
Organizing Records for Retrieval in Multi-Dimensional Range

Searchable Encryption

Mahdieh Heidaripour1, Ladan Kian1 ∗, Maryam Rezapour2, Mark Holcomb1,
Benjamin Fuller2, Gagan Agrawal3, and Hoda Maleki1

1Augusta University {mheidaripour,lkian,mholcomb, hmaleki}@augusta.edu
2 University of Connecticut. {maryam.rezapour, benjamin.fuller}@uconn.edu

3University of Georgia. gagrawal@uga.edu

April 25, 2024

Abstract

Storage of sensitive multi-dimensional arrays must be secure and efficient in storage and processing
time. Searchable encryption allows one to trade between security and efficiency. Searchable encryption
design focuses on building indexes, overlooking the crucial aspect of record retrieval. Gui et al. (PoPETS
2023) showed that understanding the security and efficiency of record retrieval is critical to understand
the overall system. A common technique for improving security is partitioning data tuples into parts.
When a tuple is requested, the entire relevant part is retrieved, hiding the tuple of interest.

This work assesses tuple partitioning strategies in the dense data setting, considering parts that are
random, 1-dimensional, and multi-dimensional. We consider synthetic datasets of 2, 3 and 4 dimensions,
with sizes extending up to 2M tuples. We compare security and efficiency across a variety of record
retrieval methods. Our findings are:

1. For most configurations, multi-dimensional partitioning yields better efficiency and less leakage.

2. 1-dimensional partitioning outperforms multi-dimensional partitioning when the first (indexed) di-
mension is any size as long as the query is large in all other dimensions except the (the first
dimension can be any size).

3. The leakage of 1-dimensional partitioning is reduced the most when using a bucketed ORAM
(Demertiz et al., USENIX Security 2020).

1 Introduction

Scientific data is often organized as multi-dimensional arrays [Rus23]. Datasets’ size necessitates efficient
solutions regarding storage, processing time, and communication. Searchable encryption [SWP00,BW07,
BFOR08,CK10,TKMZ13,BHJP14,FVY+17,KKM+22]1 allows a client C to outsource a database DB2,
to a server S. The client should then be able to retrieve records corresponding to a query q efficiently
from the DB without the server learning about the contents of DB or q. This work considers multi-
dimensional range queries [MT19, FMC+20, ACF+20, MFTS21, MFET23]. For a number of dimensions
`, a database DB = (DB1, ...,DBn) is a collection of tuples DBj where

DBj ∈

(∏̀
i=1

[1,mi]

)
×R.

where mi is the maximum value for dimension i. We use the following terms:

∗Corresponding author. M. Heidaripour and L. Kian, in alphabetical order, share lead authorship.
1Other approaches include multi-party computation [MGW87, BOGW88], fully homomorphic encryption [Gen09, CGGI20,

MAAM20], and cryptographic obfuscation [BGI+01,GGH+16].
2Unlike prior work, we treat the DB as a vector of records rather than a set. This is because scientific data is usually stored

in a sorted manner. The position in the database provides information about the underlying dimensions. Making the database
a vector allows us to reason about leakage on the underlying position.

1

1. The values xi are the dimensions of a tuple,

2. The value mi is the domain of a dimension, and

3. R is associated data and is called a record.

A range query q :=
∏`
i=1[ai, bi] finds all DBq := {DBj |∀1 ≤ i ≤ `, ai ≤ xj,i ≤ bi}. Searchable encryption

design usually focuses on building an index (and corresponding protocol) that calculates the subset of
records that have to be retrieved. That is, they design an index retrieval mechanism called RetrieveIndexes
that returns a set I ⊆ [1, n] of matching records. A second, often unspecified mechanism is used to
retrieve the actual records. We call this method RetrieveData. In an full system, these protocols are used
in sequence for each query.

Recent work [GPPW23,GPP23] shows the efficiency and security aspects of record retrieval are crucial
to understanding the overall system. Given the unequal attention paid to the two stages, this work focuses
exclusively on RetrieveData assuming a correct RetrieveIndexes stage. Like search, initialization consists
of two components, SetupIndexes, and SetupData.

1.1 Prior Work on Record Retrieval

We provide a brief overview of methods used to provide security during record retrieval. We then discuss
the prior combination of these techniques. Techniques for hiding record access are:

Shuffling changes the associated position of each record, at initialization and/or retrieval.

Caching stores retrieved value at the client for a period of time, before returning them to the server.

Partitioning groups together data tuples into parts. All of a part is retrieved when an included tuple
is needed. Empty data tuples may be included in a part as appropriate.

Query flattening [GKL+20,MVA+23] flattens the query distribution to be indistinguishable from
the uniform distribution. Roughly, these systems (either by input or by learning) know the query
distribution and issue the “inverse” of the distribution as fake queries.

We consider the following research question:

How are leakage and efficiency impacted by the organization of tuples into parts?

We make five simplifying assumptions:

1. During retrieve index, the system retrieves the correct records; this excludes systems that use
approximate range covers [DPP+16,FMET23]

2. During retrieve data, no “fake queries” are issued. This excludes systems that flatten the distribu-
tion [GKL+20,MVA+23].

3. That each tuple appears in a single part.

4. Empty tuples are only used when the dataset size is not divisible by part size.

5. That the partition is static; only parts are moved.

Assumption 1 is made for scoping reasons, however, considering approximately correct systems such as
those that use range covers is an important piece of future work discussed in Section 8. Assuming a query
distribution without flattening (Assumption 2) is necessary to study the research question. Assumptions
3-5 are satisfied by the cryptographic retrieval methods discussed below. We introduce representative
record retrieval mechanisms. These mechanisms are used to assess the leakage of a partition strategy.
These approaches are:

Shuffled Records positions are shuffled during SetupData. Records are kept in the same position
throughout queries. In this approach, RetrieveData reveals to the server identifiers of returned
records, known as access pattern [FVY+17,BKM19,KKM+22].

Oblivious methods One uses oblivious RAM (ORAM) [Gol87,GO96] or private information retrieval [KO97,
CG97,CKGS98,BIM00,CHR17,BIPW17,LMW23] with encryption. With these techniques, one can
retrieve a set of records, leaking only how many records are accessed. Throughout this work, we
collectively refer to oblivious methods as ORAM, noting that PIR is appropriate for read-only data.

ν-bucketed oblivious For a query requiring retrieval of k parts, one retrieves νdlogν ke items using an
oblivious method [DPPS20].

2

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

Partition(D,P)
P=4

6 11

12 1

14 9

4 13

8 15

3 10

2 5

16 7

Shuffle(D')

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

5 6 7 8

Figure 1: DRW-shuffle- a two-dimensional example of a [8] × [8] dataset. The numbers inside cells show the logical
address location of the tuples in the storage. For example, tuples (5,1),(6,1),(7,1),(8,1), with addresses 5,6,7 and 8 in
the original dataset, go to location 13 in the shuffled dataset.

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Partition(D,P[])
P=[2,2]
|P|=4

13 11 8 5
15 2 9 12
4 16 1 10
14 6 7 3

Shuffle(D')

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

5 6

13 14

Figure 2: SLW-shuffle- a two-dimensional example of a [8] × [8] dataset. The numbers inside cells show the logical
address location of the tuples on the storage. For example, tuples (5,1),(6,1),(5,2),(6,2), with addresses 5,6,13, and
14 in the original dataset, go to location 16 in the shuffled dataset on the right side of the figure.

