
Vision Mark-32: ZK-Friendly Hash Function Over
Binary Tower Fields

Tomer Ashur1, Mohammad Mahzoun2, Jim Posen3, Danilo Šijačić3

1 3MI Labs, Leuven, Belgium tomer@3milabs.tech
2 Eindhoven University of Technology, Eindhoven, Netherlands mail@mahzoun.me

3 Ulvetanna Inc. {dsijacic,jimpo}@ulvetanna.io

Abstract. Zero-knowledge proof systems are widely used in different applications
on the Internet. Among zero-knowledge proof systems, SNARKs are a popular
choice because of their fast verification time and small proof size. The efficiency
of zero-knowledge systems is crucial for usability, resulting in the development of
so-called arithmetization-oriented ciphers. In this work, we introduce Vision Mark-32,
a modified instance of Vision defined over binary tower fields, with an optimized
number of rounds and an efficient MDS matrix. We implement a fully-pipelined
Vision Mark-32 permutation on Alveo U55C FPGA accelerator card and argue an
order of magnitude better hardware efficiency compared to the popular Poseidon
hash. Our fully-pipelined Vision Mark-32 implementation runs at 250 MHz and uses
398 kLUT and 104 kFF. Lastly, we delineate how to implement each step efficiently
in hardware.
Keywords: Vision, SNARKs, Arithmetization-oriented hash, ZKP, FPGA, Hardware

1 Introduction
Zero-knowledge (ZK) proof systems are the core components of various applications such as
blockchains, cryptocurrencies, and web3 technologies. Among ZK proof systems, succinct
non-interactive arguments of knowledge (SNARKs), are popular choices particularly due to
their small proof size, fast verification, and viable scalability in blockchain protocols. As ZK
systems are increasingly deployed in different applications, there is a need to enhance their
efficiency. The primary computational bottleneck in ZK systems lies in the underlying
hash functions they employ. Traditional hash functions (e.g., [GKM+09, BDPvA11]
designed over binary fields are optimized for computational efficiency. However, they have
high arithmetization costs, leading to excessively large trace matrices that lead to poor
performance within ZK systems.

In response, a myriad of arithmetization-oriented ciphers emerged to enhance the
efficiency of hash functions and encryption within advanced cryptographic protocols, such
as ZK systems, fully homomorphic encryption (FHE), and multiparty computation (MPC).
Examples of arithmetization-oriented designs are [AMT22,GHR+22,BBC+22,ARS+15,
CCF+18,MJSC16,DEG+18,HL20,DGH+23,CIR22,CHMS22,HKL+22,SLST23].

For hashing in ZK proof systems, the popular choices are Poseidon [GKR+21a], which
is analyzed in various works [BCD+20,KR21,BBLP22,ABM23,Ste24b], Rescue [AAB+20],
and XHash [AKM23]. The popular choices of ZK-friendly hash functions all operate over
finite fields of large (≈ 264) prime characteristic. Diamond and Posen [DP23] introduce
Binius, a novel SNARK, designed over binary tower fields. Binary fields are widespread
in cryptographic algorithms (e.g. AES [DR02]) and are known for their computational
efficiency. Since Binius operates over binary fields, the common choices for ZK-friendly

mailto:tomer@3milabs.tech
mailto:mail@mahzoun.me
mailto:{dsijacic,jimpo}@ulvetanna.io

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 1

hash functions are not usable. Therefore, there is a need for a ZK-hash function that
operates over the binary tower fields. A natural choice for such function is Vision [AAB+20]
instantiated in Sponge [BDPVA08] construction.

In this paper, we specify an instance of Vision, defined over Fan–Paar tower fields [FP97].
We describe how to implement Vision Mark-32 in hardware efficiently. We write RTL code
in SystemVerilog, and present implementation results on the Alveo U55C datacenter card.

Vision Mark-32 is a Sponge construction instantiated based on the Vision permutation
with a modified number of rounds as the underlying cryptographic primitive. The result of
our implementation can be found in Section 4. Our primary contribution is the introduction
of Vision Mark-32, with an optimized number of rounds and efficient MDS matrix, for an
efficient hashing process within SNARKs. We summarize our contributions as follows:

• Introduce Vision Mark-32: Vision Mark-32 is a sponge construction using a
specific instance of Vision operating over F232 with state size 24. The permutation
used in Vision Mark-32 has fewer rounds than the original Vision design, which
makes it perform better. The security arguments of Vision have been reworked for
Vision Mark-32 to ensure it provides the level of security needed.

• Efficient hardware implementation of inversion using binary towers: We
implement the inversion of field elements over F2m efficiently using binary towers
introduced in [FP97]. The cost of inversion is then 1.58 times that of multiplication,
improving over the standard approach requiring normal 32 multiplications when
using XGCD or Lagrange theorem.

• Efficient MDS matrix: We introduce an efficient MDS matrix for the linear layer
of Vision Mark-32. The matrix is derived from a systematic Reed-Solomon code
over an affine subspace of the binary field, and admits an efficient multiplication
procedure due to the additive NTT [LCH14].

