024

Abstract
In this note, we improve the space-efficient variant of Regev’s quantum factoring algo-

rithm [Reg23] proposed by Ragavan and Vaikuntanathan [RV24] by constant factors in space
and/or size. This allows us to bridge the significant gaps in concrete efficiency between the
circuits by [Reg23] and [RV24]; [Reg23] uses far fewer gates, while [RV24] uses far fewer qubits.

The main observation is that the space-efficient quantum modular exponentiation technique
by [RV24] can be modified to work with more general sequences of integers than the Fibonacci
numbers. We parametrize this in terms of a linear recurrence relation, and through this formu-
lation construct three different circuits for quantum factoring:

• A circuit that uses ≈ 12.4n qubits and ≈ 54.9n1/2 multiplications of n-bit integers.
• A circuit that uses (9 + ϵ)n qubits and Oϵ(n

1/2) multiplications of n-bit integers, for any
ϵ > 0.

• A circuit that uses (24+ ϵ)n1/2 multiplications of n-bit integers, and Oϵ(n) qubits, for any
ϵ > 0.

In comparison, the original circuit by [Reg23] uses at least ≈ 3n3/2 qubits and ≈ 6n1/2 mul-
tiplications of n-bit integers, while the space-efficient variant by [RV24] uses ≈ 10.32n qubits
and ≈ 138.3n1/2 multiplications of n-bit integers (although a very simple modification of their
Fibonacci-based circuit uses ≈ 11.32n qubits and only ≈ 103.7n1/2 multiplications of n-bit in-
tegers). The improvements proposed in this note take effect for sufficiently large values of n; it
remains to be seen whether they can also provide benefits for practical problem sizes.

1 Introduction

Shor’s algorithm from 1994 [Sho97] showed us how to factor n-bit integers quantumly in time
polynomial in n. Further optimizations by [Bea03, TK06, Zal06, Gid17, HRS17, Gid19] ultimately
led to implementations of Shor’s circuit that could use as little space as ≈ 1.5n qubits or as few as
O(n/ log n) calls1 to a circuit for multiplying two n-bit integers modulo N .

This state of affairs changed when Regev [Reg23] demonstrated a quantum circuit that needed
only ≈ 6

√
n calls to the same multiplication circuit.2 This circuit could be run

√
n times in parallel,

1This is using Gidney’s windowing technique [Gid19], which is applicable when the multiplication circuit being
used has O(n1+Ω(1)) gates. To the best of our knowledge, windowing when working with asymptotically faster
multiplication circuits [SS71, HvdH21] would only yield savings proportionate to O(log logn), but this is not of major
interest in this work since we are concerned with concrete costs. We compare our methods with windowing in Section
3.

2This prefactor is achieved using similar ideas to the optimizations in this work; see Section 3.1 for details.

1

Algorithm Qubits n-bit multiplications Qubits × multiplications
Regev’s algorithm [Reg23] 3n3/2 6n1/2 18n2

[RV24] 11.32n 103.7n1/2 1173.9n3/2

[RV24]† 10.32n 138.3n1/2 1427.3n3/2

This work, Corollary 2.6 12.43n 54.9n1/2 682.3n3/2

This work, Corollary 2.5 Oϵ(n) (24 + ϵ)n1/2 Oϵ(n
3/2)

This work, Corollary 2.3† (9 + ϵ)n Oϵ(n
1/2) Oϵ(n

3/2)

Table 1: Comparison of implementations of Regev’s algorithm [Reg23] in terms of both number of
qubits and number of gates. Asymptotically best-known results for space, size, or their product are
highlighted in bold. Circuits marked with † use dirty ancilla qubits to save space at the expense
of needing more gates (see Section 2.3 for more discussion about this). All values here are just for
one run of the circuit. For n ≥ 1500, our circuit from Corollary 2.6 achieves the smallest product
of qubits and gates when considering the highest-order terms. However, this comparison ignores
lower-order terms so a finer analysis is needed to verify the concrete gains from our results.

and the results classically postprocessed to factor N . The circuit by [Reg23] has since been adapted
to the problem of computing discrete logarithms modulo prime p by Ekerå and Gärtner [EG24].
However, Regev’s circuit requires at least 3n3/2 qubits, which is significantly more than Shor’s.

Ragavan and Vaikuntanathan [RV24] then leveraged the idea of reversible Fibonacci exponenti-
ation proposed by Kaliski [Kal17] to asymptotically achieve the best of both worlds between Shor’s
and Regev’s circuits: a careful implementation of their circuit would need only ≈ 10.32n qubits,
but now requires ≈ 138.3

√
n multiplications.3 A simple modification of their circuit would require

≈ 11.32n qubits and ≈ 103.7
√
n multiplications.4 For cryptographically relevant problem sizes,

there is an unsatisfactory gap here; the circuit by [Reg23] requires an extremely large number of
qubits, while the circuit by [RV24] requires an extremely large number of gates. These gaps in con-
crete efficiency become especially important in the case of quantum computers, where scalability
has proven difficult due to the issue of decoherence noise [AAB+19, GE21, CCHL22, Cai23].

In this note, we show how to interpolate between these two qualitative extremes in a nontrivial
way. In particular, all circuits in this work retain the asymptotic best-of-both-worlds guarantees
achieved by [RV24]. At the core, we consider applying reversible exponentiation with respect to
more general sequences of integers than the Fibonacci numbers, and show that this can provide
benefits for space and/or size depending on the parametrization. We state our results formally in
Section 2 and discuss this idea in more detail in Section 3.

Our results are phrased in terms of integer parameters r and s that allow one to control a tradeoff
between space and size. Some special cases are tabulated alongside the original implementation
by [Reg23] and the variant by [RV24] in Table 1. For a heuristic comparison, we consider the product
of the number of qubits and number of multiplications for each of the algorithms proposed. This
comparison suggests that our proposal could provide concrete improvements to Regev’s algorithm
for n as low as 1500, although our methods for optimizing the number of gates appear limited to

3This can be seen by plugging r = 1 into Theorem 2.2 and doubling the gate count to account for final uncompu-
tation.

4This can be seen by plugging r = s = 1 into Theorem 2.4 and doubling the gate count to account for final
uncomputation.

2

4× the gate complexity of Regev’s original circuit [Reg23]. However, ascertaining this will require a
finer and more careful analysis, as our complexity estimates ignore lower-order terms in the number
of qubits and gates. We remark that although our results here focus on factoring, these algorithms
can also be directly adapted to discrete logarithms by following the methods of [EG24].

