
A preliminary version of this paper appears in ACISP 2024. This is the full version.

Subverting Cryptographic Protocols from A Fine-Grained

Perspective - A Case Study on 2-Party ECDSA

Jialiu Cheng ∗

jialiuamy@gmail.com

Yi Wang †

wangyi14@nudt.edu.cn

Rongmao Chen ‡

chromao@nudt.edu.cn

Xinyi Huang §

xyhuang81@gmail.com

April 22, 2024

Abstract

The revelations of Edward Snowden in 2013 rekindled concerns within the cryptographic
community regarding the potential subversion of cryptographic systems. Bellare et al.
(CRYPTO’14) introduced the notion of Algorithm Substitution Attacks (ASAs), which aim
to covertly leak sensitive information by undermining individual cryptographic primitives.
In this work, we delve deeply into the realm of ASAs against protocols built upon crypto-
graphic primitives. In particular, we revisit the existing ASA model proposed by Berndt
et al. (AsiaCCS’22), providing a more fine-grained perspective. We introduce a novel ASA
model tailored for protocols, capable of capturing a wide spectrum of subversion attacks.
Our model features a modular representation of subverted parties within protocols, along
with fine-grained definitions of undetectability. To illustrate the practicality of our model,
we applied it to Lindell’s two-party ECDSA protocol (CRYPTO’17), unveiling a range of
ASAs targeting the protocol’s parties with the objective of extracting secret key shares.
Our work offers a comprehensive ASA model suited to cryptographic protocols, providing a
useful framework for understanding ASAs against protocols.

Keywords. Algorithm Substitution Attack, Cryptographic Protocol, 2-Party ECDSA.

∗National University of Defense Technology
†National University of Defense Technology
‡National University of Defense Technology
§Jinan University

mailto:mail@mail.com
mailto:mail@mail.com
mailto:mail@mail.com
mailto:mail@mail.com

Contents

1 Introduction 2
1.1 Our Contributions . 2
1.2 Comparison with Prior Work . 3

2 Preliminaries 4
2.1 Decisional Diffie-Hellman (DDH) assumption . 4
2.2 Entropy Smoothing Hash Function . 4
2.3 Pseudo Random Function (PRF) . 4
2.4 ECDSA . 5

3 ASA Model for 2-Party Protocol 5
3.1 Syntax . 5
3.2 Fine-Grained Undetectability . 7
3.3 Secret Recoverability . 8

4 Case Study: Subverting 2ECDSA 9
4.1 Substitution attack against Πkgen . 9

4.1.1 ASA against Πkgen.P1 . 10
4.1.2 ASA against Πkgen.P2 . 11

4.2 Substitution attack against Πsign . 14
4.2.1 ASA against Πsign.P1 . 16
4.2.2 ASA against Πsign.P2 . 17

5 Conclusion 19

A Full Description of Lin-2ECDSA 22

1

1 Introduction

The Snowden revelations in 2013 prompted the cryptographic community to consider a special
class of threats known as subversion attacks. These attacks target the very core of cryptographic
systems by tampering with real-world implementations. One prominent form of subversion
attack is the Algorithm Substitution Attack (ASA) introduced by Bellare et al. [BPR14] in
2014. ASAs aim to covertly leak sensitive information by undermining cryptographic algorithms.
This concept can be seen as a modern-day counterpart to kleptographic attacks [YY97a,YY97b],
which were initially explored by Young and Yung in the 1990s and regarded as somewhat far-
fetched in the cryptographic community for some time.

Over the past decade, there has been significant progress in understanding the potential
hazards of ASAs, both from practical and theoretical perspectives [BPR14, DFP15, BJK15,
AMV15,LCWW18,CRT+19,CHY20,AP19a,BL17,RTYZ16,BWP+22,HS21,AP19b,BSKC19,
JHZ+23,CEJ23,RTYZ17,RTYZ18,TY17]. Most previous works focused on ASAs against in-
dividual cryptographic primitives. For cryptographic protocols built over multiple primitives,
subverting a primitive within a protocol trivially leads to an ASA against this protocol. How-
ever, the complexity of protocols might permit the existence of other advanced ASAs against
the protocols, and the formalization of ASA models for protocols might need careful considera-
tions, especially regarding the notion of undetectability which essentially captures the fact that
undetectable attacks are usually more preferred by attackers in the real world.

In most cryptographic protocols, each party’s execution within a protocol instance can be
divided into multiple stages, each of which could be treated as an algorithm. The attacker may
subvert multiple algorithms to leak the secrets of a party through transcripts in a collaborative
way. Such ASAs are quite different from conventional subversion on a single algorithm. On the
other hand, parties might maintain states that evolve across different stages. These states can
be categorized as internal (specific to a single protocol instance) and external (shared across
multiple instances). For subverted parties, there might exist additional states (attack states) to
facilitate information leakage, and normal states might turn out to be attack states. Thus, the
definition of undectectability in ASA models for protocols could be more precise by taking into
account detectors with different access rights to the party’s states.

Berndt et al. [BWP+22] formally modeled ASAs against protocols based on the work of
Russell et al. [RTYZ16]. As their main goal was to demonstrate the threat of ASAs on pro-
tocols like TLS, Signal, and WireGuard, their attack model mainly considers the detectors
that could obtain the running-time internal states without considering potential attack states.
Consequently, subversion attacks that are detectable when the detector has access to all states
of the subverted party might be identified as undetectable in their model. Motivated by this
observation, our aim is to refine their ASA model for cryptographic protocols to provide a more
fine-grained perspective.

1.1 Our Contributions

In light of the above considerations, we revisit Berndt et al.’s ASA model and refine it with
finer granularity. Our contributions can be summarized as follows.

To enhance the ASA model for protocols, we introduce a modular formalization of a sub-
verted party. This formalization represents a subverted party as a list of honest algorithms
with some being substituted by malicious counterparts. These subverted algorithms encompass
both normal and attack states, where attack states are further categorized into global and local
states. This granular classification allows for precise descriptions of complex subversion attacks.

We provide a fine-grained definition of undetectability with varying strengths, including
weak, normal, and strong undetectability. These definitions adjust the type of information that

2

the detector receives from the oracle. Specifically, for weak undetectability, the oracle provides
messages only; for normal undetectability, it includes messages and normal states; and for strong
undetectability, it encompasses messages, normal states and attack states.

To highlight the advantages of our refined definitions, we present four concrete ASAs tar-
geting the parties in Lindell’s two-party ECDSA protocol [Lin17] with the goal of extracting
secret key shares. The undetectability of these attacks varies from weak to strong. Among
these, the ASA against the party P2 during the key generation phase, which does not rely on
any attack state and leaks the secret key share within a single execution, stands out as the most
efficient. Furthermore, the ASA against the party P2 during the signing phase is a collaborative
subversion attack, where multiple subverted algorithms sequentially update the global attack
state to accelerate the leakage of key shares.

Remark. In this work we model substitution attacks on two-party cryptographic protocols. The
reason that we choose two-party protocols as an object rather than more general multi-party
protocols is to simplify the analysis. However, it is worth noting that the model for substitution
attacks against multi-party protocols can be naturally extended from the two-party model.

1.2 Comparison with Prior Work

Russell et al. [RTYZ16] formalized three different watchdogs (offline, online, and omniscient)
to detect possible subversions. The omniscient watchdog has the strongest capability and
can obtain the internal state of the challenger in traditional security games for cryptographic
schemes. Their hierarchical models can capture prior ASAs on cryptographic schemes such
as [BPR14,BJK15,DFP15,AP19b,AMV15,LCWW18,AP19a,JHZ+23,RTYZ17,RTYZ18]. For
ASA against cryptographic protocols with simulation-based security definitions, their model
does not explicitly specify the information that the watchdog can access. Based on the work
of Russell et al. [RTYZ16], Berndt et al. [BWP+22] employed the omniscient online watch-
dog to model ASAs against cryptographic protocols. In particular, the watchdog can passively
obtain the view of the party (the internal states is included), while cannot access the party’s
internal states and potential attack states actively during offline testing. This implies that,
from a perspective of analyzing attacks, their model may not be able to capture all detection
capabilities.