• Efficient implementation of the linearized affine layer: The linearized affine
polynomial used in Vision is of high degree and is a dense polynomial. Conversely,
the linearized affine polynomial used in Vision Mark-32 requires 32 constant mul-
tiplication, 32 additions, and 32 squaring in F232 . We use a simple and efficient
approach to convert the affine linearized polynomial over F2m to a binary matrix
over F2, which can be seen as 32 multiplications of field elements, and 32 additions
over F232 , this significantly improves the cost of the affine layer.

• Re-evaluation of security of Vision Mark-32 against Gröbner basis at-
tacks: In [AAB+20], the complexity of the Gröbner basis attack was argued by
the infeasibility of computing the Gröbner basis in grevlex order. We improve the
security argument by analyzing the number of solutions of the polynomial system
that describes Vision and show that even if the Gröbner basis calculation in a specific
weighted monomial ordering is free [Ste24b,Ste24a,BBL+24], still the degree of the
ideal generated by the polynomial system is large enough to guarantee the security
of Vision Mark-32.

Related Work. Arithmetization-oriented designs can be categorized by their performance
in the corresponding applications.

For zero-knowledge proof systems, the performance metrics for the hash functions are
Rank-One Constraint Satisfaction (R1CS) and Plonk for ZK-SNARKs, and Algebraic In-
termediate Representation (AIR) for ZK-STARKs. The performance of the hash functions
is then measured using characteristics of polynomial representation, such as depth, number
of multiplications, etc. Therefore, to obtain a more efficient hash function and simpler
polynomial representation, it is preferred to design primitives that operate over finite fields

2

Figure 1: One round of Vision with two steps.

of large prime characteristics. Important ZK-friendly hash functions over prime fields
are Rescue [AAB+20], Rescue-Prime [SAD20], RPO [AKM+22], XHash [AKM23], Rein-
forcedConcrete [GKL+22], Monolith [GKL+23], Poseidon [GKR+21b], Griffin [GHR+23],
Anemoi [BBC+23].

In the case of fully homomorphic encryption, most arithmetization-oriented designs
typically operate over binary fields. Example of designs over F2 are Kreyvium [CCF+18],
FLIP [MJSC16], FiLIP [MCJS19] that are for FHE with bootstrapping. LowMC [ARS+15],
Rasta [DEG+18], Dasta [HL20], Fasta [CIR22], Pasta [DGH+23], and Chagri [AMT22] for
BGV and BFV. Yet, all such designs are slow and unusable for efficient ZK applications.

2 Preliminaries
In this section, we introduce necessary definitions and theoretical background required to
follow the paper.

2.1 Vision
Vision [AAB+20] is a keyed permutation based on the Marvelous design strategy. Vision
operates over F2n and each round consists of two steps that differ only in the linearized
affine polynomial. We denote the input state of the ith round by Si = (si,0, . . . , si,m−1)
where si,j ∈ F2n . Each step in one round of Vision consists of three operations on the
state:

• Inverse function: π(si,j) = s−1
i,j .

• Linearized affine polynomial: B(si,j) =
∑n−1

k=0 βjs2k

i,j + βn.

• MDS matrix: L(Si) = M · Si.

The only difference between the two steps is the linearized affine polynomial. The
linearized affine polynomial of the second step has the form:

B(x) = β0x + β1x2 + β2x4 + β3,

which is a sparse polynomial. The linearized affine polynomial of the first step is B−1,
which is dense with a high degree. The round function of Vision is depicted in Figure 1.

2.2 Weil Descent
Let q be a power of a prime number, n be a positive integer, and P ⊆ Fqn [x]. Let
{α0, . . . , αn−1} be a basis of Fqn/Fq, then X =

∑n−1
i=0 αixi. Let p ∈ Fqn [x], define

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 3

[p]i ∈ Fq[x1, . . . , xn] by:

p(X) = p(
n−1∑
i=0

αixi) ≡
n−1∑
i=0

αi[p]i mod (xq
0 − x0, . . . , xq

n−1 − xn−1),

where deg([p]i) < q for all 0 ≤ i < n. The system

P ′ = {[p]i : p ∈ P, 0 ≤ i < n} ∪ {xq
i − xi : 0 ≤ i < n}

is called Weil descent system of P, and solutions of P in Fqn are same as the solutions of
P ′ in Fq.

2.3 Fake Weil Descent
Fake Weil descent system is introduced in [HKY15] and is a powerful tool to study the
hardness of solving polynomial systems. We use fake Weil descent systems to improve
the efficiency of computing affine linearized polynomials. Let e < qn be a positive integer,
xe ∈ Fqn [x], then xe can be written as:

xe =
n−1∏
i=0

x
e′

i
i ∈ Fqn [x1, . . . , xn],

in base q. Using the same approach, polynomials in Fqn [x] can be written as polynomials
in Fqn [x0, . . . , xn−1]. Let P ⊆ Fqn [x], P ′ ⊆ Fq[x0, . . . , xn−1] the Weil descent system of P ,
and Pf ⊆ Fqn [x0, . . . , xn−1] the fake Weil descent system of P . Then, the solutions of Pf

over Fqn is the same as the solutions of P ′ over Fq up to an isomorphism [HKY15]. We
use fake Weil descent to convert polynomial systems over F2n to polynomial systems over
F2 with the equivalent set of solutions. The Sage code for converting a monomial over F2n

to a system of polynomials over F2 is described in Code Listing 11.

