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Abstract. Delegatable Anonymous Credentials (DAC) are an enhanced
Anonymous Credentials (AC) system that allows credential owners to
use credentials anonymously, as well as anonymously delegate them to
other users. In this work, we introduce a new concept called Delegat-
able Attribute-based Anonymous Credentials with Chainable Revoca-
tion (DAAC-CR), which extends the functionality of DAC by allowing
1) fine-grained attribute delegation, 2) issuers to restrict the delegation
capabilities of the delegated users at a fine-grained level, including the
depth of delegation and the sets of delegable attributes, and 3) chain-
able revocation, meaning if a credential within the delegation chain is
revoked, all subsequent credentials derived from it are also invalid.
We provide a practical DAAC-CR instance based on a novel primitive
that we identify as structure-preserving signatures on equivalence classes
on vector commitments (SPSEQ-VC). This primitive may be of indepen-
dent interest, and we detail an efficient construction. Compared to tradi-
tional DAC systems that rely on non-interactive zero-knowledge (NIZK)
proofs, the credential size in our DAAC-CR instance is constant, inde-
pendent of the length of delegation chain and the number of attributes.
We formally prove the security of our scheme in the generic group model
and demonstrate its practicality through performance benchmarks.

Keywords: Structure-preserving signatures · Delegatable anonymous
credentials · Attribute-based credentials · Chainable revocation · Fine-
grained delegation.

1 Introduction

Privacy-preserving attribute-based credentials (PABCs) [1], originally intro-
duced as anonymous credentials [2, 3], enable users to authenticate themselves
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to service providers in a privacy-preserving manner, revealing only the necessary
information for completing transactions. Increasing legal requirements for better
protection of personal data, as well as growing security concerns, have led to the
emergence of various anonymous credential schemes [4–6,18,24].

While anonymous credentials provide strong privacy features, they do not
fully protect user privacy in practice. They assumes that the verifier (e.g., an
access provider) knows the public keys of the credential issuers. This leakage
reveals details about the user, such as their location, organization, or business
unit. Moreover, in practice, certificates are usually issued in a hierarchical man-
ner, and in everyday life, we often need to delegate tasks, responsibilities and
permissions to others, or we simply want to share our access to resources and
services with another person or across our different electronic devices. As high-
lighted in [8, 14], anonymous credentials do not provide effective functionality
when used in hierarchical structures.

Delegatable anonymous credentials. Delegatable anonymous credentials
(DAC), introduced by Chase et al. [7] and further improved by Belenkiy et
al [8], can solve the above problem. The DAC scheme is rooted in a trusted
authority, which issues initial credentials for level L = 1. It allows level L users to
delegate their credentials to level L+1 users, who can further delegate the same
credentials. Similar to anonymous credentials, users can undergo verification
without revealing their identity, only by showing the public key of the root issuer
without any undisclosed attributes to the verifier. Unfortunately, the use of a
large number of zero-knowledge proofs makes the scheme inefficient in practice.

Subsequently, Chase et al. proposed a new delegatable anonymous credential
structure [20] following a similar technique as [8]. However, their instantiation
of controlled linkable signatures still required Groth-Sahai proofs, resulting in
a construction that is essentially as inefficient as Belenkiy et al.’s construction.
Camenisch et al. [9] introduced a practical DAC scheme enabling to generate
the proof of credential chain ownership in privacy-preserving manner, yet it
cannot receive credentials anonymously. Moreover, this structure leads to a linear
increase in the credential size with respect to the product of attribute length and
delegation depth. Blömer and Bobolz (BB) [19] later proposed another practical
DAC method that utilizes dynamically malleable signatures (DMS) and NIZK
proofs.However, due to the necessity of hiding DMS signatures and proving the
verification relation of DMS (resulting in linear size of undisclosed attribute
count), which leads to a complex NIZK statement that is not expected.

DAC from SPSEQ. Crites and Lysyanskaya [10] extended the structure-
preserving signature on equivalence classes (SPSEQ) [4, 29] to the equivalence
class on the key space to construct a new signature scheme called mercury sig-
nature and proposed a possibility is the most efficient and conceptually simplest
DAC structure. Unlike previous schemes, SPSEQ does not require additional
proof of NIZK. Unfortunately, their scheme does not support attributes in a
meaningful way. While Crites and Lysyanskaya improved it in [18] to support
attributes, it still does not support selective disclosure, resulting in the disclo-
sure of all attributes during the showing phase. Moreover, the size of credentials
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in the scheme grows linearly with the delegation depth. Based on this, Mir and
Slamanig et al. [11] proposed a new delegatable attributes-based anonymous cre-
dential scheme based on structure-preserving signatures on equivalence classes
on updatable commitments (SPSEQ-UC). But it does not support delegations
with fine-grained capability constraints on specific set of attributes, and revoca-
tion of anonymous credentials.

Current limitations of DAC. Despite the various advances made by the
aforementioned works, there are still gaps in terms of more flexible revocation
in DAC and the challenge of fulfilling all desired properties simultaneously. On
the one hand, the schemes proposed by Chase et al. [7] and Belenkiy et al. [8],
although theoretically sound in terms of complexity, are limited in their practi-
cality because they adopt universal zero-knowledge proof, or Groth-Sahai proof,
involving expensive pairing operations and large credential sizes. On the other
hand, the vast majority of current DAC solutions do not support credential revo-
cation. Although [27–29] supports revocation, they only support the revocation
of the lowest-level users or credentials. However, revocation in DAC can occur
at any user level except the root issuer. Moreover, existing DAC schemes do not
consider delegations with fine-grained capability constraints, and it is unaccept-
able for the specific set of attributes and the depth to which they can continue
to delegate to be out of the control of the delegator.

1.1 Our Contribution

In this paper, we fill the gap in terms of more flexible revocation in DAC and
propose an efficient instance that satisfies all the desired properties mentioned
above. A comparison of our scheme with previous works is shown in Table 1. In
detail, our main contributions are summarized as follows.

Delegatable Attribute-based Anonymous Credentials with Chain-
able Revocation. We introduce and formalize the concept of Delegatable
Attribute-based Anonymous Credentials with Chainable Revocation (DAAC-
CR), which extends DAC to support fine-grained delegation, strong anonymity,
and chainable revocation. Specifically, a delegator at any level of delegation can
delegate anonymous attribute-based credentials to a delegatee, and can restrict
the delegation ability to the next level in a fine-grained manner, including the
set of delegable attributes and the depth of delegation.

More importantly, a new revocation method is captured, called chainable
revocation, which supports revocation not only of the lowest-level credentials,
but also of any level within the delegation chain. Any level of credential in the
chain is revoked, all subsequent credentials derived from that are invalid without
any additional privacy risks.

Novel building block. We identify a novel building block, referred to as the
Structure-Preserving Signatures on Equivalence Classes of Vector Commitments
(SPSEQ-VC), which serves as the main ingredient of DAAC-CR. SPSEQ-VC,
similar to usual structure-preserving signatures on equivalence classes [4,11,30],
but the equivalent message space is the vectors of random vector commitments,
supporting the randomization and adapting the signature to the new equivalent
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class messages, and provides signature, random commitments, and the opening of
subsets of commitment vectors. A key feature of SPSEQ-VC is that the signature
from the signer u supports invoking a public key pk′u of another user u′, allowing
the signature to be tied to pk′u, which implies that u can adapted the signature
into another valid signature for u′. Moreover, benefiting from a novel design that
binds the position mapping between the signature key and the vector message
space, we capture fine-grained signature adaptation in vector messages.

Efficient instance. We provide a concrete construction of SPSEQ-VC and
instantiate an efficient DAAC-CR scheme based on SPSEQ-VC and accumula-
tors. Our DAAC-CR scheme satisfies all the properties mentioned in (1) and
additionally offers the following features: first, it represents a simple and practi-
cal construction, does not require extensive zero-knowledge proofs. Second, our
scheme is practical in two respects: the size of the credentials is independent of
the length of the delegation chain and the number of attributes, and the com-
munication overhead required in showing phase depends only on the depth of
the delegation, not on the number of attributes. Moreover, we provide a formal
security proof of our scheme in the generic group model. Finally, we implement
SPSEQ-VC and DAAC-CR schemes, and perform a comprehensive evaluation
showing the practicality.

Table 1: Comparison of practical DAC schemes.

scheme Attr SelD FGD FGC CR REV SAnon |Cred| |Show|
CDD17 [9]   # # # # # O(nL) O(uL)

BB18 [19]    # # # # O(1) O(u)

CL19 [10] # # # # # # # O(L) O(L)

CL21 [18]  # # # # # # nL O(uL)

MSB23 [11]   #  # #  O(1) O(L)

Ours        O(1) O(L)

# Not Support  Support
Attr: attribute-based credentials. SelD: selective disclosure.
FGD: fine-grained delegation on specific attributes.
FGC: fine-grained delegation on the depth of delegation. CR : chainable revocation.
REV: limited revocation(only for lowest-level credentials). SAnon: strong anonymity.
L: depth of delegation chain. n: # of attributes in the credential. u: # of disclosed attributes.

2 Preliminaries and Notation

Let G1 = ⟨g1⟩,G2 = ⟨g2⟩, and GT be cyclic groups of prime order p. A
bilinear map e : G1 ×G2 → GT is a map that is efficiently computable. We will
use BG = (p,G1,G2,GT , e, g1, g2) ← BGGen(1λ) to denote a bilinear group
generator where p is a prime of bitlength λ. Let ω is a primitive n-th root of
unity in Z⋆

p [16]. Given a finite set S, we denote by x← S the action of sampling
an element uniformly at random from S.
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2.1 Lagrange Polynomial Interpolation

Given n pairs (xi, yi)i∈[0,n), we can find or interpolate the unique polyno-
mial f(X) of degree < n such that f(xi) = yi, i ∈ [0, n) using Lagrange
interpolation [12] in O(nlog2n) time [13] as f(X) =

∑
i∈[0,n) Li(X)yi, where

Li(X) =
∏

j∈[0,n)
X−xj

xi−xj
. Recall that a Lagrange polynomial Li(X) has the prop-

erty that Li(xi) = 1 and Li(xj) = 0, i, j ∈ [0, n) with j ̸= i. Note that Li(X) is
defined in terms of the x′is which, throughout this paper, will be either (ωi)i∈[0,n)
or (ωi)i∈I , I ⊂ [0, n).

2.2 Accumulator

Cryptographic accumulators [14] represent a finite set X as a single succinct
value AX and for each xi ∈ X one can compute a witness πx, certifying mem-
bership of x in X. Universal accumulators additionally support non-membership
witnesses π̄y that certify non-membership of a value y /∈ X . Let X be the ac-
cumulator set and X(s) =

∏
x∈X(s+ x) be the accumulator polynomial.

– GenACC(BG, t) → (SKACC , PKACC): Let (p,G1,G2,GT , e, g1, g2) be the
output of BG(1λ). Assume that s is a trapdoor randomly sampled from
Zp. The public parameters are pp = (BG, gs

i

1 , gs
i

2 |0 ≤ i ≤ t), where t is the
maximum capacity of the accumulator. Then, set SKACC = s and PKACC =
(BG, gs

i

1 , gs
i

2 |0 ≤ i ≤ t).
– CommitACC(X) → AX : The accumulator digest of the set X ={

x1, ..., x|X|
}
, is AX = g

X(s)
1 , where the polynomial X(s) =

∏
x∈X(s+ x).

– AddACC(AX , X, I, SKACC , PKACC)→ A′X : A set of elements I, I∩X = Φ,
can be added to the accumulator and the digest can be updated as: A′X =

g

∏
xi∈I(s+xi)

1 .
– MemProvePosACC(X, y, SKACC , PKACC) → πy: The proof of member-

ship of an element y can be computed as πy = g
∏

x∈X\y
1 (s + x), where X is

the accumulated set.
– MemV erifyPosACC(AX , y, πy, PKACC) → 0/1: The membership proof of

an element y ∈ X in the accumulator can be verified by performing the
following pairing check: e(πy, g

y
2g

s
2) = e(AX , g2).

– NonMemProvePosACC(X, y, SKACC , PKACC) → π̄y: The non-
membership proof of y ∩X = Φ involves computing the Bézout coefficients
α(x) and β(s) s.t. α(x) · X(s) + β(s) · (s + y) = 1. As the monomial
(s+ y) is of degree one, the polynomial α(s) is in fact a constant! Thus, the
πy = (α, g

β(s)
1 ) ∈ (Zp,G1) is the non-membership proof of element y.

– NonMemV erifyPosACC(AX , y, π̄y, PKACC)→ 0/1: The non-membership
proof can be verified by checking e(AX , gα2 ) · e(g

β(s)
1 , gs2g

y
2 ) = e(g1, g2).

– MemProveACC(X, I, SKACC , PKACC) → πI : A batch membership proof

for set I ⊆ X is computed as follows: πI = g

∏
xi∈X\I(s+xi)

1 .
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– MemV erifyACC(AX , I, πI , PKACC)→ 0/1: The batch proof can be verified

by checking: e(πI , g

∏
xi∈I(s+xi)

2 ) = e(AX , g2).
– NonMemProveACC(X, I, SKACC , PKACC) → π̄I : A batch non-

membership proof for a set I, where I ∩ X = Φ, is π̄I = (g
α(s)
2 , g

β(s)
1 ) ∈

(G2,G1) such that α(s) ·X(x) + β(s) ·
∏

yi∈I(s+ yi) = 1.
– NonMemV erifyACC(π̄I , AX , I, PKACC) → 0/1: The batch proof can be

verified by checking e(AX , g
α(s)
2 ) · e(gβ(s)1 , g

∏
yi∈I(yi+s)

2 ) = e(g1, g2).

