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Abstract. The NTRU problem has proven a useful building block for efficient bootstrapping in Fully
Homomorphic Encryption (FHE) schemes, and different such schemes have been proposed. FINAL
(ASIACRYPT 2022) first constructed FHE using homomorphic multiplexer (CMux) gates for the blind
rotation operation. Later, XZD+23 (CRYPTO 2023) gave an asymptotic optimization by changing the
ciphertext format to enable ring automorphism evaluations. In this work, we examine an adaptation to
FINAL to evaluate CMux gates of higher arity and the resulting tradeoff to running times and boot-
strapping key sizes. In this setting, we can compare the time and space efficiency of both bootstrapping
protocols with larger key space against each other and the state of the art.

1 Introduction

All current constructions for fully homomorphic encryption (FHE) schemes rely on noisy encryp-
tions for which the noise accumulates and grows as homomorphic operations are applied. When the
noise grows too big, however, correct decrypted value is no longer guaranteed. Therefore, a form
of homomorphic decryption that resets the noise level back to a point where more operations can
be applied is necessary, the so called bootstrapping operation, which is the most computationally
expensive part of the scheme. Since the first introduction of FHE, there have been continous at-
tempts [DM15,CGGI16,CH18,HS21,GIKV23] to make bootstrapping algorithms more practical and
overcome this bottleneck. Initially, FHE schemes had large message spaces that could pack many
messages into a single ciphertext, offering good amortized costs, since each homomorphic operation
acts in parallel on all packed messages. However, the bootstrapping for these is very expensive in
terms of both memory and time. One well-known scheme in this family, BGV [BGV12], performs
bootstrapping with a typical running time of a few minutes on a common commercial personal
computer, even for modern and optimized implementations [HS15].

A very different approach was taken by [AP14], which proposed an efficient bootstrapping for
ciphertexts encrypting a single bit instead of many larger messages. That method was improved
in [DM15] and finally implemented, yielding, for the first time, a bootstrapping algorithm that runs
in less than one second on a common laptop. [CGGI16] improved futher upon this method, with
the introduction of the TFHE scheme, for which bootstrapping runs in merely a few miliseconds.

After a hiatus of a few years, another scheme, called FINAL [BIP+22], improved upon TFHE
and achieved single-bit bootstrapping that runs in about 70% of TFHE’s running time, using boot-
strapping keys of only about half the size. The core of this improvement lies in the introduction of
NTRU-based ciphertexts for the bootstrapping algorithm. As a concurrent work, Kluczniak [Klu22]
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introduced similar scheme, which was broken due to their choice of ciphertext space [Joy22] called
cyclic NTRU ring. With the negacyclic version, still their construction has survived against existing
attacks, their ciphertext form has additional larger noise than the ciphertext of FINAL, which is
less efficient than FINAL in terms of noise management.

Using a slightly different ciphertext form, still based on the NTRU problem, Xiang et al. [XZD+23]
introduced a new scheme, which we call by XZD+23 from now on, that allows for the usage of ring
automorphisms in the bootstrapping phase, leading to asymptotically lower memory usage and big-
ger key sizes that could allow for smaller base ciphertexts. Their improvement to the running time
when compared to TFHE is, however, overall not as pronounced as FINAL’s and while the memory
usage is asymptotically better, for most practical parameter sets, it can be seen to be higher. As
an alternative to enable larger key sizes and smaller lattice dimensions, Joye and Paillier [JP22]
suggested a version of the CMux gate with higher arity for the TFHE scheme. As FINAL’s boot-
strapping makes use of the same CMux construction, it could be amenable to a similar change, but
no descriptions of this change have been given yet, nor has the comparison between both methods
to increase the key space been made for NTRU-based FHE schemes.

Although those schemes achieve the fastest bootstrapping known to date, using them to evaluate
arbitrary circuits can end up being very expensive, because they only encrypt bits. Even simple
operations, such as integer addition, have to be represented by binary circuits and each gate of
the circuit requires one bootstrapping. Thus, to overcome this limitation, TFHE was extended to
support messages in Z2k , that is, k-bit messages. Simultaneously, it gained the ability to perform
programmable bootstrapping (PBS) (also sometimes referred to as functional bootstrapping). In this
paradigm, every bootstrapping operation can not only perform a noise reduction; it can also apply
an arbitrary function f , represented as a lookup table, to the underlying message of a ciphertext,
at no additional cost [CJP21].

Our contributions

In this work, we study the n-ary CMUX from [JP22] and how it can be employed in FINAL. We also
adapt other techniques and improvements from the literature to FINAL. For example, we notice
that by carefully changing the definition of scalar NGS ciphertexts from FINAL, it is possible to
use an approximate gadget decomposition (introduced first in TFHE) without increasing the final
noise in a noticable way, thereby reducing the cost of the bootstrappring almost for free. We apply
the same optimizations to the XZD+23 scheme, in order to compare the two main NTRU-based
FHEs on equal footing.

While the bigger potential key size in XZD+23 brings a slight reduction in its memory usage
and running time, we observe that it will theoretically still need approximately double the amount
of significant operations (as measured by counting the number of required FFTs and FFT-domain
multiplications). We also find that, depending on the employed FFT-library and the subsequent
timings for an FFT-operation and a pointwise multiplication, FINAL comes out on top in efficiency-
comparison with XZD+23. We further give theoretical bounds for the key space that result in higher
efficiency than the ternary key setting.

We note that NTRU based PBS for binary LWE secret key was briefly introduced in [Klu22],
however, as we mentioned above, their ciphertext has larger noise than FINAL, therefore, FINAL
can naturally achieve the same functionality without increasing parameters. We stess that we
examine PBS of FINAL, further, with larger secret key in this paper.
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Roadmap

After the preliminaries in Section 2, we discuss our improvements and PBS for FINAL in Section
3. We also give evidence that bootstrapping by n-ary CMUX is not a guaranteed improvement
for FINAL, and needs to be carefully evaluated per implementation or even supporting hardware.
Then, in Section 4, we apply similar improvements and PBS to the scheme from [XZD+23]. Finally,
in Section 5, the two schemes are compared.