For simplicity, we do not make comparisons in this work with optimized variants of Shor’s
algorithm due to the wide variety of optimizations that one could consider [Bea03, TK06, Zal06,
Gid17, HRS17, Gid19]. A careful comparison with these variants of Shor’s algorithm is an important
direction that we leave to future work. We are optimistic that Regev’s algorithm [Reg23] combined
with the optimizations by [RV24] and this work (and perhaps additional future optimizations) may
be sufficient to achieve a concrete improvement over Shor’s algorithm [Sho97].

2 Setup

We refer the reader to [RV24] for an overview of Regev’s quantum factoring algorithm [Reg23]. In
this work, we focus on the modular exponentiation step, which is the bottleneck in terms of both
gates and qubits. For simplicity, we will assess gate complexity in terms of the number of multipli-
cations of n-bit integers modulo N . This is a reasonable heuristic since integer multiplications are
the asymptotic bottleneck in the circuit by [Reg23] and its modification by [RV24].

2.1 Notation

We retain all notation from [Reg23] and restate it here for convenience. Let N < 2n be an n-bit
number. Let d = ⌊

√
n⌋ and b1, . . . , bd be some small O(log n)-bit integers (e.g. bi is the ith prime

number) and let ai = b2i mod N . For any integer t, let [t] denote the set {1, 2, . . . , t}. We use log
to denote the base-2 logarithm throughout this paper. Also, let ϕ denote the golden ratio. Regev’s
algorithm uses a number of parameters:

• Let C > 0 be an absolute constant given by Regev’s [Reg23] number-theoretic conjecture
(conjecture 3.1 in [RV24]);

• Let A > C be another constant we specify later. For Regev’s factoring algorithm and our
space optimization, we will take A = C + 2 + o(1);

• Let R = 2(A+o(1))
√
n; and

• Let D be a power of 2 in [2
√
d · R, 4

√
d · R]. Note that D is also 2(A+o(1))

√
n. These are the

same parameters R and D defined by [Reg23].

Following a heuristic argument by [Reg23] suggests that taking C = 1+ ϵ (and hence A = 3+ ϵ)
is likely to be sufficient for his number-theoretic conjecture to hold. For the modular exponentiation
step, Regev works with a vector of integers z = (z1, z2, . . . , zd), where −D/2 ≤ zi ≤ D/2− 1 for all
i.

We also borrow notation from [RV24] and let |ψ(x)⟩ denote the state |x⟩ |x−1 mod N⟩, for an
integer x ∈ [0, N − 1] relatively prime to N . For the purposes of this work, we also define constant
integer parameters s ≤ r such that s is a power of 2 and r is a multiple of s. We will also define
β = r+

√
r2+4
2 , for reasons that will become clear later. (Note that in the special case r = 1, β will

equal the golden ratio ϕ = 1+
√
5

2 .)

3

Finally, we use the standard complexity-theoretic ω(f(n)) notation to denote a function g(n)

such that limn→∞
f(n)
g(n) = 0.

2.2 Our Results

Our goal is to improve upon Lemma 4.1 by [RV24], which we restate below for reference. All gate
costs in these theorems need to doubled to obtain the cost of a factoring circuit, because these
circuits must be uncomputed before the final QFT in Regev’s circuit [Reg23] can be performed.

Theorem 2.1. (Lemma 4.1 of [RV24]) Assume there is a quantum circuit that implements the
operation

|a⟩ |b⟩ |t⟩ |0S⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩ |0S⟩

with G = ω(n) gates where N, a, b, t are all n-bit integers with 0 ≤ a, b, t < N and 2n−1 ≤ N < 2n,
and S here is the number of ancilla qubits. Then there exists a quantum circuit mapping

|z⟩ |0M ⟩ 7→

∣∣∣∣∣
d∏

i=1

a
zi+D/2
i mod N

〉
|ψ⟩ .

Here,

M = S +

(
A

log ϕ
−A+ 6 + o(1)

)
n

is the initial number of ancilla qubits, and |ψ⟩ is some possibly nonzero state on M +An−n qubits.
Moreover, this circuit uses O(n1/2 ·G+ n3/2) gates. Since |z⟩ can be stored in d logD = An qubits,
the total number of qubits used (i.e. the space usage) is

S +

(
A

log ϕ
+ 6 + o(1)

)
n.

Taking A = 3 + ϵ implies that the number of qubits is ≈ S + 10.32n.

We first generalize this theorem to the case where r > 1, which as we will see yields an improve-
ment in the space complexity:

Theorem 2.2. Under the same assumptions as Theorem 2.1, there exists a quantum circuit com-
puting the same mapping with

M = S +

(
A⌈log(r + 1)⌉

log β
−A+ 6 + o(1)

)
n,

so that the total number of qubits used is

S +

(
A⌈log(r + 1)⌉

log β
+ 6 + o(1)

)
n,

and the number of gates used is

(4r + 12 + o(1))A

log β
· n1/2 ·G.

The r = 1 case is exactly Theorem 2.1.

4

Since limr→∞⌈log(r+1)⌉/ log β = 1, taking sufficiently large r and A = 3+ ϵ allows us to obtain
the following corollary:

Corollary 2.3. For any constant ϵ > 0, there exists a quantum circuit computing the same mapping
as Theorem 2.1 using space S + (9 + ϵ)n and Oϵ(n

1/2 ·G) gates.

Next, we show that the number of gates can also be dropped by a constant factor (albeit at the
expense of blowing up the constant factor in the space), by taking r > 1 (the r = 1 case can be
obtained by a direct simplification of the circuit by [RV24]):

Theorem 2.4. Under the same assumptions as Theorem 2.1, there exists a quantum circuit com-
puting the same mapping with

S +

(
A⌈log(r + 1)⌉

log β
+max(4 log s+ 5, 7) + o(1)

)
n

qubits, and
(4r/s+ 4 log s+ 8 + o(1))A

log β
· n1/2 ·G

gates.

If we set r = s to be a power of 2 and consider the limiting behaviour as r →∞, we obtain the
following corollary (once again taking A = 3 + ϵ):

Corollary 2.5. For any constant ϵ > 0, there exists a quantum circuit computing the same mapping
as Theorem 2.1 using (12 + ϵ)n1/2 ·G gates and space S +Oϵ(n).