In comparison to their work, we meticulously differentiate between various complex states of
the subverted parties. We consider the capabilities of detectors at different levels and provide a
granular detection model. Furthermore, we provide concrete attacks to substantiate the validity
of our model. These attacks encompass both traditional ASAs against cryptographic schemes
adapted to the context of cryptographic protocols and novel ASA techniques of high efficiency.

Other Related Work. Bellare et al. [BPR14] formally modeled ASAs against symmet-
ric encryption schemes and proposed several specific practically implementable attacks such
as IV-replacement attacks and biased ciphertext attacks. Degabriele, Farshim and Poetter-
ing [DFP15] proposed a refined security model that addressed the strong assumption of de-
cryptability of all subverted ciphertexts in previous model. Bellare, Jaeger and Kane [BJK15]
further improved upon the results in [BPR14], demonstrating that stateful ASAs can be made
stateless with stronger undetectability, and proposed a universal ASA against sufficiently ran-
dom encryption schemes. While previous attacks [BPR14, BJK15] primarily focused on sub-
verting the encryption algorithm, Armour and Poettering [AP19b] introduced a different ap-
proach by subverting the decryption algorithm. Hodges and Stebila [HS21] investigated the
possibility of detecting ASAs through state resetting. Berndt and Lískiewicz [BL17] demon-
strated that any randomized algorithm is susceptible to universal and undetectable ASAs.
ASAs have also been proposed against digital signatures [AMV15, LCWW18, BSKC19], mes-

3

sage authentication [AP19a], key encapsulation mechanisms [CHY20], and popular protocols
such as TLS, WireGuard, and Signal [BWP+22], Telegram’s end-to-end encryption [CEJ23],
as well as real-world public-key cryptosystems [JHZ+23]. Russell et al. [RTYZ16] presented
hierarchical models to capture various ASAs and the security of defenses against the corre-
sponding attacks. There is also significant research on defenses against subversion attacks,
including derandomization [BPR14, AMV15, BH15, BJK15, DFP15], split-program methodol-
ogy [TY17,RTYZ17,RTYZ18,CRT+19,BCJ21,AFMV19], cryptographic reverse firewall [MS15,
DMS16,CDN20,CGPS21,CGS23,CMY+16] and self-guarding mechanism [FM18].

2 Preliminaries

Notation. Let x ∈ {0, 1}∗ be a bit string, and the bit-length of x is denoted by |x|. We use [n]
to represent a set of integers ranging from 1 to n, where n ∈ N. For any index i in the range
[|x|], the i-th bit of string x is denoted by x[i]. The empty string is denoted by ϵ. For two
strings x0 and x1, their concatenation is represented as x = x0∥x1. If S is a set, by s←$ S we
denote picking s at random from S. If A is a randomized algorithm, by y ← A(x1, · · · , xi; r)
we denote running A with inputs x1, · · · , xi and coins r to deterministically return the output
y, and by y ←$ A(x1, · · · , xi) we denote picking r at random then computing the output y as
y ← A(x1, · · · , xi; r). Let negl(λ) be a negligible function with λ ∈ N. For any c ∈ N, there
exists n0 ∈ N such that negl(n) ≤ 1

nc for all n ≥ n0.

2.1 Decisional Diffie-Hellman (DDH) assumption

Let G be a group of prime order q and G be a random generator of G. Let (x, y, z)←$ Z3
q . Let

A be a PPT algorithm which takes as input a triple (X = x ·G, Y = y ·G,Z) where Z = z ·G
or Z = x · y ·G, then outputs a bit. The DDH-advantage of A is defined as

AdvddhA,G(λ) = |Pr [A(x ·G, y ·G, z ·G) = 1]− Pr [A(x ·G, y ·G, x · y ·G) = 1]| .

And we say that DDH assumption holds in G if for any PPT algorithm A, AdvddhA,G(λ) is
negligible in λ.

2.2 Entropy Smoothing Hash Function

Let H := {Hk̂}k̂∈K̂ be a family of keyed hash functions where K is the key space. Each Hk̂
maps an element of X to the element of Y. Let D be a PPT algorithm which takes as input a
random key k̂ from K, an element from Y which is either a random value of Y or Hk̂(x) where
x is a random element of X , then outputs a bit. The ES-advantage of D is defined as

AdvesD,H(λ) =
∣∣∣Pr [D(k̂, Hk̂(x)) = 1|k̂ ←$ K, x←$ X

]
− Pr

[
D(k̂, y) = 1|k̂ ←$ K, y ←$ Y

] ∣∣∣,
and we say that H is esϵ(λ)-entropy smoothing if for any PPT algorithm D, AdvesD,H(λ) is
negligible in λ.

2.3 Pseudo Random Function (PRF)

Let F be a function that takes as input a key K ∈ {0, 1}λ and an element x ∈ X , then returns
an output F (K,x) ∈ Y. Let FUNS[X ,Y] be the set of all functions mapping from X to Y.

4

Consider game PRFF
F defined in Fig. 1, the PRF-advantage of adversary F against function F

is defined as
AdvPRFF ,F (λ) = 2Pr

[
PRFF

F

]
− 1,

and we say F is a PRF if for any PPT adversary F , AdvPRFF ,F (λ) is negligible in λ. If PRF F
is also efficiently computable and invertible given K, then F is a pseudo random permutation
(PRP) [KL07].

Game PRFF
F (1λ)

K ←$ {0, 1}λ, f ←$ FUNS[X ,Y]
bprf ←$ {0, 1}
b′ ← FFN (·)

return (b′ = bprf)

FN (x)

if bprf = 1 then

y ← F (K,x)

else y ← f(x)

return y

Figure 1: Game PRFF
F to define PRF-advantage of adversary F against function F

2.4 ECDSA

Let G be an elliptic group of order q generated by a point G. Let H be a hash function which
maps {0, 1}∗ to Zq. Curve coordinates and scalars are represented in λ = log2(q) bits. The
ECDSA signature scheme consists of the three algorithms as shown in Fig. 2.

Kgen(1λ)

1 : sk←$ Zq

2 : pk = sk ·G
3 : return (sk, pk)

Sign((sk,m ∈ {0, 1}∗))
1 : k ←$ Zq

2 : R = (rx, ry) = k ·G, r = rx mod q

3 : s = k−1(H(m) + sk · r) mod q

4 : return (r, s)

Vrfy(pk, m, (r, s))

1 : (rx, ry) = R = s−1(H(m) ·G+ r · pk)
2 : return 1 iff rx = r mod q

Figure 2: the ECDSA signature scheme

3 ASA Model for 2-Party Protocol

3.1 Syntax

To facilitate the formalization of ASA against 2-party protocol, we refine the definition of party
in this model as below.

Definition 3.1 (Party). Let Π = (P1, P2) be a 2-party cryptographic protocol. For b ∈ {1, 2},
party Pb is composed of a list of algorithms (Pb

A1 , · · · , Pb
An), and where n is the number of

stages of Pb.

5

For i ∈ [n], Pb
Ai takes as input Pb’s input xb, history hb,i and internal state stb,i, outputs

message mΠ
b,i and update the internal state to stb,i+1. Namely,

Pb
Ai(xb, hb,i, stb,i; rb,i)→ (mb,i, stb,i+1),

where rb,i is the randomness of Pb
Ai , message mb,i is sent to P3−b, history hb,i includes all the

messages sent and received by Pb before running PAi
b .

Definition 3.2 (Subverted Party). Let Π = (P1, P2) be a 2-party cryptographic protocol. For

b ∈ {1, 2}, we say P̃b is a subverted party of Pb with respect to subversion set S ⊆ [n], denoted

by P̃b ≈S Pb, if

• For any i ∈ [n]\S, the implementations of Pb
Ai and P̃b

Ai
are the same, denoted by

PAi
b = P̃b

Ai
;

• For any i ∈ S, P̃b
Ai

takes as input embedded key ekb,i, P̃b’s input xb, history hb,i, internal
state stb,i, global attack state σb,0 and local attack state σb,i, outputs message mΠ

b,i and
updates the attack and internal states as follow.

P̃b
Ai
(ekb,i , xb, hb,i, stb,i, σb,0, σb,i ; rb,i)→ (mb,i, stb,i+1, σb,0, σb,i)

We remark that the generation of embedded key ekb,i is specified by ASA against party Pb

defined later. Attack state σb = σb,0∥σb,1∥ · · · ∥σb,n is shared among different instances of P̃b.

