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Abstract. In recent years, quantum technology has been rapidly developed. As
security analyses for symmetric ciphers continue to emerge, many require an evaluation
of the resources needed for the quantum circuit implementation of the encryption
algorithm. In this regard, we propose the quantum circuit decision problem, which
requires us to determine whether there exists a quantum circuit for a given permutation
f using M ancilla qubits and no more than K quantum gates within the circuit
depth D. Firstly, we investigate heuristic algorithms and classical SAT-based models
in previous works, revealing their limitations in solving the problem. Hence, we
innovatively propose an improved SAT-based model incorporating three metrics of
quantum circuits. The model enables us to find the optimal quantum circuit of an
arbitrary 3 or 4-bit S-box under a given optimization goal based on SAT solvers,
which has proved the optimality of circuits constructed by the tool, LIGHTER-R. Then,
by combining different criteria in the model, we find more compact quantum circuit
implementations of S-boxes such as RECTANGLE and GIFT. For GIFT S-box, our model
provides the optimal quantum circuit that only requires 8 gates with a depth of 31.
Furthermore, our model can be generalized to linear layers and improve the previous
SAT-based model proposed by Huang et al. in ASIACRYPT 2022 by adding the
criteria on the number of qubits and the circuit depth.
Keywords: Quantum circuit · Decision problem · SAT · S-box · Linear layer

1 Introduction
Recently, the rapid development of quantum information technology has had a profound
impact on the security of data and communication in cyberspace. To address the emerging
challenges in the post-quantum era, the National Institute of Standards and Technology
(NIST) initiated a public solicitation for post-quantum cryptography algorithms in 2016
and used the complexity of the quantum key search circuit of AES as the benchmark for the
classification of post-quantum public key cryptography algorithms [CJL+16]. Regarding
symmetric ciphers, Grover’s algorithm [Gro96] offers a quadratic speedup in searching for
the correct key given a pair of plaintext and ciphertext. Subsequently, the security analysis
for symmetric ciphers has been actively explored, with many proposals requiring quantum
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circuit implementation for encryption algorithms. So the quantum circuit implementation
of a cipher has attracted significant attention within the cryptography community.

The fundamental unit in optimizing the circuits of ciphers is the circuitry tailored
to optimize cryptographic components, such as S-boxes and linear layers. In classical
circuit design, we typically employ various optimization techniques to reduce metrics.
The most popular one should be the gate equivalents (GE) required by the chip-level
implementation of the ciphers. GE effectively approximates the complexity of digital
electronic circuits. Generally, two components are relevant to the cost. On the other hand,
as an important criterion, latency has been attracting more and more attention. Many
of the applications require low latency, including automobiles, robots, or mission-critical
computation applications. It impacts the throughput of encryption/decryption and plays
an important role in the low-energy consideration of ciphers [BBI+15]. The S-box is one
of the most popular confusion components of symmetric-key ciphers. Many tools are
proposed to optimize the primitive, such as LIGHTER [JPST17] and PEIGEN [BGLS19]. In
addition, the diffusion components are essential matrices and are the most well-known
diffusion components. Although it has been shown to be an NP-hard problem [BMP08],
there is still a growing body of work solely concentrating on decreasing the GE. More
and more concerns for heuristics searching for sub-optimal solutions have arisen (see
[BMP13, KLSW17, TP20, XZL+20, BDK+21, LWF+22, LWS+22] for an incomplete list).

When implementing a quantum circuit for a certain boolean function, the gates under
the classical circuit are usually converted into reversible quantum gates, as the quantum
operation is reversible. However, it is not straightforward to directly translate optimized
classical circuits into quantum circuits. Due to the unique characteristics of quantum
circuits, employing such a direct conversion method may result in increased resource
consumption. There are three common quantum gates called the NCT gate set, the Pauli-
X gate, the CNOT gate, and the Toffoli gate, which can respectively replace the NOT gate,
XOR gate, and AND gate under the classical circuit. Several factors influence the complexity
of quantum circuits, including the number of quantum gates, qubits, circuit depth, and
so on. Currently, the quantum circuit of the symmetric ciphers mainly takes AES as the
research object [GLRS15, LPS20, ASAM18, JNRV20, ZWS+20, HS22, JBS+22, LPZW23].
In 2016, Grassl et al. [GLRS15] presented a comprehensive quantum implementation
scheme that utilized the Grover algorithm to exhaustively search for AES keys. They
analyzed the quantum resource overhead, including the size of the quantum circuit, the
number of qubits needed, and the depth of the quantum circuit. Subsequently, researchers
have continuously proposed and optimized AES quantum circuits using different circuit
structures and considering various quantum circuit metrics.

For the optimization of quantum circuits of symmetric primitives, it is very important
to optimize the cryptographic components. As the only nonlinear part in block ciphers,
the S-box has always been the main content of the research. Based on the public tool,
LIGHTER [JPST17], which was proposed under the background of classical computing and
generated in-place implementation, Dasu et al. proposed LIGHTER-R [DBSC19] which
can give a reversible circuit implementation for a specific 4-bit S-box, along with the
optimization for gate cost. Subsequently, Chun et al. proposed the DORCIS tool [CBC23]
to find depth-optimized quantum circuit implementations for arbitrary 3-/4-bit S-boxes.
For linear transformations, the heuristic algorithm proposed in [XZL+20] can be used to
find efficient implementations of binary matrices of size up to 32 under s-Xor metric, which
is equivalent to the CNOT gate in the quantum circuit. In 2022, Huang et al. [HS22]
presented a SAT-based method to generate the most compact CNOT circuit for invertible
linear transformations over Fn

2 .
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1.1 Our Contributions

In this paper, we investigate three metrics, the number of qubits, the number of gates,
and the circuit depth, which are essential for quantum circuits. To assess the optimality of
a quantum circuit of a permutation f , we present the quantum circuit decision problem,
which requires us to determine whether there exists a quantum circuit for the permutation
f using M ancilla qubits and no more than K quantum gates within the circuit depth D.