SWiSSSE [GPPW23] Positions are shuffled during SetupData. When a part is retrieved, it is placed
in a cache and evicted. Parts are evicted from the cache to available positions. Oblivious methods
that leak only volume. SWiSSSE’s eviction strategy allows the server to learn information about
when the item was cached. The leakage function of this approach is complex. SWiSSSE calls this
leakage function a “partial access pattern” (see Section 3).

We consider three partitions:

Divided-Row Shuffling or DRW-shuffle. This corresponds to row-major ordering in the data storage
literature. In this approach, tuples are sorted by dimension 1, then dimension 2, ..., and finally by
dimension `. Records are then grouped into parts based on this order. Viewed as a hypercube, this
takes tuples from the first row, second row, etc.. This is shown visually in Fig. 1 for parts of size 4.
Depending on the size of a part, it may include some of a row or multiple rows. Looking ahead, we
vary sizes across dimensions for all of our queries, so ordering by the first dimension is sufficient.

Slab-Wise Shuffling or SLW-shuffle. As in DRW-shuffle, tuples are first sorted. Instead of including
a “line” of the hypercube in a part, one includes a small hypercube of the same width in each
dimension. This is known as a slab in the data storage literature. This is shown visually in Fig. 2.

Record-Wise Shuffling or RCW-shuffle. In this setting, as illustrated in Fig. 3, the address of tuples
is randomly permuted; parts then include contiguous regions based on the new addresses. This
corresponds to a random creation of parts. One does not expect this method to be competitive
with the prior two shuffling methods.

1.2 Our Contribution

We evaluate the cross product of the above data retrieval mechanisms and partitioning
strategies. Our evaluation is with respect to efficiency and security on dense, synthetic two-, three-,
and four-dimensional data of size up to 2M records. Our evaluation supports three major conclusions.

Security and Efficiency are Usually Aligned In Section 3, we argue for metrics to assess the
security when one instantiates record retrieval with each candidate system (shown in Table 1).

Prior leakage attacks [KKM+22] require either a large variety in the number of parts returned or
require many parts to be jointly returned by a query (to compute a co-occurrence matrix [CGPR15]).

3

15 13 8 14

10 1 5 12

4 7 16 3

9 2 11 6

Record_Wise_Shuffle(D)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

1

2

3

4

3 4

Figure 3: RCW-shuffle: A two-dimensional example of a [4] × [4] dataset. The numbers inside cells show the logical
address location of the tuples on the storage. We shuffle the locations of the tuples. For example, tuple (3,2) with
address 7 in the original dataset goes to location 10 in the shuffled dataset on the right side of the figure. Parts are
then created based on new organizations of equal size. (Any partition strategy has the same outcome after a random
permutation.)

Leakage
Indexes Retrieval Mechanism Profile Metric
Shuffled Access Pattern Parts/Query
SWiSSSE SWiSSSE Parts/Query
ORAM Volume H(Parts)
bucketed ORAM Bucketed Volume H(Parts)

Table 1: Association between storage mechanism and assessed leakage metric. For all schemes, we consider
the average # parts returned as the efficiency metric. For the ν-bucketed ORAM, the volume is padded to
the next power of ν. H is the entropy function on the distribution of part numbers.

Having a smaller variance in the number of retrieved parts makes volumetric attacks more difficult.
Driving down the number of parts returned makes access pattern attacks more difficult to execute. Thus,
a well-organized system can benefit both efficiency and security simultaneously. The SWiSSSE and ν-
bucketed ORAM systems are relatively new. There have not been any attacks against these systems, so
our analysis of these systems is speculative. Grubbs et al. [GLMP18] argue partitioning makes volume
attacks quantitatively more difficult but does not change them qualitatively.

For Shuffled and SWiSSSE, the page organization that requests the fewest number of pages also has
the best security. However, efficiency and security are not aligned when using (ν-bucketed) ORAM.
For both ORAM variants, one can actually reduce the entropy of reseponse size by having most queries
request the maximum number of parts. RCW-shuffle, which requests nearly all parts, has the lowest
values for both entropy metrics despite its poor efficiency. For our system on the largest dataset, we set
ν = 2, meaning the set of possible retrieved parts is the powers of 2. The RCW-shuffle system frequently
requests the maximum number of parts, yielding very low entropy (below 1 across all tested query types).

The Impact of Query Geometry We consider four query types (Section 5):

1. Isotropic: each dimension has the same width.

2. Bisected anisotropic: separate dimensions into two parts with equal widths for each.

3. Gradual anisotropic: dimensions gradually reduce in width.

4. Outlier anisotropic: all but one dimension are of equal width. In these queries, we always make the
first dimension differ. We split the query type by whether the first dimension is smaller or larger
than the other dimensions, called min and max, respectively.

Our experiments demonstrate that SLW partitioning generally enhances efficiency and reduces data
leakage across various query shapes, with one exception. DRW partitioning exhibit higher performance
and lower leakage on outlier queries with an arbitrary sizes where dimensions 2, ..., ` have large sizes (and
the size of the first dimension is arbitrary).

The Partition Matters Both DRW-shuffle and SLW-shuffle outperform RCW-shuffle as expected
and as shown in Table 2. Table 2 shows the percentage of tuples retrieved from the parts that were in
the specified query. RCW-shuffle usually requires at least three times as many parts as the other two
methods. Our detailed results, presented in Tables 4 and 5, show that in general SLW-shuffle presents
superior security and efficiency compared to DRW-shuffle. There are two notable exceptions:

1. DRW-shuffle is sensitive to the width of dimensions i > 1, performing well when the query is large
in other dimensions. (When the width of each dimension is the same in all dimensions, which

4

Relevant Tuple %
Dimension Query Type RCW DRW SLW

4

Isotropic 15.6 43.6 41.2
Bisected 12.3 35.7 40.6
Gradual 4.0 16.1 23.9
Outlier Min 5.8 76.5 20.2
Outlier Max .1 .4 2.8

3

Isotropic 26.3 66.5 73.3
Bisected 2.2 6.3 8.1
Gradual 1.2 4.4 6.7
Outlier Min .5 11.5 3.1
Outlier Max .0 .2 1.0

2

Isotropic 34.0 66.3 85.1
Bisected 25.1 49.7 80.4
Gradual 24.5 49.2 80.0
Outlier Min .5 64.4 8.0
Outlier Max .5 .5 8.1

Table 2: Relevant tuple percentage > 1M record datasets across number of dimensions. Size of desired
record set over size of returned record set. Summarizes Tables 4 and 5. Bolded entries are at least 10%
better than other methods for the same data and query set.

dimension is indexed is irrelevant.) This is displayed in the relevant query % in outlier queries in
Table 2. In Outlier Min, where dimension 1 is small compared to other dimensions, DRW-shuffle
performs much better than SLW-shuffle. However, when dimension 1 is larger than other dimensions
SLW-shuffle performs better than DRW-shuffle though all methods perform poorly.