Setting r = 6 and s = 2 yields a result5 that is concretely efficient in terms of both space and
size (once again taking A = 3 + ϵ):

Corollary 2.6. There exists a quantum circuit computing the same mapping as Theorem 2.1 using
≈ 27.4n1/2 ·G gates and space ≈ S + 12.4n.

2.3 On the Role of Dirty Ancilla Qubits

The core difference between the algorithms used in Theorem 2.2 and 2.4 (focusing on s = 1 for ease
of comparison) is the use of dirty ancilla qubits. This leads to three points of difference between
these algorithms:

• The use of dirty ancilla qubits allows Theorem 2.2 to use n fewer qubits than it would otherwise
need to.

• However, this also leads to a higher gate count, which will ultimately be due to the difference
in gate counts between Lemma 3.3 and Lemma 3.5, and similarly between Lemma 3.4 and
Lemma 3.6. In each case, the former lemma uses dirty ancilla qubits to save space but at the
expense of needing more multiplications.

5These parameters were experimentally chosen to minimize the product of the two prefactors.

5

• More subtly, the multiplication functionality we require when using dirty ancilla qubits is more
sophisticated. In Lemmas 3.3 and 3.4, the work by [RV24] explicitly relies on the ring structure
of ZN , and assumes a multiplication oracle that maps |a⟩ |b⟩ |t⟩ 7→ |a⟩ |b⟩ |(t+ ab) mod N⟩.
On the other hand, in the simpler case of Lemmas 3.5 and 3.6 where dirty ancilla qubits
are not involved, it is straightforward to see that the arguments in the lemmas work even
given a multiplication oracle that maps |a⟩ |b⟩ |t⟩ 7→ |t⊕ (ab mod N)⟩, which now only uses
the multiplicative structure of ZN .

As argued in Appendix A of [RV24], any multiplication oracle with the XOR functionality can
be converted into an oracle with the (t + ab) mod N functionality, but with some constant-
factor overheads that are unlikely to be desirable in practice.

• Another consequence of using dirty ancilla qubits is that quantum errors become more difficult
to detect. This is an observation made by Shor [Sho97]. At the end of the computations in
Lemmas 3.5 and 3.6, the clean ancilla qubits will be restored to the |0n⟩ state, which can
hence be measured and checked. This certainly does not provide the ability to detect any
quantum errors, but it does provide the ability to detect some types of quantum errors.

Without clean ancilla qubits (as in Theorem 2.2 and the circuits by [RV24]), this form of error
detection does not appear to possible (to the best of our knowledge).

Given the above observations, we view the use of dirty ancilla qubits in [RV24] and Theorem 2.2
as a way to finely optimize the space usage of the quantum circuit, but believe it is unlikely that
these optimizations would be useful in practice. A simpler algorithm such as that in Theorem 2.4
is likely to be of more practical interest.

3 Modular Exponentiation Beyond Powers of 2 and Fibonacci Num-
bers

The reason why Regev’s factoring circuit [Reg23] requires n3/2 qubits is that it relies on repeated
squaring modulo N for its exponentiation, which is not reversible and hence has to be done out-of-
place, consuming extra qubits. Another way to view this exponentiation approach is that it uses
the powers of 2 as a “basis” for the exponent z when computing az modulo N . This is for the simple
reason that the powers of 2 obey the recurrence Gn = 2Gn−1.

The observation originally made by Kaliski [Kal17] in the context of classical reversible com-
puting and leveraged by [RV24] is that modular exponentiation can be done by instead iterat-
ing the operation (a, b) 7→ (a, ab mod N) back and forth. This turns out to use the Fibonacci
numbers as a basis for the exponent. This is ultimately because the Fibonacci numbers satisfy
the recurrence relation Fk = Fk−1 + Fk−2; in particular, the aforementioned operation will send
(aFk−1 mod N, aFk−2 mod N) 7→ (aFk−1 mod N, aFk mod N).

This suggests considering what may happen by considering an arbitrary linear recurrence relation
with constant non-negative integer coefficients, and the basis that yields. The first observation is
that not every recurrence yields a computation that can be done reversibly; Gn = 2Gn−1 corresponds
to repeated squaring, which is not reversible. However, it turns out that any recurrence relation
where the last coefficient is 1 can be used for reversible exponentiation. Concretely, let r be a
positive integer and let {Gk} be defined by G0 = 0, G1 = 1, and

Gk = rGk−1 +Gk−2.

6

Then we can iterate the operation (a, b) 7→ (a, arb) back and forth to exponentiate using the Gk’s
as a basis. This is because this operation will send

(aGk−1 mod N, aGk−2 mod N) 7→ (aGk−1 mod N, arGk−1+Gk−2 mod N)

= (aGk−1 mod N, aGk mod N).

There are two different reasons that we might hope to benefit from working with such a sequence
instead. One is that this could potentially improve space and the other is that this could potentially
improve the number of gates, but these two aspects trade against each other so it appears difficult
to leverage both types of benefit at once:

• In the algorithm by [RV24], the An qubits needed to store the exponents z gets blown up
to An/ log ϕ, because of redundancy in decomposing the exponent as a sum of Fibonacci
numbers. (Indeed, any decomposition that includes two consecutive Fibonacci numbers is
already redundant.) It turns out that this redundancy can be reduced by increasing r, thereby
reducing the space requirement.

• Secondly, as we will see, there are two types of multiplication operations carried out by the
algorithm in [RV24]. The first is the operation (a, b) 7→ (a, arb) (recalling that they restrict
attention to r = 1), and the second is an intermediate operation where one of the registers is
multiplied by a smaller integer cj .

The cost of multiplications of the first type appears inherent and independent of r, however
we can reduce the number of times we need to carry out the second type of multiplication by
increasing r.

We remark that the second optimization listed here bears some high-level similarity to the use
of windowing in Shor’s algorithm [Gid19, GE21]. Windowing effectively shifts some of the workload
from the modular exponentiation to classical precomputation. This crucially relies on the base a
being classical and does not appear applicable to Regev’s algorithm (see [RV24] for further discussion
about the limitations of precomputation in Regev’s algorithm). Instead, we can shift some workload
from the core modular exponentiation operations to the small-integer multiplications (as captured in
Lemma 3.2). A crucial point of difference is that while windowing allows for the saving of logarithmic
factors in Shor’s algorithm [Gid19], our optimization is limited to constant-factor improvements;
asymptotic improvements with this method appear difficult.