Code Listing 1: Sage code for computing the fake Weil descent system of a monomial.
1 F.<a> = GF (2^n)
2 R = PolynomialRing (F, n, names=’X’)
3 X = R.gens ()
4 f = sum(X[i]*a^i for i in range(n))
5 I = R.ideal ([g^p - g for g in X])
6 P = sum(vector (b)*m. reduce (I) for b,m in f^t)

2.4 Binary Towers
The tower of field extensions introduced in [Wie88], and further discussed in [Coh92,FP97,
BGM+93] is a recursive construction of fields extensions where each field extension is
constructed by using an irreducible polynomial and the previous field extension. More
precisely, let T0 = F2m , then the binary tower is defined as:

T1 = T0[x0]/F1(x0)
...

Tn = Tn−1[xn−1]/Fn(xn−1),

where Fi(xi−1) is an irreducible polynomial of degree 2 in Tn−1 and Tn is the finite field
F2m2n . In the design of Vision Mark-32, T0 = F2, and Fi(xi−1) = x2

i−1 + xi−1 · xi−2 + 1
1Code is taken from Sage online forum.

https://ask.sagemath.org/question/66060/model-of-polynomial-over-gf2n-as-polynomials-over-gf2/

4

which was shown to be irreducible in [Wie88]. The recursive construction of extension
fields obtains the following binary field tower:

T0 ⊂ T1 ⊂ . . . ⊂ Tn,

where Tn is a vector space over T0 with dimension 2n with respect the following lexicographic
basis [DP23]:

{x0, x1, x0x1, . . . , x0x1 . . . xn−1}.

Each vector v ∈ Tn, of length 2n, can be written as v = v0 +xn−1v1. Arithmetic operations
of the field Tn can be executed more efficiently using the binary towers.

We denote the complexity of addition, constant multiplication, multiplication of field
elements, and inversion over F2m2n with An, Cn, Mn, and In respectively. Then, the
complexity of each operation is analyzed in [FP97] as follows.

Addition. The addition of field elements is cheap regardless of whether using binary tower
fields. For the case of fields with characteristic 2, the addition v1, v2 ∈ Tn, corresponds to
their bitwise XOR v1 ⊕ v2. The complexity of addition is An = 2nA0 where A0 is the cost
of addition over F2m .

Multiplication by constant. Multiplication of v ∈ Tn with the constant xn−1 can be
executed in Θ(2n). The complexity of multiplication with constant is

Cn = C0 + (2n − 1)A0.

Multiplication of field elements. Multiplication of v1 = α1xn−1 + α0 and v2 = β1xn−1 +
β0, is done via three multiplications in Tn−1. In general:

v1 · v2 = (α0β1 + β0α1 + α1β1xn−2)xn−1 + α0β0 + α1β1,

which can be computed by [DP23]:

α1β1x2
n−1 + (α0β1 + α1β0)xn−1 + α0β0 − α1β1(x2

n−1 + xn−2xn−1 + 1).

The complexity of multiplication is:

Mn = 3nM0 + 6(3n − 2n)A0 + 3n − 1
2 (C0 − A0).

A similar approach to multiplication is also known as Karatsuba method [KO62], that has
complexity of O

(
nlog2(3)).

Squaring. The square of vector v = α1xn−1 + α0 is:(
α2

1xn−2
)

xn−1 + (α2
0 + α2

1).

The complexity of squaring a field element is:

Sn = 2nS0 + n2nA0 + (2n − 1)(C0 − A0).

Inversion. The inverse of a field element v = α1xn−1 + α0 is:

v−1 = (α1xn−1 + α0)−1 =
(
α1∆−1)

+ ∆−1(α0 + α1xn−2),

where ∆ = α0(α0 + α1xn−2) + α2
1. Computing the inverse of an element has asymptotic

complexity of O
(
nlog2(3)). For the detailed analysis of the complexity of inversion, we

refer to [FP97, Section IV].

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 5

3 Vision Mark-32
Vision Mark-32 is a hash function instantiating a Sponge construction using the Vision
permutation [AAB+20]. Vision Mark-32 has 8 rounds and operates over F232 , with state
size of m = 24, and capacity of c = 8. The security level guaranteed by Vision Mark-32 is
128 bits. In Algorithm 1, the pseudocode of Vision Mark-32 hash function is described. M
is the MDS matrix and its structure is described in Subsection 3.3, and Cr,1, Cr,2 ∈ F24

232

are round constants for rth round.

Algorithm 1 Underlying permutation of Vision Mark-32 hash function with number of
rounds = 8 and state size = 24.
Input: State S = (s1, . . . , s24) ∈ F24

232

Output: Result of applying Vision Mark-32 permutation on S

1: for r = 1 to 8 do
2: for i = 1 to 24 do
3: S[i] = S[i]−1

4: S[i] = B−1(S[i])
5: S = M · S + Cr,1
6: for i = 1 to 24 do
7: S[i] = S[i]−1

8: S[i] = B(S[i])
9: S = M · S + Cr,2

10: return S

3.1 Inverse Function
The inverse function is the only non-linear operation in the round function of Vision
Mark-32. To efficiently implement inversion over F232 , the construction proposed by
Wiedemann [Wie88] is used. That is, each element of F232 is represented as α = a + x4b,
where a, b ∈ F216 , with the irreducible polynomial F (x4) = x2

4 + x3x4 + 1. To inverse α,
we compute:

α−1 = b∆−1 + ∆−1(a + bx3),

where ∆ = a(a + bx3) + b2. To compute ∆−1, we recursively compute inversion in the
subfield F216 , which itself require inversion in the subfield F28 . This way, inversion is
reduced to inversion over F2 which is trivial. In our implementation, the cost of the
inversion operation over F232 is 1.58 times the cost of multiplication, whereas normal
inversion using XGCD requires ≈ 32 multiplications.