2. DRW-shuffle demonstrates more of a security benefit from the use of ν-bucketed volume than
SLW-shuffle. This is due to more variety in part numbers for DRW-shuffle.

The above schemes are implemented, code is published in a public GitHub repository.

Organization The body of this work is dedicated to supporting the above three conclusions. Section 2
covers mathematical preliminaries, Section 3 describes prior work in data retrieval methods and argues for
the leakage metrics in Table 1, Section 4 describes the part organization techniques, Section 5 the query
types, Section 6 describes our evaluation methodology, Section 7 gives results, and Section 8 concludes.

2 Preliminaries

Let λ ∈ N be a security parameter. Throughout all algorithms are collections of algorithms indexed by
security parameter λ. However, λ is often omitted from notation for simplicity.

For integers a, b let [a, b] = {x ∈ Z|a ≤ x ≤ b} and let [b] be shorthand for [1, b]. We consider a
databaseDB where each tupleDBi consists of ` dimensions and an associated record. For 1 ≤ i ≤ `, letmi

denote the maximum value of the ith dimension which ranges from [mi]. A databaseDB = (DB1, ...,DBn)
is an ordered collection of tuples where each

DBj ∈

(∏̀
i=1

[mi]

)
×R.

where 1 ≤ xi ≤ mi. For a query ~q = (a1, b1), ..., (a`, b`) where 1 ≤ ai ≤ bi ≤ mi let

DB~q = {DBj |∀1 ≤ i ≤ `, ai ≤ xj,i ≤ bi}.

Separating lookup and retrieval Let DB be a database of size N . We separately define two
functions:

1. Index : [m1]× ...× [m`]→ 2{0,1}N .

5

https://github.com/armorgroup/multi-range-sse

2. Storage : 2{0,1}N → (R∪ ⊥)N .

Definition 1 (Multi-Dimensional Range-Query Searchable Encryption). A Searchable Encryption scheme
is a set of algorithms Σ = (Gen, SetupIndexes, SetupData, Trapdoor, RetrieveIndexes, DecryptIndexes, Re-
trieveData, DecryptRecords) such that:

• sk← Gen(1λ), generates secret state sk.

• I ← SetupIndexes(sk,DB), inputs sk and DB, generating an encrypted index set.

• D ← SetupData(sk,DB), inputs sk and DB, generating an encrypted array data D.

• tind ← Trapdoor(sk, ~q), inputs ~q, generating a token tind.

• eid← RetrieveIndexes(I, tind), on an encrypted index I and token tind, outputs eid.

• tdata ← DecryptIndexes(eid, sk) takes the encrypted pointers, creating a token to retrieve the relevant
data records.

• Y ← RetrieveData(D, tdata), on D and the trapdoor tdata, outputs a set Y of encrypted records.

• X ← DecryptRecords(sk, Y), decrypts the final result.

Notes: All algorithms are defined non-interactively and defined with a fixed I,D at the server. Nota-
tion naturally extends if either of these assumptions does not hold.

Correctness The search scheme is correct if for some negligible function ngl(λ):

Pr

X = DB~q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sk← Gen(1λ)

I ← SetupIndexes(sk,DB)

D ← SetupData(sk,DB)

tind ← Trapdoor(sk, ~q)

eid← RetrieveIndexes(I, tind)
tdata ← DecryptIndexes(eid, sk)

Y ← RetrieveData(D, tdata)

X ← Decrypt(sk, Y)

≥ 1− ngl(λ).

Security We consider a real ideal adaptive notion of security where the simulator is given leakage
function L = (Lsetup,LRetrieveInd,LRetrieveData). To achieve this, we define two games: the real game
represents the execution of the actual SSE protocol, while the ideal game is a simulation of the real
game. In the ideal game, the goal is to mimic the behavior of the real game using only the formulated
leakage information.

Definition 2 (System-Wide Security of Static SSE). Let Σ be an SSE scheme and consider the following
probabilistic experiment where A is a stateful adversary, S is a stateful simulator, and L is the leakage
function.

For a leakage function L, we say that SSE is adaptively semantically secure if, for all polynomial nq
and all polynomial-size adversary A, there exists a non-uniform polynomial-size simulator S such that
for all polynomial-size distinguishers D,

|Pr[D(RealSSE,A(λ, nq)) = 1]−
Pr[D(SimSSE,A,S(λ, nq)) = 1]| ≤ ngl(λ)

where RealSSE,A(λ) and SimL
SSE,A,S(λ) are defined in Fig. 4.

3 Prior Work: Retrieval Mechanisms and Leakage Metrics

This section provides an overview of retrieval methods discussed in the Introduction (shuffled, ORAM,
ν-bucketed ORAM, SWiSSSE). This cross-section of retrieval methods covers the main techniques of
caching, shuffling, and partitioning. (As a reminder, we ignore query flattening, as it destroys any
optimization of partitioning based on query load.) Throughout our discussion, we consider a persistent
adversary [GRS17] as codified in Definition 2.

6

RealSSE,A(nq, λ)

1. sk ← Gen(1λ),

2. DB ← A(1λ),

3. I ← SetupIndexes(sk,DB),

4. D ← SetupData(sk,DB),

5. For 1 ≤ i ≤ nq:

(a) (qi, stA)← A(I,D, view1, ..., viewi−1)

(b) ti ← Trapdoor(sk, qi),

(c) eidi ← RetrieveIndexes(I, ti),
(d) tdata,i ← DecryptIndexes(eidi, sk),

(e) Yi ← RetrieveData(D, tdata,i),
(f) viewi = (ti, eidi, tdata,i, Yi).

6. Output A(viewnq).

SimSSE,A,S (nq, λ)

1. DB ← A(1λ)

2. (I,D)← S(Lsetup(DB))

3. For 1 ≤ i ≤ nq:

(a) qi ← A(I,D, view1, ..., viewi−1)

(b) viewi ← S(LRetrieveInd(DB, qi),
LRetrieveData(DB, qi))

4. Output A(viewnq).

Figure 4: SSE Real-Ideal security game

This section is organized as follows: Section 3.1 introduces the defense schemes and describes the
relevant leakage functions, and Section 3.2 argues for simple quantitative metrics on the quality of a
partition with respect to the leakage functions (see [KKM+22] for an overview of leakage profiles). Before
introducing defensive schemes, we introduce common terminology used to describe leakage functions.

• Access Pattern. Reveals the (persistent) identifiers of all returned parts.

• Search/Equality Pattern. Reveals if two queries are equal.

• Co-occurrence Pattern. Reveals parts that are jointly returned by queries.

• Volume Pattern. Reveals the number of parts returned by each query.

3.1 Prior Retrieval Mechanisms and Leakage Analysis

We consider four record retrieval methods. Each of these mechanisms yields a different leakage profile.
In Section 3.2, we introduce 1-dimensional metrics to assess leakage.

Shuffled During SetupData one selects a random permutation of parts. For a query, when one receives
the set of I matching indices from RetrieveIndexes, one recomputes the permutation and asks for the
permuted positions. This method has access pattern leakage but does not leak any information on the
original location in the DB.

ORAM ORAM [Gol87, GO96] compiles storage and memory access so that accessed positions are
independent of the requests. In ORAM schemes, write-backs and shuffling happen with every request.
A system that uses ORAM for RetrieveData leaks how many records are accessed (assuming the tuple
and parts are fixed size).

