
Cougar: Cubic Root Verifier Inner Product
Argument under Discrete Logarithm Assumption

Hyeonbum Lee, Seunghun Paik, Hyunjung Son, and Jae Hong Seo⋆

Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{leehb3706, whitesoonguh, dk9050rx, jaehongseo}@hanyang.ac.kr

Abstract. An inner product argument (IPA) is a cryptographic prim-
itive used to construct a zero-knowledge proof (ZKP) system, which is
a notable privacy-enhancing technology. We propose a novel efficient
IPA called Cougar. Cougar features cubic root verifier and logarithmic
communication under the discrete logarithm (DL) assumption. At Asi-
acrypt2022, Kim et al. proposed two square root verifier IPAs under
the DL assumption. Our main objective is to overcome the limitation of
square root complexity in the DL setting. To achieve this, we combine two
distinct square root IPAs from Kim et al.: one with pairing (Protocol3)
and one without pairing (Protocol4). To construct Cougar, we first re-
visit Protocol4 and reconstruct it to make it compatible with the proof
system for the homomorphic commitment scheme. Next, we utilize Pro-
tocol3 as the proof system for the reconstructed Protocol4. Furthermore,
we provide a soundness proof for Cougar in the DL assumption.

1 Introduction

Zero-Knowledge Proof (ZKP) is one of the privacy enhancement technologies
that international organizations and others are focusing on [34]. ZKP is a pro-
tocol that allows a prover to convince a verifier that a statement is true without
leaking any additional information [24]. ZKP schemes are employed as foun-
dational components in various cryptographic applications, including identifica-
tion [19, 16], verifiable computation [6, 7, 39, 9], range proofs [12, 17], confidential
transactions [37, 12, 26, 17, 23], and incrementally verifiable computation [11, 13].

Our main goal is to construct an efficient inner product argument (IPA),
which is an argument of knowledge for the inner product relation between two
vectors. For constructing ZKP convincing the satisfiability of the arithmetic cir-
cuit (AC), one notable approach is to utilize IPA as a building block of the ZKP
scheme [8, 12, 14, 31, 17]. Bootle et al. [8] first proposed an IPA with logarithmic
proof size under the discrete logarithm (DL) assumption, and later, Bünz et
al. [12] improved the IPA, which is called Bulletproofs. In [14], Bünz et al. pro-
posed a paradigm for constructing ZKPs by applying a polynomial commitment
scheme (PCS), which can be seen as a specialized form of IPA, to a polynomial

⋆ Corresponding Author.

2 Lee et al.

interactive oracle proof (PIOP) system. Following this paradigm, the complexity
of ZKPs heavily relies on that of the IPA. Hence, the efficient construction of an
IPA is crucial for designing efficient ZKPs.

Bulletproofs is a widely known IPA because of its efficient proof size and
lack of reliance on trusted parties. However, one of the main drawbacks of Bul-
letproofs is its linear verification cost, which makes it challenging to apply in
certain applications, such as verifiable computation and incrementally verifiable
computation. To avoid linear verification, Daza et al. [18] proposed a sublin-
ear verifier IPA using bilinear pairing. However, the sublinear IPA [18] requires
a trusted setup, which means that a trusted third party is necessary to gen-
erate a common reference string (CRS), whereas Bulletproofs does not. After,
Lee [31] proposed a sublinear pairing-based IPA, called Dory, without a trusted
setup. However, Dory depends on stronger cryptographic assumptions, such as
the symmetric external Diffie-Hellman (SXDH) assumption.

Without relying on more cryptographic assumptions than Bulletproofs, Kim
et al. [29] proposed two square root verifier IPAs, pairing-based IPA (Protocol3)
and pairing-free IPA (Protocol4). Both IPAs provide linear prover and logarithm
communication, equivalent to Bulletproofs. In [28], Kim et al. presented opti-
mizations and a concrete implementation of Protocol3, which is called Leopard.

In this paper, we introduce the first cubic root verifier IPA, called Cougar,
under the DL assumption. Our IPA maintains equivalent assumptions and setup
to previous works such as [8, 12, 29], which rely on the DL assumption without
requiring a trusted setup. In Table 1, we provide a comparison between previous
IPA proposals and ours.

Schemes Comm. Prover Verifier Assumption Setup Pairing
Updatable IPA[18] O(log2N) O(N) O(log2N) DL, DPair Trusted Yes

Dory[31] O(log2N) O(N) O(log2N) SXDH Trustless Yes
Bulletproofs[8, 12] O(log2N) O(N) O(N) DL Trustless No

Leopard[29, 28] O(log2N) O(N) O(
√
N) DL Trustless Yes

Protocol4[29] O(log2N) O(N) O(
√
N log2N) DL Trustless No

TENET[30] O(
√

log2N) O(N · 2
√

log2 N) O(N/2
√

log2 N) DL, DPair Trustless Yes
This Work O(log2N) O(N) O(3

√
N
√

log2N) DL Trustless Yes
Comm., Prover, and Verifier mean cost of communication, prover computation, and ver-
ifier computation, respectively. Pairing means requirement of pairing-friendly groups.

Table 1. Comparison Table of IPAs for length-N vectors

1.1 Technical Overview

Two-tier Commitment with Proof. We first revisit Protocol4, pairing-free
square root verifier IPA [29]. The main idea of Protocol4 is a two-tier commitment
scheme with a proof for the second layer. The two-tier commitment scheme
comprises two layers. In the first layer, mn-length vectors are compressed into
n elliptic curve points using a parallel Pedersen commitment scheme with a
m-dimensional commitment key. Subsequently, these n elliptic curve points are
interpreted as 3n-length vectors in the embedding field. In the second layer,
these vectors are further compressed into a single elliptic curve point through a

Cubic Root Verifier Inner Product Argument 3

Pedersen commitment scheme with a 3n-dimensional commitment key.
The proof of the second layer is intricately connected to the commitment scheme
used in the second layer. Concretely, the proof should ensure knowledge of the
first layer results and the elliptic curve relation between them. To address this
issue, homomorphic commitment and a related proof system are required. From
this viewpoint, we generalize the second layer commitment from the Pedersen
commitment to any homomorphic commitments.
Proof for Elliptic Curve Relation. The second layer proof is about the el-
liptic curve relation. The proof is constructed by decomposing the elliptic curve
relation to the arithmetic relation over the embedding field and then adapting
the proof system for the arithmetic relation. In [29], they adopted a projective
representation of an elliptic curve for the arithmetization of the elliptic curve
operation because of the simple expression of complete addition. In [40], the
authors proposed an efficient proof for the complete addition of the affine for-
mula using the Plonk proof system. Because the affine representation has an
efficiency advantage over the projective representation, we adopt the idea of [40]
to construct a proof for the elliptic curve relation.
Plonk-Friendly Extended Polynomial Commitment Scheme. In the proof
of the second layer, the prover claims knowledge of vectors and the corresponding
elliptic curve relation. Constructing a proof system that satisfies both conditions
is intricate because the elliptic curve relation is associated with all committed
vectors. To address this, we propose a Plonk-friendly extended PCS constructed
from a homomorphic PCS compatible with Plonkish elliptic curve proof sys-
tem [40]. Concretely, the new PCS helps to show the consistency of committed
vectors and wire polynomials from Plonkish arithmetization.
Cubic Root Verifier Inner Product Argument. From the above results,
we conclude that the protocol features O(log2 mn) communication and O(m +
∥VEval(n log2 m)∥), where ∥VEval(n log2 m)∥ is the verifier complexity of Eval, the
evaluation protocol of the PCS for degree O(n log2 m) polynomials. Then, we
apply Leopard evaluation protocol, which features square root verifier complex-
ity. Finally, we set the parameters m = 3

√
N and n =

3
√
N2, where N is the

length of the witness vectors. Then, the total verifier complexity is O(m +
∥VEval(n log2 m)∥) = O(3

√
N + 3

√
N
√

log2 N), which is the cubic root of N .

1.2 Related Works

ZK Argument based on Discrete Logarithm Setting. Groth [25] first
proposed a sublinear ZK argument for AC under the DL assumption, and Seo
[38] improved it. These works feature constant round complexity as well. Later
works [8, 12, 14, 31, 17, 29] focus on reducing communication complexity (to log-
arithmic scale) rather than round complexity (allowing logarithmic complexity).
Starting from Bulletproofs [8, 12], various works have been proposed to improve
the verifier complexity of Bulletproofs [31, 17, 29]. In a different view point, Kim
et al. [29] proposed sublogarithmic communication ZK argument for the first
time, and then Lee et al. [30] enhanced it from linear verifier cost to sublinear
one with sublogarithm communication.

4 Lee et al.

ZK Argument based Other Settings. There are other approaches for con-
structing ZKP. Unknown order group [14, 2] based schemes features logarithmic
verifier complexity but the prover complexity is quasi-linear.

To overcome vulnerability against quantum computer-aided attacks, crypto-
graphic hash-based ZK scheme [5, 41] and lattice-based ZK scheme [3, 33, 10] are
proposed. However, both schemes feature large communication complexity, at
least O(log22 N), compared with the DL setting, O(log2 N).

2 Preliminary

2.1 Definitions and Notations

We first define the notations used in the paper. [ℓ] denotes a set of integers
from 1 to ℓ. We denote a negligible function as negl : N → R, which satisfies
that: for any c ∈ N, there exists Nc such that negl(λ) < 1/λc for all λ > Nc. For
a prime p, we denote asymmetric bilinear groups of order p, G1,G2, and Gt with
a non-degenerated bilinear map e : G1 ×G2 → Gt. We use additive notation to
describe group operations on G1, G2, and Gt. To denote a scalar multiplication,
we denote [k]G for a scalar k ∈ Zp and G ∈ G. We prefer to use upper and
lowercase letters to denote group elements and field elements, respectively. We
use bold font to represent vectors in Zm

p or Gm. For a vector a ∈ Zm
p and i ∈ [m],

we use ai(non-bold style letter with a subscript i) to denote the i-th element of a.
We use ∥ notation to represent concatenation of two vectors, i.e., for a, b ∈ Zm

p ,
a ∥ b = (a1, . . . , am, b1, . . . , bm).

For a, b ∈ Zm
p and G,H ∈ Gm, we use the following vector notations:

– Component-wise addition : a + b = (a1 + b1, . . . , am + bm) ∈ Zm
p and

G+H = (G1 +H1, . . . , Gm +Hm) ∈ Gm.
– Component-wise product : a ◦ b = (a1b1, . . . , ambm) ∈ Zm

p .
– Multi-Scalar Multiplication : [x]G =

∑
i∈[m][xi]Gi ∈ G.

– Inner Pairing Product : E(G,H) =
∑

i∈[m] e(Gi, Hi) ∈ Gt, where G ∈
Gm

1 and H ∈ Gm
2 .

Parallel Multi-Scalar Multiplication. Let a ∈ Zm×n
p be a matrix and G ∈

Gm be group elements. We denote [a]G := ([a1]G, . . . , [an]G), where ai ∈ Zm
p

is the i-th column vector of matrix a.
Argument System for Relation R. Let R be a polynomial-time verifiable
relation consisting of common reference string (CRS), statement, and witness,
denoted by σ, x, and w respectively. An interactive argument system for re-
lation R consists of three probabilistic polynomial-time algorithms (PPTs), a
key generation algorithm K, a prover algorithm P, and a verifier algorithm V.
The K algorithm takes the security parameter λ and outputs CRS, which is
the input of P and V. P and V generate a transcript interactively, denoted by
tr ← ⟨P(σ, x, w),V(σ, x)⟩. At the end of the transcript, V outputs a bit, 0 or 1,
which means reject or accept, respectively.

