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The conditional disclosure of secrets (CDS) primitive is among the simplest crypto-
graphic settings in which to study the relationship between communication, randomness,
and security. CDS involves two parties, Alice and Bob, who do not communicate but who
wish to reveal a secret z to a referee if and only if a Boolean function f has f(x, y) = 1.
Alice knows x, z, Bob knows y, and the referee knows x, y. Recently, a quantum analogue
of this primitive called CDQS was defined and related to f -routing, a task studied in
the context of quantum position-verification. CDQS has the same inputs, outputs, and
communication pattern as CDS but allows the use of shared entanglement and quantum
messages. We initiate the systematic study of CDQS, with the aim of better understand-
ing the relationship between privacy and quantum resources in the information theoretic
setting. We begin by looking for quantum analogues of results already established in
the classical CDS literature. Concretely we establish the following properties and lower
bounds.

• Closure: Given a CDQS protocol for a function f , we construct CDQS protocols for
the negation ¬f of similar efficiency.

• Amplification: Given a CDQS protocol with single qubit secrets and constant privacy
and correctness errors, we construct CDQS schemes with k qubit secrets and privacy
and correctness errors of size O(2−k), and whose communication and entanglement
costs are increased by a factor of k.

• Lower bounds from Q∗A→B(f): We show that the quantum communication cost of a
CDQS protocol for f is lower bounded by the log of one-way quantum communication
cost with shared entanglement, CDQS(f) = Ω(log Q∗A→B(f)).

• Lower bounds from PPcc: Considering CDQS with perfect privacy, we lower bound
the entanglement plus communication cost of CDQS linearly in terms of PPcc(f),
the classical communication complexity of computing f with unbounded error.

• Lower bounds from QIP[2]cc: Allowing constant privacy and correctness errors, we
lower bound the communication cost of CDQS in terms of QIP[2]cc(f), the cost of
a two message quantum interactive proof for the function f in the communication
complexity setting.

• Lower bounds from HVQSZKcc: Closely related to the above, we show that a similar
lower bound on CDQS from the communication complexity of an honest verifier
quantum statistical knowledge proof for f lower bounds CDQS, up to logarithmic
factors.

Because of the close relationship to the f -routing position-verification scheme, our results
have relevance to the security of these schemes.
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1 Introduction
In this article we study the conditional disclosure of secrets (CDS) primitive in a quantum
setting. CDS involves three parties, Alice, Bob and a referee. Alice holds input x ∈
{0, 1}n, Bob holds y ∈ {0, 1}n, and the referee knows both x and y. Additionally, Alice
holds a secret string z, or (in a quantum context) a quantum system Q. Alice and Bob
cannot communicate with one another, but can each send a message to the referee. Given
a Boolean function f(x, y), the goal is for Alice and Bob’s message to reveal the secret if
and only if f(x, y) = 1. In the classical setting, Alice and Bob’s message consists of bits
and they share a random string; in the quantum setting, they can send qubits and share
entanglement. The CDS primitive is illustrated in Fig. 1.

Classically, CDS has a number of applications in other aspects of cryptography: it
was first studied and defined in the context of private information retrieval [1], and has
been applied in the context of attribute based encryption [2] and secret sharing [3]. CDS
also shares a number of connections to communication complexity [4], and to another
primitive known as private simultaneous message passing (PSM) [5]. In particular, in
both the classical and quantum settings lower bounds on CDS give lower bounds on PSM
[6]. Perhaps most importantly, CDS is among the simplest settings in which we can study
the relationship between privacy, communication, and randomness.

In this work we focus on this last aspect of CDS, but now in the quantum setting.
We ask how privacy, quantum communication, and entanglement are related, specifi-
cally in the context of conditional disclosure of quantum secrets (CDQS), but with the
larger goal in mind of understanding the relationship between these resources broadly in
quantum cryptography. Further, we establish a number of relationships between CDQS
and communication complexity, analogous to the classical results of [4], which may be of
interest to the theory of communication complexity. In the quantum setting, CDQS is
closely related to a primitive known as f -routing [7]. f -routing is studied in the context
of quantum position-verification [7–9]. Towards a better understanding of CDQS, our
focus in this work is on reproducing results on classical CDS in the quantum setting, or
understanding when to not expect quantum analogues of classical results.

Before proceeding, we define classical and quantum CDS more carefully, beginning
with the classical case.
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Figure 1: (a) A CDS protocol. Alice, on the lower left holds input x ∈ {0, 1}n and a secret z from alphabet
Z. Bob, on the lower right, holds input y ∈ {0, 1}n. Alice and Bob can share a random string r. The referee,
top right, holds x and y. Alice sends a message m0(x, s, r) to the referee; Bob sends a message m1(y, r). The
referee should learn z iff f(x, y) = 1 for some agreed on choice of Boolean function f . (b) A CDQS protocol.
The communication pattern is as in CDS. The secret is now a quantum system Q, Alice and Bob can share a
(possibly entangled) quantum state, and send quantum messages to the referee. The referee should be able to
recover Q iff f(x, y) = 1.

Definition 1 A conditional disclosure of secrets (CDS) task is defined by a choice of func-
tion f : {0, 1}2n → {0, 1}. The scheme involves inputs x ∈ {0, 1}n given to Alice, and
input y ∈ {0, 1}n given to Bob. Alice and Bob share a random string r ∈ R. Additionally,
Alice holds a string z drawn from distribution Z, which we call the secret. Alice sends
message m0(x, s, r) from alphabet M0 to the referee, and Bob sends message m1(y, r) from
alphabet M1. We require the following two conditions on a CDS protocol.

• ϵ-correct: There exists a decoding function D(m0, x, m1, y) such that

∀s ∈ S, ∀ (x, y) ∈ {0, 1}2n s.t. f(x, y) = 1, Pr
r←R

[D(m0, x, m1, y) = s] ≥ 1 − ϵ . (1)

• δ-secure: There exists a simulator taking (x, y) as input and producing a distribution
Sim on the random variable M = M0M1 such that

∀s ∈ S, ∀ (x, y) ∈ {0, 1}2n s.t. f(x, y) = 0, ||SimM(x, y) − PM(x, y, z)||1 ≤ δ . (2)

where PM(x, y, z) is the distribution on M produced by the protocol on inputs (x, y)
and secret z.

Considering the cost of a CDS protocol for a function f , we denote by CDS(f) the
maximum of Alice and Bob’s communication size, minimized over protocols Πϵ,δ that
complete the CDS with a fixed choice of ϵ and δ, which we typically take to be ϵ = δ = 0.1,

CDS(f) = min
Π0.1,0.1

max{tA, tB} , (3)

where tA and tB are the number of bits in Alice and Bob’s messages respectively. We
always take tA and tB to be maximized over inputs.

To adapt this definition to the quantum setting, we need to be careful around the
requirement that the classical security and correctness conditions hold for all choices of
secret. In the quantum setting the secret string z is now a quantum system Q, and we
should have correctness and security for all input states. This is succinctly captured by
phrasing the definition in terms of the diamond norm, which is a norm on the distance
between quantum channels in the worst case over inputs.
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Definition 2 A conditional disclosure of quantum secrets (CDQS) task is defined by a
choice of function f : {0, 1}2n → {0, 1}, and a dQ dimensional Hilbert space HQ which
holds the secret. Alice and Bob share a resource system ΨLR, with L held by Alice and
R held by Bob. The task involves inputs x ∈ {0, 1}n and system Q given to Alice, and
input y ∈ {0, 1}n given to Bob. Alice sends message system M0 to the referee, and Bob
sends message system M1. Label the combined message systems as M = M0M1. Label
the quantum channel defined by Alice and Bob’s combined actions N xy

Q→M . We put the
following two conditions on a CDQS protocol.