2.3 Structure-Preserving Signatures on Equivalence Classes

Structure-preserving signatures (SPS) [17] are pairing-based signatures where
the message, signature, and verification key consist of source group elements
only (in one or both source groups), and signature verification consists of group
membership checks and pairing product equations only. The notion of SPS on
equivalence classes (SPS-EQ) was introduced by Hanser and Slamanig [4]. The
scheme allowed joint randomization of messages and their corresponding sig-
natures, coining Structure-Preserving Signatures on Equivalence Classes (SPS-
EQ). If one considers a prime-order group G and defines the projective vector
space (G⋆)l, there is a partition into equivalence classes given by the following
relation R : M ∈ (G⋆)l ∼R M⋆ ∈ (G⋆)l ⇔ ∃µ ∈ Z⋆

p : M⋆ = µM . If the discrete
logarithm problem is hard in G and one restricts the vector components to be
non-zero, given two vectors M and M⋆, it is difficult to distinguish whether they
were randomly sampled or if they belong to the same equivalence class. Given a
message and its corresponding signature, SPS-EQ provides a controlled form of
malleability in which one can publicly (without requiring access to the secret key)
adapt a signature to change the representative (message). The equivalence rela-
tion provides indistinguishability on the message space if the DDH assumption
holds. If additionally, updated signatures are distributed like fresh signatures,
message-signature pairs falling into the same class are unlinkable. For unlink-
ability to hold, signatures should also be randomized when adapting them to
a new representative of the class. Given a representative and its corresponding
signature, a random representative of the same class with an adapted signature
are indistinguishable from a random message-signature pair.

Definition 1. An Structure-Preserving Signatures on Equivalence Classes
(SPS-EQ) scheme on (G⋆)l consists of the following PPT algorithms:

– BGGenR(1
λ)→ BG, a bilinear-group generation algorithm, which on input

a security parameter λ outputs an asymmetric bilinear group BG.
– KeyGenR(BG,n)→ (sk, pk), on input BG and vector length n > 1, outputs

a key pair (sk, pk).
– SignR(M, sk) → σ, given a representative M ∈ (G⋆)l and a secret key sk,

outputs a signature σ for the equivalence class [M ]R.
– ChgReqR(M,σ, µ, pk) → (M ′, σ′), on input a representative M ∈ (G⋆)l of

class [M ]R, a signature σ on M , a scalar µ and a public key pk, returns
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an updated message-signature pair (M ′, σ′), where M ′ = µ ·M is the new
representative and σ′ its updated signature.

– V erifyR(M,σ, pk) → 0/1, is deterministic and, on input a representative
M ∈ (G⋆)n, a signature σ and a public key pk, outputs 1 if σ is valid for M
under pk and 0 otherwise.

2.4 Vector Commitment

Vector Commitment allows one to commit a vector v ⊆ Zn
p in a such way

and supports to open it at any position i ∈ [n]. Let v = (v0, ..., vn−1). The vector
commitment, introduced by Tomescu et al. in [16] works as follows:

– V C.Setup(1λ, n) → ppV C : Run BG = (p,G1,G2,GT , g1, g2, e) ←
BGGen(1λ). Pick α← Z⋆

p and generate n-SDH parameters (g1, g
α
1 , · · · ,

gα
n

1 , g2, g
α
2 , · · · , gα

n

2 ). Compute li = g
Li(α)
1 for i ∈ [0, n), where Li(X) =∏

j∈[0,n),j ̸=i
X−ωj

ωi−ωj . Return ppV C = (BG, (gα
i

1 )i∈[0,n), (g
αi

2 )i∈[0,n), (li)i∈[0,n)).
– V C.Commit(ppV C ,v)→ C: Compute C =

∏
i∈[0,n)(li)

vi

– V C.Prove(ppV C , I,v) → πI : Compute AI(X) =
∏

i∈I(X − ωi) and divide
f(X) =

∑
i∈[0,n) Li(X)vi by AI(X), obtaining a quotient q(X) and a re-

mainder r(X). Return πI = g
q(α)
2 .

– V C.V erify(ppV C , C,vI , I, πI)→ 0/1: Compute AI(X) =
∏

i∈I(X−ωi) and
interpolate RI(X) such that RI(ω

i) = vi for i ∈ I. Return 1 iff. e(C, g2) =
e(g

AI(α)
1 , πI) · e(gRI(α)

1 , g2).

And a vector commitment satisfies the following properties:
Correctness: An honest prover will always convince an honest verifier. That

is, the probability of the following is 1.

Pr

V erifyPos(ppV C , C,vI , I, πI)

∣∣∣∣∣∣∣
(ppV C)← Setup(1λ, n)

(C)← V C.Commit(ppV C ,v)
(π)← V C.ProvePos(ppV C , I,v)

 = 1

Position Binding: No PPT adversary A can provide two valid openings for
a position. That is for every PPT adversary A the following probability is at
most negligible.

Pr

V erifyPos(ppV C , C,vI , I, πI),

V erifyPos(ppV C , C,v′I , I, πI)

∧vI ̸= v′I

∣∣∣∣∣∣∣
(ppV C)← Setup(1λ, n)

(C, i, π, π′,vI ,v
′
I)← A(pp)

 ≤ nel

The aforementioned commitment as an equivalence class of messages does
not support re-randomization. We provide a V C.Random algorithm and slightly
modify V C.V erify algorithm to support vector commitment and its openings
for re randomization on the equivalent class, which detailed as follows:
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– V C.Random(C, πI , µ)→ (C ′, π′I , r): Compute r ← H(gµ2 ), where H : G2 →
Zp is a hash function. Then, computes C ′ ← Cµ+r and π′I ← πµ+r

I .
– V C.V erifyR(ppV C , C

′,vI , I, π
′
I , g

µ
2 ) → 0/1: Compute AI(X) =

∏
i∈I(X −

ωi), r = H(gµ2 ) and interpolate RI(X) such that RI(ω
i) = vi for i ∈ I.

Return 1 iff. e(C ′, g2) = e(g
AI(α)
1 , π′I) · e(g

RI(α)
1 , gµ2 ) · e(g

RI(α)
1 , gr2).

Claim 1. If the vector commitment provided by [16] is binding, position-binding,
and hiding, and the hash function H is secure, then the re-randomized commit-
ment C ′ with the opening π′I still satisfies binding, position-binding, and hiding.

Security. The correctness of the scheme follows naturally from Lagrange
interpolation. It has been proven in [16] that the original vector commitment
protocol satisfies correctness and position blinding follows from the security of
KZG polynomial commitments. For our construction, we claim the adding ran-
domness does not affect correctness and position blinding. We also argue that
based on the collision resistance of hash functions, it is infeasible for a PPT
adversary A to forge a proof through the randomization process.

In the subsequent chapters of the paper, we adopt the improved vector com-
mitment scheme as our default choice.

3 Delegatable Attribute-Based Anonymous Credential
System with Chainable Revocation

In this section, we define delegatable attributes-based anonymous credentials
with chainable revocation (DAC-CR). chainable revocation means that once a
credential for a user in the credential chain is revoked, all subsequent credentials
based on this credential will also become invalid. But it does not affect other
credentials of this user.

Let cred be a credential with commitments vector C. With cred, the user
can do the following: (1) Prove possession of a valid credential that meets some
validation rules D, and (2) if ukk′ ̸=⊥, he can continue to delegate credentials,
the depth of delegation and the attributes cannot exceed the delegation key ukk′

is allowed to and the derived credential still rooted at pkCA.

3.1 Formal Definitions

Definition 2 (Delegatable Attributes-Based Anonymous Credentials
With Chainable Revocation).

A DAAC-CR scheme consists of the following PPT algorithms and interac-
tive protocols:

Setup(1λ, 1n)→ pp: On input the security parameters λ and an upper bound
n for the cardinality of attributes, outputs public parameters pp for the system.

CAKeyGen(pp, 1l) → (pkCA, skCA): On input pp and the maximum depth
of delegation l > 1, outputs a public and secret key pair (pkCA, skCA) for the
root issuer(called CA).
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RAKeyGen(pp, 1t)→ (pkRA, skRA): On input pp and the maximum number
of accumulated elements t, outputs the revocation secret key skRA and public
key pkRA for the trusted revocation authority (called RA).

UKeyGen(pp)→ (pku, sku): On input pp, output a key pair (pku, sku), where
sku is the user’s secret key and pku is the public key.

NymGen(pp, pku)→ (nymu, sknym): On input pp and user’s public key pku,
outputs the user’s pseudonym numu and corresponding secret sknym.

Issuea root credential
[CreateCred(k′,M1, skCA, pkU )↔ ReceiveCred(pkCA, skU ,M1)→ (cred,

C, ukk′ , FID(X)): This interactive protocol involves a root issuer CA and a user
U . First, CA runs the CreateCred function with his security key skCA, the
maximum depth of delegation k′ for U , and the user’s public key pkU along
with an attributes vector M1 as inputs. Then U runs ReceiveCred with the
same attributes vector, CA’s public key, and her secret key skU as inputs. The
protocol outputs a root credential cred, a commitment C, a delegatable key ukk′ ,
and an identifier polynomial FID(X). cred is a delegatable credential linked to
the commitment C, while the latter corresponds to the attributes vector M1.
FID(X) includes the ID that is bound to the credential cred, as well as the
delegatable keys ukk′ related to the index k′ for a user, rooted at skCA.

Delegate a credential
[DelegateCred(pkCA,C,ML, ukk′ , skR, credR, k

′′, IL−1, FID(X))↔ Receiev
eCred(pkCA, skU ,ML)] → (credU ,C

′, ukk′′ , F ′ID(X)): This interactive protocol
involves an issuer R and a receiver U . R executes the DelegateCred algorithm,
and U manages the ReceiveCred side. The common inputs include the public
key of CA, and an attributes vector ML of U . Additionally, the issuer inputs the
identifier polynomial FID(X), his credential credR, secret key, a delegation key
ukk′ (optionally), an index k′′ < k′, and attribute indexes set IL−1 that he is
authorized to sign. The receiver inputs her own secret key skU . Upon completion
of the protocol, output the credential credU linked to C′ = (C, CL), where CL

is a vector commitment for ML, (ukk′′) (if further delegation is intended) or ⊥,
and the updated identifier polynomial F ′ID(X).

Revoke a credential
ReceiveToken(FID(X)) ↔ CreateToken(FID(X), AX , pp) → π̄: This inter-

active protocol involves a revocation authority (RA) running CreateToken, and
a user who runs ReceiveToken. The common input is the identifier polynomial.
The RA inputs an accumulator AX and public parameters pp, and outputs a
non-membership proof π̄.

Revoke(ID) → ACC ′: Run by the RA, this protocol inputs the ID of a
credential to be revoked and updates the blacklist accumulator.

Show a credential
[Show(pp, pkCA, Φ, skU , credU , nymU ,ML, ukk′ , FID(X),M ′L, D)↔V erify(

pp, pkCA, Φ,M
′
L, A

′
ID, σ′,C′, D)]→ 0/1: This protocol involves a prover U show-

ing and a verifier V checking the possession and validity of a credential. The com-
mon inputs include the public parameters pp, public key pkCA, the access rules
Φ the subvector of attributes M ′L and the set of indexes D in M ′L. Additionally,
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the prover U inputs his secret key, pseudonym, credential, and all associated in-
formation. The verifier V inputs an accumulator A′ID, which is generated by the
identifier polynomial FID(X). The output is either 1 (valid, accepts the proof
of possession of the credential, confirms its validity, and M ′L satisfies the access
rules Φ) or 0 (invalid).

Definition 3 (Correctness of DAAC-CR). If the Setup, CAKeyGen,
RAKeyGen, UKeyGen and NymGen are executed correctly, and the Create-
Cred/ReceiveCred and DelegateCred/ReceiveCred protocols are correctly im-
plemented with honestly generated inputs, the system guarantees that the receiver
outputs a valid credential cred. And all credentials prior to a valid credential cred
in the delegation chain are valid and not revoked, then cred is always accepted
by the verifier through the Show/V erify protocol.

3.2 Security Models

For security, anonymity (ensuring that users cannot be traced when showing,
delegating, or receiving credentials) and unforgeability (ensuring that credentials
that have not yet been issued, or that are part of a revoked delegation chain,
fail to pass verification) are expected.