Analysis of previous related methods. In order to answer the quantum circuit
decision problem, we investigate and analyze a series of methods both in the classical and
quantum circuits in the literature. They predominantly fall into two categories: the heuristic
algorithm employed to search for reversible quantum circuits, such as LIGHTER-R [DBSC19]
and DORCIS [CBC23], and the SAT-based classical circuit optimization model, such as Lu
et al.’s model [LWH+21] and Huang et al.’s model [HS22]. However, we observe that these
tools are unable to comprehensively answer this question, namely, to prove the optimal
quantum circuit for a permutation. DORCIS is a highly practical heuristic tool, effectively
reducing the depth of quantum circuits. If we require whether a circuit is optimal, we will
not receive an answer as it is a heuristic algorithm. Ancilla qubits are not allowed in the
tool, which also renders it incapable of addressing the problem regarding the number of
qubits. On the other hand, the SAT-based model can prove the optimality in the classical
setting. However, in the quantum setting, the properties of non-fanout and reversibility
render this model incapable of addressing the question.

Proposal of our new SAT model. Building upon the above discussion, we introduce
the improved SAT-based quantum circuit optimization model based on the model in [Sto16,
LWH+21] and present the detailed coding schemes. For the convenience of using the model,
we provide fully automated code generation. Our model incorporates three metrics M , K,
and D, related to the number of qubits, the number of gates, and the circuit depth of the
quantum circuit decision problem.

Applications on permutations. Firstly, we discuss the quantum circuit decision
problem about S-box. By controlling the number of qubits, we can apply the model to find
the smallest gate-count implementation of the S-box, proving the results in LIGHTER-R. We
can also provide circuit implementations of S-box with odd permutation by adding qubits,
which solves the situations that the original model couldn’t handle. Finally, by combining
three metrics, we have achieved the currently optimal circuit for quantum S-boxes. Table 1
and Table 2 show the comparison results with LIGHTER-R and DORCIS, respectively. All of
our experiments are running on AMD EPYC 7302 CPU 3.0Hz with 8-core. For example, for
RECTANGLE S-box, our model proves that the optimal quantum circuit only requires 10 gates
with depth 32, which represents the current optimal circuit, surpassing both LIGHTER-R
and DORCIS. Notably, in Table 2, for optimizing GIFT S-box, DORCIS uses 13 gates with
depth 31. We can find a new quantum circuit with the same depth using only 8 gates.
Furthermore, if we allow an ancilla qubit in the circuit, the depth can be reduced to 30.
Next, we consider a specific type of permutation, the linear permutation, which is commonly
used in the linear layers. For the in-place circuit (no ancilla qubits), in ASIACRYPT 2022,
Huang et al. [HS22] proposed a SAT-based model to find the lower bound of the number
of quantum CNOT gates. Apart from the number of CNOT gates, our model can control
the circuit depth and the number of qubits. All the source codes and results of this paper
are available at https://github.com/Chenjingwen-cyber/Sample_implementation.

https://github.com/Chenjingwen-cyber/Sample_implementation
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Table 1: Result summary of LIGHTER-R and our model.

S-box LUT LIGHTER-R Our model
Gate Depth Gate Depth Time

RECTANGLE [ZBL+15] 65CA1E79B03D8F42 10 34 10 32 70 s
GIFT [BPP+17] 1A4C6F392DB7508E 8 32 8 31 18 s

PRESENT [SOT+21] C56B90AD3EF84712 11 33 11 32 28 s
SKINNY [BJK+16] C6901A2B385D4E7F 10 33 10 31 42 s
MIDORI [BBI+15] CAD3EBF789150246 10 33 10 31 210 s

Multiplicative Inverse in F4
2 [LXX+23] 062493D51EC78ABF / / 10∗ 44 365 s

* These circuits use an ancilla qubit.

Table 2: Result summary of DORCIS and our model.

S-box LUT DORCIS Our model
Gate Depth Gate Depth Time

RECTANGLE [ZBL+15] 65CA1E79B03D8F42 11 32 10 32 70 s
GIFT [BPP+17] 1A4C6F392DB7508E 13 31 8 31 18 s
GIFT [BPP+17] 1A4C6F392DB7508E 13 31 9∗ 30 190 s

ELEPHANT [BCDM21] EDB0214F7A859C36 13 33 12 33 225 s
LBLOCK [WZ11] E9F0D4AB128376C5 10 31 9 31 47 s
UBLOCK [WL21] 749CBAD8FE160325 9 31 8 31 18 s

Multiplicative Inverse in F4
2 [LXX+23] 062493D51EC78ABF / / 10∗ 44 365 s

* These circuits use an ancilla qubit.

1.2 Organization
In Section 2, notations used in this paper are defined, then we introduce the quantum
circuit and SAT/SMT problem. In Section 3, we propose the new SAT-based model for the
optimization of a given permutation. The application of our model is shown in Section 4.
Finally, we conclude and propose future research directions in Section 5.

2 Preliminaries

2.1 Notations
Let F2 be the finite field with two elements 0 and 1, and Fk

2 be the finite field with 2k

elements. An n-bit permutation f can be denoted by Fn
2 7→ Fn

2 . Consider a, b ∈ F2, we
then use a = a ⊕ 1 to represent the inversion of a, and a ⊕ b, a · b and a|b denote the XOR,
AND and OR operations of a and b.

2.2 Quantum Circuits
Similar to classical circuits, the quantum circuit is a model that manipulates qubits through
several quantum gates, where qubits can exist in superposition states and become entangled
with one another. We denote a qubit state by |u⟩, where the classical bit values 0 and 1
are denoted by |0⟩ and |1⟩, respectively. Leveraging the inherent reversibility of quantum
computation, quantum gates are implemented as simple unitary transformations, which
can be succinctly represented by matrices as follows.