• ϵ-correct: There exists a channel Dx,y
M→Q, called the decoder, such that the decoder

approximately inverts the combined actions of Alice and Bob on 1 inputs. That is

∀(x, y) ∈ {0, 1}2n s.t. f(x, y) = 1, ||Dx,y
M→Q ◦ N x,y

Q→M − IQ→Q||⋄ ≤ ϵ . (4)

• δ-secure: There exists a quantum channel Sx,y
∅→M , called the simulator, which pro-

duces an output close to the one seen by the referee but which doesn’t depend on the
input state of Q. That is

∀(x, y) ∈ {0, 1}2n s.t. f(x, y) = 0, ||Sx,y
∅→M ◦ trQ −N x,y

Q→M ||⋄ ≤ δ . (5)

An alternative definition of CDQS would keep the secret classical, but still allow quantum
resources. We can refer to this primitive as CDQS’. In fact, as noted in [6], CDQS’ and
CDQS are equivalent, in the sense that for a given function f they use nearly the same
resources. To see why, notice that we obtain a CDQS’ protocol from a CDQS protocol
by fixing a basis for our input system Q. Conversely, we can obtain a CDQS protocol
from a CDQS’ protocol by a use of the quantum one-time pad: Alice applies a random
Pauli Pk to Q and then sends the result to the referee. The choice of key k is hidden in
the CDQS’ protocol. This allows the referee to recover Q iff they can recover k, which
ensures security and correctness of the CDQS.1

We consider two measures of the cost of the protocol. First, we define the commu-
nication cost as the maximum over the number of qubits in Alice and Bob’s messages,
minimized over protocols that complete the task with security and correctness parameter
ϵ = δ = 0.1,

CDQS(f) = min
{Π0.1,0.1}

max{nM0 , nM1} . (6)

Again the message size of a protocol is defined to be the maximum of message sizes over
choices of inputs. Second, we define a measure of the CDQS cost which also counts the
size of the shared resource system, ΨLR,

CDQS(f) = min
{Π0.1,0.1}

max{nL + nM0 , nR + nM1} . (7)

Note that we allow Alice and Bob to apply arbitrary quantum channels to their systems,
so the communication size and resource system size are not obviously related.

We can also study variants of CDS and CDQS where we require either perfect correct-
ness (ϵ = 0), perfect security (δ = 0), or both. We add “pc” to the cost function to denote
the perfectly correct case, so that for example pcCDS(f) denotes the communication cost
of CDS for the function f when requiring ϵ = 0, δ = 0.1. We similarly add “pp” to label
the perfectly private case, and just “p” when we have both perfect correctness and perfect
privacy. These can be combined with overlines to denote the shared resource plus com-
munication cost, and with a Q to label the quantum case. Thus for example ppCDQS(f)

1Because CDQS’ has the exact same inputs and outputs as the classical primitive it is a closer quantum analogue
of CDS. We choose to start with the definition using a quantum secret because this will simplify a number of our
proofs.
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is the quantum communication cost in the perfectly private setting, and pCDQS(f) is
the communication plus shared resource cost in the quantum setting with perfect privacy
and perfect correctness.

Previous work: CDQS was defined in [6]. There, one focus was on the relationship
between CDQS and f -routing. To state this relationship, we first define the f -routing
primitive.

Definition 3 A f -routing task is defined by a choice of Boolean function f : {0, 1}2n →
{0, 1}, and a d dimensional Hilbert space HQ. Inputs x ∈ {0, 1}n and system Q are given
to Alice, and input y ∈ {0, 1}n is given to Bob. Alice and Bob exchange one round of
communication, with the combined systems received or kept by Bob labelled M and the
systems received or kept by Alice labelled M ′. Label the combined actions of Alice and
Bob in the first round as N x,y

Q→MM ′. The f -routing task is completed ϵ-correctly if there
exists a channel Dx,y

M→Q such that,

∀(x, y) ∈ {0, 1}2n s.t. f(x, y) = 1, ||Dx,y
M→Q ◦ trM ′ ◦N x,y

Q→MM ′ − IQ→Q||⋄ ≤ ϵ , (8)

and there exists a channel Dx,y
M ′→Q such that

∀(x, y) ∈ {0, 1}2n s.t. f(x, y) = 0, ||Dx,y
M ′→Q ◦ trM ◦N x,y

Q→MM ′ − IQ→Q||⋄ ≤ ϵ . (9)

In words, Bob can recover Q if f(x, y) = 1 and Alice can recover Q if f(x, y) = 0.

f -routing was defined in [7] in the context of quantum position-verification (QPV). In a
QPV scheme, a verifier sends a pair of messages to a prover, who should respond by com-
puting a function of the input messages and returning them to the verifier. The scheme
should be thought of as occurring in a spacetime context, and the goal is for the prover to
convince the verifier that they are performing computations within a specified spacetime
region. In that context, performing f -routing means cheating in a corresponding QPV
scheme.

The following relationship between CDQS and f -routing was proven in [6].

Theorem 4 A ϵ-correct f -routing protocol that routes n qubits implies the existence of a
ϵ-correct and δ = 2

√
ϵ-secure CDQS protocol that hides n qubits using the same entangled

resource state and the same message size. A ϵ-correct and δ-secure CDQS protocol hiding
secret Q using a nE qubit resource state and nM qubit messages implies the existence of a
max{ϵ, 2

√
δ}-correct f -routing protocol that routes system Q using nE qubits of resource

state and 4(nM + nE) qubits of message.

From this relationship, upper and lower bounds on f -routing place corresponding upper
and lower bounds on CDQS. We highlight however that the transformation between
CDQS and f -routing preserves the size of the resource system, but not the resource system
itself. In fact, CDQS for arbitrary f can be performed using shared classical randomness,
while f -routing even for some natural functions requires shared entanglement [10].

CDQS is also related to its classical counterpart by the following statement.

Theorem 5 An ϵ-correct and δ-secure CDS protocol hiding 2n bits and using nM bits of
message and nE bits of randomness gives a CDQS protocol which hides n qubits, is 2

√
ϵ-

correct and δ-secure using nM classical bits of message plus n qubits of message, and nE

classical bits of randomness.

From this theorem, we have that upper bounds on CDS place upper bounds on CDQS.
Considering known upper bounds on CDS (and which therefore upper bound CDQS), we
know that CDS can be performed for a function f using randomness and communication
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upper bounded by the size of a secret sharing scheme with indicator function f , and by
the size of a span program over Zp computing f , with p an arbitrary prime [1]. This last
fact means that CDS and CDQS can be performed for all functions in the complexity
class ModpL using polynomial resources. Considering the worst case, there is an upper
bound of 2O(

√
n log n) for all functions [11]. Finally, there are specific functions believed to

be outside of P but which have efficient secret sharing schemes and hence efficient CDS
schemes [12]. Using results on f -routing, we also obtain an upper bound in terms of the
size of a quantum secret sharing scheme with indicator function f [13].

Regarding lower bounds, CDQS inherits some lower bounds from results on f -routing.
In [14], a linear lower bound on resource system size was proven for random choices of f ,
although their model assumes Alice and Bob apply unitary operations rather than fully
general quantum channels. Recently a lower bound on entanglement in perfectly correct
f -routing for some functions was proven in [10]. Concretely, their bound gives in the
CDQS setting that

ppCDQS(f) = Ω(log rank g|f ) ,

pcCDQS(f) = Ω(log rank g|¬f ) , (10)

where g|f is a function which satisfies g(x, y) = 0 iff f(x, y) = 0. For some natural func-
tions this leads to good lower bounds, for instance when f(x, y) is the equality function
g|f has full rank, and when f(x, y) is the not-equal function g|¬f has full rank.

