
The Practical Advantage of RSA over ECC and Pairings

Zhengjun Cao and Lihua Liu

Abstract. The coexistence of RSA and elliptic curve cryptosystem (ECC) had continued
over forty years. It is well-known that ECC has the advantage of shorter key than RSA,
which often leads a newcomer to assume that ECC runs faster. In this report, we generate
the Mathematica codes for RSA-2048 and ECC-256, which visually show that RSA-2048
runs three times faster than ECC-256. It is also estimated that RSA-2048 runs 48,000
times faster than Weil pairing with 2 embedding degree and a fixed point.

Keywords: RSA, ECC, Weil pairing, embedding degree

1 Introduction

The public key cryptosystem RSA was published by Rivest, Shamir and Adleman [8] in 1978. Koblitz
[5] and Miller [6] in 1985 independently proposed using the group of points on an elliptic curve
over a finite field to devise discrete logarithm cryptographic schemes. Pairing based cryptography,
introduced by Boneh and Franklin [2], had also been intensively studied over twenty years. Although
Shor’s algorithm [9] for factorization was regarded as a big threat to RSA, the current toy quantum
machine including IBM 1,000-qubit quantum chip [3] still cannot be used to test Shor’s algorithm.

So far, the fastest algorithm known for factorization or for general discrete logarithm problem is
the Number Field Sieve (NFS) which has a subexponential expected running time of

O(e(1.923+o(1))(log n)
1/3(log log n)1−1/3))

The fastest algorithm known for elliptic curve discrete logarithm problem (ECDLP) is Pollard’s rho

algorithm which has an expected running time of
√
π n
2 . We refer to the below Table 1 for RSA,

Discrete Logarithm (DL) and Elliptic Curve (EC) key sizes for equivalent security levels [4].

Table 1: Different key sizes for equivalent security levels
security level (bits) 80 112 128 192 256

RSA modulus n (modulus) 1024 2048 3072 8192 15360
DL parameter q (order) 160 224 256 384 512
EC parameter n (order) 160 224 256 384 512

ECC-256 can provide the same security level as RSA-2048. The surprising advantage of ECC has
attracted much attention. But we have noticed that ECC has not yet replaced RSA. How long will
the coexistence of RSA and ECC last?

Z. Cao is with Department of Mathematics, Shanghai University, Shanghai, China.
L. Liu is with Department of Mathematics, Shanghai Maritime University, Shanghai, China. Email: liulh@shmtu.edu.cn

1

The well-known advantage of ECC often leads a newcomer to mistakenly assume that ECC runs
faster. In this report, we generate the Mathematica codes to test RSA-2048 and ECC-256. The
results visually show that RSA-2048 runs three times faster than ECC-256. It is considered that
RSA-2048 runs 96,000 times faster than Weil pairing with 2 embedding degree, and 48,000 times
faster than Weil pairing with 2 embedding degree and a fixed point.

2 The runtime for RSA-2048

The below number RSA-2048 has 617 digits, of 2048 bits.

n =22701801293785014193580405120204586741061235962766583907094021879215171483119139

89487013309111104490168340094948384681829951804176350794892259077492546608817187

92594659210265970467004498198990968620394600177430944738110569912941285428918808

55362707407670722593737772666973440977361243336397308051763091506836310795312607

23952036529003210584883950798145230729941718571579629745499502350531604091985919

37180233074148804462179228008317660409386563445710347785534571210805307363945359

23932651866030515041060966437313323672831539323500067937107541955437362433248361

242525945868802353916766181532375855504886901432221349733

Take m = IntegerPart[n/2], and k = n − 2 (in the worst case), to compute mk mod n. The Mathe-
matica code for this computation is very simple.

Timing[PowerMod[m, k, n]]

{0.015625,

2820045544329359416541292678855352434096021453838664407449354924101349

6891552195542526418848844207652306446485291873472009761833378678166506

9859253406497605101138041950407431489313766204811422795250340460515291

4358589540806744002922595758305289236172082622012724503982605450913700

5278982232672413459054235344040761394903449264044557562115788571320492

6289025448023591243317811369853477190934249524242065138808094154689438

9879164657634767671419474684366395302006312343403502916065231242410016

3291346124724638832633199137670965502839363870515376165952808914133596

06039708480086631216526684030920271126152864800801775651}

It spends about 0.015625 seconds, including only CPU time spent in the evaluation (AMD A9-9820
Processor 2.35 GHz, Mathematica11.0).