Usually, a quantum circuit is synthesized with the commonly used universal fault-
tolerant gate set Clifford+T [Sel13, AMMR12]:

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =
(

1 0
0 eiπ/4

)
.
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In addition, the Pauli-X gate X = HS2H =
(

0 1
1 0

)
and the Toffoli gate

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


are employed.

To reduce the quantum resources, quantum circuits can be optimized according to
various criteria. In this paper, We focus on the optimization criteria addressed in [DBSC19]
and [CBC23]. The definitions are as follows.

Quantum Gate Cost(GC). The quantum gate cost of the target circuit is defined
as the number of quantum gates in {Pauli-X, CNOT, Toffoli}. A Pauli-X gate maps
|a⟩ to |a ⊕ 1⟩, and a CNOT gate can be regarded as a transformation that maps |a⟩ |b⟩
to |a⟩ |b ⊕ a⟩, where only the operand b is updated. A Toffoli gate maps |a⟩ |b⟩ |c⟩ to
|a⟩ |b⟩ |c ⊕ a · b⟩, which can be seen as the classical AND gate when the operand c is 0.
These gates are depicted in Figure 1.

X

Pauli-X gate CNOT gate Toffoli gate

Figure 1: The description of the quantum gates.

Quantum Bit Cost(BC). The qubit cost is defined as the circuit width. It reflects
the limited number of qubits available in contemporary quantum computers. We can
categorize the qubits in a quantum circuit into three distinct types.

1. Data qubit is the input variable of a quantum circuit.

2. Ancilla qubit is the variable initialized to |0⟩, used in the process of generating output
values. Note that we shall clean up the ancilla qubits at the end of the quantum
circuit.

3. Output qubit contains the information about output value.

Specifically, a quantum circuit in which the values of output qubits are directly stored
within the data qubits is termed an “in-place” circuit. In this paper, we construct in-place
circuits to conserve qubit resources.

Quantum Full Depth(FD). Quantum full depth cost [SM13] is defined as the largest
number of elementary gates on any path from inputs to outputs in a circuit. In particular,
as a non-Clifford gate, the Toffoli gate is required to be decomposed with Clifford+T gate
set in different ways. We present the cost metrics in Table 3 for the NCT gate set.
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Table 3: Cost metrics for the NCT gate set.

Gate #FD
Pauli-X 1
CNOT 1
Toffoli 7

To reduce the T-depth, we adopt the decomposition method of the Toffoli gate mentioned
in [NC01] with #FD = 7.

2.3 Cryptographic Permutation
In this paper, we mainly focus on optimizing quantum circuits for the n-bit S-boxes and
matrices. Both can be regarded as permutations and play an important role in symmetric
cipher. To facilitate understanding of the encoding scheme in our model, we present three
representation methods of these two permutations, namely the LUT, ANF, and bit-sliced
representation.

S-box. S-box is a function f : {0, 1}m 7→ {0, 1}n, which ensures the property of confusion
for a symmetric cipher as the only non-linear component. In the quantum circuit, we
must have f be bijective since information loss is irreversible in the reversible computing
paradigm. Thus, for this paper, we refer to an n-bit bijective S-box: {0, 1}n 7→ {0, 1}n,
which is a permutation: [0, 2n − 1] 7→ [0, 2n − 1].

Example 1. We take the S-box of GIFT [BPP+17] as an example.
The LUT representation of the S-box of GIFT is shown in Table 4.

Table 4: Look-up table of GIFT S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

The ANF representation of the S-box of GIFT is given by the set of equations 1, the
variables xi and yi denote the inputs and outputs of S-box.

y0 = 1 ⊕ x0x1 ⊕ x0 ⊕ x1 ⊕ x2 ⊕ x3,

y1 = x0x1 ⊕ x0x2 ⊕ x0 ⊕ x2 ⊕ x3,

y2 = x0x3 ⊕ x1x2x3 ⊕ x1x3 ⊕ x1 ⊕ x2,

y3 = x0x2x3 ⊕ x0 ⊕ x1x3.

(1)

The bit-sliced representation of the S-box of GIFT is shown in Table 5.

Table 5: The bit-sliced representation of GIFT S-box.

LUT → 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E bit slice ↓
z3 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 5563
z2 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 3C59
z1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 4EB1
z0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 8778

Linear matrix. As the linear layer of a symmetric-key primitive can be represented as
a binary matrix, the implementation of a linear layer is a sequence of XOR gates. In this
paper, due to the reversibility of quantum computing, we focus on the n-bit invertible
matrix which also can be regarded as a permutation: [0, 2n − 1] 7→ [0, 2n − 1].
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Example 2. We take a toy 4-bit invertible matrix M as an example.

M =


1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 1

 ,

The LUT representation of M is shown in Table 6.

Table 6: Look-up table of M .

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 0 9 3 A 6 F 5 C D 4 E 7 B 2 8 1

The ANF representation of M is given by the set of equations 2, the variables xi and
yi denote the inputs and outputs of the invertible matrix.

y0 = x0 ⊕ x1 ⊕ x3,

y1 = x1 ⊕ x2,

y2 = x2 ⊕ x3,

y3 = x0 ⊕ x3.

(2)

The bit-sliced representation is shown in Table 7.

Table 7: The bit-sliced representation of a given 4-bit invertible matrix.