We can also relate the above lower bounds on perfectly correct and perfectly private
CDQS to the quantum non-deterministic communication complexity [15]. Suppose Alice
holds input x ∈ {0, 1}n, Bob holds y ∈ {0, 1}n, and Alice and Bob communicate qubits
to compute f(x, y). The non-deterministic quantum communication complexity of f ,
QNPcc, is defined to be the minimal number of qubits exchanged for Alice and Bob to
both output 1 with non-zero probability if and only if f(x, y) = 1. In [15], the quantum
non-deterministic complexity was characterized in terms of the non-deterministic rank of
f .

ppCDQS(f) = Ω(QNPcc(f)) ,

pcCDQS(f) = Ω(coQNPcc(f)) . (11)

The second bound is a quantum analogue of a lower bound on perfectly private CDS in
terms of coNPcc(f) that was proven in [4].

A closely related primitive to CDQS is private simultaneous message passing [5]. A
quantum analogue of PSM was introduced and studied in [16]. Classically, it is known
that a PSM protocol for f implies a CDS protocol for f using similar resources. In this
sense, CDS is a weaker notion than PSM. In [17], the analogous statement for private
simultaneous quantum message passing (PSQM) and CDQS was proven, so that again
CDQS can be interpreted as a weaker primitive than PSQM. One implication is that our
lower bounds on CDQS apply also to PSQM.

Our results: We focus on three aspects of CDQS, which are closure, amplification, and
lower bounds from communication complexity.

We say CDS is closed under negation if for any Boolean function f there is a CDS using
similar resources for the negation of f . Classically, closure of CDS was proven in [18]. We
show CDQS is also closed under negation, and in fact point out that the transformation
from a protocol for f to a protocol for ¬f is both simpler and more efficient than the
analogous classical result. In fact, the transformation is essentially trivial, following a
standard purification argument. We give the formal statement and proof in Section 3.1.

Classically [4] proved an amplification property of CDS: given a CDS protocol for
f with ℓ bit secrets, we can find a protocol for f with kℓ bit secrets for integer k > 0
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which uses a factor of k more communication and randomness, and has correctness and
security errors O(2−k). In Section 3.2 we prove the analogous property for CDQS. As
with closure, we find the quantum proof is simpler than the classical one, again due to
a purification argument. The purified view allows us to prove security of the amplified
protocol by proving correctness of a purifying system, which is easier than considering
security directly.

In [2], a relationship between CDS and one-way classical communication complexity
was proven. In particular they showed

CDS(f) ≥ 1
4 log(RA→B(f) + RB→A(f)) , (12)

where RA→B(f) is the one-way classical communication complexity from Alice to Bob,
and RB→A(f) the one-way communication complexity from Bob to Alice. In Section 4.1
we prove an analogous lower bound in the quantum setting,

CDQS(f) = Ω(log Q∗A→B(f)) . (13)

The proof is simple and apparently unrelated to the classical proof. Further, the bound
(12) was understood to be tight: there exists an exponential gap between CDS cost and
one-way communication complexity. We show that the same is true for quantum one-way
communication complexity and the CDQS cost.

In [4], a number of further relationships between classical CDS and communication
complexity were established. We reproduce three of these (with some modifications) in
the quantum setting. First, [4] related perfectly private CDS and PPcc complexity,

ppCDS(f) = Ω(PPcc(f)) − O(log(n)) . (14)

PPcc(f) measures the cost of outputting a variable z which is biased towards the value
of f(x, y). The cost is defined by the total communication plus a term that grows as the
bias becomes small. We produce a similar lower bound,

ppCDQS(f) = Ω(PPcc(f)) . (15)

Because explicit lower bounds are known for some functions against PPcc, this also gives
new explicit lower bounds for CDQS. In particular this gives a linear lower bound on
ppCDQS for the inner product function.

Regarding fully robust CDS, [4] proved that

CDS(f) ≥ IPcc[2](f) , (16)

where IPcc[2](f) is the communication cost of a two-message interactive proof for the
function f . We prove that2

CDQS(f) ≥ QIPcc[2](f) , (17)

where the right hand side now is the cost of a quantum interactive proof in the commu-
nication complexity setting. Unfortunately, explicit lower bounds are not known against
IPcc[2] or QIPcc[2], so this does not translate immediately to new explicit bounds. How-
ever, as with the classical case, the above bound does point to CDQS as a potentially
easier setting to begin with in the context of trying to prove bounds against QIPcc[2].

2Note that in [4] IPcc[k] denotes a k round protocol, while here we let IPcc[k] denote a k message protocol. A round
consists of a message from the verifiers to the prover and from the prover to the verifiers, so that each round consists
of two messages. The notation we use is consistent with the convention in the quantum complexity literature.

7



Function pCDQS pcCDQS ppCDQS CDQS
Equality Θ(1) Θ(1) Θ(1) Θ(1)

Non-Equality O(n) O(n) Θ(1) Θ(1)
Inner-Product O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n)
Greater-Than O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n)

Set-Intersection O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n)
Set-Disjointness O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n) O(n), Ω(log n)

Figure 2: Known upper and lower bounds on communication cost in CDQS. Blue entries are new to this work.

Function pCDQS pcCDQS ppCDQS CDQS
Equality Θ(n) Θ(1) Θ(n) Θ(1)

Non-Equality Θ(n) Θ(n) Θ(1) Θ(1)
Inner-Product Θ(n) O(n), Ω(log n) Θ(n) O(n), Θ(log n)
Greater-Than Θ(n) Θ(n) Θ(n) O(n), Θ(log n)

Set-Intersection Θ(n) Θ(n) Ω(log n) O(n), Θ(log n)
Set-Disjointness Θ(n) Ω(log n) Θ(n) O(n), Θ(log n)

Figure 3: Known upper and lower bounds on entanglement plus communication cost in CDQS. Blue entries are
new to this work.

Finally, we strengthen our lower bound from QIPcc[2] by pointing out that it has a
zero-knowledge property. We consider honest verifier statistically zero-knowledge proofs
with two rounds. See Section 4.3 for details. Classically, [4] proved the bound

CDS(f) = Ω
(

HVSZKcc[2](f)
log n

)
, (18)

where an overline indicates the communication plus randomness cost of the HVSZK pro-
tocol is being counted. We give a similar bound here,

CDQS(f) = Ω
(

HVQSZKcc[2](f)
log n

)
. (19)

Notice the overline is removed: in the quantum case we are only able to obtain a lower
bound in terms of the communication cost alone.

Fig. 2 summarizes the known upper and lower bounds on communication cost in
CDQS. Lower bounds follow directly from known lower bounds on the quantum one-way
communication complexity of explicit functions such as Inner-Product [19, 20], Greater-
Than [21], and Set-Disjointness [22].

Fig. 3 gives the same when considering communication cost plus entanglement cost.

2 Some quantum information tools
Quantum channels NA→B and N c

A→E are complimentary if there is an isometry VA→BE

such that

NA→B = trE ◦VA→BE(·)VA→BE ,

N c
A→E = trB ◦VA→BE(·)VA→BE . (20)

We will make use of the following property of complimentary channels, see e.g. [23].
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Figure 4: A CDQS protocol, with all system labels and location of each quantum operation.

Remark 6 Given a channel NA→B, there exists a complimentary channel N c
A→E with

dE ≤ dAdB.

A useful measure of how different two quantum channels are is provided by the dia-
mond norm.

Definition 7 The diamond norm distance between two channels M,N is defined by

||M − N ||⋄ = max
|Ψ⟩RA

||IR ⊗ M(|Ψ⟩RA) − IR ⊗ N (|Ψ⟩RA)||1 . (21)

The diamond norm is a function of the probability of distinguishing two quantum channels
in an operational setting [23].

The following theorem was proved in [24].

Theorem 8 Let NA→B : L(HA) → L(HB) be a quantum channel, and let N c
A→E be the

complimentary channel. Let SA→E be a completely depolarizing channel, which traces out
the input and replaces it with a fixed state σE. Then we have that

1
4 inf

DB→A

||DB→A ◦ NA→B − IA→A||2⋄ ≤ ||N c
A→E − SA→E||⋄

≤ 2 inf
DB→A

||DB→A ◦ NA→B − IA→A||1/2
⋄ , (22)

where the infimum is over all quantum channels DB→A.