ν-bucketed Oblivious SEAL [DPPS20] allows fine-tuning of leakage during the setup phase. The
construction of SEAL involves adjustable ORAM (α) and adjustable padding (ν). They use two main
techniques. The first is partition memory to 2α slots where the accessed position inside of each slot is
hidden. This is the opposite of the partitions we consider in this work, which hides the position within a
part (see Section 4). However, the high-level approach of hiding a portion of the accessed position is the
same. The second technique used is ν-adjustable padding for the number of accesses from an ORAM.
For a constant ν whenever one wants to retrieve k records one instead retrieves νdlogν ke records. This
reduces the volume pattern leakage because there are dlogν Ne distinct sizes.

7

SWiSSSE [GPPW23] System-Wide Security for Searchable Symmetric Encryption or SWiSSSE presents
new SSE constructions designed to minimize the system-wide access pattern and volume pattern leak-
ages while maintaining reasonable performance. The core technique in designing SWiSSSE consists of
a two-fold approach: partitioning to address the volume pattern leakage problem and implementing a
client stash with pseudo-random writebacks to tackle the access pattern leakage problem.

In this approach, the server has two different key-value pairs stored as encrypted data structures.
First is the mapping of each keyword to associated encrypted indexes set in the SetupIndexes phase, and
second is the map of encrypted documents to those addresses in the memory set in the SetupData.

In the SetupData, SWiSSSE orders the keywords and divides them into equal-sized partitions of size
B. Parts are padded with fake data to equalize the frequency of all keywords in each partition. As we
consider dense range data, there is no need for padding (except for the “last” parts in dimensions). A
larger B (fewer partitions) incurs lower leakage but more padding and greater search overheads.

During search, upon each query wi by the client, the system checks if wi is present in the client’s
stash. If not, a two-round process involving RetrieveData and RetrieveIndexes is executed, after which
the client stores the decrypted entries in their stash memory. The server evicts all retrieved entries from
both key-value pairs. Every few queries, the client randomly chooses a proportion of their memory stash,
re-encrypts it, and sends it back to the server. This data is stored in currently available positions (where
the data has been evicted)

3.2 Prior Attacks and Leakage Metrics

We argue for metrics to assess a partitioning strategy across retrieval methods. This analysis considers
both the leakage function and existing attacks. Leaker [KKM+22] provides an overview of attacks that
perform data and query-recovery (without the use of either auxiliary or known data and queries).

Lacharite et al. [LMP18] showed a range attack from access pattern leakage on dense 1D databases
with uniformly distributed queries. Their attack fully reconstructs data with N(logN + 3) queries for
N ≥ 26 where N is the number of distinct values in the range. They also demonstrate N logN/2−O(N),
as a lower bound for the expected number of queries needed for full reconstruction from access pattern
leakage. The core of access pattern attacks is the formation of a co-occurrence matrix. In attacks rows
are chained together to gain more constraints about records stored in each position. One builds a graph
on the known relationship between data elements (with the number of queries they co-occur in being the
weight). The reconstruction space [KMPP22] shrinks as one observes more of this graph. We use the
average number of parts returned as our metric for this setting. A low average volume ensures
that fewer edges will be drawn in the co-occurrence graph with each query

Gui et al. [GPPW23] consider the impact of the SWiSSSE system on: 1) Access Pattern leakage,
2) Co-occurrence leakage, 3) Volume leakage, and 4) Search Pattern Leakage, which occurs sometimes
based on the state of the scheme.

Due to the use of client stash and delayed writebacks, only a single row of a co-occurrence matrix
is exposed to the adversary. As access items are shuffled, one can partially associate the new address
with the old address. The hardness of creating this association depends on the query load resulting
in a complex, partial, and probabilistic access pattern. To test this, Gui et al. implemented an attack
where an attacker learns a “highly refined co-occurrence leakage,” which contains leakages from both the
index retrieval and document retrieval stages. This attack was successful at recovering high-frequency
keywords more effectively than low-frequency codewords. The attack requires a large fraction of auxiliary
information about the dataset.

SWiSSSE adjusts part sizes and uses larger part for the most frequent keywords, and smaller parts
for the rest of the keywords. The size and subsequently the number of parts for each query is a parameter
that affects leakage. To this end, we compute the average number of accessed parts per query
to quantify co-occurrence. The same metric is relevant for the shuffling mechanism.

Grubbs et al. [GLMP18] showed that with only having volume leakage of range queries, under the
condition that we see every value at least once, one can reconstruct a database. For one dimensional
values where every possible value occurs in the dataset, reconstruction is possible if the number of records
R ≥ N2/2. N is the number of possible values. Grubbs et al. [GLMP18] attack works as follows. Having
the set of all possible volumes, one can see them as an elementary range [1, Ni] for the value Ni. Then
the attacker draws a graph with all Ni’s as the node and draws an edge between each two nodes that
their difference is also a value in the set. Starting with the minimum and maximum (R) value of this set
as necessary nodes, the attacker tries to find the clique of the graph and eventually finds the right values
of each record in the database.

8

For defense mechanisms that leak volume patterns, such as ORAM, the above attack relies heavily
on observing all ranges. Grubbs et al.’s [GLMP18] attack works for any query distribution; however,
when the distribution is uniform, N2 log(N) queries are necessary to observe all possible queries. When
the query distribution is skewed and looks more like a real-world distribution, for example, for Zipf
distribution, the number of queries to observe all ranges is N2 log2(N).

When one moves from one-dimensional to multi-dimensional ranges the number of ranges increases
from N2 to N2` making it more difficult for the adversary to observe each range. Thus, to quantify
leakage for volume attacks, we consider the entropy on the number of parts accessed. This
is a one-dimensional measurement of the closeness to the uniform distribution. We use this metric both
for traditional volumetric leakage and ν-bucketed ORAM as described by SEAL [DPPS20].

SEAL [DPPS20] observes that the bigger the value of ν is, the smaller the chance of seeing a successful
attack is. However, larger ν would cause a large overhead in search computations. The discussion about
the effect of the record organization on the introduced leakage metrics can be found in Section 7.

4 Partition Organization

We implement a multi-dimensional search to measure different partitions using a three-phase multimap
as follows:

1. Creation of an Index Structure: In this initial phase, an index structure is established by
running SetupData, and SetupIndexes. We use a k-d tree [Ben75]for finding the appropriate records,
all exact methods are equivalent for evaluating the record retrieval stage.

2. Data Shuffling: The second phase entails shuffling the source data on disk.

3. Dictionary Generation: In the third phase, a dictionary is created where a range from the index
structure is linked with a set of values derived from the newly shuffled data.

We consider three distinct shuffling schemes.

Divided-Row Shuffling (DRW-shuffle) In Divided-Row Shuffling we adopt a row-based storage
order for the dataset. It is shown in Figure 1. DRW-shuffle sequentially divides the dataset into partitions
of size |P | through the stored source data. For example, consider a dataset with dimensions [8]× [8] and
a partition size of |P | = 4. In this scenario, we obtain 16 partitions that transform the dataset into a
[8] × [2] matrix. Subsequently, the shuffling is performed by applying a pseudorandom permutation to
the parts.