LUT → 0 9 3 A 6 F 5 C D 4 E 7 B 2 8 1 bit slice ↓
z3 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 55AA
z2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0FF0
z1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 3C3C
z0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 6699

2.4 SAT/SMT Problem
In recent years, the application of automated search tools in cryptography has become
more and more extensive. The SAT problem belongs to the deterministic problem, and it
is also the first problem to be proved to be NP-complete. To solve it, boolean expressions
are usually encoded in Conjunctive Normal Form (CNF) as the inputs of a SAT solver.
Extending SAT to satisfy the modulus theory (satisfiability modulo theories, abbreviated
as SMT) can enrich the form of CNF expression, which includes linear constraints, arrays,
and so on. Compared with the method based on SAT problems, the method based on
SMT is more flexible and applicable to a wider range, which is very suitable for application
in the field of cryptography.

2.4.1 A Constraint Solver: STP

This paper mainly uses the solver of the SMT problem, STP1, to automatically solve our
new proposed quantum circuit decision problems. When STP successfully finds a circuit
for some value k but outputs UNSAT for k − 1, it is proven that k is the minimum value.
CVC formats are one of the commonly used file-based input languages in STP. We list
some CVC language references and two examples as follows.

1http://http://stp.github.io/

http://http://stp.github.io/
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Table 8: Usage of the STP solver.

Name Symbol Example
Concatenation @ t1@t2@ . . . @tn

Extraction i : j x[31 : 26]
Bitwise XOR BVXOR BVXOR (t1, t2)

Bitvector AND BVPLUS BVPLUS (n, t1, t2, . . . , tn)
Less Than Or Equal To BVLE BVLE (t1, t2)

Greater Than or Equal To BVGE BVGE (t1, t2)
Not Equal to \ = t1\ = t2

Example 3. We list statements based on CVC language to describe GIFT S-box.
ARRAY BITVECTOR(4) OF BITVECTOR(4);
//The size of the S-box is 24 and each element is a 4-bit boolean variable.
ASSERT( S[0bin0000] = 0bin0001 );
ASSERT( S[0bin0001] = 0bin1010 );
...
//Assignment: S[0] = 1; S[1] = 10; . . .

Example 4. The description of the condition “if a = b then c = 1” based on CVC
language.

a, b, c: BITVECTOR(1);
ASSERT( ( a = b ) => ( c = 1 ) );

2.4.2 Stoffelen’s Model Based on SAT Solvers

To find more compact implementations of small S-box circuits, Stoffelen proposed a search
model [Sto16] based on SAT solvers to achieve multiple optimization criteria, including
nonlinear gate count, gate count, and circuit depth, etc. The main idea is to convert the
problem of solving the target circuit into a satisfiability problem and use the off-the-shelf
SAT solvers to solve it. For example, when optimizing the gate number of an n-bit S-box,
Stoffelen proposed a binary model to solve the following decision problem:

Is there a circuit implementing Fn
2 → Fn

2 and that uses at most K logic operations?

This model encodes each gate as an ANF equation and can judge the existence of solutions
when given the number of gates. To get the smallest number of gates, it should exhaust K
until it finds the smallest one that there exists an implementation of the target S-box.

3 New SAT Model for Quantum Circuit Decision Prob-
lem

In this section, we discuss the optimized implementations of quantum circuits for a given
permutation f . To begin with, we propose the quantum circuit decision problem for
the optimization goals. Within this problem, these criteria mentioned in Section 2.2
for quantum circuits are taken into account. Then we analyze the limitations of the
existing optimization techniques for circuits in effectively solving this problem. Hence, we
introduce a novel quantum circuit model based on SAT solvers, followed by a comprehensive
exposition of encoding schemes.
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3.1 Quantum Circuit Decision Problem
In the research of quantum circuits, many related works have proposed various optimization
methods for the criteria mentioned in Section 2.2. For example, Huang et al. [HS22] in
ASIACRYPT 2022 proposed a model that aims to search for an in-place quantum circuit
with the minimum number of CNOT gates of a linear permutation, which can be regarded
as a decision problem solved by SAT solvers. To implement a more compact quantum
circuit covering the three optimization goals of quantum gate cost(GC), quantum bit
cost(BC), and quantum full depth cost(FD), we present the quantum circuit decision
problem (cf. Definition 1).

Definition 1 (Quantum circuit decision problem). Given an n-bit permutation f : [0, 2n − 1]
7→ [0, 2n − 1], the quantum circuit decision problem requires us to determine whether there
exists a quantum circuit implementation of f that uses no more than M ancilla qubits, K
quantum gates with the full depth at most D.

3.2 Limitations in the Previous Methods
Currently, there exist two types of potential methods for solving the quantum circuit
decision problem.

• Local optimization method. This approach focuses on the comprehensive con-
sideration of multiple heuristic algorithms [CBC23, DBSC19] to directly optimize
different criteria of quantum circuits.

• Exhaustive search method. This approach can achieve an exhaustive search [Sto16,
LWH+21] for small-scale classical circuits based on SAT solvers, obtaining the optimal
circuit under the target goal.

However, these methods cannot directly solve the quantum circuit decision problem.
We clarify the limitations inherent in these methods, thereby presenting our proposed
solution, which entails a novel SAT model.

3.2.1 Analysis of Chun et al. ’s Quantum Heuristic Algorithm

Chun et al. proposed a tool, DORCIS, that found depth-optimized quantum circuit imple-
mentations for arbitrary 3- and 4-bit S-boxes in 2023. However, DORCIS has two limitations
in solving the quantum circuit decision problem.

Optimality of the quantum circuit cannot be proven. DORCIS is an algorithm with
highly effective optimization results, constructing circuits of very low depth for multiple
permutations. However, it relies on some heuristics and is infeasible to prove that their
results are optimal. If we inquire DORCIS whether this circuit is optimal or if there exist
circuits with lower depth, we won’t obtain an answer.