3 Basic properties
3.1 Closure
Closure of CDS under negation was shown in [18]. We recall the exact statement here
for convenience.

Theorem 9 (From [18]) Suppose that f has a CDS with randomness complexity ρ and
communication complexity t and privacy/correctness errors of 2−k. Then ¬f = 1 − f has
a CDS scheme with similar privacy/correctness error, and randomness/communication
complexity O(k3ρ2t + k3ρ3).

The quantum version of this result is easier to prove and gives a more efficient trans-
formation.
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Theorem 10 (Closure) Suppose we have a ϵ-correct and δ-secure CDQS that reveals a nQ

qubit system conditioned on a function f , uses nM message qubits, and a resource state
|Ψ⟩LR with nE = log dL = log dR. Then there exists a CDQS that reveals a nQ qubit
system conditioned on ¬f , which uses at most nM + 2nE + nQ message qubits, uses the
same resource state, and is ϵ′ = 2

√
δ correct and δ′ = 2

√
ϵ secure.

Proof. Consider the given CDQS protocol for f . Let Alice’s channel be N x
QL→M0 and

Bob’s channel be N y
R→M1 . See figure Fig. 4 for an illustration of the protocol. In the new

CDQS protocol for ¬f , have Alice apply the complimentary channel (N x)c
QL→M ′

0
and

Bob apply the complimentary channel (My)c
L→M ′

0
. This protocol uses the same resource

system as the original, and using Remark 6, we have nM ′ = nM ′
0

+ nM ′
1

≤ nM + 2nE + nQ

as needed.
It remains to show correctness and security of this protocol. To do this it is convenient

to define

N x,y
Q→M( ·Q) ≡ N x

QL→M0 ⊗ N y
R→M1( ·Q ⊗ ΨLR) . (23)

First consider security. We consider (x, y) which are zero instances of ¬f(x, y), and hence
one instances of f(x, y). Then by ϵ correctness of the CDQS for f , we have for all such
(x, y), there exists a decoder channel Dx,y

M→Q such that

||Dx,y
M→Q ◦ N x,y

Q→M − IQ→Q||⋄ ≤ ϵ . (24)

Then by Theorem 8 we get that there exists a completely depolarizing channel Sx,y
Q→M ′

such that

||(N x,y)c
Q→M ′ − Sx,y

Q→M ′ ||⋄ ≤ 2
√

ϵ . (25)

But in the new CDQS protocol the protocol implements (N x,y)c
Q→M ′ , so this is exactly

δ′ = 2
√

ϵ security.
Next we establish correctness. Consider an input pair (x, y) ∈ (¬f)−1(1), so (x, y) ∈

f−1(0). Then by security of the original CDQS, we have that there exists a completely
depolarizing channel Sx,y

Q→M = Sx,y
∅→M ◦ trQ such that

||Sx,y
∅→M ◦ trQ −N x,y

Q→M ||⋄ ≤ δ . (26)

But again by Theorem 8 this mean there exists a decoding channel Dx,y
M→Q such that

||Dx,y
M ′→Q ◦ (N x,y)c

Q→M ′ − IQ→Q||⋄ ≤ 2
√

δ , (27)

which is ϵ′ = 2
√

δ correctness of the CDQS for ¬f .

3.2 Amplification
We will prove a quantum analogue of Theorem 12 from [18], which we state below.

Theorem 11 Let F be a CDS for a function f that supports one bit secrets with correctness
error δ = 0.1 and privacy error ϵ = 0.1. Then for every integer k there exists a CDS G
for f with k-bit secrets and privacy and correctness errors of 2−Ω(k). The communication
and randomness complexity of G is larger than that of F by a factor of k.

This theorem has applications in relating CDS and communication complexity, and we
will need a quantum analogue of this result for the same purpose.

To reproduce this for CDQS, we first of all need to establish the existence of “good”
quantum error correcting codes. By a good code we mean one with distance t and number
of physical qubits nP both linear in the number of logical qubits. Existence of these codes
is established in [25]. We summarize the parameters of their construction here.
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Remark 12 There exist quantum codes with k logical qubits, m physical qubits, and cor-
recting arbitrary errors on t qubits with

k

m
= 1 − H2

(2t

m

)
, (28)

where H2 is the binary entropy function.

Taking t to be a constant fraction of m, we find there are quantum codes with k/m = β
a constant.

An error-correcting code that corrects arbitrary errors on t qubits will also do well in
correcting small errors on all qubits. This is expressed in the next theorem, which we
reproduce from [26].

Theorem 13 Let I be the one-qubit identity channel and E = ⊗m
i=1Ei be an m-qubit inde-

pendent error channel, with ||Ei − I||⋄ < ϵ < t+1
m−t−1 , and let U and D be the encoder and

decoder for a QECC with m physical qubits that corrects t-qubit errors. Then

||D ◦ E ◦ U − I||⋄ < 2
(

m

t + 1

)
(eϵ)t+1 . (29)

Combined with the existence of codes that correct t = βm qubit errors, this theorem
allows for exponential suppression of errors. We make use of this fact in the next theorem,
showing amplification for f -routing.

Theorem 14 Let FQ be a f -routing protocol for a function f that supports one qubit input
systems with correctness error ϵ = 0.1, communication cost c, and entanglement cost E.
Then for every integer k there exists an f -routing protocol GQ′ for f with k-qubit secrets,
privacy and correctness errors of 2−Ω(k), communication cost O(kc), and entanglement
cost O(kE).

Proof. We let Q′ be the k-qubit input to the f -routing protocol GQ′ . Alice encodes Q′

into an error correcting code with k logical qubits, m = k/β physical qubits, and is able
to tolerate t = αm errors with α = 0.6, β constant. Such codes exist by Remark 12. Let
the encoded qubits be systems {Si}m

i=1. Alice and Bob run an instance of FQ on each
share Si. At the output location specified by f(x, y), the receiving party decodes the
error-correcting code and attempts to recover Q. The combined operations of encoding,
running FQ on each share of the code, then decoding define the new f -routing protocol
GQ′ .

We claim that ϵ = 0.1 correctness of each FQ implies 2−Ω(k) correctness of GQ′ . The
action of the m instances of the f -routing protocol can be captured by the channel
E = ⊗m

i=1Ei, with correctness of each instance giving that

||Ei − I||⋄ ≤ ϵ = 0.1 . (30)

Now use Theorem 13 with parameters ϵ = 0.1, t = αm. Using that
(

m
k

)
≤ 2mH2(k/m) with

H2(·) the binary entropy function, we find that

||D ◦ E ◦ U − I||⋄ ≤ C2−γm , (31)

with γ, C > 0 when α ≥ 0.6, as we have assumed. Since m = Θ(k), this gives the needed
correctness.

Finally we note that the new f -routing protocol uses m copies of the original protocol,
with m = O(k), so the communication and entanglement costs are increased by factors
of k as claimed.

Amplification for CDQS follows from the above along with Theorem 4 relating f -
routing and CDQS. We record this fact as the following theorem.

11



Theorem 15 Let FQ be a CDQS for a function f that supports one qubit secrets with
correctness error δ = 0.1 and privacy error ϵ = 0.1, has communication cost c, and
entanglement cost E. Then for every integer k, there exists a CDQS GQ for f with k-qubit
secrets, privacy and correctness errors of 2−Ω(k), and communication and entanglement
complexity of size O(kc) and O(kE), respectively.

Proof. Follows by using Theorem 4 to transform the CDQS into an f -routing protocol,
applying the amplification result from Theorem 14, then using Theorem 4 to turn the
f -routing into a CDQS protocol again.

4 Lower bounds
4.1 Lower bounds from one-way quantum communication complexity
From [2], we have the lower bound

CDS(f) ≥ 1
4 log(RA→B(f) + RB→A(f)) , (32)

so that the classical CDS communication cost is lower bounded by the log of the one-way
communication complexity.