3.1 Warm-Up: Prefactors in Regev’s Circuit

To begin, we examine how ideas similar to those outlined here can improve the prefactors in Regev’s
original circuit [Reg23], without the Fibonacci exponentiation optimizations by [RV24]. Suppose
firstly that we run Regev’s circuit as-is, decomposing the exponents zi + D/2 in binary and then
using repeated squaring. Then we have the following:

• The required number of qubits is (A+ o(1))n3/2, because we need an additional n qubits for
each of An1/2 squarings.

• The required number of n-bit multiplications is at least 4An1/2. During the forward execution
of the circuit, there are logD ≈ An1/2 squarings and additionally logD ≈ An1/2 multiplica-
tions of a subset of the bases into the register between squarings. This cost then gets doubled
due to the need for uncomputation at the end.

7

Instead, suppose we did the following: take r to be a power of 2 (in this section only) and decompose
the exponents zi +D/2 in base r. This leads to the following changes to the algorithm:

• The multiplications of subsets of small integer bases now uses a factor of r more gates because
these integer bases could be raised to the power of r (see Lemma 3.2 for details).

• In the forward pass, we still need logD ≈ An1/2 squarings (to raise something to the power
of r, we would just square it log r times). However, the number of times we need to multiply
a subset of bases into the register is now only logD/ log r ≈ An1/2/ log r. The total number
of n-bit multiplications is now only ≈ 2An1/2(1 + 1/ log r).

Note that the number of qubits is still just An3/2. Hence we can take r to be slightly super-
constant to obtain an implementation of Regev’s circuit [Reg23] using ≈ An3/2 ≈ 3n3/2 qubits and
≈ 2An1/2 · G ≈ 6n1/2 · G gates. We will see that we can obtain similar benefits for the circuit
by [RV24] in terms of the number of gates as well as for the number of qubits (whereas this method
did not save any qubits in the case of Regev’s circuit).

3.2 Outline of Our Algorithm

Now, we analyze how this exponentiation would work in the case of the space-efficient circuit
by [RV24]. Let K be maximal such that GK ≤ D. We want to compute

∏d
i=1 a

zi+D/2
i , which

suggests decomposing

zi +D/2 =
K∑
j=1

zi,jGj ,

for zi,j ∈ {0, 1, . . . , r}. Then, if we let cj =
∏d

i=1 a
zi,j
i , we just need to compute

∏K
j=1 c

Gj

j . We have
two straightforward properties that we verify in Appendix B:

• Define β = r+
√
r2+4
2 ∈ (r, r + 1), then we have K = (1 + o(1)) logD/ log β = (α + o(1))

√
n,

letting α = A/ log β.

• A straightforward greedy algorithm can be applied to calculate a decomposition of the above
form with zi,j ∈ {0, 1, . . . , r} for all i, j.

Then applying the intuition stated above to the space-efficient exponentiation algorithm by [RV24]
suggests the following outline:

1. Compute and store values zi,j ∈ {0, 1, . . . , r} for i ∈ [d] and j ∈ [K] such that for all i we have∑k
j=1 zi,jGj = zi +D/2.

2. Initialize x1 and x2 to both be 1.

3. Repeat the following for j = K,K − 1, . . . , 1 in that order:

(a) Update x1 ← x1x
r
2.

(b) Update x1 ← x1cj .
(c) Swap x1 and x2.

To show correctness, we argue that for all j ≤ K − 1 we will have at the end of round j that
x1 =

∏K
i=j+1 c

Gi−j

i and x2 =
∏K

i=j c
Gi+1−j

i . When j = 1, we will hence have x2 =
∏K

i=1 c
Gi
i , as

desired. This claim follows by a straightforward induction, which we defer to Appendix A.

8

3.3 Greedy Decomposition and Small-Integer Multiplications

In this section, we adapt the primitives used by [RV24] that specifically work with Fibonacci numbers
to our more general setting.

Lemma 3.1. (Adapted from Lemma 5.5 in [RV24]) There exists a quantum circuit using O(n3/2)
gates mapping the state

|z⟩ |0dK⌈log(r+1)⌉−d logD⟩ |0O(
√
n)⟩ 7→ |zi,j : i ∈ [d], j ∈ [K]⟩ |0O(

√
n)⟩ .

The ⌈log(r+1)⌉ term is because each zi,j is an integer in [0, r], and hence this many bits are needed
to represent it. Note that the prefactor in the number of gates here is bounded independently of r.

Proof. We repeat the following greedy procedure for each i ∈ [d]. Note that integers here are
computed in absolute terms, rather than modulo N . We need the ability to compute in-place
additions and subtractions onO(

√
n)-bit integers withO(

√
n) ancilla qubits; it was shown by [Dra00]

that this is possible. We also need to be able to compare integers of length O(
√
n), but this need

not be in-place so can also be done with O(
√
n) ancilla qubits.

1. Let t denote the number in the register currently holding zi. First update t ← t + D/2 (so
that this register now holds zi +D/2).

2. Set aside K⌈log(r+1)⌉ ancilla qubits to hold zi,j for j ∈ [K], so that zi,j = 0 for all j initially.

3. Now for each j = K,K − 1, . . . , 1 and for each b = ⌈log(r + 1)⌉ − 1, . . . , 2, 1, 0, check whether
t ≥ 2bGj and write the output of this comparison to the bth qubit of the register containing
zi,j . Then use this qubit as a control qubit to conditionally update t← t− 2bGj .

4. By Lemma B.1, this greedy algorithm will correctly decompose zi+D/2 as a linear combination∑K
j=1 zi,jGj of the Gj ’s, and we will have t = 0 at the end. Hence we have freed up those

logD bits as ancilla qubits to use in later steps.

We have already observed that correctness follows from Lemma B.1. For the runtime, each step
of the innermost loop over j uses O(⌈log(r + 1)⌉

√
n) gates. So, each step of the outer loop over

i uses O(K⌈log(r + 1)⌉
√
n) = O(A⌈log(r + 1)⌉n/ log β) = O(n) gates (where the prefactor in this

bound is independent of r since limr→∞
⌈log(r+1)⌉

log β = 1). Finally, multiplying by d =
√
n yields a

gate complexity of O(n3/2).
Finally, we address space. All individual steps in the loop can clearly be done usingO(

√
n) ancilla

qubits (which we can then reuse). Other than that, each step of the loop consumes K⌈log(r + 1)⌉
ancilla qubits but then frees up logD ancilla qubits. The total initial ancilla requirement is hence
d(K⌈log(r + 1)⌉ − logD) +O(

√
n) as desired.