This system uses oracles to define two security properties: anonymity, un-
forgeability. We define five global lists that are shared among oracles as HU a
list of honest users, CU a list of corrupted users, Luk a list of user’s keys, Rcred a
list of revoked credentials and Lcred a list of user-credential pairs which includes
issued credentials and corresponding attributes and to which user they were is-
sued. All of these lists are initialized to the empty set. An adversary has limited
access to the oracle model. Also, for simplicity, we assume that credi contains
(σ,C, pki).
OHU (i) : Corresponds to the creation of an honest user with identity identifier

i. Takes as input a user identity i. If i ∈ HU ∪CU , returns ⊥, else, creates a fresh
honest user with identity i, adds i to HU , and calls (pki, ski)← UKeyGen(pp)
to generate the user key pair, then adds it to Luk.
OCU (i, pki) : Corresponds to the creation of a corrupted user with identity

i. Takes as input a user identity i and a user public key pki. If i ∈ CU , returns
⊥. If i ∈ HU , it moves the entry corresponding to i from the list of honest users
HU and adds it to the list of corrupted users CU , else, it creates a new corrupted
user with identity i and public key pki, then adds i ∈ CU . It returns ski and all
the associated credentials items (i, Ai, ukk′ , credi) of Lcred[i].
ORIO(i, k′,A) : Takes as input a user identity i, an index k′ and attributes

A. If i ∈ HU , returns ⊥, else it creates a root credential by running

[CreateCred(k′,A, skCA, pki)↔ ReceieveCred(pkCA, ski,A)]→ (credi, ukk′)

and adds (i,A, ukk′ , credi) to Lcred.
ORIS(k′,A) : Allows an adversary to play a corrupted user to get

a root credential from a CA. On input an index k′ and attributes A.
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It creates a root credential by running the CreateCred protocol with A:
CreateCred(k′,A, skCA)↔ A and adds (i,A, ukk′ , credi) to Lcred.
OROB(i, k′,A) : Allows an adversary to play a corrupted CA to create a root

credential to a user with identity i. On input an index k′ and attributes A. If
i /∈ HU , returns⊥. Else, it creates a root credential by running the ReceieveCred
protocol with A: A ↔ ReceieveCred(pkCA, ski,A) and adds (i,A, ukk′ , credi)
to Lcred.
OOIS(i, j, Aj , k

′′) : An honest user with identity i delegate a credential to
an honest user with identity j. On input a vector of attributes Aj and an index
k′′. If i, j /∈ HU or (i,A, ukk′ , credi) /∈ Lcred, it returns ⊥, else it delegates a
credential by running

[DelegateCred(ski, credi, ukk′ , k′′, Aj , pkCA)↔ ReceieveCred(pkCA, skj , Aj)]→ (credj , ukk′′)

and adds (j,A′, ukk′′ , credj) to Lcred.
OCOB(i, Ai, k

′′) : Allows an adversary to impersonate a malicious issuer and
issue credentials to honest users. On input a user identity i, a vector of at-
tributes Ai, and an index k′′. If i /∈ HU , returns ⊥, else, the oracle runs the
Receive protocol with A: A ↔ ReceiveCred(pkCA, ski, Ai). If credi = ⊥ the
oracle returns ⊥. Else it stores the resulting output (credi, ukk′′ ,A′) and it adds
(i,A′, ukk′′ , credi) to Lcred.
OCIS(i, Ai, k

′′) : Allows an adversary to impersonate a malicious user to ob-
tain credentials from the issuer. On input a user identity i, a vector of attributes
Al, and an index k′′. If i /∈ HU ∪ (i, Ai, ukk′ , credi) /∈ Lcred, returns ⊥, else, the
oracle runs the Issue protocol with A:

DelegateCred(ski, credi, ukk′ , k′′, Aj , pkCA)↔ A

. Then, it adds (⊥,A, ukk′′ ,⊥) to Lcred.
OCSH(i,D) : An honest user with identity i proves that his credential is

valid and satisfy subvector D. If i /∈ HU , returns ⊥. Else, it parses Lcred[i] as
(i,A′, ukk′ , credi). Then it retrieves (pki, ski) for i from credi and Luk and runs
Show(pkCA, ski, nymi, credi, D,AID, π̄) ↔ A, with the adversary playing the
role of the verifier.
OAno−b(j0, j1, D): On input two indexes j0, j1 and subvector D. If j0 ∨

j1 > |Lcred|, returns ⊥. Else, it parses Lcred[jb] as (ib,A
′
i, uki, credi). If

D(A′0) ̸= D(A′1) ∨ |C0| ≠ |C1| ∨ credb /∈ OOIS , return ⊥. Otherwise runs
Show(pkCA, skb, nymb, credb, D,AID, π̄)↔ A.

Anonymity. Anonymity requires that a malicious verifier cannot distinguish
any two users. The adversary has adaptive access to an oracle that acts as one
of the two credential owners in the verification algorithm (depending on bit b)
when input two different user indexes i0 and i1.

Definition 4 (Anonymity). For all probabilistic polynomial-time adversaries
A, if the advantage AdvAno = |Pr[ExpAno−0

A (1λ) = 1]−Pr[ExpAno−1
A (1λ) = 1]|

is negligible for the experimental ExpAno-b
A definition as follows, then we say the

scheme satisfies anonymous.
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Unforgeability. Unforgeability requires that no adversary can convince a
verifier into accepting a credential for a set of attributes for which he does not
possess credentials or for which he possesses revoked credentials.

Definition 5 (Unforgeability). For all probabilistic polynomial-time adver-
saries A, if the advantage AdvUf = |Pr[ExpUf

A (1λ) = 1]| is negligible for the
experimental ExpUf

A definition as follows, then we say the scheme satisfies un-
forgeability.

ExpAno-b
A (1λ) :

pp← Setup(1
λ
, 1

n
)

(pkCA, skCA)← CAKeyGen(pp, 1
l
)

(pkRA, skRA)← RAKeyGen(pp, 1
t
)

b
R←− {0, 1}

O :=
{
OHU

,OCU
,ORIO

,OCIO
,

OROB
,OCOB

,OCSH
,OAno−b

}
(b

′
)← A(pp, pkCA,O)

return (b = b
′
).

ExpUf
A (1λ) :

pp← Setup(1
λ
, 1

n
)

(pkCA, skCA)← CAKeyGen(pp, 1
l
)

(pkRA, skRA)← RAKeyGen(pp, 1
t
)

O :=
{
OHU

,OCU
,ORIO

,OCIO
,

ORIS
,OCIS

,OCSH
,OREV

}
(credi, π,A)← A(pp, pkCA,O)

b← [A ↔ V erify(pkCA, D,AID, π̄, credi)]

if (i,⊥,⊥, credi) ∈ Lcred with i ∈ CU

∨ credi /∈ Rcred ∨ ∀j ∈ [1, i) credj /∈ Rcred

∨ Ai statisfies with D, then

return 0.

else return b.

4 SPSEQ on Vector Commitments

In this section, we propose a novel building block called Structure-Preserving
Signatures on Equivalence Classes on Vector Commitments (SPSEQ-VC). This
innovation serves as a slight adjustment of SPSEQ-UC [11], manifesting two
aspects:

1) The message space is considered as a vector of randomizable vector com-
mitments, enabling the transition of a signature from a vector over vector com-
mitments to its re-randomized signed commitments vector. This redefinition
on equivalence classes space over vector commitments implies that actual mes-
sage vectors are committed to and can be opened in a re-randomized form for
specified subsets of messages. This property is eye-catching for many privacy-
preserving applications, such as commit-ahead-of-time systems with authenticity,
etc. Notely, to enhance scalability of SPSEQ-VC, we expand the message space
into two unrelated parts, where an additional message space is designed as part
of a function with rerandomization property in the classes of a single projective
equivalence relation (which can be ignored if not needed). This is employed in
the DAAC-CR instance detailed in Section 5.

2) The SPSEQ-VC extends the signing of class representatives associated
with a singular projective equivalence relation Rk to a family of relations Rl

where Rk ∈ Rl for 1 ≤ k ≤ ℓ, which is similar to SPSEQ-UC. In SPSEQ-UC,
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an update key ukk′ can be generated by signing a commitment vector of length
k with k ≤ k′ ≤ ℓ and can be used to adapt a commitment vector C in class
[C]Rk to C ′ being another class [C ′]Rk′ of equivalence relation. We extend the
functionality of update keys ukk′,I by binding the position vector I mapping
between the update keys with the vector message space in SPSEQ-VC, which
fine-grained adaptation on C ′.

4.1 Formal Definitions

Definition 6 (SPSEQ-VC scheme). A SPSEQ-VC scheme for a vector com-
mitment scheme VC consists of the following PPT algorithms:

– PPGen(1λ, 1n) → (pp): On input the security parameter λ and an upper
bound n for the cardinality of committed Vectors, output the public param-
eters pp.

– KeyGen(pp, 1l)→ (vk, sk): On input the public parameters pp and a length
parameter l > 1, output a verification and signing key pair (vk, sk) for root
issuer.

– UKeyGen(pp) → (sku, pku): On input the public parameters pp, output a
key pair (sku, pku) for a user u.

– RandomC(C,W, µ) → (C′,W′): On input a commitment vector C =
(C1, ..., Ck) = ((C1,1, C1,2), ..., (Ck,1, Ck,2)) of size 1 ≤ k ≤ l and corre-
sponding opening proofs W. It outputs C′ and W′.

– Sign(sk,M, k′, pku, aux) → (σ,C, ukk′): On input the root signing key sk,
an attributes vector M = (M1, . . . ,Mk), an index k′ where 1 ≤ k′ ≤ l, a
user public key pku, and auxiliary data aux (where aux can be arbitrary if
necessary), the procedure computes the commitment C1 for M and C2 for
aux. If aux is not ⊥, it then calculates σ for C = (C1,C2). Output (σ,C)
for pku and an update key ukk′ .

– RandomPK(pku, ϕ, δ) → pk′u: On input a user public key pku and random-
ness ϕ, δ, the algorithm outputs the randomized public key pk′u.

– RandomAll(pku, ukk′ ,C, σ, µ, ϕ,W) → (σ′,C′, uk′k′ , pk′u,W
′, δ): On input

an user’s public key pku, a commitment vector C = (C1, . . . , Ck), a signature
σ on C, opening proofs W for C, randomness ϕ and µ, and a delegated key
ukk′(optionally). It returns an updated signature σ′ for C′, corresponding
opening proof W′, as well as a randomized user public key pk′u, If ukk′ ̸= ⊥,
it also outputs a randomized update key uk′k′ .

– SendConvertSig(vk, sku, σ) → (σpro): The algorithm is run by a user who
wants to delegate a signature σ. It takes as input the verification key vk, a
secret key sku and the signature σ. It outputs a process signature σpro.

– ReceiveConvertSig(vk, sk′u, σpro)→ σ′: The algorithm is run by a user who
receives a process signature. It takes as input the verification key vk, a secret
key sk′u, a process signature σpro. It outputs a new signature σ′ for pk′u.

– Delegate(IL−1,ML, ukk′ ,C, σ, k′′, aux) → (σ′,C′, ukk′′): This algorithm fa-
cilitates the delegation of a credential from a level-(L− 1) user to a level-L
user. It takes input a set of attributes that can be signed by level-(L − 1)
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user, a message vector ML = (mi)i∈I for L = k + 1 ∈ [k′], a delegate key
ukk′ , a signature σ for a vector of commitments vector C = (C1, ..., Ck) ,
an updatable key ukk′ , an index k′′ ≤ k′ and aux. This algorithm computes
a signature σ′ for a new commitment vector C′ = (C, CL = (CL,1, CL,2)),
where CL,1 is a vector commitment for ML and CL,1 is a commitment for
aux. Also, for k′′ ∈ [L + 1, k′], updates the updatable key for the range
[L+ 1, k′′] into ukk′′ . It outputs (σ′,C′, ukk′′).

– V erify(vk, pku,C, σ,D,W)→ 0/1: On input the verification key vk, a user
public key pku, a commitment vector C = (C1, ..., Ck), a signature σ and
corresponding openings and proofs pair (D,W), it checks whether σ is a
valid signature for (C, pku) and D is the correct opening of C.

– UKV erify(vk, uk′ , k′, σ) → 0/1: On input the vk, ukk′ , index k′ and a the
σ = (Z, Y, Y ′, T ). Outputs 1 or 0.

4.2 Security Definitions

The correctness of the commitment scheme naturally follows Lagrangian
interpolation.Similar to a standard signature scheme, the SPSEQ-VC scheme
should also be correct, unforgeable and privacy.

Definition 7 (Correctness). The scheme for a vector commitment scheme VC
and a parameterized family of equivalence relations Rl for all l > 1, is correct
if it satisfies the following conditions for all t, λ, k, k′ with k ≤ k′ ≤ l, for all
pp ∈ PPGen(1λ, 1n, 1l), (vk, sk) ∈ KeyGen(pp), (pku, sku) ∈ UKeyGen(pp).

Verification: For all M, for all (σ,C, ukk′) ∈ Signroot(sk,M, k′, pku),
V erify(vk, pku,C, σ,D,W) = 1.

Change of vector commitments representative: For all (µ, ϕ), (σ′, uk′k′ ,
δ) ∈ RandomAll(pku, ukk′ ,C, σ, µ, ϕ), for all C′ ∈ RandomC(C, µ), for all
pk′u ∈ RandomPK(pku, ϕ, δ), V erify(vk, pk′u,C

′, σ′,D,W′) = 1. Moreover,
C′ ∈ [C]Rk .

Signature conversion: For all (pku, sku) ∈ UKeyGen(pp), σ′ ∈
ConverSig(vk, sku, sku′ , σ), V erify(vk, pku′ ,C, σ′,D,W) = 1.