Cubic Root Verifier Inner Product Argument 5

Argument of Knowledge. An argument of knowledge (AoK) is a special case
of an argument system that satisfies the properties of completeness and wit-
ness extractability. As previous works did [12, 29], we consider witness-extended
emulation [32] for the latter, which is equivalent to knowledge soundness.

Definition 1 (Perfect Completeness). Let (K,P,V) be an argument system
and R be a polynomial-time verifiable relation. We say that the argument system
(K,P,V) for the relation R has perfect completeness if, for every PPT adversary
A, the following probability equation holds:

Pr

 tr ← ⟨P(σ, x, w),V(σ, x)⟩
tr is accepting

∣∣∣∣∣∣
σ ← K(1λ);
(x,w)← A(σ)
∧(σ, x;w) ∈ R

 = 1

Definition 2 (Computational Witness Extended Emulation). Let (K,P,V)
be an argument system and R be a polynomial-time verifiable relation. We say
that the argument (P,V) has computational witness-extended emulation if, for
every deterministic polynomial prover P∗, which may not follow P, and all pairs
of interactive polynomial-time adversaries (A1,A2), there exists a polynomial
time emulator E, the following probability equation holds:∣∣∣∣∣∣∣∣∣

Pr

[
A1(tr) = 1

σ ← K(1λ); (x, s)← A2(σ);
tr ← ⟨P∗(σ, x, s),V(σ, x)⟩

]
−

Pr

[
A1(tr) = 1 ∧
(σ,w, x) ∈ R

σ ← K(1λ); (x, s)← A2(σ);
(tr, w)← EO(σ, x), tr is accepting

]
∣∣∣∣∣∣∣∣∣ < negl(λ)

The emulator E can access the oracle O = ⟨P∗(σ, x, s),V(σ, x)⟩, which outputs
the transcript between P∗ and V. E permits to rewind P∗ at a specific round and
rerun V using fresh randomness. s can be considered as the state of P∗, which
includes randomness.

Definition 3. We say that the argument system (K,P,V) is an argument of
knowledge for relation R if the argument has (perfect) completeness and (com-
putational) witness-extended emulation.

Trusted Setup. In some arguments, the key generation algorithm takes a trap-
door that should not be revealed to anyone, including the prover and verifier.
In this case, CRS generation should be run by a trusted third party. A setting
requiring a trusted party is called the trusted setup.
Non-interactive Argument in the Random Oracle Model. We call an
interactive argument a public coin if V outputs without decision bits constitut-
ing a uniformly random message without dependency of P’s messages. Fiat and
Shamir [20] proposed a method to transform any public coin interactive argu-
ment into a non-interactive one using the random oracle model. The approach
involves replacing V’s random messages with random oracle outputs, where the
inputs are derived from previous messages at that point.
Assumptions. Let G be a group generator that takes security parameters λ and
then outputs G, describing a group of order p.

6 Lee et al.

Definition 4 (Discrete Logarithm Relation Assumption). We say that G
satisfies the discrete logarithm relation (DLR) assumption if, for all non-uniform
polynomial-time adversaries A, the following inequality holds:

Pr

[
a ̸= 0 ∧ ga = 1G

∣∣∣∣∣ (p, g,G)← G(1λ), g $← Gn;
a← A(g, p, g,G)

]
≤ negl(λ)

It is well-known that the discrete logarithm relation (DLR) assumption is
equivalent to the discrete logarithm (DL) assumption [12, 29].

Definition 5 (Commitment Scheme). A commitment scheme C consists of
three PPT algorithms: a key generation Gen, a commitment Com, and an open
Open. A commitment scheme C = (Gen,Com,Open) over a message space M, a
random space R, and a commitment space C is defined by:

– Gen(1λ, ℓ)→ ck : On input security parameter λ and dimension of message
space ℓ, sample commitment key ck

– Com(ck,m; r)→ C : Take commitment key ck, message m ∈ M, and ran-
domness r ∈ R, output commitment C ∈ C

– Open(ck,m, r, C)→ 0/1 : Take commitment key ck, message m ∈ M, ran-
domness r ∈ R, and commitment C ∈ C output 1 if Com(ck,m; r) = C, 0
otherwise.

Since the Open algorithm can be described by using Com algorithm, we omit the
Open algorithm from the commitment scheme C. Now, we call C = (Gen,Com) a
commitment scheme if the following properties hold:
Binding: For any expected PPT adversary A,

Pr

[
m0 ̸= m1

∣∣∣∣ ck← Gen(1λ, ℓ); (m0, r0,m1, r1)← A(ck)
∧C0 = C1where Ci = Com(ck,mi; ri)

]
≤ negl(λ)

Hiding: For any expected PPT adversary A = (A1,A2)∣∣∣∣∣∣Pr
b = b′

∣∣∣∣∣∣
ck← Gen(1λ, ℓ); (m0,m1, state)← A1(ck);

b
$←{0, 1}, r $←R,

C ← Com(ck,mb; r); b
′ ← A2(ck, C, state),

− 1
2

∣∣∣∣∣∣ ≤ negl(λ)

Additionally, we call a commitment scheme C is (additively) homomorphic if the
following property holds:
(Additive) Homomorphic: For any commitment key ck ← Gen(1λ, ℓ) and
pairs of message-randomness (m0, r0), (m1, r1) ∈ M × R, the following equality
holds: Com(ck,m0; r0) + Com(ck,m1; r1) = Com(ck,m0 +m1; r0 + r1)

Homomorphic Vector Commitment Schemes. A homomorphic vector com-
mitment scheme is a homomorphic commitment for N -dimensional message, etc.
ZN
p or GN . We introduce two widely used homomorphic vector commitment

schemes: Pedersen vector commitment [35] and AFGHO group commitment [1].

Cubic Root Verifier Inner Product Argument 7

– GenPed(1
λ, N)→ (G, H):

1. Sample G
$←GN and H $←G

2. Output ck = (G, H) ∈ GN ×G

– ComPed((G, H),a; r)→ C:

1. Compute C = [a]G+ [r]H
2. Output C ∈ G

– GenGC(1
λ, N)→ (F ,K):

1. Sample F
$←GN

2 and K $←Gt

2. Output ck = (F ,K) ∈ GN
2 ×Gt

– ComGC((F ,K),G; r)→ C:

1. Compute C = E(G,F) + [r]K
2. Output C ∈ Gt

Fig. 1. Homomorphic Vector Commitment Schemes

Pedersen vector commitment. Pedersen vector commitment CPed = (GenPed,ComPed)
is a commitment scheme over message space ZN

p . Pedersen vector commitment
provides perfect hiding and computational binding under the DL assumption.
Specially, we sometimes use subscript Ped, p for Pedersen commitment over group
Gp of order p to distinguish base group.

AFGHO group commitment. AFGHO group commitment CGC = (GenGC,ComGC)
is a commitment scheme over message space GN

1 . CGC uses a bilinear pairing for
the commitment algorithm.
Two-tier Commitment Scheme. A two-tier commitment is a commitment
scheme for a two-dimensional array, e.g. Zm×n

p . The use of the two-tier com-
mitment scheme has some merits. To construct an IPA with a two-tier commit-
ment, the size of the common reference string (CRS) can be reduced sublinear
of N = mn, concretely, O(n + m). This reduced CRS leads to a reduction in
the verification cost of IPA [15, 31, 29, 28]. A two-tier commitment scheme is
constructed by combining two distinct commitment schemes C1 = (Gen1,Com1)
and C2 = (Gen2,Com2). For a matrix in Zm×n

p , commit m row vectors using the
first commitment algorithm Com1 in parallel. After then, with regard m commit-
ments from Com1 as a message of Com2, use the second commitment algorithm
Com2, and output it.

Definition 6 (Two-tier Commitment Scheme). Let C1 = (Gen1,Com1) and
C2 = (Gen2,Com2) be commitment schemes over (message,commitment,randomness)
space (Zn

p ,C1,R1) and (Cm
1 ,C2,R2) respectively. Then, the commitment scheme

C = (Gen,Com) over space ((Zm×n
p ,C2,R1 × R2) is called as a two-tier commit-

ment scheme based on C1 and C2 defined by:
– Gen(1λ,mn)→ ck = (ck1, ck2):

1. Run Gen1(1
λ, n)→ ck1

2. Run Gen2(1
λ,m)→ ck2

3. Return ck = (ck1, ck2)

– Com(ck,M ; (r, rf))→ C:
1. Compute Com1(ck1,Mi; ri)→ Ci,∀i
2. Compute Com2(ck2,C; rf)→ C
3. Return C

Specially, we use roman-style to denote commitment from two-tier commit-
ment schemes. In terms of IPA, the binding property of the commitment is
sufficient for ensuring soundness. Since our main focus is the construction of
IPA, we omit the randomness r in the commitment algorithm, which does not
affect the binding property. Hereafter, we simply write Com(ck,M) to describe
the commitment algorithm for a message M .

8 Lee et al.

Pairing-based Two-tier Commitment Scheme. From two commitment schemes
C1 = (GenPed,ComPed) and C2 = (GenGC,ComGC) over spaces (Zmn

p ,Gn
1 ,G1) and

(Gm
1 ,Gm

2 ,Gt) respectively, one can construct a homomorphic two-tier commit-
ment scheme. The homomorphic two-tier commitment is widely used for con-
structing sublinear verifier IPA schemes [15, 31, 29]. The homomorphic property
helps to apply the folding technique in Bulletproofs; however, this construction
is restricted to a choice of a base group: pairing-friendly elliptic curves.
Polynomial Commitment Scheme. A polynomial commitment scheme (PCS) [27,
14] is a special case of the commitment scheme that commits the given poly-
nomial within the specific degree bound d. PCS allows convincing polynomial
evaluation without opening the polynomial itself. Concretely, PCS contains an
argument system Eval = (K,P,V) for the following relation:

REval =

{
(ckPC, C ∈ C, z, y ∈ Zp, d ∈ N; f ∈ Z≤d

p [X]) :
C = Com(ckPC, f(X)) ∧ y = f(z)

}
(1)

The formal definition of PCS is given as below:

Definition 7 (Polynomial Commitment Scheme). A polynomial commit-
ment scheme PCS = (Gen,Com,Eval) consists of key generation algorithms Gen,
commitment algorithm Com, and argument system Eval for the relation REval. We
call PCS = (Gen,Com,Eval) is a polynomial commitment scheme if the following
properties hold:

– The commitment scheme (Gen,Com) satisfies the binding property.
– The argument system Eval is an AoK for the relation REval in Eq. (1)

2.2 Plonkish: Proof for Elliptic Curve Relation

In Protocol4, one of the main bottlenecks was checking the relation between
elliptic curve points. More precisely, for elliptic curve points Li, Ri, Pi+1, Pi ∈
E(Zp) which are in fact commitments of corresponding messages, and a scalar
xi ∈ Zp, the relation of the form Pi+1

?
= [x−1

i]Li +Pi + [xi]Ri should be ensured
during the protocol. However, due to its construction, the commitment scheme
to produce each curve point is no longer homomorphic, so [29] took a strategy
to convert the relation into the AC. To this end, rather than using the affine
coordinate representation, they attempted to represent each elliptic curve point
as the projective coordinate representation, where the complete point addition
formula is known [36] for prime order short Weierstrass curves. But, this increases
the number of input gates by a factor of 3 on the number of elliptic curve points.