We will prove a similar lower bound in the quantum setting. To do so, we rely on a
reduction that involves Alice performing state tomography on the message system in a
CDQS protocol. We make use of the following result on state tomography.

Theorem 16 (Reproduced from [27]) Given k = O(log(1/δ)d2/ϵ2) copies of an unknown
state ρ, there is a strategy that produces an estimator state ρ̂ which is ϵ close to ρ in trace
distance with probability 1 − δ.

Our reduction is to the quantum one-way communication complexity, with shared
entanglement allowed. We define this next

Definition 17 (Quantum one-way communication complexity) Let f : {0, 1}n ×{0, 1}n →
{0, 1} and δ ∈ [0, 1]. A one-way communication protocol Pδ for f is defined as follows.
Alice receives x ∈ {0, 1}n as input and produces quantum system MA as output, which
she sends to Bob. Bob receives y ∈ {0, 1}n and MA, and outputs a bit z. The protocol is
δ-correct if Pr[z = f(x, y)] ≥ 1 − δ.

The quantum one-way communication complexity of f , Qδ,A→B(f) is defined as the
minimum number of qubits in MA needed to achieve δ-correctness. We write QA→B(f) ≡
Qδ=0.1,A→B(f) Similarly, we can define Q∗δ,A→B(f) where Alice and Bob are allowed pre-
shared entanglement.

We are now ready to prove the main theorem of this section.

Theorem 18 The one-way quantum communication complexity of f and the communica-
tion cost of a CDQS protocol for f are related by

CDQS(f) = Ω(log Q∗B→A(f)) . (33)

Proof. Beginning with a CDQS protocol, we will build a one-way quantum communica-
tion protocol. In the CDQS, we let Bob’s output system be called M1 and Alice’s output
be M0, and label M0M1 = M . To define the one-way protocol, we have Alice and Bob
share k copies of the resource system for the CDQS, and repeat the first round operations
of the CDQS k times. Concretely, Alice inputs the Q subsystem of a maximally entangled

12



state Ψ+
Q̄Q

to the CDQS protocol. In each of the k instances, Bob takes his output M1
and sends it to Alice.

We observe that if f(x, y) = 0, then Q̄ is decoupled from the message system M , at
least approximately. In particular the security statement of the CDQS implies there is a
channel Sxy

∅→M such that

δ ≥ ||Sxy
∅→M ◦ trQ(Ψ+

Q̄Q
) − N xy

Q→M(Ψ+
Q̄Q

)||1 = ||
IQ̄

2 ⊗ σM − ρQ̄M ||1 . (34)

Meanwhile, if f(x, y) = 1, we have that there exists a recovery channel Dx,y
M→Q such that

||Dx,y
M→Q(ρQ̄M) − Ψ+

Q̄Q
||1 ≤ ϵ , (35)

so that, for any product state σQ̄ ⊗ σM

||ρQ̄M − σQ̄ ⊗ σM ||1 ≥ ||Dx,y
M→Q(ρQ̄M) − σQ̄ ⊗ Dx,y

M→Q(σM)||1
≥ ||Ψ+

Q̄Q
− σQ̄ ⊗ σ′Q||1 − ϵ

≥ 1 − 1√
2

− ϵ , (36)

where the last line follows by upper bounding the fidelity of Ψ+
Q̄Q

with any product state
and then applying Fuchs–van de Graaf inequality. Using ϵ = 0.1, the lower bound is
≈ 0.19. Summarizing, we have that for ϵ = δ = 0.1, the trace distance from the product
state is less than 0.1 if f(x, y) = 0 and larger than 0.19 if f(x, y) = 1. Consequently, if
Alice can determine ρ to within constant error from her samples she can determine the
value of f(x, y).

To do this, Alice applies the tomography protocol of Theorem 16 to her k samples.
Using O(log(1/δ)d2/ϵ̃2) samples, she can with probability 1−δ determine a density matrix
ρ̂ which is guaranteed to be ϵ̃ close to ρ. Taking ϵ̃ small enough ensures ρ̂′ is small enough
to distinguish if ρ is within ϵ = 0.1 in trace distance to product, or further than ϵ = 0.19
away from product, so that Alice can determine f(x, y) with probability 1 − δ.

Since ϵ̃ is a constant, this one-way quantum communication protocol uses k = O(d2)
qubits of message, where d is the dimension of Bob’s message. In terms of the CDQS
cost, this leads to

O(22CDQS(f)) = Q∗B→A(f) . (37)

Equivalently,

CDQS(f) = Ω(log Q∗B→A(f)) . (38)

We can also reduce to a setting without shared entanglement, at the expense of
now bounding the sum of the entanglement and communication used in the CDQS and
allowing two-way communication in the communication scenario. In particular, we can
have Alice locally prepare the entangled state used in the CDQS and send Bob’s share
to him, then have Bob apply his first round CDQS operation and send the output back
to Alice. Using this reduction we obtain

CDQS(f) = Ω(log Qδ(f)) . (39)

For the inner product function, [28] gives a linear lower bound on Q∗B→A. As another
variant, we also note in Appendix A that if we restrict to CDQS protocols that im-
plement only Clifford operations, then we obtain a lower bound of Ω(

√
Q∗A→B) on the

communication plus entanglement cost of CDQS.
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Tightness of lower bound from quantum communication complexity
Here, we show that the lower bound derived in Theorem 18 in terms of the communi-
cation complexity is tight. [18] demonstrated this in the classical setting by finding a
function with CDS cost upper bounded by O(log n) and with linear one-way communi-
cation complexity. We show in this section that the same function has linear quantum
one-way communication complexity. It also immediately inherits the logarithmic upper
bound on CDQS form the classical CDS protocol.

Before stating the lower bound, we recall the concept of ϵ-approximate degree of a
function.

Definition 19 Let f : {0, 1}n → {0, 1} be a Boolean function. The ϵ-approximate degree
of f , denoted by degϵ(f), is defined as a minimum degree of a polynomial function p :
{0, 1}n → R satisfying

max
x∈{0,1}n

|f(x) − p(x)| ≤ ϵ . (40)

From [29, Theorem 1.1], we have the following lemma, which sets a lower bound on the
quantum communication complexity of a class of functions.

Lemma 20 Let m, l be positive integers. Let f ′ : {0, 1}m → {0, 1} be a Boolean function.
Define f : {0, 1}ml × {0, 1, . . . , l − 1}m → {0, 1} in the following way. Given an input
(x, y) ∈ {0, 1}ml × {0, 1, . . . , l − 1}m, divide x into m length-l blocks. For each 0 ≤ i ≤
m − 1, choose the bit xi,yi

where yi is the i th letter of y. Let xy be the resulting bitstring,
and we define

f(x, y) := f ′(xy) . (41)
Then, for any ϵ ∈ [0, 1) and any δ ∈ [0, ϵ/2), we have

Q∗δ(f) ≥ 1
4degϵ(f ′) log l − 1

2 log
( 3

ϵ − 2δ

)
. (42)

We apply Lemma 20 to the collision problem defined below.

Definition 21 The Collision Problem Coln : {0, 1}n log n → {0, 1} is a promise problem
defined as follows. Given an input x ∈ {0, 1}n log n, divide x into n blocks of log n bits
each. For each x, define a function fx : {0, 1}log n → {0, 1}log n, where fx(i) is the i-th
block of x. Then, we define

Coln(x) =

1 fx is a permutation,

0 fx is two-to-one.
(43)

If fx is neither a permutation nor two-to-one, Coln is undefined.

We further define a variant of the collision problem.

Definition 22 The problem PColn : {0, 1}4n log n × {0, 1, 2, 3}n log n → {0, 1} is defined as
follows. Given an input (x, y) ∈ {0, 1}4n log n×{0, 1, 2, 3}n log n, divide x into n log n length-
4 blocks. For each 0 ≤ i ≤ n log n − 1, choose the bit xi,yi

where yi is the i th letter of y
and let xy be the resulting bitstring. We define

PColn(x, y) := Coln(xy) . (44)

By taking m = n log n, l = 4, and f ′ = Coln in Lemma 20, we have the following
proposition.