The issue of unresolved ancilla qubits remains unaddressed. DORCIS does not
provide ancilla qubits. It means that if we try to generate a circuit with an ancilla qubit,
the tool will not return a result. Note that not all S-boxes can be implemented with
in-place circuits without ancilla qubits. In [LXX+23], Lin et al. studied the permutation
and proposed a definition of the odd permutation.

Definition 2 (Odd permutation). A permutation is called odd if it can be written as the
product of an odd number of transpositions.

No quantum circuit can be given for S-boxes with odd permutations without ancilla
qubits. In this case, DORCIS will be unable to provide the optimal circuit or even a solution.



10 New SAT-based Model for Quantum Circuit Decision Problem

3.2.2 Analysis of Stoffelen and Lu et al. ’s SAT Model

In 2016, Stoffelen [Sto16] presented a SAT-based model for optimizing S-box circuits.
Subsequently, Lu et al. [LWH+21] improved Stoffelen’s model by adding the criteria for
optimizing area to find the circuit implementation of the minimum area of the S-box.

In classical computing, the SAT-based model effectively addresses the optimization
challenge of circuit hardware area and latency. However, there exist some problems if the
model is employed directly for the optimization of quantum circuits due to the properties
of quantum computing. We briefly outline the issues encountered by the model.

Reversible operations can not be guaranteed. We summarized the SAT model
used in [LWH+21]. It is shown in Figure 2. The variables xi and yi denote the inputs
and outputs of a circuit.

The set of equations (3) is encoding the decision of choosing a type of gate.

t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2

t1 = b2 · q2 · q3 + b3 · q2 + b3 · q3 + b4
(3)

The variable qi denotes the input of a gate, and bi determines what kind of gate the ti

will represent. When the value of the pattern b3i||b3i+1||b3i+2 is different, ti represents
different kinds of gate. The above method can encode different classical gates, such as
when b0||b1||b2 = 010, it represents an XOR gate, which can be denoted by t0 = q0 ⊕ q1.
In the quantum circuit, to achieve the operation of XOR, it requires three qubits and
needs to be split into two operations t0 = t0 ⊕ q0 and t0 = t0 ⊕ q1, which contradicts the
principle of optimal gate count.

Figure 2: The SAT model framework in [LWH+21].

No fan-out property in the quantum setting. In Lu et al. ’s SAT-based model, the
fan-out operation is allowed because the model considers that the output of the previous
gates can be used as the input of any subsequent gates, described by Figure 2. But
quantum gates do not allow fan-out, which means that the output of the previous gate
can only be used as the input of the next gate. Besides, if a variable xi is used twice in
the same depth, the quantum depth has to be increased, different from classical circuits.
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3.3 Main Idea of Our Model
As discussed above, in light of the issues, there currently exists no model capable of solving
the quantum circuit decision problem. Since the SAT problem can be solved by existing
solvers, we employ an enhanced SAT model to solve it. For the permutation f , if our
model successfully finds a circuit for the metric k and the solver proves that there is no
solution for k − 1, it is proven that k is the minimum value. Thus, our model is proper for
the decision problem.

From a higher-level perspective, the new SAT model needs to answer the following
three questions.

• Question 1: How to incorporate the parameter of qubit number(BC) into the model.
This question can enable the model to find quantum circuits that implement odd
permutations, which need ancilla qubits. Besides, by introducing extra variables into
the model beforehand, there is a potential to discover quantum circuits with lower
full depth.

• Question 2: How to represent reversible gates in the enhanced model. For the Toffoli
gate, the model only allows the operation like c = c ⊕ a · b. For the CNOT gate, the
model only allows the operation like b = b ⊕ a. Given these constraints, the circuits
we obtain always adhere to the quantum setting.

• Question 3: How to constrain quantum depth without assuming fan-out. This
requires us to constrain a variable to appear only once at the same depth, which is
attributed to the novel model scheme that we have introduced.

As an outline, we introduce our new gate-level structure search model (cf. Figure 3).
The variables used in the encoding scheme are shown in Table 9. We first encode the
problem in logical formulas in Conjunctive Normal Form (CNF). Then, the constraints are
used to describe quantum circuits in SAT problems.

Table 9: Variables used in the encoding process.

Notations Definitions
xi[j] The i-th data wire in front of the j-th gate
anci[j] The i-th ancilla wire in front of the j-th gate
depthi[j] The depth of the i-th wire in front of the j-th gate
yi Permutation outputs
qi Gate inputs
ti Gate outputs
ai Wiring between gates
bi Wiring ‘inside’ gates

The structure contains the input and output of the circuit, consisting of gates as internal
subcircuits. The reason for using this serial framework is that quantum gates cannot fan out,
the output of each gate can only be used as the input of the next gate. In Figure 3, the circuit
of the 0-th gate can be denoted by (x0[0], x1[0], x2[0], x3[0] 7→ x0[1], x1[1], x2[1], x3[1]). If
an ancilla qubit is required, we just set it as the input variable.

3.4 Encoding Scheme
In this section, we use the SAT solver to solve this decision problem, which requires the
problem to be encoded. Hence, we present the encoding process of the model to a set of
equations in ANF, and finally use STP to return the target circuit.
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Figure 3: A new gate-level structure search model for a 4-bit S-box.

To better understand the encoding scheme, we give a model of the quantum decision
problem whether there is a quantum circuit that implements GIFT S-box with 1 ancilla
qubit, and 9 quantum gates with #FD at most 31. The bit-sliced representation of GIFT
S-box has been given in Table 5.

3.4.1 Encode Input, Ancilla Qubits, and Output

For an Fn
2 7→ Fn

2 permutation f , due to the bit-sliced technique, the input variable
xi[0] (0 ≤ i ≤ n − 1) is a 2n-dimensional array over Fn

2 , and the output variable yi is a 2n-
dimensional variable over Fn

2 . Note that distinct from the conventional encoding schemes,
we innovatively employ arrays to represent input variables, avoiding the generation of
intermediary variables and facilitating the construction of in-place circuits. Note that the
size of arrays can be adjusted according to the gate count.