Plonk [22] is one of the well-known methods to represent the circuit satisfia-
bility of the given AC as the constraints system. By Lagrange interpolation, the
latter can be converted to showing the equality of two polynomials, which can
be proved efficiently by PIOP instantiated by PCS [14]. As shown in [21, 40],
Plonk-style arithmetization can cope with custom gates, which are arithmetic
gates other than addition or multiplication, efficiently. Hence, by utilizing an
appropriate custom gate for elliptic curve addition in affine coordinates, we can

Cubic Root Verifier Inner Product Argument 9

reduce the blow-up factor from representing the elliptic curve point to 2, allevi-
ating the above problem on the size of the CRS and the circuit. For this reason,
we use Plonkish [40], which is an extension of Plonk by constructing a constraint
system about the execution trace acquired from running the given AC. Plonkish
supports custom gates and look-up operations. For constructing the custom gate
of the elliptic curve operation, we follow the method from [40].

Throughout this paper, we will denote PlonkishEval as the proof system for
Plonkish supporting the custom gate for elliptic curve addition. PlonkishEval takes
a commitment key ckPC for the underlying PCS as a public input. For witnesses,
PlonkishEval takes 6 wire polynomials w

(1)
L , w

(2)
L , w

(1)
R , w

(2)
R , w

(1)
O , w

(2)
O corre-

sponding to the 1st, 2nd coordinates of curve points in each wire and 5 auxiliary
polynomials α, β, γ, δ, λ required for the elliptic curve point addition. The de-
tailed explanation about PlonkishEval and the construction of the custom gate
are given in Appendix D.

3 Main Results

3.1 Reconstruction of Protocol4

In this section, we generalize the IPA Protocol4 [29]. Before describing the
protocol, we focus on the structure of the commitment scheme used in Protocol4.
Doubly-Pedersen Two-tier Commitment Scheme. To remove reliance on
the pairing operation, Kim et al. proposed Pedersen commitment for the el-
liptic curve points, which are already committed by the Pedersen commitment
scheme. This approach can be viewed as a two-tier commitment scheme using
the Pedersen commitment on both the first and second layers. For convenience,
we call this commitment scheme as the Doubly-Pedersen two-tier commitment
scheme. The doubly-Pedersen two-tier commitment process for a ∈ Zm×n

p is as
follows: First, commit each row vector of a using Pedersen vector commitment
on the group of elliptic curve points G = E(Zq) over the field Zq. After the
first layer commitment, one gets n distinct elliptic curve points. For the second
layer commitment, one considers n elliptic curve points in E(Zq) as coordinates
of the field elements in Zq and then recommits them using the Pedersen vector
commitment on the elliptic curve Gq of order q.
Homomorphic Vector Commitment in Second Layer. Contrary to the ho-
momorphic commitment schemes, such as Pedersen commitment and AFGHO
group commitment, the doubly-Pedersen two-tier commitment scheme does not
have a homomorphic property [29]. For this reason, to apply the folding tech-
nique [8, 12] on the doubly-Pedersen commitment-based IPA, the prover should
send additional proofs to ensure the validity of group operations, which are
brought by Pedersen commitment in the first layer. Because the homomorphic
property of second commitments helps to construct additional proofs efficiently,
we prefer to use homomorphic commitment at the second layer. Additionally,
the role of the second commitment is compressing a large message to single
commitment, e.g. from ZN

q to C, so that the second commitment satisfies the
compression property; converts N -dimensional message into a single element.

10 Lee et al.

Protocol.Row

Comm. : O(log2m)
Verifier : O(m)

Protocol.Col

Comm. : O(log2 n)
Verifier : O(log2 n)

AggMEC

Comm. : O(∥ΠEval(n log2m)∥)
Verifier : O(∥VEval(n log2m)∥)

Total Complexity
Comm. : O(log2mn+ ∥ΠEval(n log2m)∥)
Verifier : O(m+ ∥VEval(n log2m)∥)

Eval

PlonkishEval

Fig. 2. Process of Protocol

For a precise description, let us consider the Pedersen commitment scheme
C1 = (GenPed,ComPed) over (Zm

p ,Gp = E(Zq)) at the first layer and a homomor-
phic commitment scheme C2 = (Gen2,Com2) over (Z2n

q ,C) at the second layer.
At the second commitment, we consider group elements (elliptic curve points) as
pair of Zq elements following affine coordinates. Then, we can construct two-tier
commitment scheme CTC = (GenTC,ComTC) as follows:

– GenTC(1
λ,mn)→ ck = (G, ck2):

1. Run GenPed,p(1
λ, n)→ G ∈ Gn

p

2. Run Gen2(1
λ, 2m)→ ck2 ∈ G2m

q

3. Return ck = (G, ck2)

– ComTC(ck = (G, ck2),a ∈ Zm×n
p)→ C ∈ Gq:

1. Compute ComPed,p(G,ai)→ Ci ∈ Gp,∀i ∈ [m]
2. Compute Com2(ck2,C)→ C ∈ C
3. Return C

Using the commitment CTC, we consider IPA for the following relation:

Rm,n
GenPT4 =

{(
G,H ∈ Gm

p , ck2,P ∈ Gq, c ∈ Zp;a, b ∈ Zm×n
p

)
:

P = ComTC((G ∥H, ck2),a ∥ b) ∧ c = ⟨a, b⟩

}
(2)

We intend to construct an IPA in two parts: the reduction part and the proof
of the multi-elliptic curve (MEC) operation part. The reduction part reduces
the argument from the relation Rm,n

GenPT4 to Rm/2,n
GenPT4(Row-reduction) or R1,n

GenPT4

to R1,n/2
GenPT4(Column-reduction). The overall process of the proposed IPA is as

follows: first, the prover and verifier run row-wise reduction Protocol.Row recur-
sively until the row of the witness reaches m = 1. Then, they run column-wise
reduction Protocol.Col recursively until the column of the witness reaches n = 1.
Next is proof for the MEC operation part. In this part, the prover and veri-
fier run AggMEC for ensuring elliptic curve relation between witness vectors. In
this phase, Eval and PlonkishEval are used as subroutines. Notice that both have
verifier complexity ∥VEval(n log2 m)∥. We illustrate the overall process in Fig. 2.
Reduction and Store the States. In the reduction protocol, the prover and
verifier recursively run the reduction process: reduction from an argument for
vectors to those for half-sized vectors. Contrary to Bulletproofs [8, 12] or Leop-
ard [28], the prover and verifier store the history of reduction processes because
the verifier has not been convinced of the group operation relation between re-
ceived commitments yet. The states stV and stP role recording the history of

Cubic Root Verifier Inner Product Argument 11

the verifier and prover, respectively. stV and stP are used to run the aggregated
multi-elliptic curve operation, AggMEC, which guarantees the validity of the in-
ner value of commitment for every round. We illustrate states stV and stP in
Fig. 3. Hereafter, we denote µ = log2 m and ν = log2 n.

Fig. 3. Format of stV and stP

Row-wise Reduction: Algorithm 1. In row-wise reduction, the P sends
crossed inner product values cL, cR and commitments L,R, whose messages are
pairs of half-sized witness vectors, to V. Then, V sends challenge x to P. Con-
trary to other IPAs based on homomorphic commitments, V cannot update the
instance P̂ for the next round. To resolve this issue, P sends an updated instance
P̂ to V. In this phase, V should verify the well-construction of P̂, but we postpone
the verification of it and run the row-wise reduction recursively until m = 1. At
m = 1, P and V run Protocol.Col. The description of Protocol.Row is given in
Algorithm 1.
Column-wise Reduction: Algorithm 2. In column-wise reduction, the P
sends crossed inner product values cL and cR. Then, V sends a challenge x
to P. The update process is different from that of row-wise reduction because
the first commitment key is already compressed to a single element, G and
H. In order to update the instance, P parses the vector P to 4 parts and then
constructs the half-length updated vector P̂. At the end of Protocol.Col, P and V
additionally run AggMEC for knowledge of tuples of (L,R,P), which guarantees
well-construction of P̂ for all rounds in both row-wise and column-wise reduction.
The description of Protocol.Col is given in Algorithm 2.

Theorem 1. Assume that both Protocol.Col and AggMEC provide perfect com-
pleteness and computational witness-extended emulation. Then, Protocol.Row in
Algorithm 1 has perfect completeness and computational witness-extended emu-
lation under the DL assumption.

Theorem 2. Assume that AggMEC provides perfect completeness and computa-
tional witness-extended emulation. Then, Protocol.Col in Algorithm 2 has perfect
completeness and computational witness-extended emulation under the DL as-
sumption.

12 Lee et al.

Algorithm 1 Protocol.Row
Protocol.Row(G,H, (ckk)

µ
k=s, ckCol,P, c, stV ;a, b, stp)

where ckk = (ckL,k, ckR,k, ckP,k), ckCol = (ckP,k)
µ+ν+1
k=µ+1

1: if m = 1, base case s = µ then:
2: P and V run Protocol.Col(G,H, ckCol,P, c, stV ;a, b, stP)
3: else
4: if stP =⊥ and stV =⊥ then
5: P sets P = [a]G ∥ [b]H and adds (·, ·,P) into the bottom row of stP .
6: V adds (ckP,0, ·, ·,P, ·) into the bottom row of stV .
7: else
8: P refers P in the bottom row of stP
9: end if

Set m̂ = m
2

and a = [aL∥aR], b = [bL∥bR], G = GL∥GR, H = HL∥HR

10: P computes cL, cR and L,R and sends them to V:
L = [aL]GR ∥ [bR]HL, R = [aR]GL ∥ [bL]HR ∈ G2n

p ,
cL = ⟨aL, bR⟩, cR = ⟨aR, bL⟩ ∈ Zp,
L = Com2(ckL,s,L), R = Com2(ckR,s,R) ∈ Gq

11: V chooses x $←Z∗
p and returns it to P

12: P computes P̂ and sends it to V:
P̂ = [x−1]L+ P + [x]R ∈ G2n

p , P̂ = Com2(ckP,s, P̂) ∈ Gq

13: Both P and V update:
Ĝ = GL + [x−1]GR, Ĥ = HL + [x]HR ∈ Gm̂

p , ĉ = x−1cL + c+ xcR ∈ Zp

14: P updates â = aL + xaR, b̂ = bL + x−1bR ∈ Zm̂×n
p .

15: V adds (cks,L,R, P̂, x) into the bottom row of stV .
16: P adds (L,R, P̂) into the bottom row of stP .
17: Both P and V run Protocol.Row(Ĝ, Ĥ, (ckk)

µ
k=s+1, ckCol, P̂, ĉ, stV ; â, b̂, stP)

18: end if

The perfect completeness and computational witness-extended emulation for the
overall reduction process, i.e., the sequential combination of Protocol.Row and
Protocol.Col, relies on those of AggMEC, along with the DL assumption. We for-
mally state these in Theorem 1 for Protocol.Row and Theorem 2 for Protocol.Col,
whose proofs are presented in Appendix A and B, respectively.
Proof of Multi-Elliptic Curve Operation: Algorithm 3. In this section,
we explain how to construct multi-elliptic curve operation arguments AggMEC.
Contrary to [29], we unify and aggregate row-wise and column-wise multi-elliptic
curve operation proofs into a single protocol. That is, AggMEC guarantees the
well-constructed updated instances P̂ from every round of both row-wise and
column-wise reduction. Concretely, AggMEC checks that the k-th row of state
tuples (stV ; stP)k = (ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k)) satisfy the following:

1. Commitment
Lk = Com2(ckL,k,Lk),Rk = Com2(ckR,k,Rk) for k = 1, . . . , µ

Pk = Com2(ckP,k,P k) for k = 0, . . . , µ+ ν − 1 (3)
Pµ+ν = Com2(ck, [a]G ∥ [b]H)

Cubic Root Verifier Inner Product Argument 13

Algorithm 2 Protocol.Col
Protocol.Col(G,H, (ckP,k+µ)

ν
k=s,P, c, stV ;a, b, stP)

1: if n = 1, base case s = ν then:
2: P sends a and b to V
3: V checks c ?