Change of vector commitments: For all (pkul
, skul

) ∈ UKeyGen(pp), for
all (σ′,C′, ukk′′ , F ′ID(X)) ∈ Delegate(Ml, ukk′ ,C, σ, k′′, I, FID(X), with C′ =
(C, Cl ∈ V C.commit(Ml)), V erify(vk, pkul

,C′, σ′,D′,W′) = 1.
Unforgeability. For unforgeability, we consider the adversary to have access

to the signatures of the chosen message set vectors, control over the randomness
of the commitment, and the ability to create and compromise user keys. Addi-
tionally, the adversary needs to specify the user secret and public keys (sk⋆, pk⋆)
for forgery, which we need to make it useful in a DAC application. Note that
since the outputs of Delegate and RandomAll have the same distribution as
Signroot, we do not need to provide access to these oracles as the adversary
can accomplish them on their own. To make the proof more general, we let the
message space of Signroot be M = (M1). To distinguish whether a signature
derived using ukk′ is obtained from Delegate or freshly generated in the Sign
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oracle, we define the following relation Rk′ . Therefore, signatures legitimately
generated using ConvertSig and RandomAll are not considered forgeries.

Definition 8. Let k, l be integers. For any l ≥ k′ ≥ k, define the relation Rk′

for two vectors M = (M1, ...,Mk) and M⋆ = (M⋆
1 , ...,M

⋆
k′) as follows:

(M,M⋆) ∈ Rk′ ⇐⇒ ∀i ≤ k : M⋆
i ⊆Mi

The oracle used in the proof is as follows and Q is the set of queries that A
has issued to the signing oracle:
OSign(M,k′, pku): Corresponds to the adversary A requesting credentials

from oracle. On input a vector of attributes M , and an index k′ and a user
public key pku. If l ≤ k′ ≤ k, then runs (σ,C, ukk′) ← Signroot(sk, k

′,M, pku)
and sets Q = Q ∪ (M,k′, pku), return (C, σ, ukk′). Else, return ⊥.
OHU (i) : Corresponds to the creation of an honest user with identity identifier

i. Takes as input a user identity i. Run (pki, ski) ← UKeyGen(pp) to generate
the user key pair, then set UL ← UL ∪ {(i, pki, ski)}. Return pki.
OCU (i) : Corresponds to the creation of a corrupted user with identity i.

Takes as input a user identity i. If i ∈ UL, then delete the item from UL and
return (ski, pki). Else, returns ⊥.

Definition 9 (Unforgeability). For all (λ, n) ∈ N and l > 1, if the advantage
AdvUf = |Pr[ExpUnf
SPSEQ−V C
A (1λ, 1l, 1n, u) = 1]| is negligible for all probabilistic polynomial-time
adversaries A, then the SPSEQ-VC scheme is unforgeable. The experiment on
unforgeability is as follows:

ExpUnfSPSEQ-VC
A (1λ, 1l, 1n, u)

Q := ∅;UL := ∅, pp← PPGen(1
λ
, 1

l
, 1

n
, u), (vk, sk)← KeyGen(pp)

O :=
{
OSign

,OHU
,OCU

,
}
, ((sk

⋆
u, pk

⋆
u),C

⋆
, σ

⋆
)← AO

(vk, pp)

Return ∀(pku, sku) /∈ UL, ∀(M, k
′
, pku) ∈ Q :

(M,D
⋆
) /∈ Rk′ ∧ (sk

⋆
u, pk

⋆
u) ∈ UKeyGen(pp) ∧ V erify(vk, pk

⋆
u,C

⋆
, σ

⋆
,D

⋆
,W

⋆
) = 1

Definition 10 (Origin-hiding). For all t, λ, k, k′ with k ≤ k′ ≤ l, all pp ∈
PPGen(1λ, 1n, 1l), (vk, sk) ∈ KeyGen(pp), (pku, sku) ∈ UKeyGen(pp), all
M,σ. If V erify(vk, pku,C, σ,D,W) = 1 , then for all µ, ϕ, the algorithm
RandomAll(pku, ukk′ ,C, σ, µ, ϕ) output s a uniformly random C′ ∈ [C]Rk , uni-
formly random pk′u and σ′ in the respective spaces.

Definition 11 (Derivation-privacy). For all t, λ, k, k′ with k ≤ k′ ≤ l, all
pp ∈ PPGen(1λ, 1n, 1l), (vk, sk) ∈ KeyGen(pp), (pku, sku) ∈ UKeyGen(pp),
all M,σ. If V erify(vk, pku,C, σ,D,W) = 1 , then for all k′′ ∈ [k+1, k′],ML and
(σ′,C′, ukk′′ , F ′ID(X))← ChangeRel(ML, ukk′ ,C, σ, k′′, I, FID(X)), the follow-
ing holds:

(vk, sk, pku, ukk′ , (σ′,C′, ukk′′) ≈ (vk, sk, pku, ukk′ , Sign(sk,M′, k′′, pku))
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Definition 12 (Conversion-privacy). For all t, λ, k, k′ with k ≤ k′ ≤ l, all
pp ∈ PPGen(1λ, 1n, 1l), (vk, sk) ∈ KeyGen(pp), (pku, sku) ∈ UKeyGen(pp),
all M,σ. If V erify(vk, pku,C, σ,D,W) = 1 , then for all(pk′u, sk′u) ∈
UKeyGen(pp), the following holds:

(vk, sk, pk′u, (ConvertSig(vk, sku, sk
′
u, σ)) ≈ (vk, sk, pk′u, Sign(sk,M

′, k′, pk′u))

4.3 Construction

– PPGen(1λ, 1n) → pp: Run BG = (p,G1,G2,GT , g1, g2, e) ← BGGen(1λ)
and ppV C ← V C.Setup(1λ, n), output pp = {BG, ppV C}.

– KeyGen(pp, 1l) → (vk, sk): For 0 ≤ i ≤ l, pick x ← (Z⋆
P ), xi ←

(Z⋆
P ) and x′i ← (Z⋆

P ), set signing key sk = ((x, x0, ..., xl), (x
′
0, ..., x

′
l)),

compute the verification key vk = ((X̄,X,X0, ..., Xl), (X
′
0, ..., X

′
l)) =

((gx1 , g
x
2 , g

x0
2 , ..., gxl

2 ), (g
x′
0

2 , ..., g
x′
l

2 )), output (vk, sk).
– UKeyGen(pp) → (sku, pku): Pick wu ← Z⋆

P , set pku ← gwu
1 and sku = wu,

output (sku, pku).
– Sign(sk,M, k′, pku, aux) → (σ,C, ukk′): On input signing key sk, a vec-

tor of messages M = (M1, ...,Mk), an index k′ where 1 ≤ k′ ≤ l, and a
user public key pku. The procedure is as follows: First, for each i ∈ [k],
run V C.Commit(sk, pp,Mi) → Ci,1 to commit Mi := (mi,j)j∈|Mi| as
Ci,1 =

∏
j∈|Mi|(lj)

mi,j , where lis are group elements in pp. If aux is not
⊥, it computes Ci,2 = f(aux), where f : Zp → G1 could be any desired algo-
rithm. Then, σ is computed by selecting a random y ← Z⋆

p and calculating:

σ = (Z ← (
∏
i∈[k]

Cxi
i,1C

x′
i

i,2)
1
y , Y ← gy1 , Y

′ ← gy2 , T ← gx0·y
1 · pkxu)

Furthermore, if k ̸= l, an update key ukk′ for the range between k + 1 and
k′ is computed as:

ukk′ = (usign1, using2) = (((l
xj

i )
1
y )j∈[k+1,k′],i∈[I], (g

x′
j

1 )
1
y

i∈[k+1,k′])

where I denotes the set of attribute indexes that the user can delegate.
Set C1 = {Ci,1}i∈[k], C2 = {Ci,2}i∈[k], it outputs a signature (σ,C =
(C1,C2)), along with an update key ukk′ , provided k ̸= l.

– RandomC(C,W, µ) → (C′,W′, r): On input C = (C1,C2), corre-
sponding opening proofs W = (W1, ...,Wk), and randomness µ, output
the randomized results C′ = Cµ+r,W′ = Wµ+r and r by running
V C.Random(Ci,1,Wi, µ), V C.Random(Ci,2,Wi, µ) for all i ∈ [k].

– RandomPK(pku, ϕ, δ) → pk′u: On input a user public key pku and random-
ness ϕ, δ, outputs the randomized public key pk′u = (pku · gδ1)ϕ with respect
to secret key (δ + sku)ϕ.

– RandomAll(pku, ukk′ ,C,W, σ, µ, ϕ) → (σ′,C′,W′, uk′k′ , pk′u, δ): On input
the user public key pku, an optionally update key ukk′ , the commitment
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vectors C = (C1,C2), a signature σ, randomness ϕ and µ and correspond-
ing opening proof W. It begins by sampling δ ← Z⋆

p, then proceeds to
randomize the commitments and public key by executing (C′,W′, r) ←
RandomC(C,W, µ) and pk′u ← RandomPK(pku, ϕ, δ). The signature is up-
dated to:

σ′ = (Z
µ+r
ϕ , Y ϕ, Y ′ϕ, (T · X̄δ)ϕ)

If ukk′ ̸=⊥, it also computes a randomized update key as follows:

uk′k′ = ((usign
(µ+r)·ϕ−1

j,1 , usign
(µ+r)·ϕ−1

j,2 )j∈[k+1,k′])

Finally, it outputs (σ′,C′,W′, (uk′kor ⊥), pk′u, δ).
– SendConvertSig(vk, sku, σ) → (σpro): On input the root issuer public key

vk, a secret key sku, and the signature σ. It outputs a processed signature:

σpro = (Z, Y, Y ′, T ′ = T · (X̄sku)−1)

– ReceiveConvertSig(vk, sku′ , σpro) → σ′: On input the root issuer public
key vk, a secret key sku′ , and a processed signature σpro = (Z, Y, Y ′, T ′), it
outputs a signature σ′ for pku′ as:

σ′ = (Z, Y, Y ′, T ′′ = T ′ · X̄sku′ = gx0·y
1 · pkxu′)

– Delegate(ML, ukk′ ,C, σ, k′′, IL−1, auxL) → (σ′,C′, uk′k′′): On input a mes-
sage vector ML for L = k+1 ∈ [k′], a signature σ for a commitments vector
C, an updatable key ukk′ , an index k′′ ≤ k′, a set of attribute indexes IL−1
that the level-(L − 1) user can sign, and auxiliary data auxL, then, it per-
forms the following steps: First, compute a vector commitment Vl using the
keys from the L-th component of ukk′ :

usignL,1 = (((li)
xL)

1
y , i ∈ IL−1), usignL,2 = (g

x′
L

1 )
1
y

V =
∏
i∈I

((lxL·y−1

i )mi) · ((gx
′
L

1 )
1
y )auxL)

Second, update σ for a new commitment vector C′ = (C, CL) as:

σ′ = ((Z · V ), Y, Y ′, T )

Finally, for k′′ ∈ [L+ 1, k′], update the update key ukk′′ for [L+ 1, k′′]:

ukk′′ = (usignj,1 = (((li)
xj )

1
y )j∈[L+1,k′′],i∈[IL], usignj,2 = ((g

x′
j

1 )
1
y )j∈[L+1,k′′])

Output (σ′,C′, ukk′′).
– V erify(vk, pku,C, σ,D,W) → 0/1: On input of the root issuer public key

vk, a public key pku, a commitment vector C = (C1,C2), a signature σ,
and corresponding openings and proofs pairs (D,W) for commitment C, it
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checks whether σ is a valid signature for (C, pku). It outputs 0 if any of the
following checks fail:

k∏
j=1

e(Cj,1, Xj) · e(Cj,2, X
′
j) = e(Z, Y ′) ∧ e(Y, g2) = e(g1, Y

′) ∧ e(T, g2) = e(Y,X0) · e(pku, X)

If (D,W)) ̸= ⊥, then for all (Di,Wi) ∈ (D,W), it runs
V C.V erify(pp, Ci, Di,Wi). It outputs 1 if all checks hold, otherwise, out-
put 0.

– UKV erify(vk, ukk′ , k′, σ)→ 0/1: On input of the root issuer public key vk,
an update key ukk′ , an index k′, and a signature σ = (Z, Y, Y ′, T ), outputs
1 if the following condition holds; otherwise, it outputs 0:

e(
∏
i∈I

Yi,
∏

j∈[k′]

Xj) = e(
∏

j∈[k′]

∏
i∈I

usignj,1,i, Y
′)∧e(g1,

∏
j∈[k′]

X ′j) = e(usignj,2, Y
′)

Theorem 1 (Unforgeability). The construction described above is unforge-
able in the generic group model for Type III bilinear groups.

Theorem 2 (Privacy). The construction described above is origin-hiding,
conversion-privacy and derivation-privacy in the generic group model for Type
III bilinear groups.

The proof of Theorem 1 and Theorem 2 are presented in appendix B.

5 Delegatable Attribute-Based Anonymous Credential
System with Chainable Revocation from SPSEQ-VC

In this section, we present a concrete instantiation of DAAC-CR based on
the SPSEQ-VC signature scheme described in Section 4. In addition, we provide
a formal security proof to show that all the security properties described in Sec-
tion 3 are achieved in the generic group model. Moreover, we demonstrate that
our instance achieve the desired functionality: fine-grained delegation, chainable
revocation and compactness.