Global attack state σb,0 is updated by algorithms P̃b
A1

, · · · , P̃b
An

sequentially, while local attack

state σb,i is maintained by P̃b
Ai

only. Intuitively, global attack state σb,0 could be used to count
the number of leaked bits of secrets through different algorithms, and local attack state σb,i

could indicate whether P̃b
Ai

behaves normally or not. Fig. 3 illustrates a subverted party P̃b.

Figure 3: Subverted party P̃b

6

Definition 3.3 (ASA against Party). Let Π = (P1, P2) be a 2-party protocol and P̃b be a
subverted party of Pb with subversion set S for b ∈ {1, 2}, an algorithm substitution attack

against party Pb, denoted by APb
= (P̃b,Gen,Ext), is defined as follows.

• Gen takes as inputs security parameter 1λ, outputs embedded key set EKb = {ekb,i|i ∈ S},
extraction key set XKb = {xkb,i|i ∈ S} and the description of leakage function Lb;

• Ext takes as inputs extraction key set XKb, makes queries to transcript oracle Otrans, and
outputs subliminal message smb.

APb
is a symmetric ASA if EKb = XKb.

In general, the input of party Pb might include some long-term secrets that are repeatedly
used among multiple instances of Pb

1. Besides, during the execution of the protocol, the party
might generate some ephemeral secrets which is a part of the party’s internal states. So,
the goal of ASA against the party is extracting this sensitive information (e.g., secret input,
internal states) from the transcripts of the subverted party. The subliminal message smb is
a leakage function Lb over the inputs xb, internal states stb and attack state σb, where stb =
stb,1∥stb,2∥ · · · ∥stb,n and the attack state σb might imply the index of leaked information.

In symmetric ASA, the adversary has to keep embedded key set EKb secret. Otherwise,
anyone holding EKb is able to extract subliminal message smb.

3.2 Fine-Grained Undetectability

Subversion attacks should be undetectable to the detectors. Otherwise, users will refuse to
accept the subverted implementation. Previous definitions of undetectability in ASA against
primitives can be categorized into three types: offline testing, online testing and the combination
of both. Comparing to online testing that can be used to detect subversion attacks such as input-
trigger attacks [DFP15] and “time bombs” attacks [DFS16,WS11] by constantly monitoring
the execution of the protocol, the offline testing enables the detector to detect other types of
subversion attacks more proactively. In this work, we focus on detection model based on offline
testing.

Our definition models detectors of different capabilities by adjusting the information re-
turned by the offline testing oracle. Specifically, we categorize the information available to
the detector into three types. The first type is limited to only the output message, which is
the scenario considered in the detection model of [BWP+22] and [BPR14]. The second type
includes access to the internal state in memory, similar to the omniscient watchdog presented
in [RTYZ16]. Finally, the third type involves access to the attack state, similar to the detection
model formalized in [BJK15]. Specific definitions of detection games are depicted in Fig. 4.

Definition 3.4 (Undetectability). Let Π = (P1, P2) be a 2-party protocol andAPb
= (P̃b,Gen,Ext)

be an ASA against Pb. For any PPT detector D, its advantage in game DETD
Pb,APb

(λ), as shown

in Fig. 4, is

AdvDET
D,Pb,APb

(λ) =

∣∣∣∣2Pr [DETD
Pb,APb

(λ) = 1
]
− 1

∣∣∣∣,
where DET ∈ {wUDET,UDET, sUDET}, and function f is defined as follows.

1Many cryptographic protocols consist of a setup phase and a main phase. After the setup phase is completed,
both parties receive some confidential information that serves as part of their inputs to execute the main phase.
In this context, Π can be regarded as the main phase of a specific protocol.

7

DETD
Pb,APb

(λ)

(EKb, XKb, Lb)←$ Gen(1λ)

σb ← ϵ, c←$ {0, 1}
c′ ← DO(EKb, Lb)

return (c′ = c)

O(i, xb, hb,i, stb,i)
if i /∈ [n] then return ⊥
elseif i /∈ S ∨ c = 1 then

(mb,i, stb,i+1)← Pb
Ai(xb, hb,i, stb,i)

else

(mb,i, stb,i+1, σb,0, σb,i)← P̃b

Ai

(ekb,i, xb, hb,i, stb,i, σb,0, σb,i)

return f(mb,i, stb,i+1, σb,0, σb,i)

Figure 4: The definition of game DETD
Pb,APb

(λ).

f(mb,i, stb,i+1, σb,0, σb,i) =

mb,i , DET = wUDET

(mb,i, stb,i+1) , DET = UDET

(mb,i, stb,i+1, σb,0, σb,i) , DET = sUDET

We say APb
is weakly undetectable / undetectable / strongly undetectable if for any PPT

detector D, AdvwUDET
D,Pb,APb

(λ) / AdvUDET
D,Pb,APb

(λ) / AdvsUDET
D,Pb,APb

(λ) is negligible in k.

If APb
is a symmetric ASA, detector D in game DETD

Pb,APb
(λ) is not allowed to access EKb.

3.3 Secret Recoverability

A subversion should not only remain undetectable to detectors, but should also show the sub-
version adversary a dedicated functionality, secret recoverability to break the security of cryp-
tographic protocols. The work of Berndt et al. [BWP+22] considers a passively eavesdropping
subversion adversary who has the knowledge of the corresponding extraction key and recovers
the secret value by collecting transcripts generated by the subverted party in multiple instances.
In fact, most existing ASA works consider mass surveillance adversaries.

Definition 3.5 (Secret Recoverability). Let Π = (P1, P2) be a 2-party protocol and APb
=

(P̃b,Gen,Ext) be an ASA against Pb. We say APb
is secret recoverable if

Pr

smb ̸= Lb(xb, stb, σb) :
(EKb, XKb, Lb)←$ Gen(1λ)

smb ← ExtOtrans(XKb)

 ≤ negl(λ),

where oracle Otrans returns the transcript of subverted protocol Π̃ = (P̃b, P3−b).

8

NIZKPoK.P(x,w)

t←$ Zq

a← t ·G
e← H(a||x)
z ← t+ e · w
π ← (x, e, z)

return π

NIZKPoK.V(π)

(x, e, z)← π

a′ ← z ·G− e · x
e′ ← H(a′||x)
if e′ = e then

return 1

return ⊥

COM.G(m)

r ←$ {0, 1}λ

return (H ′(m||r),m||r)

COM.V(com, dcom)

m||r ← dcom

if com = H ′(m||r) then
return 1

return ⊥

Figure 5: NIZKPoK and COM for ideal functionalities in Lin-2ECDSA with hash functions H :
{0, 1}∗ → Zq and H ′ : {0, 1}∗ → {0, 1}λ

4 Case Study: Subverting 2ECDSA

In this section, we take 2-party ECDSA (2ECDSA) protocol as an example to study concrete
substitution attacks against protocols. Lin-2ECDSA is a well-known 2ECDSA protocol pro-
posed by Lindell [Lin17] at CRYPTO’17. Note that it is presented in (FRDL

zk , FRDL
com−zk)-hybrid

model which hides the details of these modules and might hinder the investigation of potential
subversion attacks. We instantiate these ideal functionalities with specific schemes2 in Fig. 5.

We now illustrate how Lin-2ECDSA works. Lin-2ECDSA consists of a distributed key gen-
eration sub-protocol Πkgen that generates multiplicative shares of the secret key for parties,
respectively, and a signing sub-protocol Πsign that reaches the same signature of a message for
parties without revealing each other’s key share. More specifically, in Πkgen P1 and P2 ran-
domly select sk1 and sk2 as their multiplicative shares of sk respectively, then run a simulatable
Diffie-Hellman key exchange protocol to generate pk = sk1 · sk2 · G securely. Additionally, to
improve the efficiency of Πsign, P1 generates a public-private key pair (pke, ske) for the Paillier
encryption scheme, then use pke to calculate the ciphertext of sk1, denoted as ckey and send it
to P2 together with pke. At the end of the execution of Πkgen, P1 and P2 obtain their respec-
tive key shares of sk and the public key pk, besides P2 gets ckey. P1 and P2 execute Πsign to
perform a distributed signing on a message m. They first randomly select k1 and k2 respec-
tively, and execute a similar simulatable Diffie-Hellman key exchange protocol to obtain a point
R = k1 · k2 · G, then set r = rx mod q. P2 uses pke to perform a homomorphic computation
on ckey to obtain the ciphertext of s′ = k−1

2 ·H(m) + k−1
2 · r · sk2 · sk1 and send it to P1, who

decrypts it to obtain s′ and computes s = k−1
1 · s′ mod q then outputs (r, s) or sends it to P2 as

the signature on m after verifying its correctness. 3

The goal of ASA against parties in Πkgen and Πsign is to retrieve the private key share (sk1
or sk2). Consider that Πkgen usually executes once and Πsign would run multiple times with
same key shares as input, different ASAs for these sub-protocols are proposed as below.