= a · b and set P Pub = [a]G ∥ [b]H ∈ Z4
q

4: P and V run AggMEC(P Pub, stV ; stP)
5: else
6: if stP =⊥ and stV =⊥ then
7: P sets P = [a]G ∥ [b]H and adds (P) into the bottom row of stP

V adds (ckP,µ,P, ·) into the bottom row of stV .
8: else
9: P refers P in the bottom row of stP

10: end if
Set n̂ = n

2
and a = aL∥aR, b = bL∥bR, P = P (q1) ∥ P (q2) ∥ P (q3) ∥ P (q4)

11: P computes cL and cR and sends them to V:
cL = ⟨aL, bR⟩ ∈ Zp, cR = ⟨aR, bL⟩ ∈ Zp.

12: V chooses x $←Z∗
p and returns it to P

13: P computes P̂ and sends it to V:
P̂ = (P (q1)+[x]P (q2) ∥ P (q3)+[x−1]P (q4)) ∈ G2n̂

p , P̂ = Com2(ckP,µ+s, P̂) ∈ Gq

14: Both P and V compute ĉ = x−1cL + c+ xcR ∈ Zp

15: Additionally, P computes â = aL + xaR, b̂ = bL + x−1bR ∈ Zn̂
p .

16: V adds (ckP,µ+s, P̂, x) into the bottom row of stV .
17: P adds (P̂) into the bottom row of stP .
18: Both P and V run Protocol.Col(G,H, (ckP,k+µ)

ν
k=s+1, P̂, ĉ, stV ; â, b̂, stP)

19: end if

2. Elliptic Curve Operation on Gp = E(Zq)

µ−1∧
k=0

(
P k+1 = [x−1

k]Lk+1 + P k + [xk]Rk+1 ∈ G2n
p

)
(4)

µ+ν∧
k=µ

(
P k+1 = (P

(q1)
k + [xk]P

(q2)
k ∥ P (q3)

k + [x−1
k]P

(q4)
k) ∈ Gn/2k−µ

p)
)

(5)

Two Roots of Unity. To construct the protocol, we consider two roots of
unity: one for the commitment part and the other for the execution trace of the
elliptic operation. Using the two roots of unity, we encode vectors to interpolated
polynomial on power of unities. First, we consider total number d of elements
consisting message vectors Lk, Rk, and P k of Lk, Rk, and Pk. Since each Lk,
Rk consist of 2n elements for all k ∈ [µ], and P k consists of 2n elements for
k = 0, . . . µ and n/2k−µ−1 for all k = µ+ 1 . . . µ+ ν, the total number d should
be 6nµ+ 4n− 2. We denote d-th root of unity ζ.

Next, we consider the root of unity for the execution trace. In Eq. (4) and
(5), the elliptic curve operation consists of 4nµ+ n− 1 complete additions and
4nµ+4n−2 multi-scalar multiplications. Each multi-scalar multiplication can be
represented as 2 log2 q complete additions. Then, the total number of complete

14 Lee et al.

additions for Eq. (4) and (5) is at most 8n(µ+1) log2 q. We choose a sufficiently
large integer D that satisfies D ≥ 8n(µ+1) log2 q and d|D (d is a divisor of D).
Next, we define the D-root of unity ξ, which will be used for interpolating the
wire polynomial in Plonkish. Note that ζ = ξt for some t and each ζi and ξi is
the root of the polynomial Xd − 1 and XD − 1 respectively.

Fig. 4. Structure of Wire Polynomial. Best viewed in color.

Plonk-Friendly Extended Polynomial Commitment Scheme. To prove
the consistency of the wire polynomial and commitments Lk,Rk,Pk, we con-
struct a commitment scheme for the message vectors Lk,Rk and P k considering
compatibility with the polynomial commitment scheme. To this end, we first en-
code vectors Lk,Rk and P k into polynomials FL,k, FR,k, FP,k and then commit
them. The encoding function Enctype takes ξ, index k and a vector a, returning
a polynomial Ftype,k in Zq[X], where type ∈ {L,R, P}. The encoding process
extends 2n vectors to D-degree polynomials. We intend that each encoded func-
tion is activated at different positions. That is, for two encoded functions Ftype1,k1

and Ftype2,k2 with (type1, k1) ̸= (type2, k2), Ftype1,k1(ξ
i)Ftype2,k2(ξ

i) = 0 holds for
all i ∈ [D]. In our setting, decoding of a polynomial Ftype,k can be performed
uniquely when the type type and position k are determined. Furthermore, the
sum of two encoded functions preserves their original non-zero evaluations at ξi.

– EncL(ξ, k ∈ [µ],a ∈ Z≤2n
q)→ FL,k ∈ Zq[X]

Construct degree D polynomial FL,k(X) such that:

FL,k(ξ
i) =

{
a[j − 2n(k − 1)], if i = (3j − 2)t for 2n(k − 1) < j ≤ 2nk

0, otherwise

– EncR(ξ, k ∈ [µ],a ∈ Z≤2n
q)→ FR,k ∈ Zq[X]

Construct degree D polynomial FR,k(X) such that:

FR,k(ξ
i) =

{
a[j − 2n(k − 1)], if i = (3j − 1)t for 2n(k − 1) < j ≤ 2nk

0, otherwise

Cubic Root Verifier Inner Product Argument 15

– EncP (ξ, k ∈ {0, . . . , µ+ ν + 1},a ∈ Z≤2n
q)→ FP,k ∈ Zq[X]

Construct degree D polynomial FP,k(X) such that:

FP,k(ξ
i) =

{
a[j − 2nk], if i = 3jt for 2nk < j ≤ 2n(k + 1)

0, otherwise

Using the encoding function, we define the commitment Com2 based on the ho-
momorphic polynomial commitment ComPC. The cktype,k consists of four tuples:
(ckPC, ξ, type, k). We describe the commitment Com2 for message a as follows:
– Com2(cktype,k,a = (a(1),a(2)) ∈ Z4n

q)→ A

1. Enctype(ξ, k,a(i))→ F
(i)
type,k for i ∈ {1, 2}

2. ComPC(ckPC, F
(i)
type,k)→ A(i) for i ∈ {1, 2}

3. Output A = (A(1),A(2))

Designated Execution Table. The execution table contains all values {Lk,Rk,P k}
some position. To construct AggMEC, we allocate each value {Lk,Rk,P k} at a
specific position in left position wL following polynomial encoding Enc. That is,
the non-zero evaluation of the encoding polynomial Ftype,k at ξi is equal to the
evaluation of the wire polynomial wL(ξ

i) for all k and type.
Consistency Proof. Now we explain how to construct proof for the relations
Eq. (3) and Eq. (4), (5). Each relation can be ensured by Eval and PlonkishEval. To
ensure consistency of Lk,Rk,P k, we first merge every commitment Lk,Rk,Pk

to one commitment A, whose message polynomial is the sum of encoding poly-
nomials, a(X) =

∑
Ftype,k(X). Then the difference polynomial wL(X)−a(X) is

divided by Xd − 1 due to wL(ξ
i) − a(ξi) = 0 for all i. The verifier can check it

by using Eval after receiving a commitment of the wire polynomial wL(X).

Theorem 3. Assume that the polynomial commitment scheme PCS = (Gen,ComPC,Eval)
satisfies property of Definition 7 and homomorphic property. Then, AggMEC
in Algorithm 3 has perfect completeness and computational witness-extended-
emulation.

The proof of Theorem 3 is presented in Appendix C.

3.2 Cougar: Cubic Root Verifier IPA

From the above construction, we adopt the homomorphic polynomial com-
mitment scheme LeopardPC in place of ComPC. We call this IPA Cougar. The full
description of LeopardPC is given in Appendix E.
Complexity Analysis. We provide a complexity analysis of Cougar.
1. Row-reduction, Algorithm 1
[Prover Cost]: For commitments L,R and P̂ at i-th round, P computes O(N2i)

Gp operations and O(n log2 m) Gq operations. For updating Ĝ, Ĥ and â, b̂, ĉ at
i-th round, P computes O(m2i) Gp operation and O(n · m2i) Zp respectively. Then,
the total prover cost is O(N) Zp and O(N) Gp operations.

16 Lee et al.

Algorithm 3 AggMEC
AggMEC(P Pub, ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k))
ckk = (ckL,k, ckR,k, ckP,k), each ckk contains ckPC

1: P and V set A(i) =
∑µ

k=1(L
(i)
k +R

(i)
k) +

∑µ+ν
k=0 P

(i)
k for i ∈ {1, 2}

2: P sets a(i) =
∑µ

k=1(F
(i)
L,k + F

(i)
R,k) +

∑µ+ν
k=0 F

(i)
P,k for i ∈ {1, 2}:

F
(i)
L,k = EncL(ξ, k,L

(i)
k), F (i)

R,k = EncR(ξ, k,R
(i)
k), F (i)

P,k = EncP (ξ, k,P
(i)
k)

3: P construct left wire polynomials {w(i)
L (X)} from execution table with public

in/out P Pub and then computes W
(1)
L ,W

(2)
L ,Q(1),Q(2) and sends them to V:

q(i)(X) =
w

(i)
L

(X)−a(i)(X)

Xd−1
,W

(i)
L = ComPC(ckPC, w

(i)
L),Q(i) = ComPC(ckPC, q

(i))

4: V chooses z, ρ $←Zq and sends them to P.
5: P and V compute:

V =
∑2

i=1(
∑µ

k=1([ρ
4k−2−i]L

(i)
k + [ρ4k−i]R

(i)
k) + ρ4µ(

∑µ+ν
k=0 [ρ

2k−1+i]P
(i)
k))

6: P computes FV (X):
FV =

∑2
i=1(
∑µ

k=1(ρ
4k−2−iF

(i)
L,k + ρ4k−iF

(i)
R,k) + ρ4µ(

∑µ+ν
k=0 ρ

2k−1+iF
(i)
P,k))

7: P sends s, t(1), t(2), r(1), r(2) to V: s = FV (z), t(i) = q(i)(z), r(i) = w
(i)
L (z)

8: V chooses τ $←Zq and sends them to P.
9: P and V set P = V+

∑2
i=1([τ

i]A(i) + [τ2+i]Q(i)) and
y = s+

∑2
i=1(τ

i(s(i) − t(i)(zd − 1)) + τ2+it(i))

10: P set FP = FV +
∑2

i=1(τ
ia(i) + τ2+iq(i))

11: P sets wire/aux polynomials w(1)
L , w

(2)
L , w

(1)
R , w

(2)
R , w

(1)
O , w

(2)
O , α, β, γ, δ, λ ∈ Zq[X]