Proposition 23 For any ϵ ∈ [0, 1) and any δ ∈ [0, ϵ/2), we have

Q∗δ(PColn) ≥ 1
2degϵ(Coln) − 1

2 log
( 3

ϵ − 2δ

)
. (45)
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From [30, 31], we get that PColn has

degϵ(Coln) = Ω(n1/3) , (46)

so we get a polynomial lower bound on Q∗δ(PColn). From our lower bound from quantum
communication complexity (Theorem 18), we have

CDQS(PColn) = Ω(log n) . (47)

On the other hand, [18] also puts an upper bound of O(log n) on CDS(PColn), which
puts an upper bound of O(log n) on CDQS(PColn). This gives matching upper and lower
bounds on PColn, and shows that we cannot get a super-logarithmic lower bound on
CDQS in terms of Q∗.

4.2 Lower bounds on perfectly private CDQS from PPcc

In this section we lower bound perfectly private CDQS in terms of the PPcc communication
complexity.

Definition 24 (PPcc) A randomized communication protocol Π involves two parties, Alice,
who has input x ∈ X and Bob who has input y ∈ Y . We say that Π is a PPcc protocol
for f if, for every input (x, y) the protocol outputs f(x, y) with probability larger than or
equal to 1/2 + β with β > 0. The cost of Π is the total number of bits of communication
c plus the log of the inverse bias, c + log(1/β). The PPcc complexity of f , denoted by
PPcc(f), is the minimum cost of any such protocol for f .

Definition 25 (QPPcc) A QPPcc protocol proceeds as a PPcc protocol, but now allows quan-
tum messages. The QPPcc cost of a protocol is defined as the number of qubits of message
exchanged plus the log of the inverse bias. We define QPPcc(f) as the minimal cost over
all such protocols for the function f . We also consider allowing pre-shared entanglement,
in which case we label the protocol a QPP∗,cc protocol and the cost by QPP∗,cc(f).

It was proven in [32] (section 8) that PPcc(f) = Θ(QPPcc(f)).
The classical analogue of the lower bound that we would like to establish, proven in

[4], is as follows.

Theorem 26 (Reproduced from [4]) For every predicate f : {0, 1}n × {0, 1}n → {0, 1},

ppCDS(f) ≥ Ω(PPcc(f)) − O(log(n)) . (48)

Because PPcc(f) = Θ(QPPcc(f)), we can again hope for a lower bound in terms of PPcc

in the quantum setting. We will look therefore for a bound similar to the above but with
the CDQS cost replacing the CDS cost.

To this end, we make use of the following lemma, also invoked and proven in [4].

Lemma 27 (Reproduced from [4]) There exists a randomized algorithm A that given or-
acle access to a distribution D0 and a distribution D1 outputs 1 with probability exactly
1/2 + ||D0 − D1||22/8. Moreover, the algorithm uses three random bits and makes two
non-adaptive queries to the oracles.

Note that based on the random bits, the oracle calls can be either both to D0, both to
D1, or one call to each.

Theorem 28 The communication cost of CDQS and the PPcc complexity are related by

ppCDQS(f) = Ω(PPcc(f)) . (49)
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Proof. We begin with a reduction of a CDQS protocol (here assumed perfectly private)
to the appropriate communication complexity scenario. In the CDQS, we let Alice and
Bob’s outputs be called M0 and M1 respectively, and denote M ≡ M0M1. To define the
one-way protocol, we have Alice prepare the entangled resource state used in the CDQS
protocol, then send this to Bob. Alice and Bob then apply the first round operations
defined by the CDQS taking the secret Q to be a single qubit maximally entangled with
a reference system Q̄. Bob sends his output M1 to Alice. We repeat this four times so
that Alice obtains ρ⊗4

Q̄M
. Alice then takes the third and fourth copies, traces out Q̄, and

replaces it with the maximally mixed state. Since also we always have ρQ̄ = I/dQ̄, this
prepares ρQ̄ ⊗ ρM , so Alice holds two copies of ρQ̄M and then two copies of ρQ̄ ⊗ ρM .

Recall that ρQ̄M and ρQ̄ ⊗ ρM will be identical in f(x, y) = 0 instances due to perfect
privacy, whereas they will be different in f(x, y) = 1 instances due to correctness (assum-
ing ϵ < 2 so that the correctness criterion is not trivial). This means Alice’s task is to
distinguish between ρQ̄M and ρQ̄ ⊗ ρM .

Alice’s strategy is as follows. She applies a Haar random unitary UQ̄M to each state
on Q̄M (with the unitary fixed for all four states), then performs a measurement in
the computational basis. This produces two samples each from distributions that we
call D0(U) and D1(U), where D0(U) are measurement outcomes using the state ρQ̄M

and D1(U) are using the state ρQ̄ ⊗ ρM . There are sufficiently many samples to run
the algorithm of Lemma 27 above, which produces a binary variable z equal to 1 with
probability conditioned on U

p1(U) = 1
2 + 1

8∥D0(U) − D1(U)∥2
2 . (50)

A short calculation demonstrates that∫
dU∥D0(U) − D1(U)∥2

2 = 1
dQ̄M + 1∥ρQ̄M − ρQ̄ ⊗ ρM∥2

2 . (51)

Consequently, the total probability of this procedure yielding z = 1 is exactly

p1 =
∫

dUp1(U) = 1
2 + 1

8(dQ̄M + 1)∥ρQ̄M − ρQ̄ ⊗ ρM∥2
2 . (52)

If Alice’s final output was the value of the variable z, then the fact that ρQ̄M and
ρQ̄ ⊗ ρM are equal if and only if f(x, y) = 0, along with (Eq. (52)), implies that Alice’s
output will be correctly biased on 1 instances, but unbiased on 0 instances. To correct
this asymmetry Alice should at the beginning of the protocol output 0 with some small
probability s and otherwise perform the procedure described above. Doing so, we obtain

• For f(x, y) = 0: p0 = 1+s
2 .

• For f(x, y) = 1: p1 = (1 − s)
(

1
2 + 1

8(dQ̄M +1)∥ρQ̄M − ρQ̄ ⊗ ρM∥2
2

)
.

These will have the correct bias provided we take

0 < s <
∥ρQ̄M − ρQ̄ ⊗ ρM∥2

2

4(dQ̄M + 1) + ∥ρQ̄M − ρQ̄ ⊗ ρM∥2
2

; (53)

the quantity on the right is monotonically increasing with ∥ρQ̄M − ρQ̄ ⊗ ρM∥2
2, so we

would like to determine a lower bound on this quantity for f(x, y) = 1 instances. This is
furnished by correctness, which gives (we define πQQ̄ = IQQ̄/dQ̄Q)

2ϵ ≥ ∥(Dx,y
M→Q ◦ N x,y

Q→M)(Ψ+
QQ̄

) − Ψ+
QQ̄

∥1 + ∥(Dx,y
M→Q ◦ N x,y

Q→M)(πQQ̄) − πQQ̄∥1 (54)
≥ ∥Ψ+

QQ̄
− πQQ̄∥1 − ∥(Dx,y

M→Q ◦ N x,y
Q→M)(Ψ+

QQ̄
− πQQ̄)∥1 (55)

≥ ∥Ψ+
QQ̄

− πQQ̄∥1 − ∥N x,y
Q→M(Ψ+

QQ̄
− πQQ̄)∥1 (56)

= 3
2 − ∥ρQ̄M − ρQ̄ ⊗ ρM∥1 , (57)
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where Ψ+
QQ̄

denotes the maximally entangled state on QQ̄. Here we have used the triangle
inequality and the observation that the norm is non-increasing under the decoding chan-
nel. Recalling that an operator A on a dimension d Hilbert space satisfies (for example
by Hölder’s inequality)