For GIFT S-box, assume that the number of gates is 0bin001001 (9 gates) and the
number of ancilla qubits is 1. The input X_i, the ancilla qubit Anc_k, and the output Y_j
can be encoded as follows.

X_0, X_1, X_2, X_3: ARRAY BITVECTOR(6) OF BITVECTOR(16);
Y_0, Y_1, Y_2, Y_3: BITVECTOR(16);

Next, we encode the look-up table of the permutation.
ASSERT( X_0[0bin000000] = 0bin0000000011111111 );
ASSERT( X_1[0bin000000] = 0bin0000111100001111 );
ASSERT( X_2[0bin000000] = 0bin0011001100110011 );
ASSERT( X_3[0bin000000] = 0bin0101010101010101 );
ASSERT( Y_0 = 0bin0101010101100011 );
ASSERT( Y_1 = 0bin0011110001011001 );
ASSERT( Y_2 = 0bin0100111010110001 );
ASSERT( Y_3 = 0bin1000011101111000 );

The ancilla qubit is equivalent to the wire with an input of 0, which is used to store
the intermediate value in the circuit, so the encoding method is consistent with the input
variable, denoted by the array with a determined value of 0. The ancilla qubit in the S-box
of GIFT is given by the following statement.

Anc_0: ARRAY BITVECTOR(6) OF BITVECTOR(16);
ASSERT( Anc_0[0bin000000] = 0bin0000000000000000 );

Considering that we construct in-place circuits, it is necessary to store the output value
within the data qubit. Consequently, we establish a direct correspondence between the
input and output of the S-box at the end of this model. That is to say, the output variable
Y_j corresponds to the output wire X_i according to Figure 3. For the decision problem
of GIFT S-box, upon traversing a sequence of nine gates from input to output, the data
qubits can be succinctly represented by x0[9], x1[9], x2[9], x3[9].

ASSERT((Y_0=X_0[0bin001001])OR(Y_0=X_1[0bin001001])OR(Y_0=X_2
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[0bin001001])OR(Y_0=X_3[0bin001001]));
ASSERT((Y_1=X_0[0bin001001])OR(Y_0=X_1[0bin001001])OR(Y_0=X_2
[0bin001001])OR(Y_0=X_3[0bin001001]));
ASSERT((Y_2=X_0[0bin001001])OR(Y_0=X_1[0bin001001])OR(Y_0=X_2
[0bin001001])OR(Y_0=X_3[0bin001001]));
ASSERT((Y_3=X_0[0bin001001])OR(Y_0=X_1[0bin001001])OR(Y_0=X_2
[0bin001001])OR(Y_0=X_3[0bin001001]));

3.4.2 Encode K Quantum Gates

Encode the decision of choosing inputs of a gate. This paper uses the NCT gate
set, including the single-input NOT gate, the two-input CNOT gate, and the three-input
Toffoli gate, so at least three-input gates need to be encoded. For ∀i ∈ {0, . . . , K − 1},
q3i, q3i+1, q3i+2 are the three inputs of the i-th gate ti. We have simplified the statements
in CVC format and expressed them by the set of equations in ANF for convenience.

q0 = a0 · x0[0] + a1 · x1[0] + a2 · x2[0] + a3 · x3[0] + a4 · anc0[0]
q1 = a5 · x0[0] + a6 · x1[0] + a7 · x2[0] + a8 · x3[0] + a9 · anc0[0]
q2 = a10 · x0[0] + a11 · x1[0] + a12 · x2[0] + a13 · x3[0] + a14 · anc0[0]

(4)

We then can encode the input of the second gate in the same form as follows. This
enables us to describe the inputs of all gates.

q3 = a15 · x0[1] + a16 · x1[1] + a17 · x0[1] + a18 · x1[1] + a19 · anc0[1]
q4 = a20 · x0[1] + a21 · x1[1] + a22 · x0[1] + a23 · x1[1] + a24 · anc0[1]
q5 = a25 · x0[1] + a26 · x1[1] + a27 · x0[1] + a28 · x1[1] + a29 · anc0[1]

(5)

Encode the decision of choosing a type of gate. The variable bi determines what
kind of gate the circuit will choose, the encoding of different types of gates is shown in
Table 10. The choices of the first two gates are presented as follows.

t0 = q0 + q1 + b0 · q1 + b0 · q1 · q2 + b1 · q1 + b1

t1 = q3 + q4 + b2 · q4 + b2 · q4 · q5 + b3 · q4 + b3
(6)

Table 10: Encoding of different types of gates.

b2i∥b2i+1 Operations Gate function
0 0 CNOT q3i ⊕ q3i+1
0 1 NOT q3i ⊕ 1
1 0 Toffoli q3i ⊕ q3i+1 · q3i+2

More constraints in the quantum setting. In order to ensure that each gate conforms
to be reversible, we use the three-step operation in Figure 4 to complete the self-renewal
of the input wire.

• Step 1: The model chooses one, two, or three inputs of a quantum gate. Then, we
add two constraints. Firstly, for the first gate in Equation (4), ∀i, j ∈ {0, . . . , 4}, i ̸=
j, ∀m, n ∈ {5, . . . , 9}, m ̸= n, ∀u, v ∈ {10, . . . , 14}, u ̸= v, we add the constraint

0 = ai · aj , 0 = am · an, 0 = au · av (7)

to encode that only one of the variables at in an equation can be equal to 1.
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Figure 4: The updating process of the i-th gate for a 4-bit S-box.

Secondly, we add the following constraints on the gate inputs to ensure that each
input of a gate is different.