3.2 Linearized Affine Layer
The linearized affine layer is one of the main bottlenecks of performance in hardware
implementation. Mainly because of its density and large number of multiplications over
the operating field, F2n . A linearized affine layer over F2n has the form:

B(x) =
n−1∑
k=0

βkx2k

+ βn.

The polynomial B(x) has n terms, and evaluating it directly requires n constant multipli-
cation, n additions, and n squaring in the F232 .

6

However, B(x) is an affine function over F2. To efficiently compute B(x) for any
x ∈ F2n we convert x to a binary vector V = (V0, . . . , Vn−1) ∈ Fn

2 and transform the
linearzied polynomial to a matrix over F2. Converting monomials of B(x) to their Weil
descent system using Code Listing 1 is time-consuming and impractical. However, to
compute the Weil descent system of B(x), we only need to compute the matrix M1 for the
monomial x2, using M1 we then can compute the matrix for x2i as Mi = M i

1. The matrix
representation of B(x) in GLn(2) is:

M(V) =
n−1∑
i=0

Bi · Mi(V) + Bn, (1)

where B is a matrix representing the constant multiplication. The matrix M(V) can be
computed using n matrix squaring once the matrix M1 is calculated. The Sage code to
convert an affine linearized polynomial to a matrix in GLn(2) is given in Algorithm 2.

Algorithm 2 Algorithm to compute the matrix representation of affine polynomial over
GLn(2).
Input: Affine polynomial B(x) =

∑n−1
k=0 βkx2k + βn.

Output: Matrix M ∈ GLn(2) corresponding to B.
1: M [0] = Matrix of monomial x.
2: M [1] = Matrix of the monomial x2.
3: for i = 2 to n − 1 do ▷ M [i] is the matrix of the monomial x2i .
4: M [i] = M [i − 1] · M [1]
5: for i = 0 to n − 1 do ▷ C[i] is the matrix corresponding to the constant βi.
6: M [i] = C[i] · M [i]
7: return

∑n−1
i=0 M [i] + C[n]

3.3 MDS Matrix
In [LCH14], a novel basis of polynomials over a finite field of characteristic 2 is introduced
for efficient encoding and decoding of Reed-Solomon erasure codes. The same basis is used
in Vision Mark-32 to generate the MDS matrix. We fix a binary field K = F2n with F2-basis
⟨β0, . . . , βn−1⟩. For each j ∈ {0, . . . , 2n − 1}, we define ωj := j0 · β0 + . . . + jn−1 · βn−1,
where (j0, . . . , jn−1) are j’s bits.

Writing Ui := ⟨β0, . . . , βi−1⟩ for the i-dimensional F2-subspace generated by the first i
basis elements, we set Wi(X) :=

∏
u∈Ui

(X − u), a subspace polynomial of degree 2i; its
evaluation map Wi : K → K is F2-linear.

Ŵi(X) := Wi(X)
Wi(βi) is its normalized variant; moreover, it satisfies Ŵi(βi) = 1, and is also

F2-linear.
Finally, for each j ∈ {0, . . . , 2n − 1}, we set:

Xj(X) =
n−1∏
i=0

(Ŵi(X))ji ,

where again (j0, . . . , jn−1) are j’s bits. Since each Xj(X) is of degree j, the set

{(X0(X), . . . , X2n−1(X))}

yields a K-basis of K[X].
For a state size of m, U [i][j] will contain Wi(βj), for each i ∈ {0, . . . , ⌈log m⌉} and j ∈

{0, . . . , ⌈log m⌉ + 1}. This information alone is be enough to compute Wi(ωj) for each j ∈

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 7

{0, . . . , 2 · log m−1}, using merely some additions, since the Wis are F2-linear (in particular,
additively homomorphic). In order to compute the row Wi(β0), . . . , Wi(β⌈log m⌉+1), given
the respective values of Wi−1 on these points, we use the recursive identity Wi(X) =
Wi−1(X) · (Wi−1(X) + Wi−1(βi−1)). The sage code for computing U [i][j] is described
in Code Listing 2.

Code Listing 2: Sage code for to initialize U[i][j] and normalizing it.
1 # mds_field is a binary tower.
2 U = [[self. mds_field . from_integer (2^j) for j in range(ceil(log(m ,2))

+ 1)]]
3 for i in range (1, ceil(log(m ,2))):
4 U. append ([U[i - 1][j] * (U[i - 1][j] + U[i - 1][i - 1]) for j in

range(ceil(log(m ,2)) + 1)])
5

6 for i in range(ceil(log(m ,2))):
7 normalization_constant = self. mds_field . from_integer (1) / U[i][i

]
8 U[i] = [U[i][j] * normalization_constant for j in range(ceil(log

(m ,2)) + 1)]

The next step is to expand the matrix horizontally. W [i][j] will contain Ŵi(ωj) for
each i ∈ {0, . . . , ⌈log m⌉} and j ∈ {0, . . . , 2 · log m − 1}. This can be done by only using
additions, having computed the values of U [i][j]. The code for horizontal expanding is
described in Code Listing 3.