2 Preliminaries

2.1 Notation and mathematical background

Vectors, polynomials, and norms We use lower-case bold letters for vectors and upper-case
bold letters for matrices, e.g. a and A. For any vector u, ∥u∥ denotes the infinity norm. Throughout
the paper, N is always a power of two and R := Z[X]/⟨XN + 1⟩ is the (2N)-th cyclotomic ring.
Any element f of R can be always represented by a unique polynomial of degree smaller than N ,
hence, writing f =

∑N−1
i=0 fi · Xi is unambiguous and we can define the coefficient vector of f as

ϕ(f) := (f0, . . . , fN−1) ∈ ZN . We define the infinity norm of f as ∥f∥ := ∥ϕ(f)∥. For any Q ∈ Z+,
let RQ := R/QR = ZQ[X]/⟨XN + 1⟩.

Finally, we define M := {±m ·Xk | m ∈ Zp, k ∈ N}, which will be used as the plaintext space
of the vector ciphertexts defined in Section 2.5. Here, Zp is the overall plaintext space, which for
the original FINAL scheme is Z2.

Discrete Gaussian distribution. We first describe the discrete Gaussian distribution where
our secret elements are sampled from. Typically, a discrete Gaussian distribution is defined as
a distribution over Z, where every element in Z is sampled with probability proportional to its
probability mass function value under a Gaussian distribution over R. Let the Gaussian function

ρσ,c be defined as ρσ,c(x) = exp(− |x−c|2
2·σ2 ) for σ, c ∈ R>0. Then, ρσ,c(Z) =

∑∞
i=−∞ ρσ,c(i). The

discrete Gaussian distribution with standard deviation σ and mean c is a distribution on Z with
the probability of x ∈ Z given by ρσ,c(x)/ρσ,c(Z). For c = 0, we denote this distribution by χσ.

Subgaussian distribution. For the analysis of encryption parameters, we need subgaussian ran-
dom variables over R.

Definition 2.1. A random variable V over R is α-subgaussian if its moment generating function
satisfies

E[exp(t · V )] ≤ 1

2
exp(α2 · t2)

for all t ∈ R. The tails of such a subgaussian are dominated by the tails of a Gaussian.

We define the variance Var(a) (resp. Var(x)) of a ∈ R (resp. x ∈ Zn) to be the maximum
variance over the coefficients of a (resp. the components of x). The product of two polynomials
a, b ∈ R has a variance Var(a · b) = N · Var(a) · Var(b). Similarly, the maximum variance of each
column of a matrix X is Var(X). From the definition of a subgaussian districution, it can be proven
that the variance of an α-subgaussian random variable V is bounded by Var(V ) ≤ α2. Informally,
this says that the tails of V are dominated by a Gaussian function with standard deviation α. The
following lemma is from [JLP23].
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Lemma 2.1. If x is a discrete random vector over Rn such that each component xi of x is αi-
subgaussian, then the vector x is a β-subgaussian vector where β = maxi∈[n] αi.

Subgaussian random variables possess a significant property known as Pythagorean additivity.
When considering two random variables, α-subgaussian X and β-subgaussian Y , alongside integers
a, b ∈ Z, the random variable a ·X + b · Y is known to be

√
a2 · α2 + b2 · β2-subgaussian. This in

turn implies that

Var(a ·X) + Var(b · Y ) ≤ a2 · Var(X) + b2 · Var(Y ) ≤ a2 · α2 + b2 · β2.

2.2 Hardness assumptions

Most FHE schemes base their security on the well-known LWE and RLWE problems. FINAL also
uses the NTRU problem. We define them formally as follows:

Definition 2.2 (LWE). Let n, q ∈ N, σ ∈ R>0, and χkey a distribution over Zn.
The computational (n, q, σ, χkey)-LWE problem is to recover a secret s sampled from χkey given

arbitrary many LWE samples of the form (ai, bi := ai · s + ei) ∈ Zn+1
q , where ei ← χσ. The deci-

sional (n, q, σ, χkey)-LWE problem is to distringuish the samples (ai, bi) from vectors ui uniformly
distributed in Zn+1

q .

Definition 2.3 (power-of-two RLWE). Let N ∈ N, where N = 2k for some k ∈ N. Define
R := Z[X]/⟨XN + 1⟩. Let q ∈ N, σ ∈ R>0, and χkey a distribution over R.

The decisional (n, q, σ, χkey)-RLWE problem is to distinguish many RLWE samples of form
(ai, bi := ai · s + ei) ∈ Rq, from uniformly distributed vectors ui in R2

q. In the previous, ei ← χσ

and s is sampled from χkey. Analogously, the computational (n, q, σ, χkey)-RLWE problem asks to
recover the key s from such samples.

Definition 2.4 (NTRU). Let N,Q ∈ N, where N = 2k for some k, and R := Z[X]/⟨XN + 1⟩.
Let σ ∈ R>0, g, f ← χN

σ and f be invertible in RQ.
The decisional (N,Q, σ) NTRU problem is to distinguish between h := g · f−1 mod Q and

a uniformly random polynomial sampled from RQ. Similarly, the computational (N,Q, σ) NTRU
asks to recover f from h.