4.1 Substitution attack against Πkgen

For clarity, Fig. 6 only presents algorithms PA1
1 and PA1

2 in key generation sub-protocol Πkgen

that are subverted in following ASAs. See Fig. 14 in Appendix A for a full description of Πkgen.

2The schemes for NIZKPoK and COM we present here are widely used in the implementation of threshold
ECDSA protocols (e.g., [Lin17,DKLs18,GG18,XAX+21,CGG+21]).

3What we give here is only a rough description. Additional proofs accompanying the messages to be sent are
omitted. For more details, refer to [Lin17].

9

Key Generation Sub-protocol Πkgen(1
λ)

Party P1 Party P2

sk1 ←$ Zq, pk1 ← sk1 ·G
π1 ←$ NIZKPoK.P(pk1, sk1)

(H ′(π1||r), π1||r)← COM.G(π1; r)
H ′(π1||r) sk2 ←$ Zq, pk2 ← sk2 ·G

π2 π2 ←$ NIZKPoK.P(pk2, sk2)

π1||r

Figure 6: Part of Πkgen in Lin-2ECDSA

P̃1
A1

(ek1,1, x1, σ1,1)

sk1 ←$ Zq, pk1 ← sk1 ·G
π1 ←$ NIZKPoK.P(pk1, sk1)

(H ′(π1||r), π1||r, σ1,1)← C̃OM.G(π1, ek1,1, sk1, σ1,1)

st1,2 ← sk1||pk1||π1||r
return (H ′(π1||r), st2,1, σ1,1)

C̃OM.G(m, ek, aux, σ)

if σ = ϵ then r ← E(ek, aux)

else σ ← 0, r ←$ {0, 1}k

return (H ′(m||r),m||r, σ)

Gen(1λ)

ek1,1 ←$ K
EK1 = XK1 = {ek1,1}
sk1 := L1(x1, st1, σ1)

return (EK1, XK1, L1)

ExtOtrans(XK1)

dcom1 := π1∥r
sk1 = E−1(ek1,1, r)

return sk1

Figure 7: Symmetric ASA against P1 in Πkgen.

4.1.1 ASA against Πkgen.P1

One can note that, in Fig. 6, the decommitment π1||r that includes the randomness r in COM.G is
transmitted to P2 in plaintext, and this permits leaking P1’s key share sk1 in one single execution
of Πkgen by adopting the IV-replacement attack [BPR14]. More specifically, Fig. 7 depicts a

symmetric ASA against P1 in Πkgen. P̃1 is a subverted party of P1 and P̃1
A1

(ek1,1, x1, σ1,1) is

the same as PA1
1 (x1) except that (H ′(π1||r), π1||r) is computed by C̃OM.G(π1, ek1,1, sk1, σ1,1)

instead of COM.G(π1).

C̃OM.G is the same as COM.G except that r is computed using PRP E : K×{0, 1}λ → {0, 1}λ

when σ = ϵ4. For the input of P̃1
A1

, we have ek1,1 ∈ K and σ1,1 is σ in C̃OM.G. The leakage
function L1(x1, st1, σ1) returns sk1 in st1.

Theorem 4.1. Assume that E : K × {0, 1}λ → {0, 1}λ is a PRP, then ASA AP1 in Fig. 7 is
undetectable and secretly recoverable. For any PPT D we have

AdvUDET
D,P1,AP1

(λ) ≤ 2AdvPRFFE ,E(λ) (1)

4In fact E here selects the input message from Zq, the element in which is represented in λ bits.

10

where FE is a PRF adversary attacking E.

Proof. Let G0 be the original detection game UDETD
P1,AP1

, let Wi denote the event that D
returns correct c′ in game Gi, from the definition we have

AdvUDET
D,P1,AP1

(λ) = |2Pr [W0]− 1|.

Let G1 be the same as G0 except that r ← E(ek, aux) in C̃OM.G of P̃1
A1

is replaced by
r ←$ {0, 1}λ. We construct a PRF adversary FE attacking E that simulates the game G0 or G1

for the detector D.
Since AP1 is a symmetric ASA, D does not know EK1. FE only need to provide leakage

function L1 and simulate the oracle for D as follow.

Upon query (1, 1k) when c = 0 and σ1,1 = ϵ, FE runs P̃1
A1

except that randomness r in

C̃OM.G is set as the value returned by the challenger of FE on query sk1. For other queries, FE

simulates the oracle following the description.
If r = E(ek1,1, sk1), FE simulates G0 for D. Otherwise, the simulation is G1. Hence, we

have
|Pr [W0]− Pr [W1] | ≤ AdvPRFFE ,E(λ).

Besides, we notice that in G1 the computation of H ′(π1||r) is always using the true ran-
domness and thus the view of the detector D actually does not depend on the chosen bit c. We
have

Pr [W1] = 1/2.

Putting all above together, Eq. 4.1 holds.
Regarding the secret recoverability of AP1 , the subversion adversary can recover the secret

key share sk1 with probability 1 from the transcript (more precisely, the second message sent

out by P̃1) of the first execution of P̃1 returning from Otrans following the extraction algorithm
Ext given in Fig. 7.

P̃2
A1

(ek2,1, x2, h2,1)

t←$ Zq, a← t ·G
sk2 ← Hk̂(ek2,1 · t)
pk2 ← sk2 ·G
e← H(a||pk2)
z ← t+ e · sk2
π2 ← (pk2, e, z)

return π2

Gen(1λ)

xk2,1 ←$ Zq

ek2,1 ← xk2,1 ·G
EK2 = {ek2,1}
XK2 = {xk2,1}
sk2 := L2(x2, st2, σ2)

return (EK2, XK2, L2)

ExtOtrans(XK2)

(pk2, e, z)← π2

a← z ·G− e · pk2
sk2 ← Hk̂(xk2,1 · a)
return sk2

Figure 8: ASA against P2 in Πkgen.

4.1.2 ASA against Πkgen.P2

Fig. 8 depicts an ASA against P2 in Πkgen. P̃2 is a subverted party of P2 and P̃2
A1

(ek2,1, x2, h2,1)

is the same as PA1
2 (x2, h2,1) except that sk2 is not uniformly sampled from Zq. The leakage

function L2(x2, st2, σ2) returns sk2 in st2.

11

It is worth noting this ASA against P2 in Πkgen does not treat the underlying module (i.e.,
NIZKPoK.P) as a black box, and is extremely efficient for that the key share sk2 is leaked in one
single execution.

Theorem 4.2. Assume that DDH assumption holds in G and H = {Hk̂}k̂∈K̂ is entropy smooth-
ing, ASA AP2 in Fig. 8 is weakly undetectable and secretly recoverable with high efficiency when
H : {0, 1}∗ → Zq is modeled as a random oracle. More specifically, assume that detector D
makes at most q queries on PA1

2 or P̃2
A1

and at most qH queries on H, then we have

AdvwUDET
D,P2,AP2

(λ) ≤ 2q · (ϵes(λ) +AdvddhA,G(λ) +
q + qH
22λ−1

) (2)

Proof. We first prove the weak undetectability of AP2 against P2. LetG0 be the same as the orig-
inal detection game wUDETD

P2,AP2
where H : {0, 1}∗ → Zq is modeled as a random oracle. More

specifically, D is given two oracles: one is oracle O to answer queries with (i, ekb,i, xb, stb,i, hb,i)
and one is OH which answers hash query. Upon receiving a hash query h := a||pk2, if h has been
queried before, then return the same answer as before. If not, then return a random element e
from Zq. We split the oracle O into two oracles O0 and O′, where O0 only answers the query
with (1, ek2,1, x2, h2,1) as shown in Fig. 9, and O′ answers the other queries from the detector
D. let Wi denote the event that D returns correct c′ in game Gi, from the definition we have

AdvwUDET
D,P2,AP2

(λ) = |2Pr [W0]− 1|.