The shuffled matrix forms the foundation for the subsequent steps. From this point, we can construct
a multi-dimensional indexing structure by utilizing the starting points of each partition. In the illustrative
example provided in Figure 1, the starting points for the partitions are indicated as (1, 1), (5, 1), (1, 2),
(5, 2), and so forth, extending up to (1, 8) and (5, 8).

Slab-Wise Shuffling (SLW-shuffle) In Slab-Wise Shuffling (SLW-shuffle) we adopt a partitioning
strategy for datasets that are Slab-oriented, denoted as P , and are characterized by a d-dimensional
partition shape of [p1] × [p2] × . . . × [pd]. This partitioning is depicted in Figure 2. In the specific
illustration presented, a dataset initially sized [8]× [8] is segmented into a collection of 16 distinct [4]× [4]
matrices. This results in a transformation to a [4] × [4] dataset structure. Following this Slab-oriented
organization, we begin a shuffling process targeting this newly arranged dataset. The shuffling is guided
by the locations of the individual slabs within the structure.

Record-Wise Shuffling (RCW-shuffle) RCW-shuffle is a record-wise permutation of the source
data. Record-Wise Shuffling unlike the preceding methods, requires no logical grouping of values; hence
the record-wise designation.

Fig. 3 illustrates a two-dimensional example. In this example, we have a [4] × [4] two-dimensional
array of tuples. We store the tuples in row-based storage and assign logical location addresses to the
tuples in a row-based order from 1 to 16. Then we permute the locations, mapping them so they are
stored in a new spot. For example, a record located at (1,1) is originally located in location 1 and, after
mapping, is relocated to 6, while record (3,2) is located in location 7, but is mapped to the new location
10. Afterward, we build the multi-dimensional index structure based on the points in their new locations.

9

Dataset Size # queries DRW SLW
164 = 216 1000 256 |[4]4| = 256
324 = 220 10000 4096 |[8]4| = 4096
643 = 218 1000 512 |[8]3| = 512

1283 = 221 5000 4096 |[16]3| = 4096
2562 = 216 1000 256 |[16]2| = 256

10242 = 220 5000 4096 |[64]2| = 4096

Table 3: Dataset information and partition settings.

5 Query Distribution

We consider four types of queries based on the relative queried width of each dimension. Isotropic queries,
denoted as Qiso, have a uniform scaled length in each dimension. For a query q = [a1, b1]× · · · × [ad, bd]
let ∀i, wi := |ai − bi|. A query ~q belongs to the set Qiso if

Qiso = {q|∀i, j |wi − wj | ≤ ε}

where ε is a deviation parameter. In our implementation, we set ε = 0, as we only consider queries that
are perfectly isotropic. Anisotropics have scaled lengths of their intervals that vary across dimensions.
The set of anisotropic queries is the complement of isotropic queries: Qaniso = Q{

iso. We categorize
anisotropic queries into Bisected, Gradual, and Outlier.

• Bisected anisotropic queries (BAQ) partitions the dimensions into two parts with a width gap of
at most ε within each part. In four dimensional datasets, this means two sets of two dimensions
have the same width. In three dimensional data, two dimensions have the same width. In two
dimensional data, this represents a general anisotropic query.

• Gradual anisotropic (GAQ) queries scale the width of each dimension down by a factor of c. In
our implementation, we randomly choose c ∈ {1, 2, . . . , DB.max

n
× 1

w
}, where w is the width of the

query’s widest dimension.

• Outlier anisotropic queries (OAQ) are isotropic in all but one dimension which has either a smaller
or larger width. We call a OAQ query min if the dimension of differing size is smaller and max if
it is larger. In our implementation, the outlier is always dimension 1 to highlight the differences
between our shuffling techniques.

6 Evaluation Methodology

We experimentally evaluate the performance of our schemes. We used a randomly generated dataset
because the actual values in the datasets are unlikely to impact our measurements. Our conclusions
depend on the dataset’s size, number of dimensions, and the width of each dimension. We consider
six datasets. We focus on four-dimensional datasets of sizes 1048576 = 324 and 65536 = 164. We
also consider two sets of two and three-dimensional datasets respectively comprising 65536 = 2562,
1048576 = 10242 , 262144 = 643, and 2097152 = 1283. These datasets are summarized in Table 3. To
the best of our knowledge, no standard benchmarks of queries on array-based data are available. A
uniform distribution was used for our experiments to generate Hyper-Rectangular range
query samples for each query shape according to the shapes discussed in Section 5. For
dense data, only the relative size of each dimension matters; we believe our query shapes explore this
parameter space well.

Experimental Setup: We implemented our schemes in Python 3.10.12 and conducted all our ex-
periments on a computer with 8-core processors and 16G RAM. We utilized Python’s cryptography
library version 40.0.2 [pyc23] and employed AES-128 encryption in XTS mode with a 256-bit key size
for symmetric encryption, using line positions as tweaks. Our code is published in a public GitHub
repository.

10

https://github.com/armorgroup/multi-range-sse
https://github.com/armorgroup/multi-range-sse

6.1 Implementation Details

We present a hierarchical multimap data structure based on k-d trees, tailored for managing our dense
dataset DB of encrypted elements within a multi-dimensional index I, while concurrently supporting
efficient range queries.

The multi-dimensional index I is a multi-dimensional index tree (k-d tree), where the leaf nodes
function are fixed-size parts B = {b1, b2, . . . , bm}, each capable of accommodating B records. Given
the dense nature of DB, each partition bi is fully occupied. These partitions link to a value dictionary
D : B → P (DB) that maps each part bi to a corresponding set vi of encrypted values. We review some
details below:

1. The design of I must be optimized to facilitate swift multi-dimensional range queries, given that
all its leaf nodes are fully populated.

2. The lack of any “partition management” due to the dense dataset simplifies the architecture but
necessitates an upfront computational cost for initializing I and V .

3. We use AES-128 for both encryption and shuffling, and assume it will not be the target of any
attack.

7 Experiment Results

Our primary efficiency measure is the number of parts accessed per query. For best security, one seeks
a small number of returned parts with small variance. This saves both on memory access for the return
while presenting less leakage. We computed the leakage metrics introduced in Section 3, shown in Table
4 and 5 .

Experiment Results for [32]4 Dataset We begin by discussing results on the dataset of size
[32]4. Figure 5(a) illustrates the distribution of part access numbers for the [32]4 dataset with respect to
the four different query shapes: isotropic queries, bisected anisotropic queries, gradual anisotropic queries,
and outlier anisotropic queries using violin graphs. The width of a violin graph represents frequency while
the y-axis represents the number of parts accessed in a query. In all of our results, we present the size
of the query for comparison (Figure 5(b)). A solution with 100% relevant tuple percentage would have
these two identical graphs.

Table 4 shows the (ν-bucketed) entropy and average number of parts accessed across all queries. For
ν-parts, we have rounded the number of parts to the closest power of ν, which at least the number of
accessed parts, and then computed our leakage metrics over them. As discussed in Section 3, Access
Pattern and SWiSSSE leakage are minimized by minimizing the number of partitions that are accessed
through the retrieval process. To minimize (bucketed) volume leakage, one desires low entropy in the
volume of accessed parts.