2.3 Decompositions

For fixed integers q and B, we set ℓ := ⌈logB q⌉ and define the gadget vector gq,B := (B0, . . . , Bℓ−1).
When q and B are clear from the context, we write g. Then, for any k ∈ Zq, we represent k by an
integer in [−q/2, q/2) and define its signed decomposition in base B as g−1(k) = (k0, . . . , kℓ−1) for
each integer |ki| ≤ B/2 for i ∈ [ℓ]. It is easy to see that g−1(k) · g = k. For any f ∈ RQ, we define

g−1(f) :=
∑N−1

i=0 g−1(fi)X
i. It is clear that

g−1(f) · g =
N−1∑
i=0

g−1(fi) · g ·Xi =
N−1∑
i=0

fi ·Xi = f.

Alternatively, a randomized gadget decomposition [GMP19,JLP21,JLP23] can be used not to rely
on Heuristic assumption for independent behaviours of each element of the output noise vector.
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2.4 LWE encryption scheme

FHE schemes like FHEW [DM15], TFHE [CGGI16], and FINAL [BIP+22] are actually composed of
two homomorphic schemes: a simple one, that encrypts the messages and performs the homomorphic
operations, which we call the base scheme, and a second scheme, called the accumulator. The former
is used to encrypt the actual data and is commonly based on the LWE problem, while the latter
is used in the bootstrapping of the base scheme. In this section, we present the LWE scheme with
message space Zp.

As first discussed in [BV11], an encryption scheme can be constructed from the LWE problem
as follows:

Definition 2.5 (LWE encryption). Let n, q, p ∈ N, σ ∈ R>0, and χkey a distribution over Zn.
We define the scaling factor as ∆ := q/p. If q and p, respectively the ciphertext modulus and

the plaintext modulus, are not both powers of two, a rounding must be applied at the moment of
encryption. We call the following an LWE encryption of m ∈ Zp under the secret key s ← χkey:
(a,b =

∑n−1
i=0 ⟨ai, si⟩+∆ ·m+ e) where elements of a are sampled uniformly random from Zq and

e is sampled from χσ. other than binary.

A ciphertext of this format can be decrypted by computing m =
⌊
b−

∑n−1
i=0 ai·si
∆

⌉
. Decryption will

be successful on condition that |e| ≤ ∆/2.

Intuitively, during encryption, we lift the message to a higher range by multiplying it with ∆,
and add noise in the lower range. This means that m is mapped to a bucket around the “clean”
value. Unless the noise becomes so big that the ciphertext enters another bucket, the message can
be decrypted correctly.

Note that, originally, this encryption scheme used χkey as a distribution over {0, 1}n, but we
shall use other key distributions later on too.

2.5 Ciphertexts for FINAL

In this section we recall the NTRU-based, GSW-like Scheme (NGS) that was presented in FINAL
[BIP+22]. It is used in the accumulator in the bootstrapping algorithm. The scheme includes two
encryption functions with different ciphertext forms, the first of which (NGS.EncS) encrypts a
plaintext m as an element of RQ, and the second (NGS.EncVec) encrypts m as a vector of elements
in RQ. The message m can be any polynomial in Rp for NGS.EncS, but for NGS.EncVec it is
assumed that m ∈ M = {±b ·Xk | b ∈ Zp, k ∈ N}. As the NGS ciphertexts are never decrypted in
the bootstrapping mechanism, we omit the corresponding description here.

NGS can be described by the following four procedures:

– NGS.ParamGen(1λ): From the security parameter, output Param := (N, p,Q, ζ,B, l), with N
the dimension of R, p and Q respectively the plaintext and ciphertext modulus, ζ the standard
deviation for the key, B the decomposition base and l = ⌈logB(Q)⌉ the dimension over RQ of
a vector ciphertext.

– NGS.KeyGen(Param): Sample f ′ ← χN
ζ and set f := 1 + p · f ′ until f−1 exists in RQ. Output

sk := f .
– NGS.EncS(sk,m): Sample g ← χN

ζ , set ∆ := Q/p, and return c = g/f +∆ ·m ∈ RQ. This c is
called a scalar encryption of m.

– NGS.EncVec(sk,m): Sample gi ← χN
ζ for 0 ≤ i < l. Set g := (g0, . . . , gl−1) and g = (B0, . . . , Bl−1).

Return c = g/f + g ·m ∈ Rl
Q. This c is called a vector encryption of m.
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An external product can be defined as an operation that takes an NGS scalar ciphertext en-
crypting a message u and an NGS ciphertext encrypting a message v, returning an NGS scalar
ciphertext encrypting the message u · v.

Definition 2.6 (External product [BIP+22]). From a scalar encryption c := g/f +∆ ·u ∈ RQ

of the ternary polynomial u and a vector encryption c := g/f + g · v ∈ Rl
Q of the message v, we

define the vector product to be

c � c := g−1(c) · c ∈ RQ (1)

As g−1(c) · g = c, note that cmult = c � c is equal to

cmult := (g−1(c) · g)/f + (g−1(c) · g · v) = (g−1(c) · g + g · v)︸ ︷︷ ︸
gmult

/f +∆ · u · v. (2)

cmult is then a valid scalar encryption of u · v if the noise term gmult is small enough.

The noise growth in the external product can be bounded by Var(Err(cmult)) ≤ Nℓγ2 ·Var(g) +
||v||22 ·Var(g)+4ζ2, as proven in lemma 4 of FINAL[BIP+22]. Here, g−1(a) is assumed γ-subgaussian
for a ∈ RQ and some γ = O(B). For k consecutive external products with fresh vector ciphertexts,

the noise is bound by Var(Err(c′)) ≤ Nℓγ2 ·
∑k

i=1 Var(gi) + Var(g0) + 4ζ2.
In Section 3.3, we introduce a modification to this definition, to reduce the cost (both compu-

tational and memory) of bootstrapping, at the cost of only insignificant noise growth.

3 Improvements for FINAL

In this section, we suggest three modifications and additions to the original FINAL scheme: we
suggest how to use a larger key space, we discuss approximate decomposition in external products,
and finally we explain how to enable PBS after growing the plaintext space.