We define a sequence of games: {G1,1, G1,2, · · · , Gq,1, Gq,2} in Fig. 9. Specifically, In
Gi,1, Gi,2 (i ∈ [1, q]), an internal counter j (initialized to 0) is set for the oracle Oi and in-
crements upon each query with (1, ek2,1, x2, h2,1) by the detector D. 5 Gi,1 is the same as
Gi−1,2 (G0,2 is the same as G0) except that when j = i then Oi in Gi,1 generates sk2 by Hk̂(A)
where A is a random element in G. Gi,2 is the same as Gi,1 except that when j = i then Oi in
Gi,2 generates sk2 by randomly selecting it from Zq.

We prove that Gi−1,2 ≈c Gi,1 from the view of the detector D by constructing an adversary
Ai attacking DDH assumption relative to the group (G, G, q). Suppose that Ai receives (X,Y, Z)
from its challenger where X = x · G, Y = y · G. Its goal is to tell whether Z = z · G where
z ←$ Zq or Z = x · y ·G.
Ai simulates the oracles for the detector D as depicted in Fig. 10. We denote the game

simulated by Ai when z is a random element in Zq as Si,1, and the simulated game when z = x·y
as Si−1,2. Let Pr [Si,1] and Pr [Si−1,2] denote the probability that D returns the correct c′ in
Si,1 and Si−1,2 respectively. From the definition we have

|Pr [Si,1]− Pr [Si−1,2] | ≤ AdvddhAi,G(λ).

We notice that Si,1 equals to Gi,1 and Si−1,2 equals to Gi−1,2 except that h∗ := Y ||Hk̂(Z) ·G
has been queried before. Suppose that D makes at most qH queries on H, then the probability
that h∗ has been queried is at most q+qH

22λ
. Combined with the difference lemma, we have

|Pr [Si,1]− Pr [Wi,1]| ≤
q + qH
22λ

≤ negl(λ),

and

|Pr [Si−1,2]− Pr [Wi−1,2]| ≤
q + qH
22λ

≤ negl(λ).

5To keep consistent, we also include a counter j in the game G0.

12

Game G0(1
λ)

(EK2, XK2, L2)←$ Gen(1λ)

j := 0, c←$ {0, 1}

c′ ← DO0,O′,OH (EK2, L2)

return (c′ = c)

O0(1, ek2,1, x2, h2,1)

j := j + 1

if c = 1 then

π2 ← PA1
2

OH
(x2, h2,1)

else

π2 ← P̃2

A1
OH

(ek2,1, x2, h2,1)

return π2

PA1
2

OH
(x2, h2,1)

sk2 ←$ Zq, pk2 ← sk2 ·G
t←$ Zq, a← t ·G
e← OH(a||pk2)
z ← t+ e · sk2
π2 ← (pk2, e, z)

return π2

P̃2
A1

OH

(ek2,1, x2, h2,1)

t←$ Zq, a← t ·G
sk2 ←$ Hk̂(ek2,1 · t), pk2 ← sk2 ·G
e← OH(a||pk2)
z ← t+ e · sk2
π2 ← (pk2, e, z)

return π2

Game Gi,1(1
λ), Gi,2(1

λ) (i ∈ [1, q])

(EK2, XK2, L2)←$ Gen(1λ)

j := 0, c←$ {0, 1}

c′ ← DOi,O′,OH (EK2, L2)

return (c′ = c)

Oi(1, ek2,1, x2, h2,1) (i ∈ [1, q])

j := j + 1

if c = 1 then

π2 ← PA1
2

OH
(x2, h2,1)

elseif j < i then

π2 ← PA1
2

OH
(x2, h2,1)

elseif j = i then

π2 ← m̃P2

A1
OH

(x2, h2,1)

else

π2 ← P̃2

A1
OH

(ek2,1, x2, h2,1)

return π2

m̃P2
A1

OH

(x2, h2,1)

t←$ Zq, a← t ·G
A←$ G, sk2 ← Hk̂(A)

sk2 ←$ Zq

pk2 ← sk2 ·G
e← OH(a||pk2)
z ← t+ e · sk2
π2 ← (pk2, e, z)

return π2

Figure 9: Games G0 and Gi,1, Gi,2 (i ∈ [1, q]) in the proof of Theorem. 4.2

We prove that Gi,1 ≈c Gi,2 from the view of the detector D by constructing an adversary Di

attacking the entropy smoothing hash function Hk̂ : G→ Zq. Suppose that Di receives (k̂, y
∗)

from its challenger. Its goal is to tell whether y∗ = Hk̂(x) where x←$ G or y∗ ←$ Zq.
Di simulates Gi,1 and Gi,2 for the detector D. Di runs the setup phase then simulates an

oracle O as follows. It keeps an internal counter j which is initialized to 0 and increases with
querying with (1, ek2,1, x2, h2,1) from the detector D. For j < i, it runs PA1

2 and returns the

output, for j = i, it runs P̃2
A1

except that setting sk2 as y∗ then returns the output. For j > i,

it runs P̃2
A1

and returns the output. To answer D’s queries with (i, x2, st2,i, h2,i) where i ̸= 1
it follows the description of O′. Di simulates the oracle OH faithfully follow the description.
Finally, Di outputs 1 if the detector D outputs (c′ = c) otherwise outputs 0. From the view of

13

Ai(X,Y, Z)

H ← ∅
EK2 ← {X}
sk2 ← L2(x2, st2)

j := 0

c←$ {0, 1}

c′ ← DO0sim,O′,OHsim(EK2, L2)

return (c′ = c)

OHsim(h)

if h /∈ H then

eh ←$ Zq

H ← H ∪ {h}
return eh

O0sim(1, ek2,1, x2, h2,1)

j := j + 1

if c = 1 then

π2 ← PA1
2

OHsim
(x2, h2,1)

elseif j < i then

π2 ← PA1
2

OHsim
(x2, h2,1)

elseif j = i then

π2 ← m̃P2

A1

(x2, h2,1)

z ←$ Zq, a← Y

sk2 ← Hk̂(Z), pk2 ← sk2 ·G
if h := a||pk2 /∈ H then

eh ← (z ·G− a) · pk−1
2

H ← H ∪ {a||pk2}
else return ⊥
π2 ← (pk2, eh, z)

return π2

else

π2 ← P̃2

A1
OHsim

(ek2,1, x2, h2,1)

return π2

Figure 10: Adversary Ai attacking DDH assumption relative to the group (G, G, q) simulates
detection game Gi−1,2 and Gi,1 for the detector D

the detector D, if y∗ is randomly selected from Zq then the game simulated by Di is exactly the
game Gi,2. Otherwise, the simulated game is Gi,1. Hence, we have

|Pr [Wi,1]− Pr [Wi,2] | ≤ ϵes(λ).

Besides, we notice that in gameGq,2, O always runs PA1
2 to answerD’s query with (1, ek2,1, x2,

h2,1), and thus the view of the detector D actually does not depend on the chosen bit c. There-
fore,

Pr [Wq,2] =
1

2
.

Putting everything together Eq. 4.2 holds.
Regarding the secret recoverable of AP2 , following the extraction algorithm Ext given in Fig.

8 the subversion adversary can recover the secret key share sk2 with probability 1 from the
transcript (returning from Otrans) of any execution of P̃2 successfully.

4.2 Substitution attack against Πsign

For clarity, Fig. 11 only presents PA1
1 , PA1

2 and PA2
2 in Πsign that are subverted in following

ASAs. See Fig. 15 in Appendix A for a full description of Πsign. In Πsign, P1 and P2 take their
long-term secret such as the decryption key (ske of P1) or their private key shares (sk1 and sk2)
as part of their input in every execution of distributed signing on different messages. Compared
with Πkgen, which only runs once, Πsign, which can be executed multiple times, provides more
possibilities for successful subversion attacks.