3 The runtime for ECC-256

We take the elliptic curve used for Bitcoin system,

y2 = x3 + 7 mod q (1)

2

where q = 115792089237316195423570985008687907853269984665640564039457584007908834671663,
a 256-bit prime, with a base point (a, b), where

a = 55066263022277343669578718895168534326250603453777594175500187360389116729240,

b = 32670510020758816978083085130507043184471273380659243275938904335757337482424

The arithmetic for the elliptic curve E/Fq is defined as follows. Given a point P = (x, y) over the
curve, its negative is −P = (x,−y). For two points P = (x1, y1), Q = (x2, y2), P 6= ±Q, the point
addition is represented by (x1, y1) + (x2, y2) = (x3, y3), where

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2, y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

The point doubling is represented by 2(x1, y1) = (x3, y3) where

x3 =

(
3x21
2y1

)2

− 2x1, y3 =

(
3x21
2y1

)
(x1 − x3)− y1

The Hasse’s theorem gives an estimate of the number of points over E/Fq, |](E/Fq)− (q+1)| ≤ 2
√
q.

AddPoint[point1_, point2_] := Module[{x1, y1, x2, y2, k, x3, y3, u, newpoint},

x1 = point1[[1]]; y1 = point1[[2]]; x2 = point2[[1]]; y2 = point2[[2]];

k = PowerMod[x2 - x1, -1, q]; u = Mod[(y2 - y1)*k, q];

x3 = Mod[u^2 - x1 - x2, q]; y3 = Mod[u*(x1 - x3) - y1, q];

newpoint = {x3, y3}]

DoublePoint[point_] := Module[{x1, y1, k, x3, y3, u, newpoint},

x1 = point[[1]]; y1 = point[[2]];

k = PowerMod[2*y1, -1, q]; u = Mod[3*x1^2*k, q];

x3 = Mod[u^2 - 2*x1, q]; y3 = Mod[u*(x1 - x3) - y1, q];

newpoint = {x3, y3}]

MultiPoint[k_, P_] := Module[{newpoint, BinaryTable, len, i, endpoint},

BinaryTable = IntegerDigits[k, 2]; len = Length[BinaryTable]; newpoint = P;

For[i = 2, i <= len, i++, If[BinaryTable[[i]] == 1,

newpoint = AddPoint[DoublePoint[newpoint], P],

newpoint = DoublePoint[newpoint]]]; endpoint = newpoint]

We now take P = (a, b) and k = q − 2 (in the worst case) to compute kP .

a = 55066263022277343669578718895168534326250603453777594175500187360389116729240;

b = 32670510020758816978083085130507043184471273380659243275938904335757337482424;

P = {a, b}; k = q-2; Timing[MultiPoint[k, P]]

{0.046875,

{75937977013773973004625515363589527909731280618927128174417699995992069380903,

21414141152327097618374269872214617344577357451074407808255142961578394379337}}

3

4 The runtime for ECC over a quadratic extended field

The polynomial X2 + 1 is irreducible over Fq. The arithmetic for the elliptic curve

y2 = x3 + 7 mod (X2 + 1, q) (2)

has the same formulas as that over the curve y2 = x3 + 7 mod q, except the modulus X2 + 1.

basePoly = X^2 + 1; moduliSet = {basePoly, q};

AddPoint1[point1_, point2_]:=Module[{x1, y1, x2, y2, k, x3, y3, u, newpoint},

x1 = point1[[1]]; y1 = point1[[2]]; x2 = point2[[1]]; y2 = point2[[2]];

k = PolynomialExtendedGCD[x2 - x1, basePoly, X, Modulus -> q][[2]][[1]];

u = PolynomialMod[(y2 - y1)*k, moduliSet];

x3 = PolynomialMod[u^2 - x1 - x2, moduliSet];

y3 = PolynomialMod[u*(x1 - x3) - y1, moduliSet];

newpoint = {x3, y3}];