5.1 Scheme overview

Our scheme consists of four phases: initialization, issuance, delegation and
show. Our initialization phase is similar to DAC, except that introduces a new
entity RA, which maintains a blacklist and publishes its digest. In issuance phase,
a Level-1 user sends an anonymous request to CA and obtains a credential from
CA, who may also provide a delegation key for further delegation, along with
the fine-grained manner for the set of delegable attributes and the depth of
delegation. In delegation phase, with the delegation key and credentials, Level-
1 users can anonymously issue credentials to Level-2 users by the delegation
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key. Note that the delegate key comes from CA, which implies that credentials
only support constrained attributes and depths specified by CA. Similarly, if a
Level-2 user is granted delegation ability and is required to hold the updated
delegation key from Level-1 user, it indicates that the Level-1 user can restrict
the Level-2 user in the same way. Clearly, there is a fine-grained and flexible
delegation capacity transfer, until depth exceeds the limit or delegation capacity
is not granted.

In show phase, Credential hold by a Level-L user, aimed at satisfying specific
access criteria, involves a two-step process: (1) demonstrating the non-revocation
of all credentials within the delegation chain; and (2) selectively revealing at-
tributes that satisfy the access criteria and proving that these disclosed attributes
are issued in his credential.

To support the above, we use SPSEQ-VC signature over attributes to sup-
port fine-grained delegations. An interesting extension designed in SPSEQ-VC
is another additional message space, which is used to bind a unique identifier
of a credential in our DAAC-CR. Then, we can easily capture chain revocation
through a universal accumulator as follows: (1) RA can revoke the credentials by
simply adding a unique identifier to the blacklist accumulator. (2) User generates
a whitelist accumulator that includes the identifier of his credential and the iden-
tifiers of credential derived from them in delegation chain. (3) User proves that all
elements in the whitelist accumulatort do not appear in the blacklist. Clearly,
we eliminate the need for explicit zero-knowledge proofs for non-membership
proofs, which can be verified in batches in the accumulator.

5.2 Concrete construction

Initialize. This phase is run by the root issuer (CA), the trusted
revocation authority (RA), and users. We use SPSEQ-VC (denoted
by Σ) detailed in Section 4 as the signature scheme, ACC =
(GenACC , CommitACC , AddACC ,MemProveACC ,MemV erifyACC , NonMem
ProveACC , NonMemV erifyACC) as the universal universal accumulator
scheme [14] and ZKPok = (ZKPok.Setup, ZKPok.Prove, ZkPok.V erify).
Detailed steps for initialization are as follows.

- Setup(1λ, 1n): ppΣ ← Σ.PPGen(1λ, 1n), ppzk ← ZKPok.Setup(1λ), output pp =

(ppΣ , ppzk).
- CAKeyGen(pp, 1l): CA runs (skCA, pkCA)← Σ.KeyGen, and outputs (skCA, pkCA).
- RAKeyGen(pp, 1t) : RA runs (pkACC , skACC) ← GenACC(pp, t) to initialize the accu-
mulator, setting rpk = pkACC and rsk = skACC . The space of accumulated elements is
also in Z⋆

p.
- UKeyGen(pp): The user runs (sku, pku)← Σ.UKeyGen(pp), and outputs (sku, pku).
- NymGen(pp, pku): The user picks random ϕ, δ ← Z⋆

p, computes nymu ← RandomPK(

pku, ϕ, δ), sets sknym = (ϕ, δ), and outputs the pairs (nymu, sknym).
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Issue a Root Credential:(by a Root Issuer CA and a User U).
Corresponds the
CreateCred/ReceiveCred interactive protocol. The details are as follows.

– U generates a pseudonym (nymU , sknym)← NymGen(pp, pkU ) and a proof
πnym ← ZKPok.Prove(skU , nymU ), then sends (nymU , πnym) along with
an attributes vector A1 to CA.

– CA sets function f in the Sign algorithm as f(aux) = gs+aux
1 , where gs1 is a

public parameter in pkACC . Then CA samples an identifier ID1 ← Zp and
computes FID(X) = X + ID1. Next, CA generates a signature σ for the
pair (pku, C1) by Sign(sk,A1, k

′, pkU , ID1).
– 1) If CA allows U to continue to delegate, CA can restrict the specific

attributes and depth that U can proceed to sign by following the steps:
CA first selects a random t ← Zp and computes Cusign,j ← gt1(g

x′
j

1 )
1
y

for 2 ≤ j ≤ l. Then CA sends it to RA, who in turn provides E =
(E1, (E2,j)2≤j≤l) = (gs1, (C

s
usign,j)2≤j≤l). Finally, CA unblinds the usign:

usignj,2,1 ← (E2,j/E
t
1) = ((g

x′
j

1 )
s
y ) for j ∈ [2, l] and sets the delegation key

as:

ukk′ = (usignj,1usignj,2), usignj,1 = ((l
xj

i )
1
y )j∈[2,k′],i∈[I]

usignj,2 = (usignj,2,1, usignj,2,2) = (((g
x′
j

1 )
s
y ), ((g

x′
j

1 )
1
y ))j∈[2,k′])

where I is the set of attribute indexes that U can further delegate. CA sends
(σ,C1, FID(X), ukk′) to U .

– 2) Else, CA just sends (σ,C1, FID(X)) to U .
– U runs (σ′, C1

′, (uk′k′ or ⊥), δ, pk′u)← RandomAll(pku, ukk′ or ⊥, C1, σ, µ, ϕ)
for µ, ϕ and stores credU = σ′, as well as ((uk′k′ or ⊥), C1

′).

Delegate a credential: (by an issuer R and a user U). Corresponds
the DelegateCred/ReceiveCred interactive protocol. The details are as follows:

– U generates a pseudonym (nymU , sknym)← NymGen(pp, pkU ) and a proof
πnym ← ZKPok.Prove(skU , nymU ), then sends (nymU , πnym) along with
an attributes vector AL to R.

– R samples identifier IDL ← Zp and runs (σ′, C′, ukk′′)← Delegate(AL,
ukk′ ,C, σ, k′′, IL−1, FID(X), IDL), where C′ = (C, CL). The identifier poly-
nomial is updated to F ′ID(X) = FID(X) · (X + IDL). Then R runs
σpro ← SendConvertSig(vk, skR, σ

′). If R allows U to continue to delegate,
sends (σpro, C′, ukk′′ , F ′ID(X)) to U . Else, sends (σpro, C′, ⊥, F ′ID(X)) to
U .

– U runs σ′ ← ReceiveConvertSig(vk, skU , σpro) using σpro as input to covert
the public key associated with the credential from pkR to pkU . Then U runs
(σ′′, C ′′, (uk′k′′ or ⊥), pk′u, δ) ← RandomAll(pku, (ukk′′ or ⊥), C ′, σ′, µ, ϕ)
using µ and ϕ, and stores credU = σ′′ and ((uk′k′′ or ⊥), C ′′).

Revoke a credential. When a user’s credentials are found to have pro-
hibited behaviors or delegation abilities revoked, RA can revoke his credentials.



Practical DAAC with Chainable Revocation 21

After a user’s credential is revoked, all subsequent credentials issued based on
that credential become invalid. The revocation information AX are public, and
users can obtain their non-membership proof in AX from RA.

ReceiveToken(FID(X)) ↔ CreateToken(FID(X), AX , pp) → π̄: RA runs
π̄ ← Acc.NonMemProve(AX , FID(X)), where π̄ = (g

α(s)
2 , g

β(s)
1 ) ∈ G2 × G1.

Then RA sends π̄ to U .
Revoke(pp, skACC , ID) → A′X : RA runs A′X ←

Acc.add(AX , ID, skACC , pkA) to update the accumulator, and publishes
A′X to the public.

Show a credential (by a user U and a verifier V ). Correspond to the
Show/V erify interactive protocol. Assuming U positioned at layer L of the
delegation chain and the verification rule Φ being public.

- U generates a pseudonym (nymU , sknym) ← NymGen(pp, pkU ) and a proof
πnym ← ZKPok.Prove(skU , nymU ). Then, U samples µ ← Zp and runs
(σ′,C′,W′, pk′U , ukk′ , δ) ← RandomAll(pkU , ukk′ ,C,W, σ, µ, ϕ), where σ is re-
garded as credU .
- Selective disclosure: U chooses a subvector of attributes A′

L ⊂ AL that Φ(A′
L) = 1

and runs π1 ← V C.Prove(pp,AL, D,A′
L), where D is the set of attribute indexes of

A′
L. U computes π′

1 by running V C.Random(CL, π1, µ).
- Prove that all credentials in the delegation chain have not been revoked: U

computes an accumulator AID by running CommitACC(FID(X), pp) and com-
putes membership proofs (wi)i∈[L] for the credential chain by executing wi ←
Acc.MemProve(FID(X), Ci,2) for Ci = (Ci,1, Ci,2)i∈[L]. U also sends FID(X) to
RA to get nonmembership proof π̄.
- To ensure unlinkability, U re-randomizes π̄ and (wi)i∈L by selecting ρ ←
Zp and computing (wi)

′
i∈L = (wi)

ρ
i∈L and π̄′ = ((g

α(s)′

2 ), (g
β(s)′

1 )) =

((g
α(s)
2 )µ+r, (g

β(s)
1 )−ρ). U randoms AID to A′

ID = A
(µ+r)ρ
ID .

(nymU , πnym, π′
1, σ

′,C, A′
L, π̄

′, (wi)
′
i∈L, g

µ
2 , A

′
ID)

V accepts if all the following conditions are satisfied:
- πnym is valid: ZKPok.V erify(πnym, nymU ) = 1.
- π′

1 is valid: V C.V erify(pp, C′
L, A

′
L, D, π′

1, g
µ
2 ) = 1

- σ′ is valid: V erify(vk, nymU ,C′, σ′) = 1.
- π̄′ is valid: NonMemV erifyACC(AX , A′

ID, π̄′, PKACC) = 1.
- wi is valid: MemV erifyPosACC(A′

ID, C′
i,2, w

′
i, PKACC) = 1 for i ∈ L.

Compactness of credentials. We claim that the credentials in DAAC-CR
are constant-size since the SPSEQ-VC signature is constant-size. While delega-
tion key depends on the depth to which the holder can delegate, it only affects
those with delegation capabilities, and end-users, who are the majority of the
system, are not bothered by these expenses.

Theorem 3. If the Accumulator, structure-preserving signatures on Vector
Commitment, and ZKPok are correct and unforgeability, The DAC-CR construc-
tion is correct, anonymity and unforgeability.

The detailed proof is in the appendix C.
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6 Implementation and Performance Evaluation

6.1 Experimental Evaluation

The experiments were conducted on a system equipped with an Intel Core
Xeon(R) Platinum 8369HB CPU at 3.30GHz, running Ubuntu 20.04.6. We im-
plemented the SPSEQ-VC and DAAC-CR prototypes in Python, utilizing the
bplib library with OpenSSL bindings for cryptographic operations. The BN256
curve, known for its efficiency in Type-3 bilinear groups, was chosen to provide
a security level of approximately 100 bits.

Our performance metrics focused on the time consumption of various op-
erations within SPSEQ-VC and DAAC-CR, such as issuing, delegating, ran-
domizing, and verifying credentials. We evaluated these metrics under varying
conditions. In the experiments, the length of the commitment vector and the
maximum delegation depth are fixed at 15 and 11, respectively.

Evaluation on SPSEQ-VC. Figure 1a illustrates the impact on the com-
putation time of SPSEQ-VC when the depth of the delegation chain (parameter
k) is held constant while the size of the commitment vector (parameter n) is
increased from 10 to 50. The results indicate that the computation time for
the Sign algorithm increases with n. However, the computation times for other
algorithms remain largely unaffected.

Figure 1b explores the effects on computation time when n is held constant
at two levels, 10 and 40, and k is varied from 2 to 10. The findings demonstrate
that increases in k notably affect the computation times of both the Sign and
Verify algorithms. This suggests that deeper delegation chains tend to increase
the computational load for these operations.

DAAC-CR.Issue Figure 1c illustrates the effect of increasing the number
of attributes (parameter m) on the computation time of the Issue protocol while
keeping the depth of the delegation chain (parameter k) fixed. The results show
a consistent increase in computation time as m increases. This suggests that
more attributes contribute to longer processing times.

DAAC-CR.Delegate Figure 1d examines the Delegate protocol’s com-
putation times as the number of delegated attributes (parameter d) increases.
Interestingly, while the computation time for the issuer (Delegator) increases,
the computation time for the user (Delegatee) remains relatively unaffected,
regardless of the number of attributes each possesses.

DAAC-CR.Show/Verify Figures 1e and 1f explore the computation times
involved in the Show/V erify processes under varying conditions. The results
show that while the Show time slightly decreases, the V erify time increases. The
decrease in computation time observed in the Show process can be attributed to
the method of polynomial division used during the vector commitment openings.
Specifically, the use of larger subvectors results in a lower degree of the quotient
polynomial, which in turn speeds up the generation of proofs. In Figure 1f, m was
kept at 20 and s at 5, while k (the user’s level in the delegation chain) ranged
from 1 to 10. The computation times for both Show and V erify increased
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Fig. 1: The results of our implementation for SPSEQ-VC and DAAC-CR

with higher k. This increase is attributed to the growth in the number of set
membership proofs required and the size of the commitment vector as k rises.