14

Signing Sub-protocol Πsign(sid,m)

Party P1(sk1, pke, ske, pk) Party P2(sk2, pke, ckey, pk)

k1 ←$ Zq, R1 ← k1 ·G
π1 ←$ NIZKPoK.P(R1, k1) k2 ←$ Zq, R2 ← k2 ·G

(H ′(π1||r), π1||r)← COM.G(π1; r)
H ′(π1||r) π2 ←$ NIZKPoK.P(pk2, sk2)

π2 if COM.V(H ′(π1||r), π1||r) = ⊥ ∨

π1||r NIZKPoK.V(π1) = ⊥ then

return ⊥
R := (rx, ry)← k2 ·R1

r ← rx mod q, ρ← Zq2 , r̃ ← ZN∗

c1 ← Paillier.Enc(pke, ρ · q+
[k−1

2 ·m mod q; r̃])

v ← k−1
2 · r · sk2 mod q

c3 c2 ← v ⊗ ckey, c3 ← c1 ⊕ c2

Figure 11: Part of Πsign in Lin-2ECDSA

P̃1
A1

(ek1,1, x1, h1,1)

k1 ←$ Zq, R1 ← k1 ·G

π1 ←$ ˜NIZKPoK.P(R1, k1, ek1,1, sk1)

(H ′(π1||r), π1||r)← COM.G(π1; r)

st1,2 ← k1||R1||π1||r
return (H ′(π1||r), st1,2)

˜NIZKPoK.P(x,w, ek, aux)

repeat

t←$ Zq, a← t ·G
(b, l)← F1(ek, a)

until aux[l] = b

e← H(a||x), z ← t+ e · w
π ← (x, e, z)

return π

Gen(1λ)

ek1,1 ←$ K
EK1 = XK1 = {ek1,1}
sk1 := L1(x1, st1, σ1)

return (EK1, XK1, L1)

ExtOtrans(XK1)

Tm1,2 := {π1
1 , · · · , πi

1, · · · , πs
1}

i := 1

for i ∈ [s] do

(xi, ei, zi)← πi
1

ai ← zi ·G− ei · xi

(b, l)← F1(ek1,1, a
i)

sk1[l] = b, i← i+ 1

return sk1

Figure 12: Symmetric ASA against P1 in Πsign.

15

4.2.1 ASA against Πsign.P1

Inspired by the stateless ASA against symmetric encryption in [BJK15], we provide an ASA
against P1 in Πsign by subverting the sub-module NIZKPoK.P of PA1

1 .

Fig. 12 depicts a symmetric ASA AP1 against P1 in Πsign. AP1 = (P̃1,Gen,Ext) where P̃1

is a subverted party of P1 and P̃1
A1

(ek1,1, x1, h1,1) is the same as PA1
1 (x1, h1,1) except that π1

is computed as ˜NIZKPoK.P(R1, k1, ek1,1, sk1) instead of NIZKPoK.P(R1, k1). ˜NIZKPoK.P is the
same as NIZKPoK.P except that it uses a PRF F1 : K × G → {0, 1} × [λ] to constantly test
whether the output (b, l) by applying F1 on a satisfies aux[l] = b, until a is generated “properly”.

For the input of P̃1
A1

, we have ek1,1 ∈ K. The leakage function L1(x1, st1, σ1) returns sk1 in x1.

Theorem 4.3. Assume that F1 : K × G → {0, 1} × [λ] is a PRF, then ASA AP1 in Fig. 12 is
strongly undetectable and secretly recoverable. For any PPT D we have

AdvsUDET
D,P1,AP1

(λ) ≤ 2AdvPRFFF1
,F1

(λ) + negl(λ) (3)

where FF1 is a PRF adversary attacking F1.

Proof. Let G0 be the original detection game sUDETD
P1,AP1

, let Wi denote the event that D
returns correct c′ in game Gi, from the definition we have

AdvsUDET
D,P1,AP1

(λ) = |2Pr [W0]− 1|.

Let G1 be the same as G0 except that it implements F1 with a lazily sampled random
function. Then we construct a PRF adversary FF1 attacking F1 that simulates G0 and G1 for
the detector D. FF1 provides leakage function L1 and simulates the oracle for D as follow.

Upon query (1, x1, h1,1) when c = 0, FF1 runs P̃1
A1

except that receives (b, l) from its
challenger. For other queries, FF1 simulates the oracle following the description. Finally FF1

outputs 1 when D returns c′ = c.
When (b, l) returns to FF1 is the output of F1(ek, a), the game simulated by DF is exactly

G0, otherwise is G1 from the view of the detector D. Therefore, we have

|Pr [W0]− Pr [W1] | ≤ AdvPRFFF1
,F1

(λ).

Let G2 be the same as G1 except that the lazily sampled random function is replaced by
fully random sampling of (b, l). We must bound the probability that a particular value of
a will be repeated (call this event bad) during the game by substituting the lazily sampled
random function with true random sampling. Suppose that a is generated s times in total, the
probability of bad occurring is therefore bounded by

(
s
2

)
· 1q ≤

s2

2q ≤
s2

2k+1 where q is the order of
G. Thus we have

|Pr [W1]− Pr [W2] | ≤ negl(λ).

Besides, we notice that in G2 the implementation of P̃1
A1

is the same as that of PA1
1 from

the view of D. We have

Pr [W2] =
1

2
.

Putting all above together Eq. 4.3 holds.
As for the secret recoverability of AP2 , the subversion adversary receives transcripts from

Otrans of at least s ≥ λ · ln(λ) consecutive runs of P̃1, then recovers each bit of sk1 following the
description of Ext. And according to the analysis of coupon collection problem, s transcripts
are enough to recover every bit of sk1 with overwhelming probability [BJK15].

16

4.2.2 ASA against Πsign.P2

We present an ASA against P2 in Πsign that maximizes the utilization of multiple sources
of randomness within P2 to improve subversion efficiency. More specifically, we highlight the
distinction between ASAs against protocols and traditional ASAs against schemes by employing
a global attack state-maintaining substitution attack (collaborative substitution attack) against
P2. In essence, by maintaining a global attack state, we can fully and efficiently leverage as
much randomness as possible within P2’s algorithms.

Fig. 13 depicts a symmetric collaborative ASA AP2 against P2 in Πsign. AP2 = (Gen, P̃2,Ext)

where P̃2 = (P̃2
A1

, P̃2
A2

) is a subverted party of P2. P̃2
A1

(ek2,1, x2, h2,1, σ2,0) is the same as
PA1
2 (x2, h2,1) except that a global attack state σ2,0 is maintained, and a PRF F : K×{0, 1}∗ → Zq

is used in the generation of k2, and the sub-module NIZKPoK.P is replaced by ˜stNIZKPoK.P.
˜stNIZKPoK.P(x,w, ek, aux, σp) is the same as NIZKPoK.P(x,w) except that it uses a PRF

F : K × {0, 1}∗ → Zq to generate t. For the input of P̃1
A1

, we have ek2,1 ∈ K. The leakage

function L2(x2, st2, σ2) returns sk2 in x2. For the input of ˜stNIZKPoK.P, we have ek2,1 ∈
K, aux := sk2, and σp = σ2,0 P̃2

A2
(ek2,2, x2, h2,2, st2,2, σ2,0) is the same as PA2

2 (x2, h2,2, st2,2)
except that a global attack state σ2,0 is maintained, and a PRF F ′ : K×{0, 1}∗ → {0, 1} is used
to test whether the output w by applying F1 on c3 satisfies sk2[i] = b where i is a part of σ2,0.

Theorem 4.4. Assume that F : K× {0, 1}∗ → Zq and F ′ : K× {0, 1}∗ → {0, 1} are two PRFs,
then ASA AP2 in Fig. 13 is undetectable and secretly recoverable. Specifically, the detection
advantage of any PPT detector D can be bounded as

AdvUDET
D,P2,AP2

(λ) ≤ 2AdvPRFF ,F (λ) + 2AdvPRFF ′,F ′(λ) + negl(λ) (4)

where F and F ′ are two PRF adversary attacking F and F ′ respectively.

Proof. Let G0 be the original detection game UDET defined in Fig. 4. By the definition, we
have AdvDP2,AP2

(λ) = |2Pr [W0]− 1|.

Let G1 be the same as G0 except that it implements F in P̃2
A1

with a lazily sampled random
function. Then we construct a PRF adversary FF attacking F that simulates G0 and G1 for
the detector D. FF provides leakage function L2 and simulates the oracle for D as follow.