3.1 Bootstrapping FINAL

Before describing our modifications, we first recall a high-level overview of FHE bootstrapping based
on a blind rotation procedure, as applied in TFHE [CGGI16], FINAL [BIP+22] and XZD+23 [XZD+23].
Starting from an LWE ciphertext c = (⟨a, s⟩, b) mod 2N in the base scheme, let the test polynomial
T (X) =

∑
0≤i<N⌊i/∆⌋ ·Xi. Observe that the negacyclic rotation of T ,

X2N/p−q/2N(b−⟨a,s⟩) · T (X)

has a decryption of c in the constant coefficient.
By computing this rotation blindly – that is, without revealing s, usually by having some

encryption of it as extra information: the bootstrapping or evaluation key – and performing a final
key switching step that extracts this coefficient as a new LWE ciphertext under s, we have performed
a bootstrap. For a properly tuned blind rotation procedure, the noise will be sufficiently reduced
to allow further homomorphic operation.

In practice, the blind rotation will accumulate rotations of Xai , rotated by a secret amount
si, with an additive homomorphism in the exponent. These individual blind rotations are usually
achieved through a multiplexing operation based on si, or by applying an appropriate ring auto-
morphism to (an encryption of) Xsi , potentially followed by some key-switching step to ensure all
individual blind rotations are encryptions under the same accumulator key, so that the additive
homomorphism applies.
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3.2 Larger key space

Let us first recall the (binary) CMUX, as it is used in the blind rotation procedure of FINAL. It
can be seen as the homomorphic version of the Multiplexer (MUX) gate, that has three inputs and
one output. Based on the value of the first input (the selector bit b) one of the other two input
values is returned as the output value. In the homomorphic variant, all the inputs and outputs are
ciphertexts. The gate computes ab = (b− 1) · a0 + b · a1 = a0 + b · (a1 − a0).

In FINAL, the values a0, a1 and ab are scalar NGS ciphertexts, and b is a vector NGS ciphertext
encrypting one bit. A general extension of the CMUX gate for ν values ai is called an ν-ary CMUX.
The selector for this is no longer just a bit, but rather an index with a value between zero and
ν − 1. This index can be encoded as ν indicator values bi of which exactly one has a value of one,
and every other one has value zero. Then the generalized CMUX computes

ν−1∑
i=0

bi · ai

which can be rewritten to perform one multiplication fewer and have one indicator (b0) fewer by
remembering that

∑
i bi = 1, namely:

a0 +

ν−1∑
i=1

bi · (ai − a0).

FINAL’s base encryption scheme uses a binary LWE key. Given fixed level of security (say 128
bits of security), we can consider the tradeoff between the LWE dimension n and the size of the
key space, or the key distribution χkey. When we increase the key space (or increase the standard
deviation for χkey), the dimension n can be lowered without losing the wanted security guarantees.
The advantage is that the number of required “individual” blind rotations during bootstrapping
lowers, as n of those are performed, but this comes at a higher cost for each such rotation. Thus,
by introducing more freedom in the choice of χkey for FINAL, it could be possible to find a better
tradeoff.

There are two different approaches in the literature that have introduced a similar extension
for TFHE. One uses the aforementioned extension from binary to ν-ary CMux gates [JP22]. The
other makes use of ring automorphisms [LMK+23]. The first approach works naturally when it is
applied to FINAL. However, we have found the second approach, based on ring automorphisms,
to be of limited use for FINAL, due to a seeming incompatibility with the NGS ciphertext format
used, that is mostly incompatible with the required key-switching procedure to the accumulator
key. [XZD+23] manages to bypass this limitation with a similar, but sufficiently different ciphertext
format. We discuss this scheme later on in section 4, alongside similar enhancements as discussed
in this section.

General extension of ternary CMux gate In order to deal with a larger secret key space in
FINAL, we employ an ν-ary CMux gate in the bootstrapping. We use the idea proposed by Joye
and Paillier in [JP22]. Other literature such as [LMK+23] combines existing similar bootstrapping
methods, resulting in a scheme that has a smaller noise growth than either. However, this method
is slower than the one of [JP22]. The number of polynomial multiplications required in the boot-
strapping algorithm is 2nl for [JP22], and 3nl for [LMK+23]. It must be noted, however, that the
latter algorithm requires less space for key storage.
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We now provide a concrete definition for the ν-ary CMux gate, as applied to FINAL’s NGS
ciphertexts. Let the LWE key s ← [−K,K], and let its components si be the selector values. We
can then define 2K keys bski,j for j = −K, . . .− 1, 1, . . . ,K such that

bski,j :=

{
NGS.EncVec(1) when si = j

NGS.EncVec(0) otherwise

The (2 ·K + 1)-ary CMux gate that computes the blind rotation Xci·si then becomes

CMuxi(ci) := 1 +

K∑
j=−K,j ̸=0

(Xci·j − 1) · bski,j (3)

It is clear that for a given ci, there will never be more than one term in the summation that is
nonzero, and that correctness for the blind rotation is achieved.

With this definition, we can now determine a bound on the noise output of a single CMux
gate, in function of the noise Err(bsk) of a fresh vector encryption. Let cMux := CMuxi(ci) for any
0 ≤ i ≤ n− 1. Then, the following holds:

Var(Err(cMux)) ≤
K∑

k=−K,k ̸=0

||Xci − 1||22 · Var(Err(bski,k))

≤ 4K · Var(Err(bsk)).

In algorithm 1, we present the bootstrapping from [BIP+22], as applied to our new context,
with an updated definition of CMux and a generalized plaintext space. It can be verified that this
algorithm corresponds to the high-level overview at the start of this section, and that therefore the
constant term of msg(ACC) in line 6 is ⌊Q/p⌉ ·m.