DoublePoint1[point_]:=Module[{x1, y1, k, x3, y3, u, newpoint},

x1 = point[[1]]; y1 = point[[2]];

k = PolynomialExtendedGCD[2*y1, basePoly, X, Modulus -> q][[2]][[1]];

u = PolynomialMod[3*x1^2*k, moduliSet];

x3 = PolynomialMod[u^2 - 2*x1, moduliSet];

y3 = PolynomialMod[u*(x1 - x3) - y1, moduliSet];

newpoint = {x3, y3}];

MultiPoint1[k_, Q_]:= Module[{newpoint, BinaryTable, len, i, endpoint},

BinaryTable = IntegerDigits[k, 2]; len = Length[BinaryTable]; newpoint = Q;

For[i = 2, i <= len, i++, If[BinaryTable[[i]] == 1,

newpoint = AddPoint1[DoublePoint1[newpoint], Q],

newpoint = DoublePoint1[newpoint]]]; endpoint = newpoint]

To find a nontrivial point over the new curve, we suppose (t, sX) ∈ E/Fq2 ,

s2X2 = t3 + 7 mod (X2 + 1, q)

i.e., s2 = −t3 − 7 mod q. For t from 1 to 100, check if the right side is a quadratic residue modulo q.
We then obtain a point

Q = (5, 23991821008281484097053715379747718372991279943638939452345024967188278261434X)

Take k = IntegerPart[q2/2] (in the worst case) to compute kQ.

Q={5, 23991821008281484097053715379747718372991279943638939452345024967188278261434*X};

k = IntegerPart[q^2/2]; Timing[MultiPoint1[k, Q]]

{1.46875,

{110415811740245324710223894840742945524568311653795374069402709165587086311706,

107609321765704947133933396262394304713896020279760624970824647138603053168643 X}}

4

5 The runtime for ECC with the characteristic 2

The polynomial X256 + X + 1 is irreducible over F2, which can be used to construct the extended
field F2256 . Let

y2 + xy = x3 + ax2 + b mod (X256 +X + 1, 2) (3)

be the elliptic curve, and P = (x, y) be a point over the curve. Its negative is defined as −P =
(x, x+ y). The point-addition is defined by: (x1, y1) 6= ±(x2, y2), (x1, y1) + (x2, y2) = (x3, y3), where

x3 =

(
y1 + y2
x1 + x2

)2

+
y1 + y2
x1 + x2

+ x1 + x2 + a, y3 =
y1 + y2
x1 + x2

(x1 + x3) + x3 + y1.

The point-doubling is defined by: 2(x1, y1) = (x3, y3), where

x3 =

(
x1 +

y1
x1

)2

+

(
x1 +

y1
x1

)
+ a, y3 = x21 +

(
x1 +

y1
x1

)
x3 + x3.

Take a = X, b = 0 and a base point Q = (X2, X3).

basePoly = X^256 + X + 1; moduliSet = {basePoly, 2};

AddPoint2[point1_, point2_]:= Module[{x1, y1, x2, y2, k, x3, y3, u, newpoint},

x1 = point1[[1]]; y1 = point1[[2]]; x2 = point2[[1]]; y2 = point2[[2]];

k = PolynomialExtendedGCD[x1 + x2, basePoly, X, Modulus -> 2][[2]][[1]];

u = PolynomialMod[(y1 + y2)*k, moduliSet];

x3 = PolynomialMod[u^2 + u + x1 + x2 + X, moduliSet];

y3 = PolynomialMod[u*(x1 + x3) + x3 + y1, moduliSet];

newpoint = {x3, y3}];

DoublePoint2[point_]:= Module[{x1, y1, k, x3, y3, u, newpoint},

x1 = point[[1]]; y1 = point[[2]];

k = PolynomialExtendedGCD[x1, basePoly, X, Modulus -> 2][[2]][[1]];

u = PolynomialMod[x1 + y1*k, moduliSet];

x3 = PolynomialMod[u^2 + u + X, moduliSet];

y3 = PolynomialMod[x1^2 + u*x3 + x3, moduliSet];

newpoint = {x3, y3}];