Overall Efficiency. The implemented DAAC-CR schemes show high ef-
ficiency across various configurations. For instance, both CreateCred and
DelegateCred can process attribute vectors of less than 50 in under 100 ms.
During the credential presentation phase, even with attribute vectors not ex-
ceeding 20 attributes and a maximum of 5 selectively disclosed within a dele-
gation chain of no more than 10 levels, the computation times for both Show
and V erify remain below 300 ms. This performance is well-suited to handle the
demands of most real-world applications, demonstrating the practical viability
of the DAAC-CR schemes.

7 Conclusion

In this paper, we explore a novel approach for constructing DAC schemes
with fine-grained delegation constraints and flexible revocation. To this end, we
first introduce a new concept, DAAC-CR, and formalize its syntax and security
properties. Then, we propose a novel cryptographic primitive SPSEQ-VC, which
extends SPSEQ-UC to support the specified opening messages and is well suited
to the commit-ahead-of-time system. In addition, SPSEQ-VC provides an inter-
esting mapping in updating keys to support fine-grained adaptation. Moreover,
we provide an efficient DAAC-CR instance using SPSEQ-VC, which is formally
proven to be secure. Our scheme reaches the optimal credential size. The dele-
gation in our DAAC-CR instance only takes 113 ms on 50 attributes, and both



24 M. Xie et al.

Show and V erify remain below 300 ms for the 10-level user with 5 selectively
disclosed attributes.
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A Additional Preliminaries

A.1 Collision Freeness.

An accumulator is said to be collision-free, if for all PPT adversaries A having
oracle access to O, security parameters λ there is a negligible function ϵ such
that:

Pr

[
(skACC , pkACC)← GenACC(BG(t), (ωxi

, xi, X, r)← AO(pkACC) :
V erifyACC(pkACC , AX , ωxi

, xi) = 1 ∧ xi ∈ X

]
≤ ε(λ),

B Proofs of SPSEQ-VC

B.1 Origin-hiding of SPSEQ-VC

Let C, σ = (Z, Y, Y ′, T ) be such that V erify(vk,C, σ, pku,D,W) = 1 along
with ukk′ . For µ, ϕ← Zp, RandomAll outputs (C′, σ′, pk′u, uk

′
k′). Because these

elements are randomly selected, all outputs of RandomAll are perfectly ran-
domized and satisfy V erify(vk,C′, σ′, pk′u,D,W) = 1. Therefore, RandomAll

apparently produces signatures of the same distribution as Signroot.

B.2 Conversion-privacy of SPSEQ-VC

For all (vk, sk) ∈ KeyGen(pp), (sku, pku) ∈ UKeyGen(pp), C,M,D,W and
σ. If V erify(vk, pku,
C, σ,D,W) = 1. The signature σ:

σ = (Z ← (
∏
i∈[k]

Cxi
i,1C

x′
i

i,2)
1
y , Y ← gy1 , Y

′ ← gy2 , T ← gx0·y
1 · pkxu)
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Then for (sku′ , pku′) ∈ UKeyGen(pp), ConvertSig(vk, sku, sku′ , σ) outputs a
new signature

σ′ = (Z ← (
∏
i∈[k]

Cxi
i,1C

x′
i

i,2)
1
y , Y ← gy1 , Y

′ ← gy2 , T ← gx0·y
1 · pkxu′)

It is clear that the output of ConvertSig is distributed the same as the output
of Signroot.

B.3 Derivation-privacy of SPSEQ-VC

Proof. For all (vk, sk) ∈ KeyGen(pp), pku, M, C, k′, k′′, ukk′ ,D,W and
σ. If V erify(vk, pku,C, σ,D,W) = 1, then for an index L = k + 1 ∈ [k + 1, k′],
let ML be a message set such that the message vector is M′ = (M,ML) and the
related commitment vector is C′ = (C, CL). It is clear that Delegate outputs the
same distribution as Signroot for vectors M′ and C′: Signroot(sk,M

′, k′, pku) ≈
Delegate(ML, σ,C, ukk′ , k′′). And ConvertSig outputs the same distributed as
Signroot.

B.4 Unforgeability of SPSEQ-VC

We prove that our scheme satisfies the unforgeability of ("Type-3") bilinear
groups in the general group model (GGM) [26]. In this model, the adversary is
only given handles of group elements, which are just uniform random strings.
To execute group operations, the adversary utilizes an oracle that accepts han-
dles as input and returns the handle corresponding to the sum, inversion, or
other operations performed on the group elements associated with the provided
handles. The experiment on unforgeability is as follows

EXPUnfSPSEQ−V C
A (1λ, 1l, 1n, u) :

u← A();
Q := ∅;UL := ∅, pp← PPGen(1λ, 1l, 1n, u);

UL ← UKeyGen(pp);

(vk, sk)← KeyGen(pp);

((sk⋆u, pk
⋆
u),C

⋆, σ⋆)← AO
Sign

(vk, pp, {pku}(pku,sku)∈UL);

Return∀(pku, sku) /∈ UL,∀(M, k′, pku) ∈ Q :

(M,D) /∈ Rk′ ∧ V erify(vk, pk⋆u,C
⋆, σ⋆,D⋆,U⋆) = 1

OSign(M, k′, pku): If k ≤ k′ ≤ l, then runs (σ,C, ukk′) ←
Signroot(sk, k

′,M, pku) and sets Q = Q ∪ (M, k′, pku). Return (C, σ, ukk′).
Else, return ⊥.

Proof. We examine an adversary in the static game described above
that solely employs generic group operations on the received group ele-
ments. After getting the public parameter (Pao, P ′ao)0≤o≤n, verification key
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((X̄,X,X0, ..., Xl), (X
′
1, ...X

′
l)) = ((Px, P ′x, P ′x0, ..., P

′xl), (P
′x′1, ..., P

′x′l)),
public keys (P1, ..., Pb), vector commitments ((C

(i)
1 , .., C

(i)

k(i)) =

((C
(i)
1,1, C

(i)
1,2), .., (C

(i)

k(i),1
, C

(i)

k(i),2
)))qi=1 and signatures (Zi, Yi, Y

′
i , Ti)

q
i=1 computed

with randomness yi on queries ((M
(i)
1 , ...,M

(i)

k(i)), k
(i)′ , pk(i))qi=1, delegation keys

(((U
(i)
j,o) = ((U

(i)
j,o,1, (U

(i)
j,o,2) = (U

(i)
j,o,2,1, U

(i)
j,o,2,2))j∈[k(i)+1,k(i)′ ],o∈[n])

q
i=1, the adver-

sary outputs a user public key pk(q+1), a vector of commitments (C(⋆)
1 , ..., C

(⋆)

k(⋆))

and a corresponding signature (Z⋆, Y ⋆, Y ⋆′
, T ⋆). As the adversary needs to

compute new group elements by combining the received group elements, it is
required to select coefficients represented by Greek letters, which define:

C⋆
h,1 = ζ(h)P +

q∑
j=1

(ζ
(h)
z,j Zj + ζ

(s)
s,j Yj + ζ

(h)
n,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

ζ
(h)
m,j,o,1U

(j)
m,o,1

+

n∑
o=0

k(j)′∑
m=k(j)+1

ζ
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ζ
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

ζ(h,q+1)
a,o aoP + ζ(h)x X̄ +

b∑
u=1

ζ
(h)
pk,uPu

C⋆
h,2 = σ(h)P +

q∑
j=1

(σ
(h)
z,jZj + σ

(s)
s,jYj + σ

(h)
n,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

σ
(h)
m,j,o,1U

(j)
m,o,1

+

n∑
o=0

k(j)′∑
m=k(j)+1

σ
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

σ
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

σ(h,q+1)
a,o aoP + σ(h)

x X̄ +

b∑
u=1

σ
(h)
pk,uPu

Z⋆ = κP +

q∑
j=1

(κz,jZj + κs,jYj + κn,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

κm,j,o,1U
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

κa,oa
oP + κxX̄ +

b∑
u=1

κ
(h)
pk,uPu
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S⋆ = νP +

q∑
j=1

(νz,jZj + νs,jYj + νn,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1U
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

νa,oa
oP + ν(h)x X̄ +

b∑
u=1

ν
(h)
pk,uPu

T ⋆ = ρP +

q∑
j=1

(ρz,jZj + νs,jYj + ρn,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

ρm,j,o,1U
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

µ
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

µ
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

ρa,oa
oP + ρxX̄ +

b∑
u=1

ρ
(h)
pk,uPu

pk(h) = η(h)P +

q∑
j=1

(η
(h)
z,jZj + η

(s)
s,jYj + η

(h)
n,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(h)
m,j,o,1U

(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

η
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

η(h,q+1)
a,o aogP + η(h)x X̄ +

b∑
u=1

η
(h)
pk,uPu

S⋆′
= ϵP ′ + ϵxX +

l∑
j=0

ϵx,jXj +

l∑
j=1

ϵx′,jX
′
j +

q∑
j=0

ϵs,jY
′
j +

t∑
o=1

ϵa,oa
oP ′

Using this, we can write, for all 1 ≤ i ≤ q, the discrete logarithms c
(i)
j , zi

and ti in basis P of the elements C
(i)
j,1 =

∏
e∈M(i)

j
LjeP , C

(i)
j,2 = (s + IDj)P

Zi =
∑k(i)

j=1 xjC
(i)
j,1+x′

jC
(i)
j,2

yi
, Ti = X0yi + xpk(i) and U

(i)
m,o,1 = aoxm

yi
LoP,U

(i)
m,o,2 =

(U
(i)
m,o,2,1, U

(i)
m,o,2,2) = (

aox′
ms

yi
P,

aox′
m

yi
P ) from the oracle answers.

c
(i)
j,1 =

∏
e∈M(i)

j

Lie, c
(i)
j,2 =

∏
j∈k

(s+ IDj) (1)

zi =

∑k(i)

j=1 xjc
(i)
j,1 + x′jc

(i)
j,2

yi
(2)



28 M. Xie et al.

ti = x0yi + xpk(i) (3)

u(i)
m,o = (

aoxm

yi
Lo, (

aox′ms

yi
,
aox′m
yi

)) (4)

A successful forgery (Z⋆, Y ⋆, Y ⋆′
, T⋆) on (pk(q+1), C⋆

1 , ..., C
⋆
k(q+1)) satisfies the

verification equations

e(Z⋆, S⋆′
) =

k(q+1)∏
h=1

e(C⋆
h,1, Xh)e(C

⋆
h,2, X

′
h)∧e(P, S⋆′

) = e(S⋆, P ′)∧e(T ⋆, P ′) = e(S⋆, X0)e((pk
(q+1), X)

We interpret these values as multivariate rational fractions in variables
x, x0, ..., xl, x

′
0, ..., x

′
l, y1, ..., yq, a, p1, ..., pb. Using the coefficients defined above

and considering the logarithms in base e(P, P ′) we obtain:

(κ+

q∑
j=1

(κz,jzj + κs,jyj + κn,jtj +

n∑
o=0

k(j)′∑
m=k(j)+1

κm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

κa,oa
o + κxx+

b∑
u=1

κ
(h)
pk,upu)·

(ϵ+ ϵxx+

l∑
j=0

ϵx,jxj +

l∑
j=1

ϵx′,jx
′
j +

q∑
j=1

ϵs,jyj +

t∑
o=1

ϵa,oa
o) =

k(q+1)∑
h=1

(xhc
⋆
h,1 + x′hc

⋆
h,2)

(5)

ν +

q∑
j=1

(νz,jzj + νs,jyj + νn,jtj +

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

νa,oa
o + ν(h)x x+

b∑
u=1

ν
(h)
pk,upu

= ϵ+ ϵxx+

l∑
j=0

ϵx,jxj +

l∑
j=1

ϵx′,jx
′
j +

q∑
j=1

ϵs,jyj +

t∑
o=1

ϵa,oa
o

(6)
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ρ+

q∑
j=1

(ρz,jzj + νs,jyj + ρn,jtj +

n∑
o=0

k(j)′∑
m=k(j)+1

ρm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ρ
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ρ
(h)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

ρa,oa
o + ρxx+

b∑
u=1

ρ
(h)
pk,upu

= x0(ν +

q∑
j=1

(νz,jzj + νs,jyj + νn,jtj +

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

νa,oa
o + ν(h)x x+

b∑
u=1

ν
(h)
pk,upu

+ x(η(q+1) +

q∑
j=1

(η
(q+1)
z,j zj + η

(q+1)
s,j yj + η

(q+1)
n,j tj +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,1u

(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

η(h,q+1)
a,o aog + η(q+1)

x x+

b∑
u=1

η
(q+1)
pk,u pu)

(7)

To apply the standard proof technique in the generic group model,
we proceed by considering an "ideal" game scenario. In this ideal game,
the challenger treats all the handles of group elements as elements of
Zp(y1, ..., yq, x, x0, ..., xl, x

′
1, ..., x

′
l, a, p1, ..., pb). Here, the elements are rational

fractions, and the indeterminates represent the secret values chosen by the chal-
lenger.

Initially, we demonstrate in the game that if the adversary’s output satis-
fies the verification equations, the first winning condition is not fulfilled. This
indicates that winning the game is not possible.

We thus interpret the three equalities (5), (6) and (7) as polyno-
mial equalities over the field Zp(y1, ..., yq, x, x0, ..., xl, x

′
1, ..., x

′
l, a, p1, ..., pb).