The use of ν-parts is most useful when there is a small increase in the amount of required parts but
a large decrease in the entropy of parts returned. As an example, the results in Table 4 shows that for
DRW-shuffle when we have outlier anisotropic queries max, the average number of parts increases by 10%
while entropy of parts decreases by roughly 66%. On the other hand, for SLW-shuffle for isotropic queries,
the average number of parts increases by 22% with the entropy decreasing by only 17%.

As shown in Table 4, across query shapes RCW-shuffle has lowest value of ν-bucketed entropy, followed
by DRW-shuffle, and then SLW-shuffle. Of course, one can minimize entropy by always retrieving the
maximum number of parts, but it doesn’t mean the partition is effective. Table 4 shows that the average
number of partitions that have been accessed for RCW-shuffle is close to the overall number of parts in all
cases (256 in the 324 dataset). RCW-shuffle is the least desirable shuffling scheme from the performance
perspective. However, it displays low volumetric leakage because it frequently requests all parts.

It can also be inferred from the table that the benefit of ν-bucketing for the DRW-shuffle is more
significant than for the SLW-shuffle as the entropy decreases more in DRW-shuffle. Looking at Figure 5(a),
this can be the result of having a more continuous distribution in DRW-shuffle than in the SLW-shuffle.
For outlier anisotropic queries we see the most discontinuity in SLW-shuffle distribution (5(a)-(IV) and
(V)), and this is when bucketing does not have any effect on the entropy of accessed parts.

DRW-shuffle and SLW-shuffle have very different performance and security on outlier queries, they
differ by a factor of 2 on both average and entropy of parts. For isotropic queries, where the query has
the same width along all dimensions on 4D data, DRW-shuffle performs better than SLW-shuffle. On the
security side, DRW-shuffle has a lower average number of parts but higher entropy.

11

Shuffling Parts ν-Parts
Size Query Type Technique Avg STD H Avg STD H

[16]4

Isotropic RCW-shuffle 200 96 3 210 93 1.2
Avg = 9700 DRW-shuffle 73 66 3.9 100 93 2.7
STD = 14000 SLW-shuffle 79 91 3.5 96 100 2.9
Bisected RCW-shuffle 220 67 3.6 230 59 0.8
Avg = 8400 DRW-shuffle 78 65 6.3 106 90 2.6
STD = 12000 SLW-shuffle 72 73 4.1 96 96 2.7
Gradual RCW-shuffle 230 58 2.3 240 54 .34
Avg = 3300 DRW-shuffle 60 49 4 76 63 2.4
STD = 2500 SLW-shuffle 41 29 3.7 58 42 2.4
Outlier Min RCW-shuffle 260 .11 .08 260 0 0
Avg = 5400 DRW-shuffle 28 12 3.1 38 20 1.6
STD = 2400 SLW-shuffle 79 27 0.8 79 27 0.8
Outlier Max RCW-shuffle 106 77 5.3 140 100 1.6
Avg = 180 DRW-shuffle 29 12 3.2 39 20 1.6
STD = 160 SLW-shuffle 7.7 5.8 1.5 7.7 5.8 1.5

[32]4

Isotropic RCW-shuffle 230 71 1.7 230 66 .65
Avg = 150000 DRW-shuffle 82 68 5.5 110 95 2.8
STD = 207000 SLW-shuffle 87 92 3.5 105 100 2.9
Bisected RCW-shuffle 250 38 1.5 250 32 .28
Avg = 120000 DRW-shuffle 85 69 6.7 110 91 2.6
STD = 180000 SLW-shuffle 74 74 4.2 99 95 2.7
Gradual RCW-shuffle 250 33 .76 250 30 .13
Avg = 40900 DRW-shuffle 62 48 5 83 65 2.4
STD = 36000 SLW-shuffle 42 30 3.6 60 43 2.5
Outlier Min RCW-shuffle 260 0 0 260 0 0
Avg = 61000 DRW-shuffle 19 8.8 2.6 21.8 10 1.5
STD = 28000 SLW-shuffle 74 23 .6 74 23 .6
Outlier Max RCW-shuffle 171 91 4.9 200 97 .8
Avg = 730 DRW-shuffle 40 14 2.9 43 15 .94
STD = 710 SLW-shuffle 6.3 4.3 1.3 6.3 4.3 1.3

Table 4: Leakage Metrics for 4D datasets. ν set to 2, other small values displayed similar trends. H is the
entropy of the (bucketed) part distribution.

However, this improvement in average returns and entropy found from the different shuffling schemes
is not consistent with the other query shapes or other datasets; For all other query types, the average
number of parts and entropy for SLW-shuffle is smaller compared to DRW-shuffle.

Experiment Results for [16]4 Dataset Figure 6(a) illustrates the distribution of part access
numbers for the [16]4 dataset with respect to the four different query shapes: isotropic queries, bisected
anisotropic queries, gradual anisotropic queries, and outlier anisotropic queries. The distribution of the
sample query sizes for this experiment is shown in Fig. 6(b). This dataset supports similar conclusions
to the [32]4 dataset.

Experiments Results for 2D and 3D Datasets Experiments on lower dimensions shows that
for the isotropic queries, SLW-shuffle has been performance than DRW-shuffle. Furthermore, we see a
decrease both in entropy and the average number of parts accessed in SLW-shuffle in comparison to
DRW-shuffle. In the isotropic queries setting we have a uniform spread of ranges in our query, which
matches the shape of our SLW-shuffle scheme. This explains why the violin graph for isotropic queries
for SLW-shuffle displays the same shape regardless of the number of dimensions. However, the fraction of
the width of each dimension covered by a single slab is higher in the datasets with 3 and 4 dimensions.
This means for datasets of dimension 3 and 4 more rows fit into a single DRW-shuffle part. This makes
a DRW-shuffle part be a “multi-dimensional” object and why DRW-shuffle has high performance on
isotropic queries in 4 dimensions.

Table 5 shows how the leakage metrics change across different query shapes and shuffling techniques
for a 2D and 3D datasets. The dataset details can be found in Table 3. Figure 7 and 8 illustrate the
part access numbers distribution across all query shapes, as well as the distribution of the query sizes for
3D and 2D datasets respectively.