12: P and V set run Eval(ckPC,P, z, y;FP) and Eval(ckPC,W
(i)
L , z, r(i);w

(i)
L)

13: P and V run PlonkishEval(ckPC;w
(1)
L , w

(2)
L , w

(1)
R , w

(2)
R , w

(1)
O , w

(2)
O , α, β, γ, δ, λ)

[Verifier Cost]: For updating Ĝ, Ĥ and ĉ at i-th round, V computes O(m2i)
Gp operation and 2 multiplication in Zp. Then, the total verifier cost is O(m)
Gp and O(log2 m) Zp operations.
[Communication Cost]: For each round, P sends L, R, P̂, cL, and cR. Then,
the total communication cost is 3 log2 m|Gq|+ 2 log2 m|Zp|.
2. Column-reduction, Algorithm 2
[Prover Cost]: For a inner product cL and cR at i-th round, the prover com-
putes O(n

2i) Zp operations. For updating P̂, â, b̂, and ĉ at i-th round, P computes
O(n

2i) Gp and Zp operations, O(n
2i log2 m) Gq operations. Then, the total prover

cost is O(n log2 m) Gq operations.
[Verifier Cost]: For updating ĉ at each round except the final round, V com-
putes 2 multiplication in Zp. In the final round, V computes one Zp operation
for verification. Then, the total verifier cost is O(log2 n) Zp operations.
[Communication Cost]: For each round, the prover sends P̂, cL, and cR. The
total communication cost is log2 n|Gq|+ 2 log2 n|Zp|.
3. Aggregated MEC, Algorithm 3
[Prover Cost]: From line 1 to 11, P treats at most log2 N polynomials of de-
gree D. Then, P computes O(D log2 N) = O(n log2 N) operations, including Zp,
Gp, and Gq. And the cost of Eval and PlonkishEval is O(∥PEval(D)∥). Then, total
prover cost is O(n log2 N + ∥PEval(D)∥).

Cubic Root Verifier Inner Product Argument 17

[Verifier Cost]: From line 1 to 11, V computes O(log2 N) Gq operations. And
the cost of Eval and PlonkishEval is O(∥VEval(D)∥). Then the total verifier cost is
O(log2 N + ∥VEval(D)∥).
[Communication Cost]: From line 1 to 11, P sends V 4 Gq elements and 5 field
elements. Additionally, for Eval and Plonkish the prover sends O(∥ΠEval(D)∥).
Then total communication cost is O(∥ΠEval(D)∥)
Cubic Root Verifier IPA from Parameter Setting. Let consider N = mn
be the length of the witness vectors with n =

3
√
N2 and m = 3

√
N . Since Leopard

features (∥PEval(D)∥, ∥VEval(D)∥, ∥ΠEval(D)∥) = (O(D), O(
√
D), O(log2 D)), we

counclude that the Cougar features O(N) prover cost, O(log2 N) communication
cost and O(3

√
N
√
log2 N) verifier cost, which is the cubic root of N .

Theorem 4. Cougar is an IPA, which features O(log2 N) communication cost,
O(N) prover cost and O(3

√
N
√
log2 N) verifier cost where N is length of wit-

ness. Cougar provides perfect completeness and computational witness extended
emulation under the DL assumption.

Proof. The prover, verifier and communication costs can be checked in the above
analysis. By Theorem 1, Theorem 2, and Theorem 3 and the soundness of Leop-
ard under the DL assumption [28], Cougar satisfies perfect completeness and
computational witness-extended-emulation under the DL assumption. ⊓⊔

References

1. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. J.
Cryptol., 29(2):363–421, 2016.

2. Arasu Arun, Chaya Ganesh, Satya V. Lokam, Tushar Mopuri, and Sriram Sridhar.
Dew: Transparent constant-sized zksnarks. Cryptology ePrint Archive, Report
2022/419, 2022. https://eprint.iacr.org/2022/419.pdf.

3. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth,
and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for
arithmetic circuits. In Advances in Cryptology – CRYPTO 2018, pages 669–699.
Springer, 2018.

4. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer,
2012.

5. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero
knowledge with no trusted setup. In Annual International Cryptology Conference,
pages 701–732. Springer, 2019.

6. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in zero knowledge.
In CRYPTO 2013, volume 8043 of LNCS, pages 90–108. Springer, 2013.

7. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von Neumann architecture. In USENIX Security
2014, pages 781–796, 2014.

8. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log

18 Lee et al.

setting. In EUROCRYPT 2016, volume 9666 of LNCS, pages 327–357. Springer,
2016.

9. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller.
Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In
ASIACRYPT 2018, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part I, volume 11272 of LNCS, pages 595–626. Springer, 2018.

10. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.
A non-pcp approach to succinct quantum-safe zero-knowledge. In Advances in
Cryptology – CRYPTO 2020, pages 441–469. Springer, 2020.

11. Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

12. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
IEEE Symposium on Security and Privacy 2018, pages 315–334. IEEE Computer
Society, 2018.

13. Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Re-
cursive proof composition from accumulation schemes. In TCC 2020, Durham,
NC, USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of LNCS,
pages 1–18. Springer, 2020.

14. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark
compilers. In EUROCRYPT 2020, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of LNCS, pages 677–706. Springer, 2020.

15. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely.
Proofs for inner pairing products and applications. In ASIACRYPT 2021, Singa-
pore, December 6-10, 2021, Proceedings, Part III, volume 13092 of LNCS, pages
65–97. Springer, 2021.

16. Mike Burmester, Yvo Desmedt, and Thomas Beth. Efficient zero-knowledge iden-
tification scheme for smart cards. Comput. J., 35(1):21–29, 1992.

17. Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong
Seo. Bulletproofs+: Shorter proofs for a privacy-enhanced distributed ledger. IEEE
Access, 10:42067–42082, 2022.

18. Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product
argument with logarithmic verifier and applications. In PKC 2020, volume 12110
of LNCS, pages 527–557. Springer, 2020.

19. Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. J.
Cryptol., 1(2):77–94, 1988.

20. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages
186–194. Springer, 1987.

21. Ariel Gabizon and Zachary J Williamson. Proposal: The turbo-plonk program
syntax for specifying snark programs, 2020.

22. Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/
953.pdf.

23. Shang Gao, Zhe Peng, Feng Tan, Yuanqing Zheng, and Bin Xiao. Symmeproof:
Compact zero-knowledge argument for blockchain confidential transactions. IEEE
Transactions on Dependable and Secure Computing, 20(3):2289–2301, 2023.

24. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

Cubic Root Verifier Inner Product Argument 19

25. Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO
2009, volume 5677 of LNCS, pages 192–208. Springer, 2009.

26. Aram Jivanyan. Lelantus: Towards confidentiality and anonymity of blockchain
transactions from standard assumptions. Cryptology ePrint Archive, Report
2019/373, 2019.

27. A Kate, G M Zaverucha, and I Goldberg. Constant-size commitments to polyno-
mials and their applications. In ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, 2010.

28. Sungwook Kim, Gwangwoon Lee, Hyeonbum Lee, and Jae Hong Seo. Leopard:
Sublinear verifier inner product argument under discrete logarithm assumption.
IEEE Transactions on Information Forensics and Security, 18:5332–5344, 2023.

29. Sungwook Kim, Hyeonbum Lee, and Jae Hong Seo. Efficient zero-knowledge ar-
guments in discrete logarithm setting: Sublogarithmic proof or sublinear verifier.
In ASIACRYPT 2022, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II,
volume 13792 of LNCS, pages 403–433. Springer, 2022.

30. Hyeonbum Lee and Jae Hong Seo. TENET: sublogarithmic proof and sublinear
verifier inner product argument without a trusted setup. In Advances in Informa-
tion and Computer Security - 18th International Workshop on Security, IWSEC
2023, Yokohama, Japan, August 29-31, 2023, Proceedings, volume 14128 of Lecture
Notes in Computer Science, pages 214–234. Springer, 2023.

31. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner prod-
ucts and polynomial commitments. In TCC 2021, Raleigh, NC, USA, November
8-11, 2021, Proceedings, Part II, volume 13043 of LNCS, pages 1–34. Springer,
2021.

32. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party compu-
tation. Journal of Cryptology, 16(3):143–184, 2003.

33. Vadim Lyubashevsky and Ngoc Khanh Nguyen. Practical lattice-based zero-
knowledge proofs for integer relations. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1051–1070, 2020.

34. OECD. Emerging privacy-enhancing technologies. OECD Digital Economy Papers,
(351), 2023.

35. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO 1991, volume 576 of LNCS, pages 129–140. Springer,
1991.

36. Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for
prime order elliptic curves. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, volume 9665 of LNCS, pages 403–428. Springer, 2016.

37. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In IEEE Symposium on Security and Privacy 2014, pages 459–474.
IEEE, 2014.

38. Jae Hong Seo. Round-efficient sub-linear zero-knowledge arguments for linear al-
gebra. In PKC 2011, volume 6571 of LNCS, pages 387–402. Springer, 2011.

39. Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. Proving the
correct execution of concurrent services in zero-knowledge. In OSDI 2018, Carls-
bad, CA, USA, October 8-10, 2018, pages 339–356. USENIX Association, 2018.

40. zcash. The halo2 book, 2022. https://zcash.github.io/halo2/.
41. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent poly-

nomial delegation and its applications to zero knowledge proof. In IEEE Sympo-
sium on Security and Privacy 2020, pages 859–876. IEEE, 2020.

20 Lee et al.

A Proof of Theorem 1

Proof. (Completeness) For a base case m = 1, the completeness is held by the
completeness of Protocol.Col and AggMEC. Let us consider the case m > 1. In
this case, we show that if the input (G,H, ckP,s,P, c;a, b) belongs to Rm,n

GenPT4,
then the updated input (Ĝ, Ĥ, ckP,s+1, P̂, ĉ; â, b̂) belongs to Rm/2,n

GenPT4. Following
the P algorithm, we get the following equations:

ĉ = x−1cL + c+ xcR = ⟨aL, x
−1bR⟩+ ⟨a, b⟩+ ⟨xaR, bL⟩ = ⟨â, b̂⟩

P̂ = [x−1]L+ P + [x]R

= x−1[aL]GR ∥ [x−1bR]HL + [a]G ∥ [b]H + [xaR]GL ∥ x[bL]HR

= âĜ ∥ b̂Ĥ

P̂ = Com2(ckP,s+1, P̂) = ComTC((Ĝ ∥ Ĥ, ckP,s+1), â ∥ b̂)

Therefore, we can conclude that updated input (Ĝ, Ĥ, ckP,s+1, P̂, ĉ; â, b̂) belongs
to Rm/2,n

GenPT4.
(Witness-extended-emulation) For the computational witness-extended emula-
tion, we construct an expected polynomial time extractor ERow whose goal is to
extract a witness by using a polynomially bounded tree of accepting transcripts.
To this end, we utilize the general forking lemma [8], which is stated as follows:

Theorem 5 (General Forking Lemma). Let (K,P,V) be a (2µ + 1)-move,
public coin interactive protocol with µ challenges x1, . . . , xµ in sequence. Let
ni ≥ 1 for i ∈ [µ]. Consider an (n1, . . . , nµ)-tree of accepting transcripts with
challenges in the following format. The tree has depth µ and N =

∏µ
i=1 ni leaves.

The root of the tree is labeled with the statement. Each node of depth i has exactly
ni children, each labeled with a distinct value of the i-th challenge xi.