Algorithm 1: Bootstrapping algorithm for m ∈ Zp

Input: ct ∈ Zn×n
q , a base scheme ciphertext encrypting m ∈ Zp

{bski,j}0≤i≤n−1,j∈[−K,K]\{0}, bootstrapping keys, where each bski,j ∈ Rl
Q,N

ksk, a key-switching key from the NGS secret key f ∈ R to the base scheme secret key s ∈ Zn

Output: ct′ ∈ Zn
q , a base scheme ciphertext encrypting the same m.

1 ((a0, . . . , an−1), b)← ⌊ 2·N·ct
q
⌉

2 ACC← ⌊Q
p
⌉ ·X−b+N/p ·

∑N−1
i=0 Xi;

3 for i = 0 . . . n− 1 do
4 cMux ← CMuxi(ai);
5 ACC← ACC � cMux;

6 ACC← ModSwitchQ→q(ACC)
7 ct′ ← KeySwitch(ACC, ksk)4

8 return ct′

Noise Analysis Now we consider the noise of the output of this bootstrapping algorithm. In the
first line, we switch the modulus of the input ciphertext from q to 2N . We denote the resulting
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ciphertext by (a2N , b2N ). We then have:∣∣∣∣b− ⟨a, s⟩∆
− q

2N
· b2N − ⟨a2N , s⟩

∆

∣∣∣∣ ≤ q

4 ·N
·
∣∣∣∣b− ⟨a, s⟩∆

∣∣∣∣
From line 3 to 5 of the bootstrapping algorithm, the output ACC is obtained by performing

n external products with cMux whose noise variance is Var(Err(cMux)). The variance of the final
Err(ACC) can therefore be bounded by:

Var(Err(ACC)) ≤ n ·N · l · γ2 · Var(Err(cMux)) + 4 · ||msg(ACC)||22 · ζ2

≤ n ·N · l · γ2 · Var(Err(cMux)) + 4Np2 · ζ2

After this step, another modulus switch is applied. Following lemma 6 of [BIP+22], this leads
to a bound of

Var(Err(ACC)) ≤ (q/Q)2 · n ·N · l · γ2 · Var(Err(cMux))

+(q/Q)2 · 4 ·Np2 · ζ + 1 + 16 ·N · ζ2

After the external product with a key switching key ksk in line 7, the noise in the resulting ct′

has a variance
Var(Err(ct)) ≤ N · L · γ2 · Var(Err(ksk)) + Var(Err(ACC))

≤ N · L · γ2 · Var(Err(ksk))
+ (q/Q)2 · n ·N · l · γ2 · Var(Err(cMux))

+ (q/Q)2 · 4 ·N · ζ2 + 1 + 16 ·N · ζ2

(4)

where L is the dimension of the key switching key.
Under the central limit heuristic, we can bound the noise of the output ct′ of this algorithm.

Given an LWE ciphertext ct encrypting a message m, algorithm 1 outputs an LWE ciphertext ct′

encrypting the same message. In adition, under the central limit heuristic, the noise contained in
the output behaves as a Gaussian distribution, hence, with overwhelming probability, it satisfies
the following bound

||Err(ct′)||22 ≤ 62 · (N · L · γ2 · εksk + 4 ·K · (q/Q)2 · n ·N · l · γ2 · εbsk
+ (q/Q)2 · 4 ·N · ζ2 + 1 + 16 ·N · ζ2)

where εksk = O(Var(Err(ksk))) and εbsk = O(Var(Err(bsk))).

Parameters and efficiency This analysis of the ν-ary CMux was prompted by the hope that
a larger key space could allow for a lower LWE dimension, and hence better efficiency without
affecting the security level of the scheme. However, the efficiency does not solely depend on the
LWE dimension n, but also on the computational cost of the CMUX evaluation, which grows linearly
in K (when we let the secret key be sampled from [−K,K]). In particular, we only consider the
computational cost of an FFT transformation (either forward or inverse) and that of a pointwise
multiplication (in the FFT domain) as significant, and ignore all other costs. Denote the time cost
for these as respectively TFFT and TPM. For a bootstrapping operation with LWE dimension n and
secret key sampled in [−K,K], we see the following two expensive parts of Algorithm 1: 2Knℓ ·TPM
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for the CMux evaluations and n(ℓ+1) ·TFFT+nℓ ·TPM for the external products, leading to a total
cost of

costK := n ((ℓ+ 1) · TFFT + (2K + 1)ℓ · TPM) .

When we compare this to the cost of a FINAL bootstrap with binary keys of LWE (resp. NGS
vector ciphertext) dimension n′ (resp. ℓ′):

costbin := n′ ((ℓ′ + 1) · TFFT + 2ℓ′ · TPM

)
.

It seems reasonable to assume that an FFT takes longer to compute than a pointwise multipli-
cation of the same length, and as such that TFFT > TPM, but when increasing K, the corresponding
value of n does not decrease as rapidly. Therefore, we can see that any decision as to which variant is
preferable will depend on exactly how much faster the pointwise multiplication is. We can quantify
this with the value α := TFFT

TPM
, which will depend on the machine used to run the bootstrapping and

the chosen FFT implementation.

Here, we provide both a bound on the optimal choice of K, depending on α and the respective
dimensions for the ciphertexts, and, in table 1, an overview of some values α for different FFT
libraries. We use degree 214 polynomials for these tests, as that is a reasonable upper bound for
practical FHE parameters, as well as resulting in an expectation of a more pronounced asymptotic
difference. The actual value of α will hence depend not only on implementation and hardware
efficiency, but also on the choice of parameters. These measurements were all made on a AMD Ryzen

5 PRO 3400G CPU, in a single threaded context. Where possible, a choice for a real-to-complex
variant of the FFT was made, to better match the usage in the scheme. Theoretically, the optimal
choice for K would correspond to

K <
α(n′(ℓ′ + 1)− n(ℓ+ 1)) + 2n′ℓ′ − nℓ

2nl
.