Upon query (1, x2, h2,1) when c = 0, FF runs P̃2
A1

except that receives k2 and t from its
challenger. For other queries, FF simulates the oracle following the description. Finally FF

outputs 1 when D returns c′ = c. Follow the proof of Theorem. 4.3 we have

|Pr [W0]− Pr [W1] | ≤ AdvPRFFF ,F (λ),

where FF is a PRF adversary attacking function F .

Let G2 be the same as G1 except that F ′ in P̃2
A2

is implemented with a lazily sampled
random function. Let G3 be the same as G2 except that the lazily sampled random function F
is replaced by fully random sampling of k2 and t. Let G4 be the same as G3 except that the
lazily sampled random function F ′ is replaced by fully random sampling of w. Follow the proof
of Theorem. 4.3 we have

|Pr [W1]− Pr [W2] | ≤ AdvPRFFF ′ ,F ′(λ), |Pr [W2]− Pr [W3] | ≤ negl(λ),

|Pr [W3]− Pr [W4] | ≤ negl(λ) and Pr [W4] = 1/2,

where FF ′ is a PRF adversary attacking F ′. Putting all above together Eq. 4.4 holds.

17

P̃2
A1

(ek2,1, x2, h2,1, σ2,0)

σ2,0 ← ϵ

if σ2,0 = ϵ then

i← 0, k2 ←$ Zq

else

(i, τ)← σ2,0

k2 ← F (ek2,1, τ, sk2[i])

R2 ← k2 ·G
i← i+ 1 mod lsk2 , τ ← R2

σ2,0 ← (i, τ)

(π2, σ2,0)←$ ˜stNIZKPoK.P(R2,

k2, ek2,1, sk2, σ2,0)

st2,2 ← k2||R2

return (π2, st2,2, σ2,0)

P̃2
A2

(ek2,2, x2, h2,2, st2,2, σ2,0)

. . .

(i, τ)← σ2,0

repeat

ρ← Zq2 , r̃ ← ZN∗

c1 ← Paillier.Enc(pke, ρ · q+
[k−1

2 ·m mod q; r̃])

v ← k−1
2 · r · sk2 mod q

c2 ← v ⊗ ckey, c3 ← c1 ⊕ c2

w ← F ′(ek2,2, c3)

until sk2[i] = w

i← i+ 1 mod lsk2 , τ ← c3

σ2,0 ← (i, τ), st2,3 ← st2,2

return (c3, st2,3, σ2,0)

˜stNIZKPoK.P(x,w, ek, aux, σp)

if σp = ϵ then i← 0, t←$ Zq

else (i, τ)← σp, t← F (ek, τ, aux[i])

a← t ·G, i← i+ 1 mod laux, τ ← a

σp ← (i, τ), e← H(a||x)
z ← t+ e · w, π ← (x, e, z)

return (π, σp)

Gen(1k)

ek2,1, ek2,2 ←$ K
EK2 = XK2 = {ek2,1, ek2,2}
sk2 := L2(x2, st2, σ2)

return (EK2, XK2, L2)

ExtOtrans(XK2)

Tm2,1,m2,1
:= {(R1

2, a
1, c13), · · · , (Rs

2, a
s, cs3)}

i, j := 1

for i ∈ [s] do

sk2[l] = 1

if F (ek2,1, R
i
2, 0) ·G = ai then

sk2[l] = 0

l← l + 1 mod lsk2

sk2[l] = F ′(ek2,2, c
i
3)

l← l + 1 mod lsk2

(b, l)← F1(ek1,1, a
i), sk2[l] = b

for i > 1 do

sk2[l] = 1

if F (ek2,1, c
i−1
3 , 0) ·G = Ri then

sk2[l] = 0

l← l + 1 mod lsk2 , i← i+ 1

return sk2

Figure 13: Stateful ASA against P2 in Πsign.

Regarding the secret recoverability of AP2 , the subversion adversary receives transcripts

(from Otrans) of the first s consecutive runs of P̃2 where s ≥ ⌊ lsk2+1

3 ⌋, then recover each bit of

sk2 following the description of Ext. In one execution of P̃2, three bits of sk2 are leaked within
two messages on average. Therefore, s transcripts are enough to recover every bit of sk2 with
high probability.

18

5 Conclusion

In this work, we present an enhanced model for Algorithm Substitution Attacks (ASAs) tailored
to cryptographic protocols. Our model provides a modular formalization of subverted parties,
allowing for a detailed categorization of algorithms into normal and attack states, with further
subdivisions into global and local states to describe complex subversion attacks accurately. We
introduce a fine-grained definition of undetectability with different strengths, enabling the de-
tector to access varying types of information. To illustrate the practicality of our model, we
apply it to a two-party ECDSA protocol and demonstrate several ASAs targeting the parties.
Moreover, the several concrete attacks we present illustrate the diversity of ASA against cryp-
tographic protocols. The stateless ASA against P2 in Πkgen cleverly utilizes multiple random

numbers within PA1
2 to achieve a highly efficient attack effect of leaking secret key share in one

single execution. Notably, similar efficient stateless attacks are not commonly found in existing
works. Therefore, our work aims to improve the understanding of the various possibilities and
efficiencies of ASAs in the context of cryptographic protocols, thus advancing defense efforts
such as designing subversion-resilliant cryptographic protocols.

Acknowledgements. We would like to thank all anonymous reviewers for their valuable
comments. This work is supported in part by the National Natural Science Foundation of
China (Grant No.62122092, No.62202485, No.62032005).

References

[AFMV19] G. Ateniese, D. Francati, B. Magri, and D. Venturi. Public immunization against
complete subversion without random oracles. In ACNS 19, LNCS 11464, pages
465–485. Springer, Heidelberg, June 2019.

[AMV15] G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signature schemes. In
ACM CCS 2015, pages 364–375. ACM Press, October 2015.

[AP19a] M. Armour and B. Poettering. Substitution attacks against message authentication.
IACR Trans. Symm. Cryptol., 2019(3):152–168, 2019.

[AP19b] M. Armour and B. Poettering. Subverting decryption in aead. In Cryptography and
Coding: 17th IMA International Conference, IMACC 2019, Oxford, UK, December
16–18, 2019, Proceedings 17, pages 22–41. Springer, 2019.

[BCJ21] P. Bemmann, R. Chen, and T. Jager. Subversion-resilient public key encryption
with practical watchdogs. LNCS, pages 627–658. Springer, Heidelberg, 2021.

[BH15] M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic
and hedged public-key encryption in the standard model. In EUROCRYPT 2015,
Part II, LNCS 9057, pages 627–656. Springer, Heidelberg, April 2015.

[BJK15] M. Bellare, J. Jaeger, and D. Kane. Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In ACM CCS 2015, pages 1431–1440.
ACM Press, October 2015.

[BL17] S. Berndt and M. Liskiewicz. Algorithm substitution attacks from a steganographic
perspective. In ACM CCS 2017, pages 1649–1660. ACM Press, October / November
2017.

19

[BPR14] M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption
against mass surveillance. In CRYPTO 2014, Part I, LNCS 8616, pages 1–19.
Springer, Heidelberg, August 2014.

[BSKC19] J. Baek, W. Susilo, J. Kim, and Y.-W. Chow. Subversion in practice: How to
efficiently undermine signatures. IEEE Access, 7:68799–68811, 2019.

[BWP+22] S. Berndt, J. Wichelmann, C. Pott, T.-H. Traving, and T. Eisenbarth. ASAP:
Algorithm substitution attacks on cryptographic protocols. pages 712–726. ACM
Press, 2022.

[CDN20] S. Chakraborty, S. Dziembowski, and J. B. Nielsen. Reverse firewalls for actively
secure MPCs. In CRYPTO 2020, Part II, LNCS 12171, pages 732–762. Springer,
Heidelberg, August 2020.

[CEJ23] B. Cogliati, J. Ethan, and A. Jha. Subverting telegram’s end-to-end encryption.
IACR Transactions on Symmetric Cryptology, pages 5–40, 2023.

[CGG+21] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. Uc non-
interactive, proactive, threshold ecdsa with identifiable aborts. Cryptology ePrint
Archive, Paper 2021/060, 2021. https://eprint.iacr.org/2021/060.

[CGPS21] S. Chakraborty, C. Ganesh, M. Pancholi, and P. Sarkar. Reverse firewalls for
adaptively secure MPC without setup. LNCS, pages 335–364. Springer, Heidelberg,
2021.