Let E be a witness extraction algorithm that succeeds with probability 1 −
negl(λ) for some negligible function negl(λ) in extracting a witness from an
(n1, . . . , nµ)-tree of accepting transcripts in probabilistic polynomial time. As-
sume that

∏µ
i=1 ni is bounded above by a polynomial in the security parameter

λ. Then, (K,P,V) has witness-extended emulation.

ERow takes public inputs (G,H, (ckk)
µ
k=1, ckCol,P, c, stV ;a, b, stP). By premise,

ERow exploits two PPT extractors ECol and EMEC , that extract witness a, b ∈
Z1×n
p and stP respectively. Note that stP consists of tuples of commitments

(Lk,Rk,P k), which satisfies the Eq. (3) and (4).
We show how to extract witness a, b from accepting transcripts. By the

general forking lemma, it is sufficient to construct an extractor ERow that extracts
a witness from a suitable tree of accepting transcripts in probabilistic polynomial
time. We begin with (4, . . . , 4︸ ︷︷ ︸

log2 m

)-tree of accepting transcripts. Since the number

of leaves of the tree is polynomially bound, 4log2 m, we can apply the general
forking lemma.

Cubic Root Verifier Inner Product Argument 21

First, for the base case m = 1, the extracted witness a, b from ECol satisfies
the desire condition so that ERow outputs the a, b in polynomial time.

In the case m > 1, we construct extractor ERow by inductively extrac-
tion. That is, retrieves s-round witness a(s), b(s) ∈ Zm/2s×n

p from next steps
a(s+1), b(s+1) ∈ Zm/2s+1×n

p recursively.
First, ERow run ECol and get extracted witnesses a(µ), b(µ) ∈ Z1×n

p , which is

valid witness for the relationR1,n
GenPT4. Now, we assume that âi, b̂i ∈ Zm/2s+1×n

p is
valid witness of instance (Ĝi, Ĥi, P̂i, ĉi), that are updated instance using chal-
lenge xi for the relation Rm/2s+1,n

GenPT4 . From the tree of accepting transcript, we
can get 4 instance-witness pairs:(Ĝi, Ĥi, P̂i, ĉi; âi, b̂i). Furthermore, the ERow

can get s-round prover’s commitments L,R,P, P̂ and their messages L,R,P , P̂
from s-round transcripts and EMEC respectively. From 3 distinct tuples, ERow

can construct the following linear system:x−1
1 1 x1

x−1
2 1 x2

x−1
3 1 x3

LP
R

 =

P̂ 1

P̂ 2

P̂ 3

 =

[â1]Ĝ1 ∥ [b̂1]Ĥ1

[â2]Ĝ2 ∥ [b̂2]Ĥ2

[â3]Ĝ3 ∥ [b̂3]Ĥ3

 (6)

Since the right-hand side of Eq. (6) is decomposed by Ĝ = GL + [x−1]GR and
Ĥ = HL + [x]HR and each G and H are not effected by challenge x, ERow can
get represented vectors l, r,p ∈ Zm/2s×2n

p of L,R,P ∈ G2n under base G ∥H.
Let ERow parse l, r,p to 4 segments l(t),p(t), r(t) ∈ Zm/2s×n/2

p where t ∈ [4]. Let
the representation vectors put on Eq. (6). Then

[x−1
i l(1) + p(1) + xir

(1)]GL = [â]GL (7)

[x−1
i l(2) + p(2) + xir

(2)]GR = [x−1
i â]GR (8)

[x−1
i l(3) + p(3) + xir

(3)]HL = [b̂]HL (9)

[x−1
i l(4) + p(4) + xir

(4)]HR = [xib̂]HR (10)

By DL assumption on G, the representation vectors of both side should be
equivalent. From Eq.(7), Eq.(8) and Eq.(9), Eq.(10), we get

− l(1) + xi(l
(2) − p(1)) + x2

i (p
(2) − r(1)) + x3

i r
(2) = 0

− l(4) + xi(l
(3) − p(4)) + x2

i (p
(3) − r(4)) + x3

i r
(3) = 0

for x1, . . . , x4. Then each terms of xk
i should be zero. Let p(i) denote ãL = p(1),

ãR = p(2), b̃L = p(3), b̃R = p(4). Then, we can obtain the following equation:

x−1
i cL + c+ xicR = ĉ = ⟨â, b̂⟩

= x−1
i ⟨ãL, b̃R⟩+ ⟨ã, b̃⟩+ xi⟨ãR, b̃L⟩

(11)

Similarly, x1, . . . , x4 guarantees c = ⟨ã, b̃⟩. Therefore, the extracted witnesses ã

and b̃ is valid witness for the relation Rm/2s,n
GenPT4 . By inductively retrieving process

and general forking lemma, ERow can extract witness vectors a and b. ⊓⊔

22 Lee et al.

B Proof of Theorem 2
Proof. (Completeness) For a base case m = 1, the completeness can get straight-
forward by our premise: completeness of AggMEC and (G,H, ck1,P, c;a, b) ∈
R1,1

GenPT4. Let consider the case m > 1. In this case, we show that if the input
(G,H, ckP,µ+s,P, c;a, b) belongs toR1,n

GenPT4, then the updated input (G,H, ckP,µ+s+1, P̂, ĉ; â, b̂)

belongs to R1,n/2
GenPT4. Following the P algorithm, we get the following equations:

ĉ = x−1cL + c+ xcR = ⟨aL, x
−1bR⟩+ ⟨a, b⟩+ ⟨xaR, bL⟩ = ⟨â, b̂⟩

P̂ = (P (q1) ∥ [x]P (q4)) + (P (q2) ∥ [x−1]P (q3))

= [aL]G ∥ [x−1bR]H + [xaR]G ∥ [bL]H = [â]G ∥ [b̂]H

P̂ = Com2(ckν , P̂) = ComTC((G ∥ H, ckν),a ∥ b)

Therefore, we can conclude that updated input (G,H, ckP,µ+s+1, P̂, ĉ; â, b̂) be-
longs to R1,n/2

GenPT4.
(Witness-extended-emulation) For the computational witness-extended emula-
tion, we construct an expected polynomial time extractor ECol whose goal is
to extract a witness by using a polynomially bounded tree of accepting tran-
scripts. ECol takes public inputs (ppν , G,H,P, c, stV ;a, b, stP). By premise, ECol

exploits a PPT extractor EMEC , that extract stP which consists of commitments
(P k)

µ+ν+1
k=µ+1, which satisfies Eq. (5) and Pk = Com2(ckν ,P k) In the similar way

in proof of Theorem 1, we show that how to extract witness a, b from accepting
transcripts. By the general forking lemma, it is sufficient to construct an extrac-
tor ERow that extracts a witness from a suitable tree of accepting transcripts in
probabilistic polynomial time. We begin with (3, . . . , 3︸ ︷︷ ︸

log2 n

)-tree of accepting tran-

scripts. Since the number of leaves of the tree is polynomially bound, 3log2 n, we
can apply the general forking lemma.

First, in the base case n = 1, the P sends witnesses a, b to V and V check
the relation directly. That means the witness a and b belongs to transcripts and
ECol can extract them.

Now we consider the case n > 1. We construct extractor ECol by inductively
extraction. That is, retrieves s-round witness a(s), b(s) ∈ Z1×n/2s

p from next
round witnesses a(s+1), b(s+1) ∈ Z1×n/2s+1

p recursively.
First, ECol can extract final round witnesses a(ν+1) and b(ν+1). We assume

that â, b̂ ∈ Z1×n/2s+1

p is valid witness of instance (G,H, P̂i, ĉi), that are affected
by challenge xi for the relation R1,n/2s+1

GenPT4 . From the tree of accepting transcript,
we can get 3 instance-witness pairs:(G,H, P̂i, ĉi; âi, b̂i). Furthermore, ECol can
get k-round prover’s commitments (P, P̂) and their message (P , P̂) from tran-
script and EMEC respectively. From 2 distinct tuples, ECol can construct follow-
ing linear system:[

1 x1

1 x2

] [
P (q1)

P (q2)

]
=

[
[â1]G
[â2]G

]
,

[
1 x−1

1

1 x−1
2

] [
P (q3)

P (q4)

]
=

[
[b̂1]H

[b̂2]H

]
(12)

Cubic Root Verifier Inner Product Argument 23

By DL assumption, ECol solves the linear equation and then get the repre-
sentation p(q1),p(q2) ∈ Zn/2s+1

p of P (q1),P (q2) ∈ Gn/2s+1

under base G and
p(q3),p(q4) ∈ Zn/2s+1

p of P (q3),P (q4) ∈ Gn/2s+1

under base H respectively. Then
p = p(q1) ∥ p(q2) ∥ p(q3) ∥ p(q4) is naturally representation of P . Let p(qi) denote
ãL = p(q1), ãR = p(q2), b̃L = p(q3), b̃R = p(q4). In the similar way in Eq. (11) of
Theorem 1, 3 distinct challenges guarantee extracted vectors ⟨ã, b̃⟩ is equal to
the value c. Therefore, the extracted witnesses ã and b̃ is valid witness for the
relation R1,n/2s

GenPT4. By inductively retrieving process and general forking lemma,
ECol can extract witness vectors a and b. ⊓⊔

C Proof of Theorem 3

Proof. (Completeness) Assume that the input ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k)
satisfies Eq. (3), (4), and (5). By the homomorphic property of polynomial com-
mitment scheme and perfect completeness of Eval and PlonkishEval, V accepts
both Eval and PlonkishEval. Therefore, we are shown the completeness of AggMEC.
(Witness-Exetended Emulation) For the computational witness-extended emu-
lation, we construct an expected polynomial-time extractor EMEC whose goal
is to extract a witness by using a polynomially bounded tree of accepting tran-
scripts. EMEC takes public inputs ckk, (Lk,Rk,Pk, xk) and returns witness vec-
tors (Lk,Rk,P k) satisfying Eq. (3), Eq. (4), and Eq. (5).

By the general forking lemma, it is sufficient to construct an extractor EMEC

that extracts a witness from a suitable tree of accepting transcripts in probabilis-
tic polynomial-time. We begin with a (6 logm+ 2 log n+ 2, 5)-tree of accepting
transcripts. Since the number of leaves in the tree is polynomially bounded, we
can apply the general forking lemma [12].

By our premise, one can construct a PPT extractor EEval for PCS.Eval. In
addition, since the above premise implies that the PlonkishEval is an AoK, one can
construct a PPT extractor EPlonkish for PlonkishEval that extracts wire polynomials
w

(i)
L , w(i)

R , w(i)
O and auxiliary polynomials α, β γ, δ, λ. The EMEC uses them as

sub-routines.
First, the EMEC gets FP (X) and w

(i)
L (X) by feeding EEval with (ckPC,P, z, y)

and (ckPC,W
(i)
L , z, r(i)), respectively. From the 5 transcripts from distinct chal-

lenge τ , the EMEC extracts FV , a polynomial a(i)(X), and quotient polynomials
q(i)(X) by regarding the following relation as a polynomial with respect to τ of
degree 4: FP = FV +

∑2
i=1(τ

ia(i) + τ2+iq(i)). Note that w
(i)
L (X), a(i)(X), and

q(i)(X) satisfy a(i)(z) = w
(i)
L (z)− q(i)(z)(zd − 1).