∥A∥1 ≤
√

d∥A∥2 , (58)

we obtain

∥ρQ̄M − ρQ̄ ⊗ ρM∥2
2 ≥ 1

dQ̄M

∥ρQ̄M − ρQ̄ ⊗ ρM∥2
1 ≥ 1

dQ̄M

(3
2 − 2ϵ

)2
. (59)

We therefore conclude that we may take s satisfying

0 < s < s0 , s0 ≡

(
3
2 − 2ϵ

)2

4dQ̄M(dQ̄M + 1) +
(

3
2 − 2ϵ

)2 . (60)

Concretely we choose s = s0/2.
It remains to compute the resulting cost of this QPPcc protocol. The communication

cost is ppCDQS(f) qubits to establish the needed shared entanglement, plus ppCDQS(f)
qubits for Bob to communicate his output system to Alice. We then need to add the
logarithm of the inverse bias, which here is

s = O(1/d2
M) , (61)

so this gives an additional 2nM = 2ppCDQS(f) cost. The resulting bound is then as
written in Eq. (49). Note that we used that PPcc(f) = Θ(QPPcc).

The same construction as in the proof above, now assuming Alice and Bob begin with
the entangled resource state of the CDQS protocol, leads to the bound

ppCDQS(f) = Ω(QPP∗,cc(f)) . (62)

It would be interesting to better understand the relationship between QPP∗,cc and PPcc.

4.3 Lower bounds from quantum interactive proofs
We first review the classical definition of an interactive proof in the communication com-
plexity scenario.

Definition 29 (Reproduced from [4]) An IPcc protocol for a Boolean function f : X×Y →
{0, 1} with k′ rounds proceeds as follows. Each round begins with a two-party protocol
between Alice and Bob after which both parties send a message to Merlin, who sends back
a message that is visible to both Alice and Bob. At the end of all k′ rounds, Alice and Bob
interact again and generate an output. We say that the protocol accepts if both outputs
equal 1. The protocol is said to compute f with completeness error of ϵ and soundness
error of δ if it satisfies the following properties:

• Completeness: For all inputs (x, y) with f(x, y) = 1, there exists a proof strategy for
Merlin such that (x, y) is accepted with probability at least 1 − ϵ.

• Soundness: For all inputs (x, y) with f(x, y) = 0, for any proof strategy for Merlin,
(x, y) is accepted with probability at most δ.

The cost of an IPcc protocol is the maximum over all inputs of the total communication
complexity of the protocol. We also refer to a k′ round protocol as a k = 2k′ message
protocol. The IPcc[k] complexity of f , denoted IPcc[k](f) is the smallest cost of a k-message
IPcc protocol computing f with soundness and completeness error of ϵ = δ = 1/3.
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The quantum definition requires only slight modifications.

Definition 30 QIPcc: As in IPcc, but now allowing quantum messages. Also, we have
Merlin send his response (which can be quantum) to Alice only. We let QIPcc[k](f) denote
the minimal quantum communication cost of a k message QIPcc protocol for f .

With this definition in hand, we show that a good CDQS protocol leads to a good
one round (two message) quantum interactive proof protocol.

Lemma 31 Suppose there is a CDQS protocol for f using t qubits of communication, ρ
qubits of shared entanglement, which hides ℓ bit secrets, and which is ϵ correct and ϵ
secure. Then there is a two message quantum interactive proof protocol for f which uses
t + ℓ + 1 qubits of communication, ρ qubits of entanglement and has completeness error
of ϵ and soundness error of ϵ + 2−ℓ.

Proof. Our proof closely follows the classical case [4]. Alice and Bob carry out the
following QIPcc[2] protocol. They share the same entangled state and execute the same
first round operations as in the given CDQS protocol. Additionally, they share ℓ bits of
randomness in a string labelled z. System Q is prepared in the state |z⟩Q. Alice and Bob
then send their output systems to the referee, who sends back a string z′ to Alice. Alice
checks if z = z′, accepts if so, and sends Bob a single bit indicating that he should accept
as well.

First, consider why this is ϵ correct. When f(x, y) = 1, correctness implies that

||Dx,y
M→Q ◦ N x,y

Q→M − IQ→Q||⋄ ≤ ϵ . (63)

Inserting the input state |z⟩, we get that the referee produces an output σQ with ||σQ −
|z⟩⟨z|Q ||1 ≤ ϵ, which by the Fuchs–van de Graaf inequality implies

F (σQ, |z⟩⟨z|Q) = ⟨z| σQ |z⟩ ≥ 1 − ϵ , (64)

so the referee can correctly determine z with probability at least 1 − ϵ. When the referee
returns z Alice and Bob will accept, so we have ϵ correctness.

Next consider why this is ϵ + 2−ℓ sound. When f(x, y) = 0, the security definition for
CDQS ensures that Merlin’s output is ϵ close to a state which is independent of z,

||σ0
Q − σQ(z)||1 ≤ ϵ . (65)

Alice and Bob accept only if Merlin returns z, so they accept with probability

p = 1
2ℓ

∑
z

⟨z| σQ(z) |z⟩ ≤ 1
2ℓ

∑
z

⟨z| σ0
Q |z⟩ + ϵ = 2−ℓ + ϵ , (66)

as needed.
Notice that the communication cost is t + ℓ + 1 because Alice and Bob send the same

messages they would have in the CDQS, which requires t qubits, Merlin sends back ℓ bits,
and then Alice communicates to Bob whether or not to accept, costing an additional bit.
The entanglement is unchanged from the CDQS protocol.

Next, we want to lower bound the CDQS cost in terms of the QIPcc[2] cost. Recalling
the definition of QIPcc[2], notice that we need to ensure we have correctness and soundness
errors of at most 1/3. If ϵ+2−ℓ > 1/3 or ϵ > 1/3 in our CDQS, the above lemma does not
immediately lead to a QIPcc[2] protocol. We can resolve this however by first applying
the amplification result of Theorem 11 to the CDQS, then applying Lemma 31.
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Theorem 32 The CDQS cost of a function f is lower bounded asymptotically by the
QIPcc[2] cost,

CDQS(f) = Ω(QIPcc[2](f)) . (67)

Proof. Given a CDQS with constant correctness and privacy error ϵ, Theorem 11 allows
us to reduce these to errors of order ϵ′ = O(2−ℓ) and increase the secret length to length
ℓ, while inducing overheads in entanglement and communication by a factor of ℓ. Then
for ℓ large enough ϵ′ + 2−ℓ < 1/3, so that Lemma 31 gives a valid QIPcc[2] protocol.

Zero knowledge quantum interactive proofs
Our QIPcc[2] protocol has the interesting property that it is zero-knowledge in a particular
sense — each verifier doesn’t learn anything about the others input. In this section we
formalize this property by defining zero-knowledge quantum interactive proofs in the
communication complexity setting and give a proof that the CDQS cost of a function f
is lower bounded by the cost of a zero-knowledge quantum interactive proof.

Definition 33 (HVQSZKcc) An honest verifier quantum statistical zero-knowledge inter-
active proof is defined as follows. We let Π be a QIPcc protocol for a Boolean function
f : {0, 1}n ×{0, 1}n → {0, 1}. For inputs (x, y) ∈ f−1(1), let ρk′

AB be the density matrix of
the state held by Alice and Bob at the end of the k′-th round of Π. We consider simulator
protocols ΠS involving two parties SA holding x and SB holding y, and allowing quantum
communication between SA and SB. We divide the ΠS protocol into k′ rounds, each of
which can involve an arbitrary number of messages between SA and SB. We say ΠS is a
δ simulation of Π if after the k′-th round the simulators SA and SB hold a density matrix
σk′ with ||ρk′

AB − σk′
AB||1 ≤ δ. We say (Π, ΠS) is a HVQSZKcc protocol if δ < 1/p(n) for

any function p(n) which is at least polylogarithmic in n.3
To define the cost of a HVQSZKcc protocol, we first specify the notation:

• Let cM be the bits sent between Alice and Merlin plus the qubits sent between Bob
and Merlin in the protocol Π.