More precisely, we consider the equalities in the ring
Zp(y1, ..., yq), [x, x0, ..., xl, x

′
1, ..., x

′
l, a, p1, ..., pb], that is, the polynomial ring with

x, x0, ..., xl, x
′
1, ..., x

′
l, a, p1, ..., pb as indeterminates over the field Zp(y1, ..., yq).

As one of our proof techniques, we will also consider the equalities over the ring
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factored by (x, x0, ..., xl, x
′
1, ..., x

′
l), the ideal generated by the x′is:

Zp(y1, ..., yq), [x, x0, ..., xl, x
′
1, ..., x

′
l, a, p1, ..., pb]/(x, x0, ..., xl, x

′
1, ..., x

′
l)

∼= Zp(y1, ..., yq), [a, p1, ..., pb]

From (2) and (3), over this quotient we have and ti = zi = u
(j)
m,o,1 = u

(j)
m,o,2,1 =

u
(j)
m,o,2,1 = 0 and thus (5)–(7) become

(κ+

q∑
j=1

κs,jyj +

n∑
o=1

κa,oa
o +

b∑
u=1

κ
(h)
pk,upu)

(ϵ+

q∑
j=1

ϵs,jyj +

n∑
o=1

ϵa,oa
o) = 0

(8)

ν +

q∑
j=1

νy,jyj +

n∑
o=1

νa,oa
o +

b∑
u=1

ν
(h)
pk,upu

= ϵ+

q∑
j=1

ϵy,jyj +

n∑
o=1

ϵa,oa
o

(9)

ρ+

q∑
j=1

νs,jyj +

n∑
o=1

ρa,oa
o +

b∑
u=1

ρ
(h)
pk,upu = 0 (10)

By looking the coefficients of the monomials s′js, p′us, ao
′
s and 1 of (10), we

deduce:

∀j, o, u : ρ = ρs,j = ρa,o = ρpk,u = 0 (11)

And by looking the coefficients of the yj ,
1
yj
, ao

′sof (9), we deduce:

ν = ϵ,∀o : νa,o = ϵa,o,

∀j : νs,j = ϵs,j

∀u : νpk,u = 0

(12)

Now we can reuse (12) in (6) and look the equation modulo (x).

q∑
j=1

(νz,jzj + νn,jsjx0 +

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2u

(j)
m,o,2,2) mod (x)

=

l∑
j=0

ϵx,jxj +

l∑
j=1

ϵx′,jx
′
j

(13)
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By looking the coefficient in the monomials x′js, for j ≥ 0 and because for all
j, degsj (zj) = degsj (um,j,o) = −1, we deduce:

∀j ≥ 0 : ϵx,j = ϵx′,j = 0 (14)

Then the equation (13) becomes:

q∑
j=1

(νz,jzj + νn,jsjx0 +

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2u

(j)
m,o,2,2) = 0

(15)

By looking all the monomials in x0yj , we deduce:

∀j : νn,j = 0 (16)

Now, for all j, we look all the monomials of degree −1, in yj , we deduce:

∀j : (νz,j
∑k(m)

m=1 xmc
(j)
m,1 + x′mc

(m)
m,2

yj
+

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1
aoxm

yj
Lj

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1

aox′m
yj

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2

aox′m
yj

) = 0

(17)

Then, by looking the monomials in aoxj , a
ox′j for all j > k(j):

∀m, j, o : νm,j,o,1 = 0 = νm,j,o,2,1 = 0 = νm,j,o,,2,1 = 0 (18)

Then (17) becomes:

∀j : νz,j
∑k(m)

m=1 xmc
(j)
m,1 + x′mc

(m)
m,2

yj
= 0 (19)

Then without any loss of generalities, we deduce:

∀j : νz,j = 0 (20)

Now we look the equation (5) modulo (x0, x1, ..., xl, x
′
1, ..., x

′
l):

(κ+

q∑
j=1

(κs,jyj + κn,jtj) +

n∑
o=1

κa,oa
o + κxx+

b∑
u=1

κ
(h)
pk,upu)·

(ϵ+ ϵxx+

q∑
j=1

ϵs,jyj +

n∑
o=1

ϵa,oa
o) mod (x0, x1, ..., xl, x

′
1, ..., x

′
l) = 0

(21)
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Now, because S⋆′ ̸= 0, we can deduce: (ϵ+ϵx,0x0+
∑q

j=1 ϵs,jyj+
∑n

o=1 ϵa,oa
o) ̸=

0, then because

tj mod (x0, x1, ..., xl, x
′
1, ..., x

′
l) =

x

sj
pk(j) mod (x0, x1, ..., xl, x

′
1, ..., x

′
l)

we have:

(κ+

q∑
j=1

(κs,jyj + κn,j
x

sj
pk(j)) +

n∑
o=1

κa,oa
o + κxx+

b∑
u=1

κ
(h)
pk,upu)

mod (x0, x1, ..., xl, x
′
1, ..., x

′
l) = 0

(22)

Then, by looking constant coefficient in x, we deduce:

∀j : κs,j = 0,

∀o : κa,o = 0

κ = 0

∀u : κpk,u = 0

(23)

Then we by noticing for all j, pk(j) is constant in yj . By looking coefficient
constant in yj , but of degree 1 in x.

κx,0 = 0 (24)

Now, let’s look equation (7) modulo (x, x0)

q∑
j=1

(ρz,jzj +

n∑
o=0

k(j)′∑
m=k(j)+1

ρm,j,o,1u
(j)
m,o,1

+

n∑
o=0

k(j)′∑
m=k(j)+1

ρ
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ρ
(h)
m,j,o,2,2u

(j)
m,o,2,2) mod (x, x0) = 0

Now, for all j, we look all the monomials of degree −1, in yj , and degree 0 in yk
for k > j:

∀j : ρz,j
∑k(m)

m=1 xmc
(j)
m,1 + x′mc

(m)
m,2

yj
+

n∑
o=0

k(j)′∑
m=k(j)+1

ρm,j,o
aoxm

yj
Lj

+

n∑
o=0

k(j)′∑
m=k(j)+1

ρ
(h)
m,j,o,2,1

aox′ms

yj
+

n∑
o=0

k(j)′∑
m=k(j)+1

ρ
(h)
m,j,o,2,2

aox′m
yj

) mod (x, x0) = 0

(25)

Then, by looking the monomials in aoxm

yj
,
aox′

m

yj
for m > k(j):

∀m, j, o : ρm,j,o,1 = ρm,j,o,2,1 = ρm,j,o,,2,2 = 0 (26)
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Then (7) modulo (x) becomes:

q∑
j=1

(ρz,jzj + ρn,jx0yj) mod (x)

= x0(ν +

q∑
j=1

νs,jyj +

n∑
o=1

νa,oa
o)

(27)

By looking the monomials constant in yi,∀i, deduce:

∀o : ν = νa,o = 0 (28)

(6) becomes thus:

q∑
j=1

(νz,jzj +

n∑
o=0

k(j)′∑
m=k(j)+1

νm,j,o,1u
(j)
m,o,1

+

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ν
(h)
m,j,o,2,2u

(j)
m,o,2,2) + ν(h)x x = ϵxx

(29)

By looking monomials constant in yi,∀i :

νx = ϵx (30)

Then, by using (28),in (27), we deduce:

q∑
j=1

(ρz,jzj + ρn,jx0yj) mod (x) = x0(

q∑
j=1

νs,jyj) (31)

If we look in this equation for all j, all the monomials of degree −1, in yj , and
degree 0 in yk for k > j. We deduce

∀j : ρz,jzj = 0

Then we can assume:

∀j : ρz,j = 0 (32)

Then by looking monomials in x0yj , for all j, deduce:

∀j : νs,j = ρn,j (33)

Then, (7) becomes:

q∑
j=1

(ρn,jtj) + ρxx = x0(

q∑
j=1

νs,jyj + νxx) + xpk(q+1) (34)
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Now, if we look the monomial xx0, we deduce:

νx,0 = 0 (35)

And (30) implies:

ϵx,0 = 0 (36)

Now, let’s look (5) by using (36), (14), (12):

(

q∑
j=1

(κz,jzj + κn,jtj +

n∑
o=0

k(j)′∑
m=k(j)+1

κm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,2u

(j)
m,o,2,2)

(

q∑
j=1

ϵy,jyj) =

k(q+1)∑
h=1

(xhc
⋆
h,1 + x′hc

⋆
h,2)

(37)

Let i0 be the maximum of the i′s such thatϵi ̸= 0. Then (
∑q

j=1 ϵy,jyj) =

(
∑i0

j=1 ϵy,jyj) is of degree 1 in yi0 and in yi1 .

Now we can notice that in
∑k(q+1)

h=1 (xhc
⋆
h,1+x′hc

⋆
h,2), there is neither monomial

of degree −1 in yi and of degree 1 in yk with k ̸= i nor monomials in yiyk, nor
in y2i

Because, (
∑i0

j=1 ϵy,jyj) is of degree 1 in yi0 . We deduce that the left term
has no term of degree 1 or −1 in any indeterminate yi in y1, ..., yq. In particular,
there is no monomials in x1yi in this term, Then

∀i : κt,iti = 0 (38)

∀j ̸= i0 :κz,i0zi0 +

n∑
o=0

k(j)′∑
m=k(j)+1

κm,j,o,1u
(j)
m,o,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,1u

(j)
m,o,2,1

+

n∑
o=0

k(j)′∑
m=k(j)+1

κ
(h)
m,j,o,2,2u

(j)
m,o,2,2) = 0

(39)



Practical DAAC with Chainable Revocation 35

Then (37) becomes:

(κz,i0zi0 +

n∑
o=0

k(i0)′∑
m=k(j)+1

κm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(i0)′∑
m=k(j)+1

κ
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(i0)′∑
m=k(j)+1

κ
(h)
m,j,o,2,2u

(j)
m,o,2,2)

(

i0∑
j=1

ϵy,jyj) =

k(q+1)∑
h=1

(xhc
⋆
h,1 + x′hc

⋆
h,2)

(40)

By noticing (
∑i0

j=1 ϵy,jyj) =
∑k(q+1)

h=1 (xhc
⋆
h,1 + x′hc

⋆
h,2) has no monomial in y

yj

yi0
,

for j < i0, we deduce:

∀j < i0 : κs,j = 0 (41)

We can now transform (40) in:

(κz,i0

ki0∑
m=1

(xmci0m,1 + x′mci0m,2) +

n∑
o=0

k(i0)′∑
m=k(j)+1

κm,j,o,1a
oxmLi

+

n∑
o=0

k(i0)′∑
m=k(j)+1

κ
(h)
m,j,o,2,1a

ox′msyi +

n∑
o=0

k(i0)′∑
m=k(j)+1

κ
(h)
m,j,o,2,2a

ox′myi

=

k(q+1)∑
m=1

(xmc⋆m,1 + x′mc⋆m,2)

(42)

We can deduce by looking for all the monomials in xi:

∀m ≤ k(i0) : κz,i0c
(i0)
m,1 = c⋆m,1, κz,i0c

(i0)
m,2 = c⋆m,2 (43)

∀m ∈
{
k(i0) + 1, ..., k

′(i0)
}
:

n∑
o=0

κm,j,oa
oLi = c⋆m,1

n∑
o=0

κm,j,o,2,1a
osyi +

n∑
o=0

κm,j,o,2,2a
oyi = c⋆m,2

(44)
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Now, we can use all the equalities found to deduce from (7):

ρy,i0ti0 + ρxx

= x0νy,i0ti0 + x(η(q+1) +

q∑
j=1

(η
(q+1)
z,j zj + η

(q+1)
y,j yj + η

(q+1)
n,j tj +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,1u

(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

η(h,q+1)
a,o aog + η(q+1)

x x+

b∑
u=1

η
(q+1)
pk,u pu)

(45)

It becomes:

ρy,i0xpk
(i0) + ρxx

= x0νy,i0ti0 + x(η(q+1) +

q∑
j=1

(η
(q+1)
z,j zj + η

(q+1)
y,j yj + η

(q+1)
n,j tj +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,1u

(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

η
(q+1)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

η(h,q+1)
a,o aog + η(q+1)

x x+

b∑
u=1

η
(q+1)
pk,u pu)

(46)

Then

ρy,i0pk
(i0) + ρx = pk(q+1) (47)

Because, the adversary should output the secret key associated to pk(q+1) = ηP
. Then, recall that because ρy,i0 ̸= 0

pk(i0) =
(η − ρx)

ρy,i0
(48)

We deduce that pk(i0) /∈ UL. It implies that (Mi0 ,D
⋆) /∈ Rk(i0) , thus ∃j0 ∈

1, ..., k(i0), such that Dj0 ̸⊂ M
(i0)
j0

. Then, it exists e′ ∈ Dj0\M
(i0)
j0

Now, let’s
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look how W ⋆
h has been built by the adversary:

W ⋆
j0 = ωP +

q∑
j=1

(ωz,jZj + ωy,jYj + ωn,jTj +

n∑
o=0

k(j)′∑
m=k(j)+1

ωm,j,o,1U
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ω
(h)
m,j,o,2,1U

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ω
(h)
m,j,o,2,2U

(j)
m,o,2,2)

+

n∑
o=1

ωa,oa
oP + ωxX̄ +

b∑
u=1

ω
(h)
pk,uPu

Because V C.V erify outputs 1 then:

(ω +

q∑
j=1

(ωz,jzj + ωy,jyj + ωn,jtj +

n∑
o=0

k(j)′∑
m=k(j)+1

ωm,j,o,1u
(j)
m,o,1)

+

n∑
o=0

k(j)′∑
m=k(j)+1

ω
(h)
m,j,o,2,1u

(j)
m,o,2,1 +

n∑
o=0

k(j)′∑
m=k(j)+1

ω
(h)
m,j,o,2,2u

(j)
m,o,2,2)

+

n∑
o=1

ωa,oa
o + ωxx+

b∑
u=1

ω
(h)
pk,upu) ·AD⋆

j0

+ (
∏

e∈D⋆
j0

Lie) =
∏

e∈M(i0)
j0

Lie

(49)

This equation subtract Lje
′ and modulo (a− ωj):

(
∏

e∈M(i0)
j0

Lie− Lje
′) mod (a− ωj) = 0

Then, we have a contradiction, because e′ /∈ D
(i0)
j0

. We have thus shown that the
adversary cannot win the game.