From the 6 logm+2 log n+2 transcripts from distinct challenge ρ, the EMEC

extracts polynomials F
(i)
L,k, F

(i)
R,k, F

(i)
P,k by regarding the following relation as a

polynomial with respect to ρ of degree 6 logm+ 2 log n+ 1:

FV =

2∑
i=1

(
µ∑

k=1

(
ρ4k−2−iF

(i)
L,k + ρ4k−iF

(i)
R,k

)
+ ρ4µ

(µ+ν∑
k=0

ρ2k−1+iF
(i)
P,k

))
.

The extracted polynomials satisfy the following relation:

24 Lee et al.

L
(i)
k = ComPC(ckPC, FL,k), R

(i)
k = ComPC(ckPC, FR,k), P

(i)
k = ComPC(ckPC, FP,k) (13)

Finally, EMEC outputs L(i)
k ,R

(i)
k ,P

(i)
k by decoding F

(i)
L,k, F

(i)
R,k, F

(i)
P,k respectively.

It remains to check that these extracted vectors are valid witnesses satisfying
all relations from Eq. (3) to (5). First, by the extraction process, the extracted
vectors L

(i)
k ,R

(i)
k ,P

(i)
k satisfy Eq. (13), so does Eq. (3). In addition, by the con-

struction of A(i), the polynomial a(i) is equal to the sum of F (i)
L,k, F

(i)
R,k, F

(i)
P,k, i.e.

a(i) =
∑µ

k=1(F
(i)
L,k+F

(i)
R,k)+

∑µ+ν
k=0 F

(i)
P,k. This implies that the evaluations of wire

polynomial w(i)
L at appropriate ξi contain those of F (i)

L,k, F
(i)
R,k, F

(i)
P,k, where each

value matches with the values of L(i)
k ,R

(i)
k ,P

(i)
k at the corresponding positions.

Furthermore, the wire polynomials w
(i)
L , w

(i)
R , w

(i)
O and auxiliary polynomials

α, β, γ, δ, λ extracted from EPlonkish ensure that L
(i)
k ,R

(i)
k ,P

(i)
k satisfy the rela-

tion Eq. (4) and Eq. (5).
To sum up, the extracted vectors L

(i)
k ,R

(i)
k ,P

(i)
k are actually the valid wit-

nesses, concluding that AggMEC satisfies computational witness extended emu-
lation. ⊓⊔

D Plonkish Arithmetization with Custom Gates

In this section, we provide supplementary description of Plonkish for elliptic
curve operations.

D.1 Plonkish arithmetization

We first provide a basic idea of Plonk arithmetization. For each gate in the
circuit, Plonk constructs a constraint equation according to the type, e.g., addi-
tion or multiplication, of the gate. To represent this, Plonk adopts an auxiliary
variable called the selector that indicates which types of gates are enabled or
not in the current gate. To ensure that the given two gates are connected, Plonk
exploits the constraints using a permutation, which ensures that the values in
the wires that connecting gates do not change after permutation on them. With
Lagrange Interpolation for left inputs, right inputs, outputs, and selectors sep-
arately, using a cyclic group generated by the N -th root of unity ζ of Zq, all
constraint equations except the permutation constraints can be expressed as a
single polynomial equation.

Plonkish generalizes Plonk by handling all the values occurred in the execu-
tion of the circuit as the execution trace ZN×M

q . Each row represents the inputs,
outputs, or auxiliary values occurred in the corresponding execution step. This
execution trace can be represented as a sequence of polynomials by applying
Lagrange interpolation with respect to each column. Each gate can be written
as polynomial comprised of column polynomials that are engaged to the current
gate. After then, arguments for gate identity and permutation can be constructed
using these polynomials. Formally, let {vi(X)}Mi=1 be the polynomials that rep-
resents the execution trace of the given circuit, which correspond to the column

Cubic Root Verifier Inner Product Argument 25

polynomials mentioned. For the number Ng of the types of gates in the circuit,
we denote {ci(X)}Ng

i=1 as the gate polynomials for the circuit. Each gate poly-
nomial can be represented as ci(X) = gi(v1(X), v2(X), . . . , vM (X)) for some
M -variate polynomial gi. Let us define {si(X)}Ng

i=1 as the selector polynomials.
In addition, for the permutation argument, we denote a permutation σ :

[N] × [M] → [N] × [M]. σ(i, j) = (σ(i, j)1, σ(i, j)2) is equivalent to vi(ζ
j) =

vσ(i,j)1(ζ
σ(i,j)2). Suppose N = 2k and δ is a T -th root of unity, where T ·2S+1 = q

with odd T and k ≤ S. We use δi · ζj as the label for a value corresponding
to (σ(i, j)1, σ(i, j)2), as mentioned in [40]. Define IDi(ζ

j) = δi · ζj that is an
identity polynomial of vi(ζj) and ri(ζ

j) = δσ(i,j)1 · ζσ(i,j)2 . The idea behind the
permutation argument technique is the fact that

∏N
h=1

∏M
i=1

vi(ζ
h)+u1IDi(ζ

h)+u2

vi(ζh)+u1ri(ζh)+u2

is equal to 1 when vi(ζ
j) = vσ(i,j)1(ζ

σ(i,j)2) for random values u1, u2. We can
check the details for the technique in [4].

Plonkish is a protocol for arithmetic circuit satisfiability, and the circuit sat-
isfiability is ensured when (1) vi(ζ

j) = vσ(i,j)1(ζ
σ(i,j)2) for i ∈ [N], j ∈ [M] and

(2)
∑Ng

i=1 si(X)ci(X) = 0 mod XN − 1. As shown in several studies [21, 22, 40],
the relations can be efficiently proved by the Polynomial IOP instantiated by
PCS [14]. In short, to check polynomial relations, the prover commits polyno-
mial and then the verifier sends random point as challenge. After then, the prover
responds evaluations. To verify the responds, the prover and verifier run Eval in-
teractive proof. Thanks to the Fiat-Shamir transform, interactive proof Eval can
be converted to non-interactive proof system. We describe Plonkish protocol in
Algorithm 4.

We provide a brief idea of [22] to construct the polynomial relation covering
both (1) and (2) as follows: First, in line 3, the prover computes z(X), which is
the interpolation of the values obtained by multiplying

∏M
i=1

vi(ζ
h)+u1IDi(ζ

h)+u2

vi(ζh)+u1ri(ζh)+u2

one by one for h ∈ [N]. Then, as shown by [4], z(X) satisfies z(ζX)/z(X) =∑M
i=1(vi(X) + u1IDi(X) + u2)/

∑M
i=1(vi(X) + u1ri(X) + u2) mod XN − 1 and

z(ζ) = 1 for random challenges u1, u2. Hence, by combining these constraints
and the gate constraints by another random challenge u3, the prover computes
t(x), as described in line 5. Now, checking that t(ζi) = 0 for i ∈ [N] is sufficient
to convince the relations (1) and (2), which can be done by several runs of Eval.

D.2 Custom Gate for Elliptic Curve Addition

We provide the detailed construction of custom gate for elliptic curve addition
in affine coordinates introduced by [40].

Let E(Zq) be a prime elliptic curve group with q ≥ 5 given by the short
Weierstrass equation and |E(Zq)| = p. E(Zq) is given by the form {(X,Y) ∈
Z2
q|Y 2 = X3+aX+b}∪{O} for a, b in Zq. We require an additional requirement

X3+aX+ b = 0 and X2− b = 0 have no solutions in Zq, i.e., each coordinate of
non-identity points is all nonzero, to represent the point at infinity O as (0, 0).
For curve points WL = (w

(1)
L , w

(2)
L), WR = (w

(1)
R , w

(2)
R) and WO = (w

(1)
O , w

(2)
O),

the formula for point addition is categorized into six cases: (1) WL +e WR for

26 Lee et al.

Algorithm 4 PlonkishEval

PlonkishEval(ckPC, {si(X), gi(X1, . . . , XM)}Ng

i=1, {ri(X)}Mi=1; {vi(X)}Mi=1)
Precompute: CIDi = ComPC(ckPC, IDi(X)), Cri = ComPC(ckPC, ri(X)), i ∈ [M]

1: P sends Vi = ComPC(ckPC, vi(X)) to V
2: V chooses u1, u2

$←Zq and sends it to P
3: P sends Z = ComPC(ckPC, z(X)) to V where

z(X) =H1(X) +

N−1∑
j=1

(
Hj+1(X)

j∏
h=1

M∏
i=1

vi(ζ
h) + u1IDi(ζ

h) + u2

vi(ζh) + u1ri(ζh) + u2

)
.

Hj(X) =
∏

i ̸=j,i∈[N]

(X − ζi)/(ζj − ζi) for all j ∈ [N].

4: V chooses u3
$←Zq and sends it to P.

5: P sends T = ComPC(ckPC, t(X)), Q = ComPC(ckPC, q(X)) to V where

t(X) =

Ng∑
i=1

si(X)gi(v1(X), . . . vM (X)) + u3 · z(X)

M∑
i=1

(vi(X) + u1IDi(X) + u2)

− u3 · z(ζX)

M∑
i=1

(vi(X) + u1ri(X) + u2) + u2
3 · (z(X)− 1)H1(X)

q(X) =t(X)/zH(X), where zH(X) =

N∏
i=1

(X − ζi).

6: V chooses u4
$←Zq and sends it to P.

7: P sends {αi = vi(u4)}Mi=1, β = z(u4), γ = z(ζu4),
{ϕi = IDi(u4)}Mi=1, and {ψi = ri(u4)}Mi=1 to V.

8: V evaluates ρ1 and ρ2 = ρ1/zH(u4) using the values received from P

ρ1 =

Ng∑
i=1

si(u4) · gi(αi, . . . , αM) + u3 · β
M∑
i=1

(αi + u1 · ϕi + u2)

− u3 · γ
M∑
i=1

(αi + u1 · ψi + u2) + u2
3 · (β − 1)H1(u4)

9: P and V set run Eval(ckPC, T, u4, ρ1; t(X)), Eval(ckPC, Vi, u4, αi; vi(X))i∈[M],

Eval(ckPC, Q, u4, ρ2; q(X)), Eval(ckPC, Z, u4, β; z(X)), Eval(ckPC, Z, ζu4, γ; z(X)),

Eval(ckPC, CIDi , u4, ϕi; IDi(X))i∈[M], and Eval(ckPC, Cri , u4, ψi; ri(X))i∈[M].

Cubic Root Verifier Inner Product Argument 27

w
(1)
L ̸= w

(1)
R and w

(2)
L ̸= ±w(2)

R , (2) WL +e WL, (3) WL +e (−WL), (4) WL +e O,
(5) O +e WR and (6) O +e O. To represent each case on arithmetic circuit, we
first define a function Inv(x) that returns the inverse of x if x ̸= 0, otherwise
returns 0. Using this, if we define witnessesα, β, γ, δ and λ such that

α = Inv(w
(1)
R − w

(1)
L), β = Inv(w

(1)
L), γ = Inv(w

(1)
R),

δ =

{
Inv(w

(2)
R + w

(2)
L), w

(1)
L = w

(1)
R

0 otherwise

λ =

(w

(2)
R − w

(2)
L)/(w

(1)
R − w

(1)
L), w

(1)
L ̸= w

(1)
R

3w
(1)
L

2
/2w

(2)
L , w

(1)
L = w

(1)
R ∧ w

(2)
L ̸= 0

0 otherwise

We can figure out that (1) occurs iff α ̸= 0, (2) occurs α = 0 and δ ̸= 0, (3)
occurs iff α = 0 and δ = 0, (4) occurs iff β ̸= 0 and γ = 0, (5) occurs iff β = 0
and γ ̸= 0, and (6) occurs iff β = 0 and γ = 0. In addition, λ indicates the slope
that occurs for case (1) and (2).