[CGS23] S. Chakraborty, C. Ganesh, and P. Sarkar. Reverse firewalls for oblivious transfer
extension and applications to zero-knowledge. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 239–270.
Springer, 2023.

[CHY20] R. Chen, X. Huang, and M. Yung. Subvert KEM to break DEM: Practical
algorithm-substitution attacks on public-key encryption. In ASIACRYPT 2020,
Part II, LNCS 12492, pages 98–128. Springer, Heidelberg, December 2020.

[CMY+16] R. Chen, Y. Mu, G. Yang, W. Susilo, F. Guo, and M. Zhang. Cryptographic reverse
firewall via malleable smooth projective hash functions. In ASIACRYPT 2016,
Part I, LNCS 10031, pages 844–876. Springer, Heidelberg, December 2016.

[CRT+19] S. S. M. Chow, A. Russell, Q. Tang, M. Yung, Y. Zhao, and H.-S. Zhou. Let a
non-barking watchdog bite: Cliptographic signatures with an offline watchdog. In
PKC 2019, Part I, LNCS 11442, pages 221–251. Springer, Heidelberg, April 2019.

[DFP15] J. P. Degabriele, P. Farshim, and B. Poettering. A more cautious approach to secu-
rity against mass surveillance. In FSE 2015, LNCS 9054, pages 579–598. Springer,
Heidelberg, March 2015.

[DFS16] S. Dziembowski, S. Faust, and F.-X. Standaert. Private circuits iii: hardware
trojan-resilience via testing amplification. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 142–153, 2016.

[DKLs18] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ECDSA
from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997. IEEE Computer Society Press, May 2018.

20

https://eprint.iacr.org/2021/060

[DMS16] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with
reverse firewalls—secure communication on corrupted machines. In CRYPTO 2016,
Part I, LNCS 9814, pages 341–372. Springer, Heidelberg, August 2016.

[FM18] M. Fischlin and S. Mazaheri. Self-guarding cryptographic protocols against algo-
rithm substitution attacks. In CSF 2018Computer Security Foundations Sympo-
sium, pages 76–90. IEEE Computer Society Press, 2018.

[GG18] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In ACM CCS 2018, pages 1179–1194. ACM Press, October 2018.

[HS21] P. Hodges and D. Stebila. Algorithm substitution attacks: state reset detection and
asymmetric modifications. IACR Transactions on Symmetric Cryptology, pages
389–422, 2021.

[JHZ+23] H. Jiang, J. Han, Z. Zhang, Z. Ma, and H. Wang. Practical algorithm substitution
attacks on real-world public-key cryptosystems. IEEE Transactions on Information
Forensics and Security, 18:5069–5081, 2023.

[KL07] J. Katz and Y. Lindell. Introduction to modern cryptography: principles and pro-
tocols. Chapman and hall/CRC, 2007.

[LCWW18] C. Liu, R. Chen, Y. Wang, and Y. Wang. Asymmetric subversion attacks on
signature schemes. InACISP 18, LNCS 10946, pages 376–395. Springer, Heidelberg,
July 2018.

[Lin17] Y. Lindell. Fast secure two-party ECDSA signing. In CRYPTO 2017, Part II,
LNCS 10402, pages 613–644. Springer, Heidelberg, August 2017.

[MS15] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In EU-
ROCRYPT 2015, Part II, LNCS 9057, pages 657–686. Springer, Heidelberg, April
2015.

[RTYZ16] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Cliptography: Clipping the power
of kleptographic attacks. In ASIACRYPT 2016, Part II, LNCS 10032, pages 34–64.
Springer, Heidelberg, December 2016.

[RTYZ17] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Generic semantic security against
a kleptographic adversary. In ACM CCS 2017, pages 907–922. ACM Press, Octo-
ber / November 2017.

[RTYZ18] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Correcting subverted random ora-
cles. In CRYPTO 2018, Part II, LNCS 10992, pages 241–271. Springer, Heidelberg,
August 2018.

[TY17] Q. Tang and M. Yung. Cliptography: post-snowden cryptography. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 2615–2616, 2017.

[WS11] A. Waksman and S. Sethumadhavan. Silencing hardware backdoors. In 2011 IEEE
Symposium on Security and Privacy, pages 49–63. IEEE Computer Society Press,
May 2011.

[XAX+21] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui. Efficient online-friendly two-
party ECDSA signature. pages 558–573. ACM Press, 2021.

21

[YY97a] A. Young and M. Yung. Kleptography: Using cryptography against cryptography.
In EUROCRYPT’97, LNCS 1233, pages 62–74. Springer, Heidelberg, May 1997.

[YY97b] A. Young and M. Yung. The prevalence of kleptographic attacks on discrete-
log based cryptosystems. In CRYPTO’97, LNCS 1294, pages 264–276. Springer,
Heidelberg, August 1997.

A Full Description of Lin-2ECDSA

Key Generation Sub-protocol Πkgen(1
λ)

Party P1 Party P2

sk1 ←$ Zq sk2 ←$ Zq

pk1 ← sk1 ·G pk2 ← sk2 ·G
π1 = NIZKPoK.P(pk1, sk1) π2 = NIZKPoK.P(pk2, sk2)

(com1, dcom1) = COM.G(π1)

com1

π2

if NIZKPoK.V(π2) = ⊥ then

return ⊥
(pke, ske)← Paillier.Kgen(1k)

ckey ← Paillier.Enc(pke, sk1)

pke, pk1; (sk1, ske))

pke, ckey, dcom1

prove in zero-knowledge that

pke ∈ Lp and (ckey, pke, pk1) ∈ LPDL

pk← sk1 · pk2 π1 ← dcom1

return (sk1, pke, ske, pk) if NIZKPoK.V(π1) = ⊥ ∨
COM.V(com1,

dcom1) = ⊥ then

return ⊥
pk← sk2 · pk1
return (sk2, pke, ckey, pk)

Figure 14: Πkgen of Lin-2ECDSA where LP = {(N ;ϕ(N))|gcd(N,ϕ(N)) = 1} and LPDL =
{(ckey, pke, pk1; (sk1, ske)|∃(sk1, r)s.t.ckey = Paillier.Enc(pke, sk1; r), pk1 = sk1 ·G and sk1 ∈ Zq}

22

Signing Sub-protocol Πsign(sid,m)

Party P1(sk1, pke, ske, pk) Party P2(sk2, pke, ckey, pk)

k1 ←$ Zq, R1 ← k1 ·G
π1 = NIZKPoK.P(R1, k1) k2 ←$ Zq, R2 ← k2 ·G

(com1, dcom1) = COM.G(π1)
com1 π2 = NIZKPoK.P(pk2, sk2)

π2

if NIZKPoK.V(π2) = ⊥ then

return ⊥ dcom1 π1 ← dcom1

if COM.V(com1, dcom1) = ⊥ ∨
NIZKPoK.V(π1) = ⊥ then

return ⊥
R := (rx, ry)← k2 ·R1

r ← rx mod q

ρ← Zq2 , r̃ ← ZN∗

c1 ← Paillier.Enc(pke, ρ · q+
[k−1

2 ·m mod q; r̃])

v ← k−1
2 · r · sk2 mod q

c2 ← v ⊗ ckey

c3 c3 ← c1 ⊕ c2

R := (rx, ry)← k1 ·R2

r ← rx mod q

s′ ← Paillier.Dec(ske, c3)

s′′ ← sk−1
1 · s′ mod q

s← min{s′′, q − s′′}
if 1← Vrfy(pk,m, (r, s)) then

return (r, s)

Figure 15: Πsign of Lin-2ECDSA

23

	Introduction
	Our Contributions
	Comparison with Prior Work

	Preliminaries
	Decisional Diffie-Hellman (DDH) assumption
	Entropy Smoothing Hash Function
	Pseudo Random Function (PRF)
	ECDSA

	ASA Model for 2-Party Protocol
	Syntax
	Fine-Grained Undetectability
	Secret Recoverability

	Case Study: Subverting 2ECDSA
	Substitution attack against _kgen
	ASA against _kgen.P_1
	ASA against _kgen.P_2

	Substitution attack against _sign
	ASA against _sign.P_1
	ASA against _sign.P_2

	Conclusion
	Full Description of Lin-2ECDSA