MultiPoint2[k_, Q_] := Module[{newpoint, BinaryTable, len, i, endpoint},

BinaryTable = IntegerDigits[k, 2]; len = Length[BinaryTable]; newpoint = Q;

For[i = 2, i <= len, i++,

If[BinaryTable[[i]] == 1,

newpoint = AddPoint2[DoublePoint2[newpoint], Q],

newpoint = DoublePoint2[newpoint]]];

endpoint = newpoint]

k = 12345678909876556448897651344564432101130035144475884570079010980086640042002;

Q = {X^2, X^3}; Timing[MultiPoint2[k, Q]]

{7.10938, {1 + X^4 + X^9 + X^10 + X^12 + X^15 + X^19 + X^20 + X^21 +

X^22 + X^24 + X^27 + X^28 + X^30 + X^32 + X^35 + X^37 + X^39 +

5

X^41 + X^45 + X^46 + X^47 + X^48 + X^49 + X^50 + X^54 + X^56 +

X^57 + X^62 + X^63 + X^65 + X^66 + X^67 + X^70 + X^72 + X^75 +

X^80 + X^83 + X^84 + X^85 + X^92 + X^95 + X^98 + X^99 + X^100 +

X^101 + X^104 + X^105 + X^106 + X^107 + X^108 + X^109 + X^110 +

X^111 + X^115 + X^116 + X^117 + X^118 + X^119 + X^121 + X^122 +

X^123 + X^125 + X^126 + X^127 + X^129 + X^130 + X^131 + X^132 +

X^134 + X^137 + X^139 + X^140 + X^142 + X^143 + X^144 + X^145 +

X^147 + X^148 + X^149 + X^151 + X^153 + X^154 + X^156 + X^159 +

X^161 + X^162 + X^167 + X^168 + X^169 + X^171 + X^172 + X^174 +

X^176 + X^181 + X^183 + X^186 + X^187 + X^188 + X^189 + X^193 +

X^195 + X^197 + X^199 + X^200 + X^203 + X^206 + X^207 + X^209 +

X^211 + X^212 + X^216 + X^217 + X^219 + X^222 + X^223 + X^224 +

X^225 + X^228 + X^232 + X^233 + X^234 + X^235 + X^236 + X^237 +

X^240 + X^243 + X^245 + X^246 + X^248 + X^249 + X^250 + X^252 +

X^254, 1 + X + X^4 + X^5 + X^7 + X^9 + X^10 + X^11 + X^12 + X^14 +

X^15 + X^16 + X^17 + X^18 + X^19 + X^22 + X^24 + X^26 + X^27 +

X^28 + X^31 + X^32 + X^33 + X^34 + X^37 + X^38 + X^39 + X^40 +

X^41 + X^43 + X^45 + X^48 + X^51 + X^52 + X^54 + X^55 + X^56 +

X^57 + X^60 + X^64 + X^65 + X^67 + X^69 + X^70 + X^71 + X^74 +

X^75 + X^77 + X^80 + X^81 + X^84 + X^86 + X^87 + X^89 + X^90 +

X^91 + X^92 + X^94 + X^95 + X^96 + X^97 + X^98 + X^99 + X^101 +

X^102 + X^107 + X^108 + X^109 + X^110 + X^112 + X^113 + X^114 +

X^125 + X^128 + X^130 + X^131 + X^133 + X^134 + X^135 + X^138 +

X^140 + X^141 + X^143 + X^144 + X^147 + X^148 + X^150 + X^152 +

X^156 + X^157 + X^158 + X^164 + X^166 + X^172 + X^173 + X^174 +

X^175 + X^177 + X^179 + X^181 + X^184 + X^186 + X^187 + X^188 +

X^189 + X^190 + X^191 + X^192 + X^202 + X^206 + X^208 + X^209 +

X^210 + X^211 + X^212 + X^213 + X^214 + X^215 + X^221 + X^223 +

X^224 + X^225 + X^228 + X^231 + X^236 + X^237 + X^238 + X^240 +

X^242 + X^245 + X^249 + X^250 + X^251 + X^252}}

6 The estimated runtime for pairings

6.1 Weil pairing

Let E be an elliptic curve over K, p = char(K), the integer m > 2, and (m, p) = 1. Then
∑
ni(Pi)