For the sake of intuition, if we assume the extremely generous situation where we could achieve
(n, ℓ) = (n′/2, ℓ′) with ℓ′ = 1, the obtained bound is K < α + 3

2 , implying that TFFT should be
rougly K times as slow as TPM. As can be seen in table 1, even under this generous assumption,
the gain when choosing an efficient FFT implementation is very limited.

Table 1. Observed running times for FFT and pointwise multiplication under different programming languages and
for different FFT libraries, running on degree 214 polynomials.

Language FFT Library TFFT (ms) TPM (ms) α := TFFT
TPM

C++ spqlios 59

21

2.81
C++ ffnt 245 11.67
C++ fftw 46 2.19
C++ nayuki 165 7.86

Rust concrete fft 86
26

3.31
Rust concrete fftw 42 1.62

The issue with automorphisms The other approach to introduce larger keyspaces, as consid-
ered in [LMK+23], makes use of ring automorphisms on R: ct(X) 7→ ct(Xk). These are cheap to
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compute, as they only involve a reordering and some sign changes of the coeffients of a polyno-
mial. However it also changes the encryption key from f(X) to f(Xk). To account for this, the
automorphism should be followed by a key switching procedure back to f(X). That is, we want
some (efficient) procedure NGS.EncS(f(X),m) = KeySwitch(NGS.EncS(f(Xk),m), ksk) that does
not change the underlying message. Additionally, the additional noise from the key switching should
be limited to fit within the bootstrapping noise budget.

In other words, we start with a scalar NGS ciphertext which is a form of c := g/f +∆m, and
end up with another scalar NGS ciphertext g′/f ′+∆m. An insightful approach is to do an external
product with an NGS vector ciphertext encrypting f under f ′. If we limit ourselves to choices of ksk
such that KeySwitch(c, ksk) = c�ksk, as an arbitrary limit to mean “efficient” that simulatenously
giving an easy evaluation of the noise growth, it can be seen that the result generally falls into
either of two cases. It does not have the correct form to be a scalar NGS ciphertext, or the noise
growth is too high.

It should be noted that [XZD+23] manages to perform a blind rotation with ring automorphisms,
by choosing an alternative scalar ciphertext form that allows for key switching with an external
product: Encf (m) = τ ·g+∆·u

f ∈ RQ. We extend our results for FINAL to this alternative form in
section 4 and afterwards compare the resulting FHE schemes in section 5.

3.3 Approximate decomposition

Recall the definition of a scalar NGS ciphertext encrypting a message m0. We now define a noisy
scalar NGS ciphertext, which has an extra noise term e ∈ RQ:

ĉ = NGS.EncSe(f,m0) =
g

f
+∆ ·m0 + e.

The decryption error for a noisy ciphertext then becomes g+e·f , and in order to have the additional
error due to e be comparable to the error also present in a regular ciphertext, we introduce the
following condition, to enforce that the variance of the newly introduced error term does not exceed
the noise already present normally:

Var(e) ≤ Var(g)

NVar(f)
(5)

The external product can be extended to cover multiplication between a noisy scalar ciphertext
and a (regular) vector ciphertext encrypting m1 without any further changes. It can be verified
that the result is again a noisy scalar NGS ciphertext.

ĉ � c = ⟨g−1
B (ĉ), c⟩ =

ℓ−1∑
i=0

cigi
f

+ ĉm1

=

∑ℓ−1
i=0 cigi +m1g

f
+∆m0m1 +m1e

=
ḡ

f
+∆m0m1 + ē (6)

We can now also define the approximate decomposition of a (either noisy or regular) scalar
ciphertext c as the decomposition g−1

B (c), with the k least significant digits set to 0. Alternatively,
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this can be expressed as the decomposition g−1
B (ĉ) of the noisy scalar ciphertext ĉ = c − [c]Bk .

When we consider the external product that uses an approximate decomposition, or equivalently,
the external product ĉ � c,5 we see from equation 6 that the resulting noise terms become ḡ =∑l−1

i=k cigi + m1g and ē = m1(e − [c]Bk). We can hence compute a bound for the variance of the
resulting errors, where we assume c to be a fresh vector encryption.

Var(ḡ) ≤ Var(m1g) + Var

(
ℓ−1∑
i=k

cigi

)
≤ Var(g) +NB2(ℓ− k)Var(gi)

≤ p2Var(g) +NB2(ℓ− k)Var(f)

Var(ē) ≤ Var(m1e) + Var(m1[c]Bk)

≤ p2Var(g)

NVar(f)
+ p2Bk

Entering this into inequality 5, we get a bound on k, the number of digits that can be ignored
by the approximate decomposition:

p2Var(g)

NVar(f)
+ p2B2k ≤ p2Var(g) +NB2(ℓ− k)Var(f)

NVar(f)

B2k−2 ≤ ℓ− k

k ≤ 1

2
logB(ℓ− k)− logB(p) + 1

The advantage gained from this external product with approximate decomposition is that we
can omit the k least significant components of any vector ciphertext involved as well, without fur-
ther effect. In practice, this amounts to a saving of k forward FFT computations and k pointwise
multiplications. The computation and memory costs are now identical to having only vector di-
mension d− k, rather than d. This does come at the cost of a limited noise growth, which has no
practical impact since a bootstrapping operation is performed after every homomorphic operation.