Lemma 3.2. (Adapted from [Reg23]) There exists a quantum circuit using O(r
√
n log3 n) gates

mapping

|t1⟩ . . . |td⟩ |0Õ(r
√
n)⟩ 7→ |t1⟩ . . . |td⟩

∣∣∣∣∣
d∏

i=1

atii

〉
|0Õ(r

√
n)⟩ .

Here, the ti ∈ {0, 1, . . . , r} for all i.

9

Proof. The proof by [Reg23] shows that such a computation can be done classically withO(d log3 d) =
O(
√
n log3 n) gates in the case that ti ∈ {0, 1}; we just adapt this to our slightly more general set-

ting. Let M(k) denote the number of gates needed to classically multiply two k-bit integers. Using
the multiplication circuit by [HvdH21], we may take M(k) = O(k log k).

Our classical circuit will first compute atii for each i ∈ [d] using repeated squaring. For each i,
this involves O(log r) multiplications of integers of length O(r log n). Hence the total cost here is
O(
√
n · log r ·M(r log n)) = O(

√
n · log r · r log n log logn) = Or(

√
n log n log log n).

Now we follow Regev’s procedure [Reg23] exactly using the integers at11 , . . . , a
td
d : we organize

them into a binary tree and recursively calculate their product accordingly. At the bth level, for
b ∈ [log d], we will need to carry out d/2b multiplications of integers of length 2br log n. The number
of gates is hence:

∑
b∈[log d]

d

2b
·M(2br log n) = O

 ∑
b∈[log d]

dr log n(b+ log log n)

= O(dr log3 n)

= O(r
√
n log3 n),

which is the dominant term as desired. This classical circuit can be implemented quantumly, as
explained in Lemma 5.6 of [RV24].

Since we are concerned with concrete costs in this note, we remark that the procedure in Lemma
3.2 is still a lower-order cost in terms of the number of gates and qubits if we use schoolbook
multiplication everywhere i.e. we take M(k) = O(k2). Indeed, the number of gates in the first part
would be O(

√
n · log r · (r log n)2) = Or(

√
n log2 n), and the number of gates in the second part

would be:

∑
b∈[log d]

d

2b
· (2br log n)2 = O

 ∑
b∈[log d]

d · 2br2 log2 n

= O(r2n log2 n).

This has to be done logD = O(
√
n) times, so the total number of gates used by calls to Lemma 3.2

would be O(r2n3/2 log2 n). When using schoolbook multiplication, the total number of gates in the
remainder of Regev’s circuit will be O(n5/2) which is hence the dominant cost. We note that even
with schoolbook multiplication, the space usage of Lemma 3.2 can be kept down to Õ(r

√
n); this

is because any ancilla qubits used for multiplications can be reused between multiplications.

3.4 Large-Integer Multiplications

We begin by restating the primitives for large-integer multiplications constructed by [RV24], but
additionally state the number of calls made to the multiplication circuit assumed in Theorem 2.1.

Lemma 3.3. (Lemma 5.1 in [RV24], adapted from Shor [Sho97]) Let a ∈ [0, N − 1] be an integer
coprime to N . Then there exists a circuit using (3 + o(1))G gates mapping

|x⟩ |0S+n⟩ |g⟩ 7→ |ax mod N⟩ |0S+n⟩ |(−a−1g) mod N⟩

10

for any integers x, g that are reduced mod N .
Note that this computation uses and restores S + n clean ancilla qubits, while applying some

reversible transformation to n dirty ancilla qubits that initially store the state |g⟩.

Lemma 3.4. (Lemma 5.2 in [RV24]) There exists a quantum circuit using (6 + o(1))G gates such
that, for all n-bit integers a, b, g ∈ [0, N − 1] such that a and b are coprime to N , it will map

|a⟩ |a−1 mod N⟩ |b⟩ |b−1 mod N⟩ |g⟩ |0S⟩
7→ |a⟩ |a−1 mod N⟩ |ab mod N⟩ |(ab)−1 mod N⟩ |g⟩ |0S⟩ .

Note that this computation uses and restores S clean ancilla qubits and n dirty ancilla qubits.

We also state straightforward simplifications of these results that use slightly more space but
are ≈ 1.5× more efficient in terms of the number of multiplications:

Lemma 3.5. (Essentially due to Shor [Sho97], compare with Lemma 3.3) Let a ∈ [0, N − 1] be an
integer coprime to N . Then there exists a circuit using (2 + o(1))G gates mapping

|x⟩ |0S+2n⟩ 7→ |ax mod N⟩ |0S+2n⟩

for any integer x that is reduced mod N .

Proof. We can classically precompute a−1 mod N efficiently using the extended Euclidean algo-
rithm. Now proceed as follows; we omit modN throughout for brevity:

|x⟩ |0n⟩ |0n⟩ |0S⟩ → |x⟩ |a⟩ |0n⟩ |0S⟩ (writing in a classical constant using some bit-flips)

→ |x⟩ |a⟩ |ax⟩ |0S⟩
→ |x⟩ |−a−1⟩ |ax⟩ |0S⟩ (writing in a classical constant again)

→ |x− a−1 · ax⟩ |−a−1⟩ |ax⟩ |0S⟩
= |0n⟩ |−a−1⟩ |ax⟩ |0S⟩
→ |0n⟩ |0n⟩ |ax⟩ |0S⟩ (writing in a classical constant again)

→ |ax⟩ |0n⟩ |0n⟩ |0S⟩

This runs our multiplication circuit twice, and the remaining operations are just O(n) bit flips and
bit swaps. This completes our proof.

Lemma 3.6. (Compare with Lemma 3.4) There exists a quantum circuit using (4 + o(1))G gates
such that, for all n-bit integers a, b ∈ [0, N − 1] such that a and b are coprime to N , it will map

|a⟩ |a−1 mod N⟩ |b⟩ |b−1 mod N⟩ |0S+n⟩
7→ |a⟩ |a−1 mod N⟩ |ab mod N⟩ |(ab)−1 mod N⟩ |0S+n⟩ .