• Let cV be the qubits sent between Alice and Bob in the protocol Π.

• Let cS be the qubits sent between SA and SB in the protocol ΠS.

Then we define

HVQSZKcc(f) = min
(Π,ΠS)

(cM + max{cV , cS}) . (68)

We similarly define the cost of a k′ round, k = 2k′ message, protocol and denote it by
HVQSZKcc[k](f).

Lemma 34 The communication complexity of a CDQS protocol for function f is lower
bounded by the one round HVSZKcc cost according to

CDQS(f) ≥ Ω
(

HVSZKcc[2](f)
log n

)
. (69)

Proof. We begin with a CDQS protocol with correctness and privacy errors ϵ, and which
uses t qubits of communication. Apply the amplification result of Theorem 11 with
ℓ = α log(n). Then the resulting protocol hides Θ(log(n)) bit secrets, has correctness and
privacy errors of ϵ′ = Θ(1/nα), and has a communication cost of order Θ(t log(n)).

3We can understand this requirement as a communication complexity analogue of a function being negligible in
the complexity setting.
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From this CDQS protocol, we need to develop a QIPcc protocol Π as well as a simulator
protocol ΠS. For the protocol Π, we use exactly the same construction as in Lemma 31.
In particular, we have Alice and Bob prepare a ℓ = α log n bit random secret z, apply
the same operations as in the CDQS, then send the resulting message system to Merlin.
Merlin responds with his guess z′ of the secret, Alice accepts herself and uses one extra bit
to signal to Bob to accept if z = z′. Recall that this has correctness error ϵ′ and soundness
error ϵ′+ 2−ℓ = O(1/nα), so for n large enough this defines a valid QIPcc protocol (which
requires correctness and soundness errors of less than 1/3).

To define the simulator ΠS, we have SA carry out Alice’s actions in the QIPcc protocol
but now we trace out the message Alice sends to Merlin, and prepare a copy of z in
place of Merlin’s response. SB carries out Bob’s actions in the QIPcc protocol but now
traces out the message Bob would have sent to Merlin. Next, we claim that ΠS is a
δ = O(1/nα/2) simulator of Π, and hence (Π, ΠS) is a valid HVQSZKcc protocol. To check
this notice that since we have a one-round protocol we only need to check the density
matrices on Alice and Bob’s systems is close to that produced in the QIPcc protocol after
the first round. Immediately after Merlin’s response, the density matrix in the protocol
Π is ρ = 1

2ℓ

∑
z ρAB(z) ⊗ |z′(z)⟩⟨z′(z)|, while in ΠS it is σ = 1

2ℓ

∑
z ρAB(z) ⊗ |z⟩⟨z|. The

trace distance is then

|| 1
2ℓ

∑
z

ρAB(z) ⊗ |z′(z)⟩⟨z′(z)| − 1
2ℓ

∑
z

ρAB(z) ⊗ |z⟩⟨z| ||1 ≤ 2
√

1 − F (ρ, σ)

= 2
√

1 − Pr[z = z′]
≤ O(1/nα/2) . (70)

as needed.
The simulator and real protocols both use O(tℓ) = O(t log(n)) bits of communication

to Merlin and no communication to one another, which leads to the stated lower bound.

A comment is that in the classical setting, a lower bound on CDS from a measure of
the complexity of HVSZK that counts the randomness plus communication cost is proven.
This proof makes use of randomness sparsification, which we have no analogue for in the
quantum setting. Because of this, we are so far limited to the above result which bounds
CDQS in terms of the communication cost of a HVQSZKcc protocol.

5 Discussion
In this work, we studied the conditional disclosure of secrets primitive in the quantum set-
ting. Following the classical literature, we have proven closure and amplification results,
and a number of lower bounds from communication complexity. With a single exception,
we obtain close analogues of every known classical result in the quantum setting.

The exceptional case is a result from [4] giving a lower bound on robust CDS from
AMcc. There is a quantum analogue of the relevant classical class (QAMcc), but the results
used to derive this bound classically don’t have a quantum analogue. In particular, the
proof in [4] uses (a communication complexity analogue of) the fact that IP[k] ⊆ AM[2]
for all k, while the quantum analogue of this is not known to be true. Thus while it is
possible there is a lower bound on robust CDQS from QAMcc, we do not see any clear
route towards a proof given this discrepancy from the classical case.

Perhaps the key distinction between classical and quantum CDS is the apparent lack
of any connection between entanglement and communication cost in quantum CDS, com-
pared to the upper bound on randomness from communication that exists for classical
CDS. We leave as an open question whether such an “entanglement sparsification” lemma
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exists for quantum CDS. There are some reasons to not expect one however. For in-
stance, there is no analogous statement for quantum communication complexity, even
while there is one for classical communication complexity. Further, no such connection
between entanglement and communication is known for the broader setting of non-local
computation.

Another basic question we leave open is a possible separation between classical and
quantum CDS: does entanglement and/or quantum communication ever offer an advan-
tage for CDS over randomness and classical communication?

Perhaps the central direction that remains to be better understood is to further char-
acterize the entanglement and communication cost of CDQS for general functions. In
particular, none of the existing lower bound techniques can do better than establishing
linear lower bounds, while the best upper bounds are 2O(

√
n log n). While good explicit

lower bounds are likely largely out of reach (since they imply circuit lower bounds), im-
plicit lower bounds stated in terms of properties of f(x, y) seem to be a viable target.
For instance, we see no obvious obstruction to lower bounding CDQS(f) in terms of a
function of the circuit complexity of f(x, y). Doing so requires moving away from reduc-
tions to communication complexity settings however, and we do not know of any relevant
techniques.
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of Ontario through the Ministry of Colleges and Universities.

A Clifford CDQS
We can consider a simplified setting where the resource system shared in a CDQS pro-
tocol is a stabilizer state, and Alice and Bob’s operations are all Clifford. We refer to
such protocols as Clifford CDQS protocols. In this appendix we show that Clifford CDS
protocols sometimes need more communication and entanglement than general CDQS
protocols. Concretely we prove the following lower bound.

Theorem 35 When restricting to Clifford CDQS protocols, we have

CDQS(f) = Ω(
√

Q∗A→B) . (71)

Proof. (Sketch) The proof follows the proof of Theorem 18. We suppose there is a Clifford
CDQS for the function f with entanglement plus communication cost CDQS(f). To carry
out the one-way quantum communication protocol, Alice and Bob share k copies of the
same entangled |Ψ⟩LR state as they share in the CDQS. Upon receiving their inputs,
Alice and Bob carry out isometric extensions of the first round operations they would
have performed in the CDQS, and perform them on each of the k copies. Alice then
sends her output systems to Bob. Bob now holds a pure state |Ψ⟩⊗k

QMR where M is the
message system of the CDQS and R is a purifying system. Bob performs tomography
to learn |Ψ⟩QMR. Taking k = nQ + nM + nR, Bob can learn |Ψ⟩QMR exactly, but may
fail with exponentially small probability [33]. Given that Bob learns |Ψ⟩QMR, he can use
his classical description of the state to compute if ρQM is close to product or far from
product. If the state is close to product, he outputs 0 as his guess of f(x, y), while if
the state is far from product he outputs 1 as his guess of f(x, y). This succeeds with
probability exponentially close to 1.

The cost of this communication complexity protocol is k times the size of |Ψ⟩QMR.
Taking Q to consist of O(1) qubits, recalling that we took k = nQ + nM + nR, and that
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nR ≤ nM + nL, we obtain that Q∗A→B(f) ≤ k2 = (2nM + nL + nQ)2, which is the needed
lower bound on CDQS(f) ≥ nM + nL.
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