Code Listing 3: Sage code for to horizontal expansion of the matrix.
1 W = []
2 for i in range(ceil(log(m ,2))):
3 W_i = [self. mds_field . from_integer (0)]
4 for j in range(ceil(log(m ,2)) + 1):
5 # W_i will contain all subset sums of U[i].
6 W_i += [W_i[k] + U[i][j] for k in range (1 << j)]
7 W. append (W_i [: 2 * self.m])

To expand the matrix vertically, X[j][i] will contain Xi(ωj) for each i ∈ {0, . . . , m − 1}
and j ∈ {0, . . . , 2 · log m − 1}. We can again compute these from the Ŵi(ωj) values using
a binary expansion; now multiplying instead of adding. Indeed, this is the definition of Xi.
The sage code to vertically expand the matrix is described in Code Listing 4.

Code Listing 4: Sage code for to vertical expansion of the matrix.
1 X = []
2 for j in range (2 * self.m):
3 X_j = [self. mds_field . from_integer (1)]
4 for i in range(ceil(log(m ,2))):
5 # standard binary expansion , with multiplying instead of

adding
6 X_j += [X_j[k] * W[i][j] for k in range (1 << i)]
7 X. append (X_j [: self.m])

Since the evaluation of a polynomial for the basis [LCH14] is a Reed–Solomon encoding,

8

multiplication by the matrix X gives us that Reed–Solomon encoding in matrix form. Its
rate is 1/2, i.e., it’s the matrix that takes the novel-basis coefficients of a polynomial of
degree < m and returns its evaluations over the domain (ω0, . . . , ω2m−1). We use the “row
convention”: encoding is multiplying a row vector on the right by a wide matrix.

We obtain a systematic version of the same code by performing row reduction echelon
form (RREF) on G. This code differs from the one above by precomposition with a
K-isomorphism on the message space. Indeed, RREF simply amounts to left-multiplying
the m × 2m matrix by an m × m invertible matrix. The result of RREF has the identity
as its left-hand half and our desired MDS matrix on the right. Indeed, one definition of an
MDS matrix is simply the “nonsystematic” part of a systematic MDS code of rate 1/2.
In other words, it’s the extrapolation matrix, which takes the values of some polynomial
of degree less than m on the set ω0, . . . , ωm−1, and returns the evaluations of the same
polynomial on ωm, . . . , ω2m−1.

3.4 Sponge
Vision Mark-32 sponge is depicted in Figure 2. The state of the permutation consists of
R = 16 rate elements, followed by C = 8 capacity elements in F232 . If the number of field
elements in the message is not a multiple of the rate, it must be padded with the smallest
number of zero elements so the number of field elements in the message is the multiple of
the rate. The first two capacity elements are initialized to the 64-bit little-endian unsigned
integer representing the message byte-length2. The remaining elements are initialized to
zero. The first block is absorbed by overwriting 16 input rate elements with a message
block. The remaining blocks are absorbed by overwriting 16 input rate elements with a
message block and overwriting the 8 input capacity elements with the first 8 output rate
elements of the preceding permutation. A digest is squeezed by reading the first 8 output
rate elements from the final permutation.

Figure 2: Vision Mark-32 sponge hash.

3.5 Security of Vision Mark-32
The security of Vision Mark-32 relies on the security of the Marvelous family [AAB+20],
and generic security offered by Sponge constructions. The complexity of different attacks
using state-of-the-art approaches against Vision Mark-32 is described in Table 1.

3.5.1 Gröbner Basis Attacks

Arguing the security of a cryptographic primitive against Gröbner basis attacks is usually
done via arguing the hardness of computing the Gröbner basis in grevlex order, which is

2the proof for this padding scheme using domain separation can be found in the full version.

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 9

Table 1: Cryptanalysis Techniques, the required number of rounds shows the number of
rounds to ensure security against a specific attack.

Type of Attack Required Number of Rounds
Differential Cryptanalysis 1
Linear Cryptanalysis 1
Higher Order Differentials 2
Interpolation Attacks 4
Gröbner Basis Attacks 3

believed to be the most efficient way to compute the Gröbner basis for a general system.
The complexity of computing Gröbner basis in grevlex order is:

O
((

n + d

d

)ω)
,

where n is the number of variables in the system, d is the solving degree of the system,
and 2 < ω < 3 is the linear algebra constant. Estimating the solving degree d for
structured systems, such as the systems describing cryptographic hash functions, is not
a straightforward task. In [AAB+20], the authors computed the solving degree for a toy
version of Vision with small parameters and extrapolated the behavior of solving degree
using linear regression. Yet, the extrapolation of solving degree is a heuristic approach and
its correctness has not been proven. Recently, in [Ste24b, Ste24a, BBL+24] the authors
described an approach to computing the Gröbner basis for free in a tailored weighted term
ordering and estimate the hardness of solving the system as the complexity of transforming
such Gröbner basis to the lex ordering, in which the system is triangular and easy to solve
using univariate polynomial solving and substituting the roots in the rest of the system.
In this case, the complexity of transforming the basis to Gröbner basis in lex order is:

O (nDω) ,

where D is the degree of the ideal formed by the polynomial system that describes the
hash function. The degree D of the ideal of the system represents the number of solutions
to the polynomial system over the algebraic closure of the field and can be estimated using
the Bézout theorem.