8 Conclusion

Prior study of secure multi-dimensional storage focuses on indexing structure. This work focuses on the
less-charted territory of optimizing storage and retrieval steps. Our primary study is the differences in

12

Shuffling Parts ν-Parts
Size Query Type Technique Avg STD H Avg STD H

Isotropic RCW-shuffle 240 50 1.5 240 46 .44
Avg = 22000 DRW-shuffle 130 74 7.8 170 91 2
STD = 20000 SLW-shuffle 100 83 4.8 130 101 2.6

[256]2 Bisected RCW-shuffle 250 19 1 250 14 .08
Avg = 16000 DRW-shuffle 130 74 7.8 170 90 1.9
STD = 14000 SLW-shuffle 79 60 6.3 110 85 2.4
Gradual RCW-shuffle 250 18 .74 250 14 0.07
Avg = 16000 DRW-shuffle 130 69 7.8 170 83 1.8
STD = 12000 SLW-shuffle 80 51 5.9 111 75 2.3
Outlier Min RCW-shuffle 208 34 5.6 260 0 0
Avg = 500 DRW-shuffle 2 .8 1.6 2.3 1.2 1.6
STD = 200 SLW-shuffle 17 3.5 .3 17 3.5 .3
Outlier Max RCW-shuffle 209 35 5.6 260 0 0
Avg = 510 DRW-shuffle 254 .81 1.6 256 0 0
STD = 210 SLW-shuffle 17 3.8 .33 17 3.8 .33

Isotropic RCW-shuffle 250 26 .45 250 24 .14
Avg = 350000 DRW-shuffle 130 74 7.9 170 91 2
STD = 310000 SLW-shuffle 100 83 4.8 130 100 2.6

[1024]2 Bisected RCW-shuffle 260 7.1 .12 260 4.5 .01
Avg = 260000 DRW-shuffle 130 74 8 170 91 2
STD = 230000 SLW-shuffle 80 61 6.4 110 85 2.5
Gradual RCW-shuffle 260 1.2 .02 260 0 0
Avg = 260000 DRW-shuffle 130 62 7.7 170 74 1.6
STD = 150000 SLW-shuffle 78 40 4.5 109 64 2.0
Outlier Min RCW-shuffle 260 1.6 .86 260 0 0
Avg = 5600 DRW-shuffle 2.1 .82 1.7 2.5 1.2 1.6
STD = 2900 SLW-shuffle 17 4 .36 17 4 .36
Outlier Max RCW-shuffle 260 1.6 .8 260 0 0
Avg = 5600 DRW-shuffle 260 .73 1.5 256 0 0
STD = 2900 SLW-shuffle 17 4.1 .37 17 4.1 .37

Isotropic RCW-shuffle 460 130 2 470 120 .7
Avg = 59000 DRW-shuffle 180 150 6.5 250 190 2.7
STD = 67000 SLW-shuffle 170 170 4.3 203 190 3

[64]3 Bisected RCW-shuffle 480 99 2 490 88 .4
Avg = 44000 DRW-shuffle 170 140 7.5 230 180 2.6
STD = 52000 SLW-shuffle 130 130 6 170 170 2.8
Gradual RCW-shuffle 500 70 1.2 504 54 .2
Avg = 24000 DRW-shuffle 130 91 6.1 190 140 2.3
STD = 17000 SLW-shuffle 86 53 4.2 123 83 2.3
Outlier Min RCW-shuffle 510 0.3 .4 510 0 0
Avg = 9500 DRW-shuffle 20 9 2 22 10 1.5
STD = 4200 SLW-shuffle 75 24 .7 75 24 .7
Outlier Max RCW-shuffle 260 140 6.3 340 190 1.5
Avg = 460 DRW-shuffle 73 24 2.7 76 25 .7
STD = 350 SLW-shuffle 11 6 1.1 11 6 1.1

Isotropic RCW-shuffle 490 95 1.3 490 90 .4
Avg = 500000 DRW-shuffle 210 160 7.4 270 200 2.5
STD = 570000 SLW-shuffle 180 170 4.3 210 200 3

[128]3 Bisected RCW-shuffle 500 58 .9 505 50 .2
Avg = 360000 DRW-shuffle 200 150 8 260 180 2.5
STD = 430000 SLW-shuffle 140 130 6 180 170 2.8
Gradual RCW-shuffle 510 31 .4 510 24 0
Avg = 180000 DRW-shuffle 150 96 6.7 220 150 2.2
STD = 130000 SLW-shuffle 86 54 4.3 120 83 2.3
Outlier Min RCW-shuffle 512 0 0 510 0 0
Avg = 82000 DRW-shuffle 22 12 3.3 30 20 2.1
STD = 44000 SLW-shuffle 80 28 0.8 80 28 0.8
Outlier Max RCW-shuffle 440 127 4 470 116 0.5
Avg = 4700 DRW-shuffle 137 39 3.8 140 41 .5
STD = 4000 SLW-shuffle 13 7.3 1.3 13 7.3 1.3

Table 5: Leakage Metrics for 2D and 3D datasets. ν set to 2, H is the entropy of the (bucketed) part
distribution.

13

 (I)

Pa
rt

 N
um

be
rs

 (C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O
ut

lie
r A

ni
so

tro
pi

c -
m

in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c-
m

ax

 Shuffling Scheme

(a) Part numbers distribution for the 4D-[32]4

dataset.

 (I)

Q
ue

ry
 S

iz
e

(C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O

ut
lie

r A
ni

so
tro

pi
c-

m
in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c -
m

ax

 Queries

(b) Query Size Distribution.

Figure 5: (a)-Part numbers count per query shape for the DRW-shuffle and SLW-shuffle schemes, [32]4 4D dataset.
The x-axis represents the dataset of part numbers returned as query results per shuffling method (b)-Query size
distribution. The x-axis represents the queries dataset

efficiency and security of data retrieval for searchable encryption mechanisms across datasets and query
shapes. In most scenarios, reducing the average and variance of returned parts improves both efficiency
and security of the system. That is, efficiency and security are aligned. DRW-shuffle demonstrates
superior performance only in the setting where dimensions i > 1 are large in each query. This is counter
intuitive, we usually organize data based on the most important dimension, here the width of the non-
indexed dimensions are critical.

We recommend that future research investigates the interactions between different shuffling strategies
and index structures that allow for false positives, such as the single range cover [FMET22]. Such systems
usually reduce the number of possible ranges that are queryable. A natural solution is to organize data
according to these queryable ranges. However, unlike the organizations considered in this work, tuples
usually are in more than one range cover.

14

 (I)

Pa
rt

 N
um

be
rs

 (C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O
ut

lie
r A

ni
so

tro
pi

c -
m

in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c-
m

ax

 Shuffling Scheme

(a) Part numbers distribution for the [16]4

dataset

 (I)

Q
ue

ry
 S

iz
e (

C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O

ut
lie

r A
ni

so
tro

pi
c-

m
in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c-
m

ax

 Queries

(b) Query Size Distribution

Figure 6: (a)- Part numbers count per query shape for the 4D-[16]4 dataset. The x-axis represents the dataset of
part numbers returned as query results per shuffling method (b)- Query Size Distribution. The x-axis represents the
queries dataset

Acknowledgements

The authors are thankful to the anonymous reviewers for their help in improving the manuscript. The
authors are supported by NSF Awards # 2131509, 2141033, 2146852, 2232813, 2333899, and 2341378.

References

[ACF+20] Akshima, David Cash, Francesca Falzon, Adam Rivkin, and Jesse Stern. Multidimensional
database reconstruction from range query access patterns. Cryptology ePrint Archive, 2020.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[BFOR08] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic encryp-
tion: Definitional equivalences and constructions without random oracles. In CRYPTO,
pages 360–378, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

15

 (I)

Pa
rt

 N
um

be
rs

 (C
ou

nt
)

 I
so

tro
pi

c

 (II)

Bi

se
ct

ed
 A

ni
so

tro
pi

c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O

ut
lie

r A
ni

so
tro

pi
c-

m
in

(V)

 O

ut
lie

r A
ni

so
tro

pi
c -

m
ax

 Shuffling Scheme

(a) Part numbers distribution for the 3D-[128]3

dataset

 (I)

Q
ue

ry
 S

iz
e (

C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O

ut
lie

r A
ni

so
tro

pi
c-

m
in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c -
m

ax

 Queries

(b) Query Size Distribution

Figure 7: (a)- Part numbers count for the DRW-shuffle and SLW-shuffle schemes, [128]3 3D dataset. The x-axis
represents the dataset of part numbers returned as query results per shuffling method (b)- Query Size Distribution.
The x-axis represents the queries dataset

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. In CRYPTO, pages 1–18.
Springer, 2001.