3.4 Programmable bootstrapping

After combining the bootstrapping algorithm with plaintext space Zp as in algorithm 1 and enhanc-
ing it with a free choice of ν-ary CMux gates and approximate decompositions, we can introduce
programmable bootstrapping (PBS) into the mix. Recall that the bootstrapping procedure makes
use of a blind rotation followed by a keyswitch back to the base scheme. The goal of the blind
rotation is to rotate the coefficients of a test polynomial T (X) ∈ RQ by a decryption of an LWE
ciphertext, in such a way that the constant coefficient of the underlying plaintext polynomial ends
up containing the decryption of the LWE ciphertext. In the description of algorithm 1, the initial
value of ACC represents (a noiseless encryption of) the polynomial T (X).

5 We allow the ciphertext being decomposed approximately to already be noisy, so the extra noise term of ĉ becomes
e− [c]Bk .
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When considering PBS, this notion is enhanced such that the constant coefficient no longer just
contains the message m, but the evaluation of an arbitrary function F (m), usually represented by
a lookup table of size p.6

To encode the function or lookup table F into a polynomial T (X), we observe that

(T ·X⟨a,s⟩−b)(0) = F (m) = F

(⌊
⟨a, s, ⟩ − b

∆/2

⌉)
and so, when we let T (X) = t0 + t1X + . . .+ tN−1X

N−1, choosing

ti = F

(⌊
2i

∆
+

1

2

⌉)
satisfies this requirement. We note here that we consider the decryption after a modulus switch
to 2N , and that as such ∆ = 2N/p here. Applying this construction to the identity function
F (x) = x, we indeed recover the previous non-programmable bootstrapping algorithm. When the
blind rotation and keyswitching procedures work correctly and with appropriate noise growth, it
then follows that the addition of PBS preserves correctness and adds no further noise growth to
the final bootstrapped ciphertext.

Note that for LWE, here we use ∆
2 rather than∆. This extra bit is needed to allow programmable

bootstrapping with non-negacyclic functions. Alternatively, when F is a negacyclic function, its
compatibility with the negacyclic nature of the cyclotomic ring R permits some extra efficiency in
the plaintext space within ciphertexts. It is then possible to use the regular choice of ∆ = q/p (or
∆2N = 2N/p after modulo switching) for the LWE ciphertexts.

4 Improvements for XZD+23

Since [XZD+23] follows a comparable blueprint to [BIP+22], with a modification to the scalar
NTRU ciphertext and the introduction of ring automorphisms in the blind rotation, the natural
question becomes whether the modification made for FINAL can also be applied to the XZD+23
scheme. By construction, the scheme already supports arbitrary distributions for the LWE key, so
we need only consider the approximate decomposition and the programmable bootstrapping.

4.1 Approximate decomposition

Parallel to the approximate decomposition for FINAL, we first recall that a scalar ciphertext en-
crypting a message m0 has the form

c =
τg +∆m0

f

and then define a noisy scalar ciphertext to have an additional noise term, such that

ĉ =
τg +∆m0

f
+ e.

The external product with a vector ciphertext c = τ g
f + gm1 then becomes

6 Since the memory and computational cost for FHE tend to grow rapidly as the plaintext modulus p grows, the
memory requirements to represent and store this lookup table are easily met. In practice, Zp will seldom be much
larger than a single byte at once
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ĉ � c = ⟨g−1
B (ĉ), c⟩ =

ℓ−1∑
i=0

τ
ĉigi
f

+ ĉm1

=
τ
(∑ℓ−1

i=0 ĉigi +m1g
)
+∆m0m1

f
+m1e

=
τ ḡ +∆m0m1

f
+ ē (7)

To ensure the extra noise e does not grow too big or break correctness, we seek to bound its
variance by that of g, and as such require that

Var(e) ≤ τ2Var(g)

NVar(f)
(8)

Now let ĉ represent an approximation of some (potentially noisy) ciphertext c, such that ĉ =
c− [c]Bk . That is, g−1

B (ĉ) corresponds to g−1(c) with the k least significant digits set to zeros. Then
we can additionally assume that the k corresponding elements of c are arbitrary, or even absent,
which means we need less memory to store c and less time to compute ĉ � c. From 7, we can
determine bounds on the variance of the corresponding ḡ and ē, under the assumption that c is a
fresh vector ciphertext and that hence Var(gi) = Var(f).

Var(ḡ) ≤ p2Var(g) +NB2(ℓ− k)Var(f)Var(ē) ≤ τ2p2Var(g)

NVar(f)
+ p2Bk (9)

If we then further constrain Var(ḡ) and Var(ē) to follow 8, we derive

k ≤ 1

2
logB(ℓ− k)− logB(p) + 1 (10)

as a limit on the number of components we can omit from any stored vector ciphertexts and from
the external product calculations. It can be observed that the gain in efficiency is equivalent to that
which we achieve with the optimization for FINAL. It should be noted that XZD+23 can also be
easily adapted to support programmable bootstrapping following the same blueprint as described
in Section 3.4.

5 Comparison

Comparing performance of different FHE schemes without implicitly comparing implementations
along with their respective amount of processor-specific optimizations and implementation-defined
peculiarities is all but impossible. We eschew this approach in favor of a more theoretical com-
parison. In particular, we examine the external products performed during a single bootstrapping
operation, as that is generally the most expensive operation to be performed. We quantify the
number of FFT operations (either forward or inverse) and the number of polynomial pointwise
products in the FFT domain, incurred by the external product and otherwise. As discussed for
the evaluation of our ν-ary CMux in section 3.2, it is possible to express the difference in timing
between these two operations by some factor α, but since this factor again highly depends on choice
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of implementation and hardware, we do not further combine these two terms in our comparison. We
present a side-by-side comparison of these metrics for the FINAL and XZD+23 schemes in table 2.
Note that in XZD+23, the authors report a clear improvement when compared to TFHE based
on implementations of both schemes. The difference of this comparison is more pronounced than
we would expect from our theoretical results counting the number of required FFT and pointwise
multiplications.