(a0 · a5 = 0) & (a0 · a10 = 0) & (a5 · a10 = 0)
(a1 · a6 = 0) & (a1 · a11 = 0) & (a6 · a11 = 0)
(a2 · a7 = 0) & (a2 · a12 = 0) & (a7 · a12 = 0)
(a3 · a8 = 0) & (a3 · a13 = 0) & (a8 · a13 = 0)
(a4 · a9 = 0) & (a4 · a14 = 0) & (a9 · a14 = 0)

(8)

• Step 2: Our model limits that the output of a gate must be one of the input wires.
In Equation (6), t0 must be one of q0, q1, and q2. We list four possible values of q3i:
x0[i], x1[i], x2[i], x3[i] for the i-th gate, and constrain the value to be equal to ti. For
example, if q3i = x0[i], then the solver will constraint x0[i + 1] = ti.

• Step 3: For the wires that have not been updated, we simply constrain the input
to be equal to the output for the next gate operation. For example, x1[i + 1] =
x1[i], x2[i + 1] = x2[i], x3[i + 1] = x3[i]. The following simplified CVC language can
be used to control this conditional statement.

(q3i = x0[i]) =>((x0[i + 1] = ti) & (x1[i + 1] = x1[i]) &
(x2[i + 1] = x2[i]) & (x3[i + 1] = x3[i]))

(9)

3.4.3 Encode D Quantum Depth

The search model in Figure 3 is layered according to gates. We can consider it a serial
search structure, so it is better to combine circuit depth with gates. Different from the
classical depth, due to the non-replication of qubits, gates acting on the same qubit will
increase the quantum depth. Besides, we have the following observations.

Observation 1. The depth of a quantum circuit is determined by the wire (or path) with
the highest depth.

Observation 2. After applying the same quantum gate, the output wires have the same
depth. If the input wires have different depths, the depth is determined by the higher one.

Based on the above observations, in order to encode the circuit depth to D, we can
control the depth of each wire at the same time and use the SAT solver to search the
circuit. If there is a circuit implementation when the depth is less than D + 1, and no
solution when the depth is less than D, it means that the minimum circuit depth is D.
The encoding and constraint process are as follows.
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• Firstly, for an n-bit S-box, similar to the input variables, we define n array variables
for the input wires to denote depth: depth0[], depth1[], . . . , depthn−1[]. Take the
PRINCE S-box as an example, we have the following constraints:

depth_0,depth_1,depth_2,depth_3:ARRAY BITVECTOR(6) OF BITVECTOR(16);

• Then, it is necessary to restrict the depth relationship between the input and output
circuits of a quantum gate. We need to enumerate all possibilities of quantum gates
by constraint encoding, and we take a subcircuit composed of CNOT gates as an
example in Figure 5. Use the CVC language to constrain the following if-condition
statement:

(depth0[j] > depth2[j]) =>((depth0[j + 1] = depth0[j + 1] + 1) &
(depth2[j + 1] = depth0[j + 1] + 1) &
(depth1[j + 1] = depth1[j]) &
(depth3[j + 1] = depth3[j]))

(10)

Figure 5: The subcircuit of the j-th gate.

• Finally, our model constrains the circuit depth of each wire to be no more than D.
For GIFT S-box, the encoding is as follows.

ASSERT( BVLT(depth_0[0bin001001], 0bin0000000000011111) );

ASSERT( BVLT(depth_1[0bin001001], 0bin0000000000011111) );

ASSERT( BVLT(depth_2[0bin001001], 0bin0000000000011111) );

ASSERT( BVLT(depth_3[0bin001001], 0bin0000000000011111) );

4 Applications
In this section, we apply the new model to some permutations. Firstly, for 3-bit and 4-bit
S-boxes, we first prove that the gate count from LIGHTER-R is optimal due to the exhaustive
search by using the SAT solver. Then, by combining different criteria in the model, we
find more compact quantum circuit implementations of S-boxes such as RECTANGLE and
GIFT than using LIGHTER-R and DORCIS. Furthermore, we can streamline the model to
optimize the quantum circuit for reversible linear permutations, which offers enhanced
efficiency compared to the optimization of S-boxes.

4.1 Optimizing the Quantum Implementation of S-box
Using our model, we can see an improvement in quantum gate cost(GC), quantum bit
cost(BC), and quantum full depth(FC) on the currently known best quantum circuits for
3-bit and 4-bit S-boxes. We have undertaken efforts in three aspects.
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• Firstly, we apply our model to validate the circuits produced by current heuristic
methodologies, addressing the critical inquiry of whether these methods achieve
optimality in quantum circuit optimization.

• Secondly, we answer the question of optimizing quantum circuits for odd permutations
that require ancilla qubits by introducing additional variables.

• Ultimately, we refine the quantum circuits for S-boxes by leveraging Algorithm 1 and
Algorithm 2, enhancing their performance through targeted optimization strategies.

Optimize for GC. Setting M to 0 in the model and D to a larger value (the depth limit
can be ignored temporarily), the quantum circuit decision problem can be transformed
into a sub-problem: whether there exists a quantum circuit implementing using no more
than K quantum gates. We apply the model to solve this problem for 3-bit and 4-bit
S-boxes and obtain the same gate count as LIGHTER-R. When we reduce the constraint of
the number of gates M , the solver returns “NO SOLUTION”, which can prove that the
quantum s-box given by the meet-in-the-middle algorithm LIGHTER-R regarding quantum
gate complexity is optimal.

(a) Method in [LXX+23] (#GC 10, #F D 45)

(b) Our model (#GC 10, #F D 44)

Figure 6: Different implementations of 4-bit quantum S-box in AES.

Add ancilla qubits to implement quantum S-boxes. By controlling the number of
ancilla qubits, our model can provide the quantum circuit of some specific S-boxes with
odd permutations. It is worth noting that in the construction of quantum circuits for AES,
Lin et al. [LXX+23] implemented a low-qubit S-box circuit based on Tower Field, where
the S-box is decomposed into three layers. The middle layer can be viewed as a 4-bit odd
permutation (062493D51EC78ABF). We apply LIGHTER-R to this permutation. However,
no circuit can be returned as they require more qubits.