[BHJP14] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A survey of provably
secure searchable encryption. ACM Computing Surveys (CSUR), 47(2):1–51, 2014.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in private
information retrieval: Pir with preprocessing. In CRYPTO, pages 55–73, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both
locally and privately? In Theory of Cryptography, pages 662–693, 2017.

[BKM19] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. Cryp-
tology ePrint Archive, 2019.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC, 1988.

16

 (I)

Pa
rt

 N
um

be
rs

 (C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G
ra

du
al

 A
ni

so
tro

pi
c

 (IV)

 O

ut
lie

r A
ni

so
tro

pi
c-

m
in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c-
m

ax

 Shuffling Scheme

(a) Part numbers distribution for the 2D-[4096]2

dataset

 (I)

Q
ue

ry
 S

iz
e

(C
ou

nt
)

 I
so

tro
pi

c

 (II)

 B
ise

ct
ed

 A
ni

so
tro

pi
c

 (III)

 G

ra
du

al
 A

ni
so

tro
pi

c
 (IV)

 O

ut
lie

r A
ni

so
tro

pi
c-

m
in

(V)

 O
ut

lie
r A

ni
so

tro
pi

c-
m

ax

 Queries

(b) Query Size Distribution

Figure 8: (a)- Part number counts per query shape for [4096]2 2D dataset. The x-axis represents the dataset of
part numbers returned as query results per shuffling method (b)- Query Size Distribution. The x-axis represents the
queries dataset

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data.
In Theory of Cryptography Conference, pages 535–554. Springer, 2007.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval (extended ab-
stract). In STOC, pages 304—-313, 1997.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In CCS, pages 668–679, 2015.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private informa-
tion retrieval. In Theory of Cryptography, pages 694–726, Cham, 2017. Springer International
Publishing.

17

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Asi-
acrypt, pages 577–594. Springer, 2010.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, nov 1998.

[DPP+16] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deligiannakis,
and Minos Garofalakis. Practical private range search revisited. In ACM SIGMOD/PODS
Conference, 2016.

[DPPS20] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and Saurabh Shin-
tre. SEAL: Attack mitigation for encrypted databases via adjustable leakage. In USENIX
Security, pages 2433–2450, 2020.

[FMC+20] Francesca Falzon, Evangelia Anna Markatou, David Cash, Adam Rivkin, Jesse Stern, and
Roberto Tamassia. Full database reconstruction in two dimensions. In CCS, pages 443–460,
2020.

[FMET22] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto Tamassia.
Range search over encrypted multi-attribute data. Proc. VLDB Endow., 16(4):587–600,
dec 2022.

[FMET23] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto Tamassia.
Range search over encrypted multi-attribute data. In VLDB, 2023. https://eprint.iacr.
org/2022/1076.

[FVY+17] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Hamlin, Vijay
Gadepally, Richard Shay, John Darby Mitchell, and Robert K Cunningham. SoK: Cryp-
tographically protected database search. In IEEE Security and Privacy, pages 172–191,
2017.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

[GKL+20] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li, Rachit
Agarwal, and Thomas Ristenpart. Pancake: Frequency smoothing for encrypted data stores.
In USENIX Security, pages 2451–2468, 2020.

[GLMP18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Pump up the
volume: Practical database reconstruction from volume leakage on range queries. In CCS,
pages 315–331, 2018.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In STOC, pages 182–194, 1987.

[GPP23] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. Rethinking searchable symmetric
encryption. In IEEE Security and Privacy, 2023.

[GPPW23] Zichen Gui, Kenneth G Paterson, Sikhar Patranabis, and Bogdan Warinschi. SWiSSSE:
System-wide security for searchable symmetric encryption. PoPETS, 2023.

[GRS17] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. Why your encrypted database is
not secure. In Proceedings of the 16th workshop on hot topics in operating systems, pages
162–168, 2017.

[KKM+22] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber, and
Michael Yonli. Sok: Cryptanalysis of encrypted search with LEAKER - a framework for
LEakage AttacK Evaluation on Real-world data. In Euro S&P, 2022.

[KMPP22] Evgenios M Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and Alexandros
Psomas. Leakage inversion: Towards quantifying privacy in searchable encryption. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pages 1829–1842, 2022.

18

https://eprint.iacr.org/2022/1076
https://eprint.iacr.org/2022/1076

[KO97] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997.

[LMP18] M. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction attacks on encrypted
data using range query leakage. In IEEE Security and Privacy, pages 297–314, 2018.

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information retrieval
and fully homomorphic ram computation from ring lwe. In STOC, page 595–608, 2023.

[MAAM20] Toufique Morshed, Md Momin Al Aziz, and Noman Mohammed. Cpu and gpu accelerated
fully homomorphic encryption. In IEEE HOST, pages 142–153. IEEE, 2020.

[MFET23] Evangelia Anna Markatou, Francesca Falzon, Zachary Espiritu, and Roberto Tamassia. At-
tacks on encrypted response-hiding range search schemes in multiple dimensions. PoPETS,
2023.

[MFTS21] Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, and William Schor. Re-
constructing with less: Leakage abuse attacks in two dimensions. In CCS, pages 2243–2261,
2021.

[MGW87] Silvio Micali, Oded Goldreich, and Avi Wigderson. How to play any mental game. In
Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC, pages 218–229,
1987.

[MT19] Evangelia Anna Markatou and Roberto Tamassia. Full database reconstruction with access
and search pattern leakage. In International Conference on Information Security, pages
25–43. Springer, 2019.

[MVA+23] Sujaya Maiyya, Sharath Chandra Vemula, Divyakant Agrawal, Amr El Abbadi, and Florian
Kerschbaum. Waffle: An online oblivious datastore for protecting data access patterns.
Proceedings of the ACM on Management of Data, 1(4):1–25, 2023.

[pyc23] pyca/cryptography. Python cryptography library 40.0.2. https://cryptography.io, 2023.

[Rus23] Florin Rusu. Multidimensional array data management. Foundations and Trends® in
Databases, 12(2-3):69–220, 2023.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In IEEE Security and Privacy, pages 44–55. IEEE, 2000.

[TKMZ13] Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai Zeldovich. Processing
analytical queries over encrypted data. In VLDB. Association for Computing Machinery
(ACM), 2013.

19

	Introduction
	Prior Work on Record Retrieval
	Our Contribution

	Preliminaries
	Prior Work: Retrieval Mechanisms and Leakage Metrics
	Prior Retrieval Mechanisms and Leakage Analysis
	Prior Attacks and Leakage Metrics

	Partition Organization
	Query Distribution
	Evaluation Methodology
	Implementation Details

	Experiment Results
	Conclusion