Proof. We proceed as follows:

|a⟩ |a−1⟩ |b⟩ |b−1⟩ |0n⟩ |0S⟩ → |a⟩ |a−1⟩ |b⟩ |b−1⟩ |ab⟩ |0S⟩
→ |a⟩ |a−1⟩ |b− a−1 · ab⟩ |b−1⟩ |ab⟩ |0S⟩

11

= |a⟩ |a−1⟩ |0n⟩ |b−1⟩ |ab⟩ |0S⟩
→ |a⟩ |a−1⟩ |a−1b−1⟩ |b−1⟩ |ab⟩ |0S⟩
→ |a⟩ |a−1⟩ |a−1b−1⟩ |b−1 − a · a−1b−1⟩ |ab⟩ |0S⟩
= |a⟩ |a−1⟩ |(ab)−1⟩ |0n⟩ |ab⟩ |0S⟩
→ |a⟩ |a−1⟩ |ab⟩ |(ab)−1⟩ |0n⟩ |0S⟩ .

This runs our multiplication circuit four times and then does a constant number of swaps of n-bit
registers at the end, for a total of O(G+ n) gates. This completes our proof.

Finally, the following lemma generalizes Lemma 3.6 and is the key workhorse for the quantum
circuits we present in this work. Intuitively, to compute (a, b) 7→ (a, arb), we can use repeated
squaring as in Regev’s circuit [Reg23]. This incurs a space overhead but allows us to save gates.
However, we clean up the intermediate registers to prevent the space overheads from accumulating.

Lemma 3.7. There exists a quantum circuit using (4r/s+ 4 log s+ o(1))G gates such that, for all
n-bit integers a, b ∈ [0, N − 1] such that a and b are coprime to N , it will map

|a⟩ |a−1 mod N⟩ |b⟩ |b−1 mod N⟩ |0S+(4 log s+1)n⟩
7→ |a⟩ |a−1 mod N⟩ |arb mod N⟩ |(arb)−1 mod N⟩ |0S+(4 log s+1)n⟩ .

When r = s = 1, this is equivalent to Lemma 3.6.

Proof. All computations are mod N , which we omit for brevity. First, observe that if we have a
value |c⟩ in a certain register (for c ∈ [0, N − 1] coprime to N), we can carry out the following
computation:

|c⟩ |0S+2n⟩ 7→ |c⟩ |c⟩ |0S+n⟩ 7→ |c⟩ |c⟩ |c2⟩ |0S⟩ ,

using (1 + o(1))G gates6.
Iterating this, we obtain the state

|a⟩⊗2 |a−1⟩⊗2 |a2⟩⊗2 |a−2⟩⊗2 |a4⟩⊗2 |a−4⟩⊗2
. . . |as/2⟩⊗2 |a−s/2⟩⊗2 |as⟩ |a−s⟩ |b⟩ |b−1⟩ |0S+n⟩ ,

in (2 log s+o(1))G gates. Next, we apply Lemma 3.6 r/s times to the last five registers in the above
expression, to obtain the state

|a⟩⊗2 |a−1⟩⊗2 |a2⟩⊗2 |a−2⟩⊗2 |a4⟩⊗2 |a−4⟩⊗2
. . . |as/2⟩⊗2 |a−s/2⟩⊗2 |as⟩ |a−s⟩ |arb⟩ |(arb)−1⟩ |0S+n⟩ ,

using (4r/s + o(1))G gates. Finally, we uncompute the terms involving a2, a4, . . . , as and their
inverses, using another (2 log s+ o(1))G gates.

6The additional copying of c is to conform to the syntax of our multiplication circuit, where two input registers
are required. If one works with a circuit for out-of-place squaring mod N that does not need to pseudo-copy its input,
then this space overhead would not be needed.

12

4 Our Algorithms

4.1 Proof of Theorem 2.4

Our algorithm is shown in Algorithm 4.1, and makes two key changes to Algorithm 5.2 in [RV24]: it
carries out simpler arithmetic operations via Lemma 3.7 to save gates, and additionally works with
the Gk basis instead of the Fk basis. Our exponentiation procedure can hence thought of as a hybrid
between those by [Reg23] and [RV24]; the high-level steps follow a Fibonacci-type exponentiation
approach to avoid consuming significant space, however internally we rely on Lemma 3.7 which uses
repeated out-of-place squaring.

Algorithm 4.1: Quantum oracle for
∏d

i=1 a
zi+D/2
i mod N

Data: Initial state |z⟩ and S + (α⌈log(r + 1)⌉ −A+max(4 log s+ 5, 7) + o(1))n ancilla
qubits in the |0⟩ state.

Result: Final state comprising |
∏d

i=1 a
zi+D/2
i mod N⟩ and

S + (α⌈log(r + 1)⌉+max(4 log s+ 4, 6) + o(1))n qubits in some state (which may
not be |0⟩).

1. Use Lemma 3.1 to compute and store the values |zi,j⟩ for all i ∈ [d] and j ∈ [K]. Note that
this step also “overwrites” the qubits storing |z⟩. (This consumes
dK⌈log(r + 1)⌉ − d logD = (α⌈log(r + 1)⌉ −A+ o(1))n qubits, leaving
S + (max(4 log s+ 5, 7) + o(1))n ancilla qubits.)

2. Set aside 4n ancilla qubits. These will store our states |ψ(x1)⟩ and |ψ(x2)⟩. Initialize x1 ← 1
and x2 ← 1. (This leaves S + (max(4 log s+ 1, 3) + o(1))n ancilla qubits.)

3. Repeat the following for j = K,K − 1, . . . , 1 in that order:

(a) Update x1 ← x1x
r
2 by applying Lemma 3.7. (This temporarily uses and restores

S + (4 log s+ 1)n clean ancilla qubits, which we have.)

(b) Now we prepare the state |ψ(cj)⟩:

i. Calculate the state |
∏d

i=1 a
r−zi,j
i mod N⟩ using Lemma 3.2 and store it in an n-bit

register. We now have S + (max(4 log s, 2) + o(1))n ancilla qubits available.
ii. Use Lemma 3.5 with the classical constant

∏d
i=1 a

−r
i mod N to update the register

from the above step to contain |c−1
j mod N⟩. (This temporarily uses and restores

S + 2n ancilla qubits, which we have.)
iii. Calculate the state |cj⟩ using Lemma 3.2 and store it in an n-bit register. We now

have S + (max(4 log s− 1, 1) + o(1))n ancilla qubits available.

(c) We now have the state |ψ(cj)⟩, so we can update x1 ← x1cj using Lemma 3.6. (This
temporarily uses and restores S + n ancilla qubits, which we have.)