is a divisor of some function if and only if
∑
ni = 0 and

∑
[ni]Pi = 0, where

[ni]Pi := Pi + Pi + · · ·+ Pi︸ ︷︷ ︸
ni times

Let E[m] = {P ∈ E : [m]P = O}. Then]E[m] = m2. If d |m, then]E[d] = d2. Hence, E[m] can be
expressed as Zm×Zm, where Zm = {0, 1, · · · ,m− 1}. If T ∈ E[m], there exists f ∈ K(E) such that

6

div(f) = m(T)−m(O). Let T ′ ∈ E and [m]T ′ = T . Then there exists g ∈ K(E) such that

div(g) =
∑

R∈E[m]

(T ′ +R)− (R),

which means that the composite functions f ◦ [m] and gm have the same divisor. Hence, we assume
that f ◦ [m] = gm. If S ∈ E[m], for ∀X ∈ E, g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m.

Let µm be the set of all m-th unit roots. The Weil-pairing is defined as [10]

êm : E[m]× E[m]→ µm, êm(S, T) = g(X + S)/g(X)

where X ∈ E is randomly picked such that g(X + S) 6= 0, g(X) 6= 0.

The logical dependency of involved functions and parameters in the definition is depicted by

T
T=[m]T ′−−−−−−−−−→ T ′

div(g)=
∑

R∈E[m](T
′+R)−(R)

−−−−−−−−−−−−−−−−−−−−−−→ g.

Since m2 |]E, it seems impossible to compute T ′ from T . Actually, it is better to select T ′ first and
then compute T . That is, the point T in the definition of Weil pairing should be fixed. In view of
the importance of T , we replace the original notation with ê(m;T).

The map ê(m;·) is:

• bilinear,

ê(m;T)(S1 + S2, T) = ê(m;T)(S1, T)ê(m;T)(S2, T),

ê(m;T1+T2)(S, T1 + T2) = ê(m;T1)(S, T1)ê(m;T2)(S, T2);

• alternative, ê(m;T)(S, T) = ê(m;S)(T, S)−1;

• non-degenerate, if ∀S ∈ E[m], ê(m;T)(S, T) = 1 holds, then T = O.

In fact, by the definition of ê(m;·) and the randomness of X, we have

ê(m;T)(S1 + S2, T) =
g(X + S1 + S2)

g(X + S1)

g(X + S1)

g(X)
= ê(m;T)(S1, T)ê(m;T)(S2, T).

Let f1, f2, f3, g1, g2, g3 be the functions corresponding to T1, T2, T3 = T1 +T2, in the definition of Weil
pairing. Select h ∈ K(E) such that div(h) = (T1 + T2) − (T1) − (T2) + (O). Hence, div(f3/f1f2) =
m div(h), i.e., there is c ∈ K∗ such that f3 = cf1f2h

m. Since fi ◦ [m] = gmi , there is c′ ∈ K∗ such
that g3 = c′g1g2(h ◦ [m]). Therefore,

ê(m;T1+T2)(S, T1 + T2) =
g3(X + S)

g3(X)
=
g1(X + S)g2(X + S)h([m]X + [m]S)

g1(X)g2(X)h([m]X)

=ê(m;T1)(S, T1)ê(m;T2)(S, T2).

Strictly speaking, the above is not linear because the equation contains three different maps. Hence-
forth, we still habitually call ê(m;T) a bilinear map.

7

6.2 Miller algorithm

As wee see, the definition of Weil pairing depends on the selection of function g, but it is difficult to
find g directly. We now introduce other equivalent forms of Weil pairing. Let C be a smooth elliptic
curve. D =

∑
np(P) ∈ Div(C), f ∈ K(C)∗, supp(div(f)) ∩ supp(D) = ∅, where supp(D) denotes

the support of D, which is the set consists of the points with non-zero multiplicity. Define

f(D) =
∏
P∈C

f(P)np .