By adding more constraints and using two strategies, Lin et al. obtained the quantum
circuit for this permutation using 10 gates with a full depth of 45. Directly utilizing our
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model, we obtained the optimized circuit with depth 44, which is more compact. The
comparison is illustrated in Figure 6. This novel quantum circuit for the permutation can
be seamlessly integrated into the circuits detailed in [LXX+23], subsequently improving
the quantum circuit of AES.

Combine criteria to solve the quantum decision problem. Three parameters
M, K, and D are considered in the model. To better weigh the corresponding optimization
goals, we decompose the optimization process into the following two steps.

• Firstly, solve the sub-problem: whether a circuit can implement a permutation using
at most K logic operations and M ancilla qubits with the circuit depth less than D,
which is a given larger value (DC can be ignored).

• Secondly, after finding the smallest gate count, further optimize for the full depth of
circuit.

We propose Algorithm 1 to solve the first sub-problem for a given n-bit permutation
f . By setting the depth D larger, Algorithm 1 finds the circuit implementation with the
smallest number of gates and qubits.

Algorithm 1 Solve the first sub-problem
Input: Number of gates K, ancilla qubits M , Depth D
Output: If the sub-problem has a solution, the solver returns ”1” and the implementation

of this S-box or other case returns ”0”
for m from 0 to M − 1 do

for k from 0 to K − 1 do
Input to the model for encoding, using STP to solve it
if STP returns the implementations of f then

Finish and return m and k
end if

end for
end for

We then further optimize the quantum depth. The Algorithm 1 can be used to get the
circuit C for f and the returned results Klow, Mlow, denote the circuit depth of C by Dup

as the upper bound, and then determine the lower bound of the circuit depth. We have
the following observation.

Observation 3. The lower bound on the depth of an n-bit quantum circuit with k gates
composed of NCT gate sets is ⌈ k

n ⌉.

Obviously, the highest degree of parallelism can only be achieved when all gates are
NOT gates, resulting in the lowest circuit depth. So the lower depth of S is ⌈ Klow

n+Mlow
⌉.

Finally, use Algorithm 2 to get the depth-optimal circuit.
Running Algorithm 1 and Algorithm 2, we show the improvement of our new model.

Table 1 and Table 2 show the comparison results with LIGHTER-R and DORCIS respectively.
Notably, in Table 2, for optimizing GIFT S-box, DORCIS uses 13 gates with depth 31. Our
model can find a new quantum circuit with the same depth using only 8 gates. Furthermore,
if we allow an ancilla qubit in the circuit, our model can reduce the depth to 30. The
three different quantum circuits (proposed by LIGHTER-R, DORCIS and our model) of GIFT
S-box are shown in Figure 7.

It is worth noting that if the number of ancilla qubits is increased, it is likely to continue
to reduce the circuit depth, but due to the difficulty of solving large scale SAT models in
practice, we only give examples of a single ancilla qubit in this paper.
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Algorithm 2 Solve the quantum circuit decision problem of the circuit C

Input: The gate number Klow, the ancilla qubits number Mlow, the circuit depth Dup

Output: The circuit implementation of optimal depth
for d from ⌈ klow

n+Mlow
⌉ to Dup do

Call the Algorithm 1 with the input (klow, mlow, d)
if Algorithm 1 returns “NO SOLUTION" then

d = d + 1
end if
Finish and return d

end for

XX

(a) LIGHTER-R (#GC 8, #F D 32)

XX

XX

XX

XX

XX

(b) DORCIS (#GC 13, #F D 31)

XX

(c) Our model (#GC 8, #F D 31)

Figure 7: GIFT S-box implementation with different methods.



Chen et al. 19

4.2 Optimizing the Implementation of Quantum Linear Matrix.
In Section 3.4, we provide a comprehensive description of the model’s encoding process for
S-boxes, which can be extended to the linear matrix with the constraint of the coding type
of the gate. In Table 10, we provide the encoding of each gate. If we set bi = 0 for each bi,
then the SAT-based model can solve the decision problem for the linear permutation.

We also use the model to optimize the AES S-box proposed by Lin et al. [LXX+23]. In
the first layer of the S-box, it contains two 8-bit linear matrices. We apply our model to
one of the matrix A

A =



1 0 0 1 0 1 1 0
1 0 0 1 1 0 1 0
0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0
1 0 1 1 0 1 0 0
1 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


to show the optimization results. It can be seen that the quantum gate number and depth
have been greatly improved after using our model in Figure 8. In [LXX+23], their circuit
requires 16 CNOT gates with #FD 9. However, our model just needs 13 CNOT gates
with #FD 6. The different quantum circuits for A are presented in Appendix A.

5 Conclusion
In this paper, we introduced the quantum circuit decision problem for optimizing the
quantum circuits of permutations. In order to solve it, we investigate existing tools while
highlighting the challenges encountered. Subsequently, we innovatively proposed a new
SAT model based on STP to solve this problem and algorithms to employ the model to
solve many sub-problems. By applying this model, we can prove the optimality for certain
original quantum circuits constructed by LIGHTER-R and further optimize the quantum
circuits of some permutations from the demonstrated examples.

This is a general model that can implement quantum circuits of S-box and linear matrix.
However, because the search space is far too large, the model is challenging for circuit
realization of permutation of large states. We look forward to follow-up work to solve such
quantum circuit decision problems.
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A Different quantum implementations of A

(a) Method in [LXX+23] (#GC 16, #F D 9)

(b) Our model (#GC 13, #F D 6)

Figure 8: Different quantum implementation of A.
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