(d) Now we uncompute the state |ψ(cj)⟩, returning all qubits to |0⟩.
(e) Swap x1 and x2 (i.e. swap the registers |ψ(x1)⟩ and |ψ(x2)⟩).

We track the space inside the algorithm; it remains to account for large-integer multiplications.

13

The first call to Lemma 3.7 uses (4r/s + 4 log s + o(1))G gates. Preparing the state |ψ(cj)⟩ only
requires large-integer multiplications in the use of Lemma 3.5, which uses (2 + o(1))G gates. The
call to Lemma 3.6 uses (4 + o(1))G gates, and then finally uncomputing |ψ(cj)⟩ uses (2 + o(1))G
gates. The total number of gates is hence:

(4r/s+ 4 log s+ 8 + o(1))K ·G =
(4r/s+ 4 log s+ 8 + o(1))A

log β
·G ·

√
n.

4.2 Proof of Theorem 2.2

We also show that the optimizations for space by [RV24] by using dirty ancilla qubits carry over
to the Gk basis instead of the Fk basis. Our algorithm is shown in Algorithm 4.2, and is a direct
adaptation of Algorithm 5.2 in [RV24] to the Gk basis.

We track the space inside the algorithm; it remains to account for large-integer multiplications.
For each j, there are r calls to Lemma 3.6, each of which uses (4 + o(1))G gates. Constructing
|ψ(cj)⟩ uses (3+ o(1))G gates from the call to Lemma 3.3. The call to Lemma 3.4 uses (6+ o(1))G
gates, and then finally uncomputing |ψ(cj)⟩ uses another (3 + o(1))G gates. The total number of
gates used by our oracle is hence:

(4r + 12 + o(1))K ·G =
(4r + 12 + o(1))A

log β
·G ·

√
n.

Acknowledgements. I am grateful to Vinod Vaikuntanathan for introducing me to the problem
of optimizing Regev’s algorithm, and for guidance and numerous helpful discussions throughout this
project. I would also like to thank Gregory D. Kahanamoku-Meyer, Katherine van Kirk, Martin
Ekerå, and Joel Gärtner for insightful comments and discussions, some of which inspired the ideas
in this note. This work was supported by an Akamai Presidential Fellowship.

References

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan,
Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble,
Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Ju-
lian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David
Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R.
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen
Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel,

14

Algorithm 4.2: Space-optimized quantum oracle for
∏d

i=1 a
zi+D/2
i mod N , adapted

from [RV24]
Data: Initial state |z⟩ and S+(α⌈log(r+1)⌉−A+6+o(1))n ancilla qubits in the |0⟩ state.
Result: Final state comprising |

∏d
i=1 a

zi+D/2
i mod N⟩ and S + (α⌈log(r + 1)⌉+ 5 + o(1))n

qubits in some state (which may not be |0⟩).
1. Use Lemma 3.1 to compute and store the values |zi,j⟩ for all i ∈ [d] and j ∈ [K]. Note that

this step also “overwrites” the qubits storing |z⟩. (This consumes
dK⌈log(r + 1)⌉ − d logD = (α⌈log(r + 1)⌉ −A+ o(1))n qubits, leaving S + (6 + o(1))n
ancilla qubits.)

2. Set aside 4n ancilla qubits. These will store our states |ψ(x1)⟩ and |ψ(x2)⟩. Initialize x1 ← 1
and x2 ← 1. (This leaves S + (2 + o(1))n ancilla qubits.)

3. Repeat the following for j = K,K − 1, . . . , 1 in that order:

(a) Consider the qubits comprising zi,j′ for i ∈ [d] and j′ ̸= j. There are
d(K − 1)⌈log(r + 1)⌉ ≥ (α− o(1))⌈log(r + 1)⌉n ≥ (A⌈log(r + 1)⌉/ log β − o(1))n > 2n
such qubits (noting that A > 2 and r + 1 > β), and we will not use any of them for this
iteration of the loop. Hence we may take n− 1 of these qubits and pre-pend one clean
qubit in the |0⟩ state to obtain n dirty ancilla qubits. We now have S + 2n clean ancilla
qubits available.

(b) Update x1 ← x1x
r
2 by applying Lemma 3.6 r times. (This temporarily uses and restores

S + n clean ancilla qubits, which we have.)

(c) Now we prepare the state |ψ(cj)⟩:

i. Calculate the state |
∏d

i=1 a
r−zi,j
i mod N⟩ using Lemma 3.2 and store it in an n-bit

register. We now have S + n ancilla qubits available.
ii. Use Lemma 3.3 with the classical constant

∏d
i=1 a

−r
i mod N to update the register

from the above step to contain |c−1
j mod N⟩. (This uses and restores all S + n

clean ancilla qubits, as well as modifying our n dirty ancilla qubits.)
iii. Calculate the state |cj⟩ using Lemma 3.2 and store it in an n-bit register. We now

have S clean ancilla qubits available.

(d) We now have the state |ψ(cj)⟩, so we can update x1 ← x1cj using Lemma 3.4. (This
uses and restores S clean ancilla qubits and n dirty ancilla qubits.)

(e) Now we uncompute the state |ψ(cj)⟩, returning all qubits to |0⟩. (Note that this will
return all dirty ancilla qubits to their original value, since they are only modified in the
construction of |ψ(cj)⟩ when we use Lemma 3.3.)

(f) Swap x1 and x2 (i.e. swap the registers |ψ(x1)⟩ and |ψ(x2)⟩).