Theorem 1 (Bézout Theorem). Let F be a field and let F be the algebraic closure of
F , let f1, . . . , fn ∈ F [x1, . . . , xm] be homogeneous polynomials where degree of fi is di, the
number of solutions of f1 = . . . = fn = 0, is given by:

n∏
i=1

di,

if the ideal ⟨f1, . . . , fn⟩ is zero-dimensional.

Using the same polynomial modeling of Vision as in [AAB+20], the degree of the ideal
of Vision for state size m and number of variables n with rate r and capacity c, can be
computed as:

2mn∏
i=1

di = 5rc4 + 4r5c + 52m(n−1).

Therefore, we re-evaluate the complexity of Gröbner basis attack against Vision Mark-32
by analyzing the number of the solutions to the system in Table 1.

10

4 Implementation
We implement Vision Mark-32 in SystemVerilog targeting Alveo U55C High Performance
Compute Card featuring Xilinx VU47P FPGA. We aim to use a Gen4 PCIe shell with
512-bit interface running at 250 MHz.

4.1 Tower field arithmetic
Tower field arithmetic is known for it’s efficiency in hardware. Table 2 shows the resource
cost of basic arithmetic blocks for the 32-bit binary tower. For comparison, we present
the resource cost of a single-cycle 32-bit unsigned integer multiplier. Multiplication and
squaring circuits require a single clock cycle, while the inversion is fully pipelined and
requires 3 cycles.

Table 2: Arithmetic circuit complexity implemented at 250 MHz for: multiply (MUL),
square (SQR) and invert (INV) operations.

Circuit LUT FF CARRY8 Max Freq. [MHz]
32-bit tower MUL 521 0 0 378
32-bit tower SQR 43 0 0 791
32-bit tower INV 821 111 0 280
32-bit integer MUL 1107 0 96 192

We acknowledge that 32-bit integer multiplication can be implemented using 2–3
DSP48E2 units. However, as these are hard IP blocks, i.e. ASIC components within the
FPGA, a more representative comparison in terms of silicon efficiency can be made this
way. We allow the use of fast CARRY8 chains for carry propagation—the critical path
of the integer arithmetic circuits. The single-cycle 32-bit tower multiplier is over 4 times
more efficient in terms of LUT-delay product compared to its unsigned integer counterpart.
Squaring is nearly free in this tower field, whereas integer squaring is approximately the
same as multiplication. Tower field inversion is only 1.58 times more expensive than
multiplication.

Lastly, integer multiplier does not include modular reduction, whereas all tower opera-
tions do so by design.

4.2 Vision Mark-32 permutation
Single round of Vision Mark-32 permutation consists of 48 round constant additions,
48 tower-field inversions, 48 affine linearized polynomial evaluations and 2 MDS matrix
multiplications. We implement a fully pipelined permutation round with 28 stages.

Table 3 shows total resource utilization of a single Vision Mark-32 permutation round
broken down into components.

Table 3: Vision Mark-32 permutation round circuit complexity, implemented at 250 MHz.
Component LUT FF
Inversion 40.2 k 6.8 k
Evaluate B 0.3 k 0.8 k
Evaluate B−1 0.3 k 0.8 k
MDS matrix multiplication 9.2 k 4.6 k
Total 50.0 k 13.0 k

Sponge absorb and squeeze do not use any additional resources other than wiring.

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 11

4.3 Performance comparison
Due to the large volume of data that needs to be processed in the context of ZKP
throughput is the most pressing bottleneck. Therefore, fully pipelined implementations are
favorable. We compare 3 fully-pipelined implementations, each capable of performing 400 M
hashes per second. This limitation is dictated by the the Gen4 PCIe link, capable of
providing 512-bits at 250 MHz.

Table 4 compares fully-pipelined implementation of Vision Mark-32 with Grøstl-
256 [GKM+09] and Poseidon [GKR+21b]. The former is a SHA3 competition finalist,
designed with traditional symmetric cryptography practices. The later is an arithmetization
friendly hash function.

Table 4: Performance comparison, implemented at 250 MHz.
Hash LUT FF CARRY8 DSP Latency Throughput
Grøstl 132 k 62 k 0 0 82 64 Gbit/s
Vision Mark-32 398 k 104 k 0 0 112 128 Gbit/s
Poseidon 868 k 909 k 79 k 5192 870 128 Gbit/s

LUTs are the bottleneck for both Grøstl and Vision Mark-32. Since Poseidon uses
DSPs it is difficult to make a direct comparison with LUT-only designs. Assuming the
32-bit unsigned multiplier from Table 2 corresponds to 2 DSPs used to implement 32-bit
multipliers we can estimate the LUT cost of the fully-pipelined Poseidon hasher to 3.74
million LUTs. Table 5 provides comparison in terms hardware efficiency expressed as
throughput per LUT, as well as qualitative metrics.