Suppose the integer n > 1, and D1, D2 are two divisors of C such that supp(D1) ∩ supp(D2) =
∅. Pick two functions f1, f2 such that div(fi) = nDi, i = 1, 2, and define the Weil pairing as
ên(D1, D2) = f1(D2)/f2(D1).

Let P,Q ∈ E[n]. Select T ∈ E and D1 = ([P + T]− [T]), D2 = ([Q]− [O]) such that supp(D1) ∩
supp(D2) = ∅. The Weil pairing can also be defined as

ên(P,Q) := ên([P + T]− [T], [Q]− [O]).

Now it suffices to find two functions f1, f2 such that div(f1) = n([P+T]−[T]), div(f2) = n([Q]−[O]).
The Miller algorithm can be used to find such functions.

Let E be an elliptic curve, P,Q ∈ E[n]. Denote the line through two points P,Q by LP,Q = 0.
If P = Q, LP,P = 0 is defined as the tangent line through the point P . Hence, div(LP,Q) =
[P] + [Q] + [−(P +Q)]− 3[O]. Define

hP,Q =
LP,Q

LP+Q,−(P+Q)
.

Clearly, div(hP,Q) = [P] + [Q]− [P +Q]− [O].

Let P ∈ E, f0,P = f1,P = 1. For a positive integer n, define fn+1,P := fn,P hp,nP . Then
div(fn,p) = n[P]− (n− 1)[O]− [nP]. If nP = O, then div(fn,p) = n[P]− n[O].

A direct computation for fn,P based on the above recurrence relation is infeasible, if n is very
large. In practice, it is better to use the so-called addition chain to compute fn,P , due to that

fm+n,P = fm,P · fn,P · hmP,nP

Since two rational functions with the same divisor are identical except for a constant factor, it only
needs to check that the both sides of the equation have a same divisor.

It is easy to find that f1 and fn,P are very similar except a shift transformation. Hence, we have
divf1 = div(fn,P ◦λ−T), where λ−T : P → P −T . At this point, we have completed the construction
of f1. Likewise, we can construct f2 such that divf2 = div(fn,Q). We now have the more concise
representation of Weil pairing [7],

ên(P,Q) = ên([P + T]− [T], [Q]− [O]) =
f1([Q]− [O])

f2([P + T]− [T])

=
f1(Q)

f1(O)

f2(T)

f2(P + T)
=
fn,P (Q− T)

fn,P (−T)

fn,Q(T)

fn,Q(P + T)
.

8

Taking T → O, it gives

ên(P,Q) = (−1)n
fn,P (Q)

fn,Q(P)
(4)

For ∀P ∈ E[n], ên(P, P) = ±1. So, the definition should be revised by using a homomorphic map.

The map ên is defined over an n-torsion group. For its existence, we have the following result [1].

Let E be an elliptic curve over the field Fq, n be a prime and n |]E(Fq). If gcd(n, q) = 1, n - q−1,
then E[n] ⊂ E(Fqk) if and only if n | qk − 1. In this case, the group µn of all n-th unit roots satisfies
that

µn ⊂ Fqk , µn 6⊂ Fqj , j = 1, · · · , k − 1

where k is called the embedding degree of E[n] with respect to E(Fqk). The result indicates that the
computation of ên is always done over the field Fqk . From the practical point of view, it is usual to
specify that k 6 6 in order to facilitate the computation of pairings.

We now take the embedding degree k = 2, and

q = 115792089237316195423570985008687907853269984665640564039457584007908834671663,

Q = (5, 23991821008281484097053715379747718372991279943638939452345024967188278261434X)

Suppose the order n is of the binary string btbt−1 · · · b1b0. Let

nk = n− (b0 + 2b1 + · · ·+ 2kbk), 0 ≤ k ≤ t,

i.e., b0 + n0 = n, (b0 + 2b1) + n1 = n, (b0 + 2b1 + 22b2) + n2 = n, · · · . We then have