15

Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyan-
skiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga,
Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M.
Martinis. Quantum supremacy using a programmable superconducting processor. Na-
ture, 574(7779):505–510, October 2019. 2

[Bea03] Stéphane Beauregard. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Inf.
Comput., 3(2):175–185, 2003. 1, 3

[Cai23] Jin-Yi Cai. Shor’s algorithm does not factor large integers in the presence of noise.
CoRR, abs/2306.10072, 2023. 2

[CCHL22] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. The complexity of NISQ.
CoRR, abs/2210.07234, 2022. 2

[Dra00] Thomas G Draper. Addition on a quantum computer. arXiv preprint quant-ph/0008033,
2000. 9

[EG24] Martin Ekerå and Joel Gärtner. Extending Regev’s factoring algorithm to compute
discrete logarithms, 2024. 2, 3

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using
20 million noisy qubits. Quantum, 5:433, 2021. 2, 7

[Gid17] Craig Gidney. Factoring with n+ 2 clean qubits and n− 1 dirty qubits. arXiv preprint
arXiv:1706.07884, 2017. 1, 3

[Gid19] Craig Gidney. Windowed quantum arithmetic, 2019. 1, 3, 7

[HRS17] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n + 2 qubits
with Toffoli based modular multiplication. Quantum Inf. Comput., 17(7&8):673–684,
2017. 1, 3

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time O(n log n).
Annals of Mathematics, 193(2), March 2021. 1, 10

[Kal17] Burton S. Kaliski Jr. Targeted Fibonacci exponentiation. arXiv preprint
arXiv:1711.02491, 2017. 2, 6

[Reg23] Oded Regev. An efficient quantum factoring algorithm. arXiv preprint arXiv:2308.06572,
2023. 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13

[RV24] Seyoon Ragavan and Vinod Vaikuntanathan. Space-efficient and noise-robust quantum
factoring. 2024. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. 1, 3, 6, 10,
11

[SS71] Arnold Schönhage and Volker Strassen. Fast multiplication of large numbers. Computing,
7:281–292, 1971. 1

16

[TK06] Yasuhiro Takahashi and Noboru Kunihiro. A quantum circuit for Shor’s factoring algo-
rithm using 2n+ 2 qubits. Quantum Information & Computation, 6(2):184–192, 2006.
1, 3

[Zal06] Christof Zalka. Shor’s algorithm with fewer (pure) qubits, 2006. 1, 3

[Zec72] Édouard Zeckendorf. Representations of natural numbers by a sum of Fibonacci numbers
and Lucas numbers. Bulletin of the Royal Society of Sciences of Liege, pages 179–182,
1972. 18

A Proof of Correctness of our Algorithms

First we check the base case i.e. the first two rounds where j = K,K − 1. In round K, (x1, x2)
evolves as follows: (1, 1) → (1, 1) → (cK , 1) → (1, cK). Then in round K − 1, it evolves as
follows: (1, cK)→ (crK , cK)→ (cK−1c

r
K , cK)→ (cK , cK−1c

r
K). This is consistent with our claim for

j = K − 1.
For the inductive step, assume the current round is j, and the previous round (indexed by j+1)

has ended according to our claim. The current state is hence:

(x1, x2) =

 K∏
i=j+2

c
Gi−j−1

i ,
K∏

i=j+1

c
Gi−j

i

 .

After the first update, x1 becomes:

K∏
i=j+2

c
Gi−j−1

i ·
K∏

i=j+1

c
rGi−j

i = crG1
j+1 ·

K∏
i=j+2

c
Gi−j−1+rGi−j

i

= cG2
j+1 ·

K∏
i=j+2

c
Gi−j+1

i

=
K∏

i=j+1

c
Gi−j+1

i .

After the second update, it becomes:

cj ·
K∏

i=j+1

c
Gi−j+1

i =

K∏
i=j

c
Gi−j+1

i .

Swapping the registers now gives us the state

(x1, x2) =

 K∏
i=j+1

c
Gi−j

i ,

K∏
i=j

c
Gi−j+1

i

 ,

completing our induction.

17

B Properties of {Gk}
Recall that Gk is defined by G0 = 0, G1 = 1, and Gk = rGk−1 +Gk−2 for k > 1.

B.1 Closed Form and Asymptotics

A straightforward induction tells us that for any k ≥ 0 we have:

Gk =
1√
r2 + 4

(
r +
√
r2 + 4

2

)k

− 1√
r2 + 4

(
r −
√
r2 + 4

2

)k

=
1√
r2 + 4

βk + o(1).

Hence we will have
K = (1 + o(1))

logD

log β
.

We clearly have Gk ≤ Gk+1 for all k ≥ 0. It follows that for k > 0 we have Gk+1 − rGk = Gk−1 ≤
Gk ⇔ Gk+1 ≤ (r + 1)Gk.

B.2 Decomposing Positive Integers as a Sum of Gk

It was shown by [Zec72] that any positive integer has a unique decomposition as a sum of Fibonacci
numbers, if we enforce that no two of the Fibonacci numbers should be consecutive. A simple
generalization of the greedy algorithm by [Zec72] yields the following lemma:

Lemma B.1. Consider the following algorithm, that takes as input a non-negative integer t0 <
Gk+1. Initialize t← t0. Now for j = k, k − 1, . . . , 1, set yj = ⌊t/Gj⌋ and update t← t− yjGj.

Then at the end of the algorithm, we will have t = 0,
∑k

j=1 yjGj = t0, and yj ∈ {0, 1, . . . , r} for
all j.

Proof. First, observe that the algorithm clearly ensures that t ≥ 0 at all times, and that t and all
the yjGj ’s constructed thus far add to t0. Hence it suffices to show that at the end of the algorithm,
we will have t = 0 and that all the yj ’s are in [0, r].

We do this by strong induction on k. The base case k = 0 follows trivially since t < G1 = 1
forces t = 0, so we are already done. We also consider the base case k = 1; in this case we have
t < G2 = r. Then we have y1 = ⌊t/G1⌋ = t ∈ [0, r], so we will have y1G1 = t and t will become 0.

Now for the inductive step, consider k > 1. We have two cases:

• If t < Gk, then in the j = k round we will simply have yk = 0, t will be unchanged, and we
reduce directly to the k − 1 case.

• If t ≥ Gk, then in the j = k round we will have yk = ⌊t/Gk⌋ and t will be replaced by t−ykGk.
Firstly, observe that t < Gk+1 ≤ (r + 1)Gk ⇒ t/Gk < r + 1⇒ yk ≤ r. Secondly, we have by
definition that t− ykGk < Gk, so we have now reduced to the k − 1 case.

Either way, the conclusion follows by induction.

18

	Introduction
	Setup
	Notation
	Our Results
	On the Role of Dirty Ancilla Qubits

	Modular Exponentiation Beyond Powers of 2 and Fibonacci Numbers
	Warm-Up: Prefactors in Regev's Circuit
	Outline of Our Algorithm
	Greedy Decomposition and Small-Integer Multiplications
	Large-Integer Multiplications

	Our Algorithms
	Proof of Theorem 2.4
	Proof of Theorem 2.2

	Proof of Correctness of our Algorithms
	Properties of {Gk}
	Closed Form and Asymptotics
	Decomposing Positive Integers as a Sum of Gk