As a SHA3 finalist Grøstl has undergone thorough scrutiny of the community and
stood the test of time. Moreover, Grøstl is based on AES, the most scrutinized algorithm
of all. Marvelous design strategy is based on AES design strategy too. On the other hand,
Poseidon is a more novel design.

Unlike Grøstl, Poseidon was designed with efficient arithmetization in mind. However,
64-bit Goldilocks field on which Poseidon is based, can be up to 64 times less efficient
when dealing with 1-bit values.

Grøstl-256 is a Merkle–Damgård construction with a 512-bit compression function, and
thus hashes an input of size 256 bits per compression. Both Vision Mark-32 and Poseidon
are Sponge constructions with rates of 512 bits. Despite being arithmetization friendly,
Vision Mark-32 is only 33% less efficient than Grøstl in terms of throughput per LUT.

Table 5: Additional comparisons.
Hash kbps/LUT Arithmetization-friendly
Grøstl 485
Vision Mark-32 322 ✓✓
Poseidon 34 ✓

5 Conclusion
We introduced Vision Mark-32, a hash function for zero-knowledge applications, which is
a sponge construction instantiated with a modified version of Vision with an optimized
number of rounds and an efficient MDS matrix. We implement Vision Mark-32 in hardware,
targeting a popular data center card. We delineated the efficient implementation of each
step. Furthermore, we showed the advantages of tower arithmetic introduced in [FP97].
Efficient binary operations, especially often prohibitively expensive inversion, open new
venues for design of cryptographic primitives. In this particular instance, we attain

12

hardware efficiency of a fast classical algorithm, while still allowing efficient arithmetization
described in [DP23].

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symmetric Cryptol., 2020(3):1–45, 2020.

[ABM23] Tomer Ashur, Thomas Buschman, and Mohammad Mahzoun. Algebraic
cryptanalysis of poseidon. Technical report, 2023. Under submission.

[AKM+22] Tomer Ashur, Al Kindi, Willi Meier, Alan Szepieniec, and Bobbin Threadbare.
Rescue-prime optimized. Cryptology ePrint Archive, Paper 2022/1577, 2022.
https://eprint.iacr.org/2022/1577.

[AKM23] Tomer Ashur, Al Kindi, and Mohammad Mahzoun. Xhash8 and xhash12:
Efficient stark-friendly hash functions. IACR Cryptol. ePrint Arch., page
1045, 2023.

[AMT22] Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. Chaghri - A
fhe-friendly block cipher. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 139–150. ACM, 2022.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for mpc and fhe. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages
430–454, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. New design techniques for ef-
ficient arithmetization-oriented hash functions:anemoi permutations and
jive compression mode. Cryptology ePrint Archive, Paper 2022/840, 2022.
https://eprint.iacr.org/2022/840.

[BBC+23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. New design techniques for effi-
cient arithmetization-oriented hash functions: Anemoi permutations and
jive compression mode. In Advances in Cryptology – CRYPTO 2023: 43rd
Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20–24, 2023, Proceedings, Part III, page 507–539, Berlin,
Heidelberg, 2023. Springer-Verlag.

[BBL+24] Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala,
Morten Øygarden, Léo Perrin, and Håvard Raddum. The algebraic freelunch
efficient gröbner basis attacks against arithmetization-oriented primitives.
Cryptology ePrint Archive, Paper 2024/347, 2024. https://eprint.iacr.
org/2024/347.

[BBLP22] Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, and Léo Perrin. Al-
gebraic attacks against some arithmetization-oriented primitives. IACR
Transactions on Symmetric Cryptology, 2022(3):73–101, Sep. 2022.

https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2024/347
https://eprint.iacr.org/2024/347

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 13

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity – new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO
2020, pages 299–328, Cham, 2020. Springer International Publishing.

[BDPVA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Nigel Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, pages 181–197, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[BDPvA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. The
Keccak Reference. Keccak Team, 2011.

[BGM+93] Ian F. Blake, XuHong Gao, Ronald C. Mullin, Scott A. Vanstone, and Tomik
Yaghoobian. Applications of Finite Fields. The Springer International Series
in Engineering and Computer Science. Springer Science+Business Media,
1993.

[CCF+18] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A
practical solution for efficient homomorphic-ciphertext compression. Journal
of Cryptology, 31(3):885–916, Jul 2018.

[CHMS22] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier
Standaert. Towards case-optimized hybrid homomorphic encryption - featuring
the elisabeth stream cipher. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology - ASIACRYPT 2022 - 28th International Conference
on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5-9, 2022, Proceedings, Part III, volume 13793 of Lecture
Notes in Computer Science, pages 32–67. Springer, 2022.

[CIR22] Carlos Cid, John Petter Indrøy, and Håvard Raddum. Fasta – a stream cipher
for fast fhe evaluation. In Steven D. Galbraith, editor, Topics in Cryptology –
CT-RSA 2022, pages 451–483, Cham, 2022. Springer International Publishing.