fn,Q = fn0,Q · fb0,Q · hn0Q,b0Q = fn0,Q · fb0,Q ·
Ln0Q,b0Q

LnQ,−nQ

= fn1,Q · f2b1,Q · hn1Q,2b1Q · fb0,Q ·
Ln0Q,b0Q

LnQ,−nQ

= fn1,Q · f2b1,Q · fb0,Q ·
Ln0Q,b0Q

LnQ,−nQ
·
Ln1Q,2b1Q

Ln0Q,−n0Q

= fn2,Q · f22b2,Q · hn2Q,22b2Q · f2b1,Q · fb0,Q ·
Ln0Q,b0Q

LnQ,−nQ
·
Ln1Q,2b1Q

Ln0Q,−n0Q

= fn2,Q · f22b2,Q · f2b1,Q · fb0,Q ·
Ln0Q,b0Q

LnQ,−nQ
·
Ln1Q,2b1Q

Ln0Q,−n0Q
·
Ln2Q,22b2Q

Ln1Q,−n1Q

= · · ·

= f2tbt,Q · · · f22b2,Q · f2b1,Q · fb0,Q ·
Ln0Q,b0Q

LnQ,−nQ
·
Ln1Q,2b1Q

Ln0Q,−n0Q
·
Ln2Q,22b2Q

Ln1Q,−n1Q
· · ·

L(n−nt)Q,2tbtQ

Lnt−1Q,−nt−1Q

In this process, we need to compute the points

b0Q, 2b1Q, 2
2b2Q, · · · , 2tbtQ; n0Q,n1Q,n2Q, · · · , nt−1Q

Likewise, for the other point P , we need to compute the points

b0P, 2b1P, 2
2b2P, · · · , 2tbtP ; n0P, n1P, n2P, · · · , nt−1P

9

The cost for evaluating the pairing Eq.(4), is almost 2t times that of computing kP over E/Fq2 .
Practically, t ≈ 2× 256, and 2t ≈ 1024.

We fail to generate the Mathematica code for testing Weil pairings, due to the hardness to
compute the order of point Q over the curve y2 = x3 + 7 mod (X2 + 1, q).

7 The runtime comparison

Pairing-based cryptography should specify that the base point P ∈ E/Fqk is of a large order so that
ECDLP must be intractable. Besides, it should specify that the order of µn should be large enough
so that the general discrete logarithm must also be intractable. The practical runtimes for RSA-2048,
ECC-256, ECC over an extended field, and the estimated runtimes for Weil pairings are listed below
(see Table 2).

Table 2: The comparison for different runtimes in the worst cases
RSA-2048 0.015625 (seconds)
ECC over Fq 0.046875
ECC over Fq2 1.46875
ECC over F2256 7.10938

Weil pairing over Fq2 1024× 1.46875
Weil pairing over Fq2 with a fixed point 512× 1.46875

The runtime for RSA-2048 is almost three times faster than ECC over Fq, 450 times faster than
ECC over F2256 , 96,000 times faster than Weil pairing with 2 embedding degree, and 48,000 times
faster than Weil pairing with 2 embedding degree and a fixed point.

8 Conclusion

RSA has survived over forty years due to its straightforward principle and fast performance. In view
of the current unconvincing quantum machines, we anticipate the coexistence of RSA and ECC will
last at least ten years.

References

[1] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has sub-exponential
discrete log problem under the menezes-okamoto-vanstone algorithm. Journal of Cryptology,
(11):141–145, 1998.

[2] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM Journal on
Computing, 32(3):586–615, 2003.

[3] D. Castelvecchi. Ibm releases first-ever 1,000-qubit quantum chip. Nature, 624(238), 2023.

[4] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer,
USA, 2003.

[5] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, 1987.

10

[6] V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology — CRYPTO ’85
Proceedings, pages 417–426, Berlin, Heidelberg, 1986. Springer.

[7] V. Miller. The weil pairing, and its efficient calculation. Journal of Cryptology, (17):235–261,
2004.

[8] R. Rivest, A. Shamir, and L. Adleman. A mehtod for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[9] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[10] J. Silverman. The arithmetic of elliptic curves. Springer, 1986.

11

	Introduction
	The runtime for RSA-2048
	The runtime for ECC-256
	The runtime for ECC over a quadratic extended field
	The runtime for ECC with the characteristic 2
	The estimated runtime for pairings
	Weil pairing
	Miller algorithm

	The runtime comparison
	Conclusion