From these auxiliary variables, we can construct a bunch of constaint equa-
tions that covers all cases (1)-(6) as follows. For simplicity, we will denote the
straight line passing through WL and WR as L. First of all, for (1), if we set

(a) ((w
(1)
R (X)− w

(1)
L (X))((w

(1)
R (X)− w

(1)
L (X))λ− (w

(2)
R (X)− w

(2)
L (X))) = 0

(b) w
(1)
L (X)w

(1)
R (X)(w

(1)
R (X)−w

(1)
L (X))(λ2−w

(1)
L (X)−w

(1)
R (X)−w

(1)
O (X)) = 0

(c) w
(1)
L (X)w

(1)
R (X)(w

(1)
R (X)−w(1)

L (X))(λ(w
(1)
L (X)−w(1)

O (X))−w(2)
L (X)−w(2)

O (X)) =
0,

each (a), (b) and (c) ensures that the slope of L, w(1)
O and w

(2)
O are computed

correctly, otherwise w
(1)
L = w

(1)
R or at least one of them is O.

For (2), if we set

(d) (1− (w
(1)
R (X)− w

(1)
L (X))α)(2w

(2)
L (X)λ− 3w

(1)
L (X)

2
) = 0

(e) w
(1)
L (X)w

(1)
R (X)(w

(2)
R (X)+w

(2)
L (X))(λ2−w

(1)
L (X)−w

(1)
R (X)−w

(1)
O (X)) = 0

(f) w
(1)
L (X)w

(1)
R (X)(w

(2)
R (X)+w

(2)
L (X))(λ(w

(1)
L (X)−w(1)

O (X))−w(2)
L (X)−w(2)

O (X)) =
0,

each (d),(e) and (f) ensures the slope of L, w(1)
O and w

(2)
O are computed correctly,

otherwise w
(1)
L ̸= w

(1)
R , w(2)

L ̸= w
(2)
R , or at least one of them is O.

For considering the case (3), it suffices to ensure if α = δ = 0, then WO = O.
To this end, we set

(g) (1− (w
(1)
R − w

(1)
L)α− (w

(2)
R + w

(2)
L)δ)w

(1)
O = 0

(h) (1− (w
(1)
R − w

(1)
L)α− (w

(2)
R + w

(2)
L)δ)w

(2)
O = 0.

28 Lee et al.

Finally, for cases (4)-(6), we need to ensure that β = 0 implies WO = WR,
and γ = 0 implies WO = WL. If we set,

(i) (1− w
(1)
L β)(w

(1)
O − w

(1)
R) + (1− w

(1)
L β)(w

(2)
O − w

(2)
R) = 0

(j) (1− w
(1)
R γ)(w

(1)
O − w

(1)
L) + (1− w

(1)
R γ)(w

(2)
O − w

(2)
L) = 0 ,

each (i), (j) guarantees the above requirement, otherwise β ̸= 0 and γ ̸= 0.

PlonkishEval. By merging all constraints from (a) to (j), we can obtain the poly-
nomial gCA for elliptic curve point addition in affine coordinates, which takes
polynomials corresponding to w

(1)
L , w(2)

L , w(1)
R , w(2)

R , w(1)
O , w(2)

O and α, β, γ, δ, λ
as inputs. We will call PlonkishEval as an instantiation of Plonkish in Section D.1,
with the custom gate polynomial gCA.

E Polynomial Commitment Scheme from Leopard

In this section, we provide details about the LeopardPC, which is a key ingre-
dient to instantiate Cougar. Remark that [29, Section E.1.] provided a basic idea
for constructing this; we present the full description for the sake of completeness.

LeopardPC is a natural tweak of Protocol3 [29] as a PCS. The construction idea
is basically the same as the PCS introduced by [11], which was built upon Bul-
letProofs. More precisely, we can construct PCS from IPA by regarding the point
evaluation of the polynomial as an inner product between the coefficient vector
and the vector comprised by the powers of the evaluation point. The asymptotic
communication and computation complexities of Eval from this approach are the
same as those of the underlying IPA. Note that Protocol3 features square root
verifier cost and logarithmic communication cost; hence so does LeopardPC.Eval.

Following the above approach, we provide the full description of LeopardPC
as follows: Let (G1,G2,Gt) be a bilinear group, where G1 = E(Zp). For a poly-
nomial a(X) ∈ Z<mn

p [X] and positive integers m,n ∈ N, we will denote its
coefficient vector as a ∈ Zmn

p , namely, a = (a0, . . . , amn−1) such that a(X) =∑mn−1
i=0 aiX

i. LeopardPC = (Gen,Com,Eval) over a message space Z<mn
p [X] and

a commitment space Gt is defined as follows1:

– Gen(1λ)→ ckPC ∈ Gm
1 ×Gn

2 .
– Com(ckPC = (G,H), a(X))→ P := (G⊗H)a ∈ Gt.

In addition, Eval = (K,P,V) is an interactive argument system for the fol-
lowing relation:

RLeopardPC.Eval =

 ckPC = (G,H) ∈ Gm

1 ×Gn
2 ,

C ∈ Gt, z, y ∈ Zp, d ∈ [mn];
a(X) ∈ Z<mn

p [X]

 :
C = (G⊗H)a

∧
y = a(z)

1 We will not consider hiding property because zero-knowledge property is unnecessary

in our context.

Cubic Root Verifier Inner Product Argument 29

A typical strategy to cope with the above relation is to modify the above relation
into that for IPA: For z = (1, z, . . . , zmn−1), we can rewrite a(z) = ⟨a, z⟩. For
this reason, the construction of Eval is almost identical to Protocol3 except for
some modifications regarding the fact that z is also known to the verifier. The
precise description of LeopardPC.Eval is given in Algorithm 5. Here, bit(k) refers
to the bit decomposition of a number k.

We now show that LeopardPC is indeed the PCS, i.e., satisfying the conditions
in Definition 7, under the DL assumption. In fact, G⊗H in the above relation
can be seen as the commitment key of the Pedersen vector commitment defined
over the group Gt, along with a certain structure. Since the binding property
of the Pedersen vector commitment depends on the DLR assumption, one can
expect that the same holds for LeopardPC under a structure-aware version of the
DLR assumption.

For this reason, we first provide a definition of generalized discrete logarithm
relation (GDLR) assumption, which was previously defined in [29, Definition 8].
For simplicity, we denote Gb as a bilinear group generator that takes the security
parameter λ and outputs a bilinear group (G1,G2,Gt) of order p, generators g, h
for G1 and G2, respectively, and a pairing operator e.

Definition 8. For m,n ∈ N and the security parameter λ ∈ N, let GDLRsp be
a sampler defined by

GDLRsp(1λ) : (p, g, h,G1,G2,Gt, e)← Gb(1λ);G
$←− Gm

1 ;H
$←− Gn

2 ;

Output (p,G⊗H,Gt),

Then, we say that GDLRsp satisfies the general discrete logarithm relation (GDLR)
assumption if all non-uniform polynomial-time adversaries A, the following in-
equality holds:

Pr

[
a ̸= 0 ∧ ga = 1Gt

(p, g ∈ Gm×n
t ,Gt)← GDLRsp(1λ)
a← A(p, g,Gt)

]
where 1Gt

is the identity of Gt and negl(λ) is a negligible function in λ.

As shown by [29, Theorem 5], if the DL assumption on both G1 and G2 hold,
then the GDLR assumption also holds. In addition, by assuming the GDLR
assumption, the binding property of LeopardPC holds immediately.

Now it remains to check that LeopardPC.Eval is an AoK for the relation
RLeopardPC.Eval. As we mentioned, this relation can be understood as a special case
of that for Protocol3, and Algorithm 5 is in fact almost identical to Protocol3. We
note that Protocol3 satisfies perfect completeness and computational witness-
extended emulation under the GDLR assumption [28]. In fact, we made the
same modifications as [11] for constructing LeopardPC.Eval, without considering
zero-knowledge. That is, the proof strategies for computational witness-extended
emulation of ours and theirs are identical, except for replacing the DLR assump-
tion with the GDLR assumption. We refer to [28] and [11] for more detailed
information.

30 Lee et al.

Algorithm 5 LeopardPC.Eval

LeopardPC.Eval(ckPC = (G,H) ∈ Gm
1 ×Gn

2 , P ∈ Gt, z, y ∈ Zp;a ∈ Zmn
p)

where m = 2µ and n = 2ν

1: V picks U $←Gt and sends it to P
2: P and V set P0 = P + [y]U , G0 = G,H0 = H.

Additionally, P set a0 = a and z0 = [zm(i−1)+(j−1)] ∈ Zm×n
p

3: for i = 0, . . . , µ− 1 do
4: P parses ai, zi, and Gi to

ai = [ai,L ∥ ai,R], zi = [zi,L ∥ zi,R], Gi = Gi,L∥Gi,R

5: P computes:
Li = [ai,L](Gi,R ⊗H) + [⟨ai,L,zi,R⟩]U ∈ Gt

Ri = [ai,R](Gi,L ⊗H) + [⟨ai,R,zi,L⟩]U ∈ Gt

6: P sends Li, Ri to V
7: V chooses ri

$←Z∗
p and sends it to P

8: P computes:
ai+1 = ai,L + r−1

i ai,R, zi+1 = zi,L + rizi,R ∈ Zm/2i+1×n
p

Gi+1 = Gi,L + [ri]Gi,R ∈ Gm/2i+1

1

Pi+1 = [ri]Li + Pi + [r−1
i]Ri ∈ Gt

9: end for
10: for j = 0, . . . , ν − 1 do
11: P sets i = j + µ and then parses ai, zi, and Hj to

ai = ai,L ∥ ai,R, zi = zi,L ∥ zi,R, Hj = Hj,L∥Hj,R

12: P computes:
Li = [ai,L](Gµ ⊗Hj,R) + [⟨ai,L,zi,R⟩]U ∈ Gt

Ri = [ai,R](Gµ ⊗Hj,L) + [⟨ai,R,zi,L⟩]U ∈ Gt

13: V chooses ri
$←Z∗

p and sends it to P
14: P computes:

ai+1 = ai,L + s−1
j ai,R, zi+1 = zi,L + sjzi,R ∈ Zn/2j−1

p

Hj+1 = Hj,L + [sj]Hj,R ∈ Gn/2j+1

2

Pi+1 = [ri]Li + ·Pi + [r−1
i]Ri ∈ Gt

15: end for
16: P sends a = aµ+ν ∈ Zp to V
17: V computes:

r[k + 1] = ⟨bit(k), (r0, . . . , rµ+ν−1)⟩ for k = 0, . . .m+ n− 1
Parse r to rrow ∥ rcol where rrow ∈ Zm

p and rcol ∈ Zn
p

G = ⟨rrow,G0⟩, H = ⟨rcol,H0⟩, z = rrowz0rcol

18: V checks:
P0 +

∑
i∈[µ+ν]([ri]Li + [r−1

i]Ri) = e([az]G,H)

Cubic Root Verifier Inner Product Argument 31

To sum up, LeopardPC satisfies all conditions in Definition 7 under the DL
assumption on G1 and G2. In addition, it does not require the trusted setup
and features squared root verification cost and logarithmic communication cost
with respect to the length of the witness. Therefore, it is a desirable PCS for
instantiating Cougar.