[Coh92] Stephen D. Cohen. The explicit construction of irreducible polynomials over
finite fields. Designs, Codes and Cryptography, 2(2):169–174, 06 1992.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A cipher with low anddepth and few ands per bit. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages
662–692, Cham, 2018. Springer International Publishing.

[DGH+23] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. Pasta: A case for hybrid homomor-
phic encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):30–73,
2023.

[DP23] Benjamin E. Diamond and Jim Posen. Succinct arguments over towers of
binary fields. Cryptology ePrint Archive, Paper 2023/1784, 2023. https:
//eprint.iacr.org/2023/1784.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002.

https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2023/1784

14

[FP97] J.L. Fan and C. Paar. On efficient inversion in tower fields of characteristic
two. In Proceedings of IEEE International Symposium on Information Theory,
pages 20–, 1997.

[GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. Horst meets fluid-spn: Griffin for zero-
knowledge applications. Cryptology ePrint Archive, Paper 2022/403, 2022.
https://eprint.iacr.org/2022/403.

[GHR+23] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. Horst meets fluid-spn: Griffin for zero-
knowledge applications. In Helena Handschuh and Anna Lysyanskaya, editors,
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryp-
tology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part III, volume 14083 of Lecture Notes in Computer
Science, pages 573–606. Springer, 2023.

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rech-
berger, Markus Schofnegger, and Roman Walch. Reinforced concrete: A
fast hash function for verifiable computation. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS
’22, page 1323–1335, New York, NY, USA, 2022. Association for Computing
Machinery.

[GKL+23] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian
Rechberger, Markus Schofnegger, and Roman Walch. Monolith: Circuit-
friendly hash functions with new nonlinear layers for fast and constant-
time implementations. Cryptology ePrint Archive, Paper 2023/1025, 2023.
https://eprint.iacr.org/2023/1025.

[GKM+09] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl - a SHA-3 candidate. In Helena Handschuh, Stefan Lucks, Bart
Preneel, and Phillip Rogaway, editors, Symmetric Cryptography, 11.01. -
16.01.2009, volume 09031 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Germany, 2009.

[GKR+21a] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, pages
519–535. USENIX Association, 2021.

[GKR+21b] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for Zero-Knowledge
proof systems. In 30th USENIX Security Symposium (USENIX Security 21),
pages 519–535. USENIX Association, August 2021.

[HKL+22] Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee, and Mincheol
Son. Rubato: Noisy ciphers for approximate homomorphic encryption. In
Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology
– EUROCRYPT 2022, pages 581–610, Cham, 2022. Springer International
Publishing.

[HKY15] Ming-Deh A. Huang, Michiel Kosters, and Sze Ling Yeo. Last fall degree,
hfe, and weil descent attacks on ecdlp. In Rosario Gennaro and Matthew

https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2023/1025

Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 15

Robshaw, editors, Advances in Cryptology – CRYPTO 2015, pages 581–600,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[HL20] Phil Hebborn and Gregor Leander. Dasta - alternative linear layer for rasta.
IACR Trans. Symmetric Cryptol., 2020(3):46–86, 2020.

[KO62] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595, 12 1962.

[KR21] Nathan Keller and Asaf Rosemarin. Mind the middle layer: The HADES
design strategy revisited. In Anne Canteaut and François-Xavier Standaert,
editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II, volume 12697 of
Lecture Notes in Computer Science, pages 35–63. Springer, 2021.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. Novel polynomial
basis and its application to reed-solomon erasure codes. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 316–325,
2014.

[MCJS19] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier
Standaert. Improved filter permutators for efficient fhe: Better instances
and implementations. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta,
editors, Progress in Cryptology – INDOCRYPT 2019, pages 68–91, Cham,
2019. Springer International Publishing.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards stream ciphers for efficient fhe with low-noise ciphertexts. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, pages 311–343, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a
standard specification (sok). IACR Cryptol. ePrint Arch., page 1143, 2020.

[SLST23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and Bobbin
Threadbare. The tip5 hash function for recursive starks. Cryptology ePrint
Archive, Paper 2023/107, 2023. https://eprint.iacr.org/2023/107.

[Ste24a] Matthias Johann Steiner. Zero-dimensional gröbner bases for rescue-xlix.
Cryptology ePrint Archive, Paper 2024/468, 2024. https://eprint.iacr.
org/2024/468.

[Ste24b] Matthias Johann Steiner. A zero-dimensional gröbner basis for poseidon.
Cryptology ePrint Archive, Paper 2024/310, 2024. https://eprint.iacr.
org/2024/310.

[Wie88] Doug Wiedemann. An iterated quadratic extension of gf (2). The Fibonacci
Quarterly, 26(4):290–295, 1988.

https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2024/468
https://eprint.iacr.org/2024/468
https://eprint.iacr.org/2024/310
https://eprint.iacr.org/2024/310

	Introduction
	Preliminaries
	Vision
	Weil Descent
	Fake Weil Descent
	Binary Towers

	Vision Mark-32
	Inverse Function
	Linearized Affine Layer
	MDS Matrix
	Sponge
	Security of Vision Mark-32
	Gröbner Basis Attacks

	Implementation
	Tower field arithmetic
	Vision Mark-32 permutation
	Performance comparison

	Conclusion