For the memory requirements of a bootstrapping operation, we refer solely to the size of the
bootstrapping or evaluation keys needed, as the keyswitching procedure from the accumulator back
to the base ciphertext is similar enough between all examined schemes. We express all memory
sizes in amount of complex numbers needed,7 as everything can be precomputed and stored in the
FFT domain. These numbers are also presented in table 2.

As indicated, parameter choices will differ between schemes. In table 3 we give the LWE and
NTRU parameters for our adapted FINAL scheme for 2, 4 and 8 message bits respectively. The
LWE parameters were chosen equal to those of TFHE-rs (for the same message spaces, respectively).
FINAL will achieve (at least) the same message accuracy p, as FINAL has less noise for the same
parameters. Next, we ensure a security level of 128 bits, by defining the NTRU parameters using the
NTRU Fatigue estimator [Dv21]. We furthermore guarantee a maximal decryption error probability
of 2−40, with respect to the noise bound on a bootstrapped ciphertext (eq. 4).

Finally, in table 4, we show how increasing the key space influences the LWE dimension, and
how this in turn influences the run-time of the bootstrapping algorithm. We find that α values
under 10, it is never beneficial for the performance to have K > 1. Also, as given in table 2, larger
K also increases the required memory.

It is difficulty to fairly compare our improved version of FINAL with that of XDZ+23 due to
effects of the increased key space on the LWE dimension. If we use a uniform distribution over
[−3, 3] (that is, we set K = 3) for our version of FINAL, as an approximation of the Gaussian
distribution with variance 4/3 (as is given as a parameter set in [XZD+23]), we can compare
our schemes both with our theoretical results and with their experimental outcome. We take the
parameter set described by XZD+23 as P128G, which is more lenient having allowing a decryption
error probability up to 2−34. We then find, from the formulas in table 2, that for this setting, our
algorithm requires one third of the FFTs, but 2.3 times the number of pointwise multiplications,
while consuming 16.5% less memory. For α-values larger than 0.96. The instantiation of FINAL
with our modifications is hence more performant than our instantiation of XZD+23.

The effects of our modifications on the two schemes are not just found in performance, as they
expand the functionality as well. Still, in both schemes, using the approximate decomposition will
grant a decrease of ℓ with at least 1, depending on the other parameters. Furthermore, we repeat
that the ν-ary CMux provides a trade-off between pointwise multiplications and FFTs, which could
be beneficial depending on the FFT library used. The performance of unaltered FINAL can be found
by fixing K in table 2.

By examining the noise growth for each individual scheme, it can be observed that for binary
LWE keys, the parameter choice be close to identical. When growing the key space either by the
application of ν-ary CMux gates or by taking advantage of efficient ring automorphism computation
being possible, the LWE dimension can be reduced without dropping below a wanted security
threshold. It is however the case that this improvement does not generally weigh up against the
constant factors seen in the different counts of operations. The XZD+23 scheme has the advantage

7 This would usually be equivalent to 16 bytes each.
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Table 2. Overview of the number of FFTs, pointwise multiplications (PM) and memory for the bootstrapping and
evaluation keys (expressed in amount of complex numbers) per FHE scheme. A + superscript indicates a scheme
incorporating our improvements.

Scheme #FFT #PM Memory

FINAL+ nF (ℓF + 1) (2K + 1)nF ℓF (2K)nFNF ℓF
XZD+23+ 2nX(ℓX + 1) 2nXℓX N2

XℓX

Table 3. The parameters for FINAL with our modifications, for different plaintext size p, using ternary secret keys.

p n q B ℓ N Q

22 656 264 28 2 210 220

24 742 264 223 1 210 220

28 1017 264 215 2 211 230

that its memory usage is entirely independent from the choice of key space, and its running time
only decreases as the LWE dimension decreases. For the tradeoffs involved in the adaptation of
FINAL to larger key sizes, we refer the reader back to section 3.2.

To get an idea about the concrete memory requirements presented here, we need to be able to
compare some typical values for the NTRU dimension N and the LWE dimension n, as they have
a strong impact on the interpretation of table 2. For a security target level of 128 bits, a typical
choice of n would be some value 29 ≤ n ≤ 210. The NTRU dimension N needs to grow more as the
plaintext space Zp grows, though it must remain a power of two to preserve correctness. For p = 2,8

the choice N = 210 is made. It then grows along a growing p, and for moderately sized p, already
values such as N = 214 are required. We thus observe that generally N > n, and a term quadratic
in N in the memory requirements can quickly become prohibitive for larger plaintext sizes.

6 Conclusion

In this paper, we have suggested improvements for the two leading FHE schemes with NTRU-
based bootstrapping, FINAL [BIP+22] and XZD+23 [XZD+23]. For both schemes, we described
an approximate decomposition technique that allows improvements in both memory requirements
and the performance of external products, by decreasing the dimensions of vector ciphertexts.
Additionally, we established the feasilibity of increases in the size of the plaintext space, further
enabling programmable bootstrapping for arbitrary functions Zp → Zp. In FINAL, we established
the potential for an increase in the key space of the base scheme, based up techniques by Joye and
Paillier [JP22], finding its application to provide only limited benefits.

Finally, we provided a comparison of the two main approaches to an increased key space for
NTRU-based FHE. In this, we found FINAL to be the better choice in most choices, due to a
constant factor difference in amount of required external products and the difference in memory

8 That is, the case where no PBS is possible or needed, as described in [BIP+22] and [XZD+23].

Table 4. The influence of key space K on n, and the minimum value of α where run-time is better than K = 1.

p 22 24 28

K 2 3 5 10 2 3 5 10 2 3 5 10

n 568 550 530 500 656 635 615 585 935 915 890 860
α 10.9 18.8 31.7 55.7 13.3 21.8 36.7 65.1 20.8 33.9 54.1 96.6
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required for the bootstrapping keys, despite the increase in key size coming at a higher cost than
XZD+23 in general.
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