C Security of DAC-CR

(Unforgeability). If ZKPoK is a zero knowledge proof algorithm and
SPSEQ-VC and accumulator scheme ACC are unforgeable, then the DAC-CR
construction in Section 5 is unforgeable.

Proof. Assume a PPT adversary A that wins the unforgeability game with
non-negligible probability, then we can use A to construct an adversary B that
breaks the unforgeability of SPSEQ-VC and accumulator. Now we can reduce
the unforgeability from the following two steps:

Step1. We first prove that an adversary cannot propose a signature on a
commitment vector open to a (sub)set of unsigned messages. B interacts with
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a challenger C in the unforgeability game for SPSEQ-VC and B simulates the
DAC-CR-unforgeability game for A. C runs (pp, skCA, pkCA)← Setup(1λ, 1n, 1l)
and gives (pkCA, pp) to B. Then, B sends pp, vk = pkCA to A. It next simulates
the environment and oracles. All oracles are executed as in the real game, except
for the following oracles, which use the signing oracle instead of using the signing
key skCA:

When the oracles OCU and OHU are called, B queries OCU and OHU of
the SPSEQ-UC scheme, respectively. Note that when B queries OCU of the
SPSEQ-UC, it gets ski and finally returns ski and all the associated credentials
items to A.
ORIO(i, k′, Ai) : Takes as input a user identity i, an index k′ and at-

tributes Ai. If i ∈ HU , returns ⊥, else it submits (nymi, k
′, Ai) to the sign-

ing oracle OSign. Receives a signature (σ = (Z, Y, Y ′, T ),C, ukk′). It sets
credi = (σ,C, nymi) and adds (i, Ai, ukk′ , credi) to Lcred.
ORIS(k′, Ai) : On input an index k′ and attributes Ai. it submits

(nymi, k
′, Ai) to the signing oracle, where nymi is an adversary pseudonym

of a corrupted user. Receives a signature (σ = (Z, Y, Y ′, T ),C, ukk′). It sets
credi = (σ,C, nymi) and adds (i, Ai, ukk′ , credi) to Lcred and outputs the re-
sults.

The oracles (OCIS , OOIS): In both OCIS , OOIS , all executions of Delegate
and ConvertSig for credentials (i, Ai, ukk′ , credi) ∈ Lcred are replaced by the
oracle Sign(skCA, Ai, k

′, pki), where pki = nymi = 1 for the OCIS and pki =
nymj for the OOIS .

As it is clear, B can handle any oracle query and never aborts. So, at
the end of the game, B simulates all oracles perfectly for A who is able,
with some probability, to prove possession of a credential on M⋆. To do this,
B interacts with A as verifier in a showing protocol. If A outputs a valid
showing proof as (C⋆, σ⋆ = (Z⋆, Y ⋆, Y ⋆′

, T ⋆),D⋆, nym⋆
p,W

⋆) and conducting
ZKPoK(sk⋆P , nym

⋆
P ) then B extracts from the proof of knowledge contained

in the Show protocol the value sk⋆p related to the nym⋆
P and stores all ele-

ments. Moreover, no credential owned by corrupt users can be valid on this set
of messages D⋆ (as A can win the unforgeability game). This means that, for
any credential on (ski) with all i = ⊥, we have (D⋆,M ′) /∈ Rk′ . In all cases,
this means that (sk⋆P , (C

⋆, D⋆,W⋆), σ⋆) is a valid forgery against our signature
scheme, B breaks thus unforgeability of SPSEQ-VC which concludes our proof.

Step2. What we need to prove next is that the credentials that have revoked
credentials in the delegation chain cannot pass verification. Adversary A man-
ages to conduct a showing protocol accepted by the verifier using some revoked
credentials or other revoked credentials in the delegation chain σi ∈ AX , i ∈ [L].
Then, we construct an adversary B that uses A to break the collision freeness of
the accumulator scheme ACC.

Here, B is composed of an adversary A and a challenger S in the context of an
unforgeability game. B interacts with a challenger C in a collision-resistant game
for the accumulator scheme Acc. Subsequently, we describe how S simulates the
environment for A and interacts with challenger C.
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B interacts with C to obtain PKACC = (BG, gsi1 , gs
i

2 |0 ≤ i ≤ n). Then S
runs (pp, skCA, pkCA)← Setup(1λ, 1n, 1l). S executes A(pp, pkCA, PKACC) and
emulates all oracles as in the actual game. If A outputs (credi, π, Ai), then S
interacts with A as verifier. If A presents a valid display using credential credi
, S rewinds A to the step after sending commitments in PoK and restarts A
with a new challenge. This step allows the retrieval of the used non-membership
witness π and the credential randomizer µ, by extracting the corresponding
discrete logarithms. This ensures that the algorithm can backtrack to a known
state and has a new challenge, preventing potential adversaries from exploiting
the state of the system. S now computes credi = cred′i ·µ−1 on the message part
of the credential. If there is no such credential, S and, consequently, B aborts.
If ∀j ∈ [1, i], credj /∈ Rcred, then S aborts. Otherwise, it is known that the
extracted witness π yields a correct evaluation of the verification relation, even
though there is a revoked credential in the relevant credential chain. Therefore,
B outputs π as a non-membership witness for an accumulated value, giving a
collision for the accumulator.

(Anonymity) If the DDH assumption holds and the SPSEQ-VC provides
Origin-hiding, Conversion-privacy and Derivation-privacy, then the DAC-CR is
anonymous.

Proof. We employ a sequence of games to demonstrate the anonymity of
DAC-CR, where each game is indistinguishable from the previous one. Hence-
forth, we denote by Si the event that the opponent wins the Game i.

Game 0: The original game as given in Definition x.

Game 1: As Game 0, in addition to A outputting pkCA and the correspond-
ing NIZK(skCA, pkCA), the experimental execution of the NIZK knowledge ex-
tractor is performed. It extracts a witness ((xi)i∈[0,l], (x

′
i)i∈[1,l]) as well as the

trapdoors α, s, which are set as skCA. If the extractor fails, we abort.

Transition 1 - Game 1 → Game 2: The success probability in Game 1 is the
same as in Game 0, unless the knowledge extractor fails, we have that Pr[S1]−
Pr[S0] ≤ ϵ(λ).

Game 2: As Game 1, except that the experiment runs OAno−b as fol-
lows: Like in Game 1, but all executions of RandomAll for the credential
(i, ukk′ ,A, σ) ← Lcred[jb] are replaced by Sign. Oracles are simulated as in
Game 1, except for the following oracles as: ORIO: all executions of Delegate
and ConvertSig for credentials (i, ukk′ ,A, σ) ∈ Lcred are replaced by Sign.

Transition 1 - Game 1 → Game 2: By Origin-hiding, Derivation-privacy
and Conversion-privacy, replacing signatures from RandomAll, Delegate and
ConvertSig with ones from Sign are identically distributed for all (AC). We
have that Pr[S1] = Pr[S2].

Game 3: As Game 2, except that the experiment runs OAno−b as follows:
All proofs ZKPok(skP , nymP ) in Show, are simulated.

Transition 3 - Game 2 → Game 3: By perfect zero-knowledge of ZKPoK, we
have that Pr[S2] = Pr[S3]⇒ Pr[S1] = Pr[S2] = Pr[S3].
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Game 4: As Game 3, except for the following changes. Let qu be the number
of queries made to OHU . At the beginning Game 4 picks ω ← [qu] and runs
OHU ,OCU and OAno−b as follows:
OHU (i): As in Game 3, except if this is the ω-th call to the oracle then it

additionally defines i⋆ ← i.
OCU (i, pku): If i ∈ CU or i ∈ OAnon−b , it returns ⊥. If i = i⋆ then the

experiment stops and outputs a random bit b′ ← {0, 1}. Otherwise, if i ∈ HU ,
it returns user i′s ski and credentials and moves i from HU to CU ; and if
i /∈ HU ∪CU , it registers and adds i to CU a new corrupt user with public key
pki.
OAno−b(j0, j1, D): As in Game 3, except if i⋆ ̸= ib ← Lcred[jb], the experi-

ment stops and outputs b′ ← {0, 1}
Transition 4 - Game 3 → Game 4: By assumption, OAno−b is called at least

once with some input (j0, j1, D) such that i0 ← Lcred[j0], i1 ← Lcred[j1] ∈ HU .
If i⋆ = ib then OAno−b does not abort and neither does OCU . Since i⋆ = [ib]
with probability 1

qu
, the probability thaft the experiment does not abort is at

least 1
qu

, and thus Pr[S4] ≥ (1− 1
qu
) 12 + 1

qu
Pr[S3].

Game 5: As Game 4, except OAno−b: it picks C ← (G⋆
1)

k and performs
the showing using cred′ ← (C, Sign), with corresponding D = (di)i∈[k] and
Wi for i ∈ [k]. Note that the only difference is the choice of C; while W is
distributed as in Game 4, in particular, they are unique elements satisfying
V C.V erify(Ci, Di,Wi), i ∈ [k]. Finally, picks AX ← G⋆

1, AID ← G⋆
1, π̄ ← G⋆

1 ×
G⋆

2, which satisfies NonMemV erifyACC .
Transition 5 - Game 4 → Game 5: Let (BG,Px, Py, Pz) be a DDH in-

stance for BG = BGGen(1
λ) where x, y ← Zp and Z is equal to P x·y or a

random element. The extended version of DDH that we consider here is given
by (P, P x1 , ..., P xk , P y, Z1, ..., Zk) where Zi = P xi·y or random for all {1, ..., k}.
One can easily show that this extended version of DDH follows from DDH itself
as long as k is a polynomial. Oracles are simulated as in Game 4, except for the
following oracles as:
OOIS(i,A): As in Game 4, except for the computation of the following values

if i = i⋆. Let this be the i-th call to this oracle. Since α /∈ Ai, it computes Ci for
Ai ∈ A.
OCSH(i,D): As in Game 4, with the difference that ifi⋆ = i ← Lcred[j], it

computes the witness Wi and π̄.
OAno−b(j0, j1, D): As in Game 4, with the following difference. Using self-

reducibility of DDH, it picks s, t ← Z⋆
p and computes Y ′ ← P t·y · P s = P y′

with y′ ← t · y + s, and Z ′i ← P t·zi · P s·xi = P (t(zi−xi·y)+xi·y′). It performs the
showing using the following values. Since a /∈ D : Ci ← V C.commit(Ai) · Z ′i,
Wi ← V C.Prove and π̄ ← NonMemProveACC .

Apart from an error event happening with negligible probability, we have
simulated Game 4 if the DDH instance was “real” and Game 5 otherwise. If
during the simulation of OAno−b it occurs that any Y ′i = 0G1

or Z ′i = 0G1

then the distribution of values is not as in one of the two games. In case of a
DDH instance, we have for all Ci ← V C.commit(Ai) · y′; otherwise all Ci are
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independently randoms. Let ϵDDH(λ) denote the advantage of solving the DDH
problem and ql the number of queries to the OAno−b, we have |Pr[S4]−Pr[S5]| ≤
ϵDDH(λ) + (1 + 2ql)

1
p .

In Game 5 the OAno−b oracle returns a fresh signature σ on random elements
C ← (G⋆

1)
k and a simulated proof; the bit b is thus information-theoretically

hidden from A, so we have Pr[S5] =
1
2 . From this and the above equations we

have

Pr[S4] ≤ Pr[S5] + ϵDDH(λ) + (1 + 2ql) ·
1

p
=

1

2
+ ϵDDH(λ) + (1 + 2ql) ·

1

p
,

Pr[S3] ≤
1

2
+ qu.Pr[S4]−

1

2
· qu ≤

1

2
· qu · (ϵDDH(λ) + (1 + 2qu) ·

1

p
),

Pr[S0] ≤ Pr[S1] + k · s(λ) · 1
2
+ k · s(λ) + qu · (ϵDDH(λ) + (1 + 2qu) ·

1

p
).

where Pr[S1] = Pr[S3]; qu, qo and ql are the number of queries to the
OHU ,OCOB and the OAno−b oracle, respectively. Assuming security of ZKPoK,
NIZK and DDH, the adversary’s advantage is thus negligible.
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