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Abstract. In this paper we study the effect of using small prime num-
bers within the Okamoto-Uchiyama public key encryption scheme. We
introduce two novel versions and prove their security. Then we show
how to choose the system’s parameters such that the security results
hold. Moreover, we provide a practical comparison between the crypto-
graphic algorithms we introduced and the original Okamoto-Uchiyama
cryptosystem.
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1 Introduction

The Okamoto-Uchiyama cryptosystem was introduced in [19] and the authors
proved that inverting the encryption function is equivalent to factoring. Un-
like most factoring based schemes, the Okamoto-Uchiyama encryption is based
on factoring numbers of the form p2q instead of pq, where p and q are prime
numbers. Another important security results is that the scheme is semantically
secure if the p-subgroup assumption holds. This assumption is comparable to the
quadratic residue and high degree residue assumptions [19]. We underline that
the Okamoto-Uchiyama cryptosystem is partially homomorphic with respect to
message addition and supports ciphertext randomization.

Shortly after the publication of [19], Coron, Naccache and Paillier introduced
in [9] a variant of the Okamoto-Uchiyama cryptosystem that reduces the com-
plexity of decryption. The authors claim, without proof, that the scheme retains
the same security as the original scheme. We revisit their claims and we argue
that is not obvious why the scheme is as secure as factoring. Therefore, in our
opinion, the equivalence of Coron et al.’s variant to factoring remains an open
problem. We also show that the semantic security of this variant is linked to a
special kind of p-subgroup problem.

Another variant was introduced in [8], which also aims at reducing decryption
complexity. They achieve this by choosing a special type of generator, and there-
fore instead of doing two exponentiations and a modular inversion, Choi, Choi
and Won manage to decrypt using only an exponentiation. Similar to Coron et
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al., Choi et al. claim that their variant is equivalent to factoring. Their claim is
refuted in [23] and it remains an open problem to prove that Choi et al.’s encryp-
tion scheme is not invertible. Note that the Okamoto-Uchiyama cryptosystem
allows us to precompute an exponentiation and the corresponding inverse, and
thus reduce the complexity of decryption to only one exponentiation. Therefore,
we can obtain a decryption time similar to Choi et al. at the cost of memorizing
an element modulo n and without sacrificing equivalence to factoring.

Since one of the most important features of the Okamoto-Uchiyama cryp-
tosystem is its equivalence to factoring, we aim at finding a way to decrease de-
cryption times, while retaining the cryptosystem’s one-way equivalence to some
form of factoring. Therefore, we introduce two variants of the scheme: an un-
balanced version and a multiprime one. In the first version we show how to
decrease the size of p while keeping the system secure and implicitly decreasing
the complexity of decryption. The only cryptosystem related to this version is
called the unbalanced RSA [24]. Just like our version, the scope is to reduce p,
while keeping the system secure. Compared to the unbalanced RSA, the one-way
property of the unbalanced Okamoto-Uchiyama is equivalent to factoring.

In the multiprime version, we increase the number of factors while keeping the
size of the modulus constant and we manage to prove that inverting encryption is
equivalent to computing the square-free factor of n. In the literature, we can find
two related cryptosystems: the multiprime RSA [4,22] and the multiprime Joye-
Libert [16, 26]. The philosophy behind the multiprime RSA is the same as ours,
while in the case of the multiprime Joye-Libert, the authors use multiple primes,
but they increase the size of the modulus. Note that none of these systems is
equivalent to factoring, while our variant is equivalent to partially factoring the
modulus. According to [15], the multiprime RSA was implemented in Wireless
Transport Layer Security protocol in order to decrease decryption times by use
of parallelism. The same trick can be used to speed up the multiprime Okamoto-
Uchiyama cryptosystem.

In the final section of our paper, we analyze the complexity of the two novel
variants. Then we compare decryption times for all versions of the Okamoto-
Uchiyama scheme that are equivalent to some form of factoring. If parallelization
is possible, then the multiprime variant is to be preferred since it has a larger
message space. Otherwise, for messages under a certain threshold, the unbal-
anced version has faster decryption times and once the threshold is crossed, the
multiprime variant surpasses the efficiency of the unbalanced one.

For completeness we also provide an unbalanced and a multiprime version
of the Coron-Naccache-Paillier cryptosystem. Then we prove their semantic se-
curity and finally we analyse their performance. We do not present a similar
treatment for the Choi-Choi-Won cryptosystem, since an optimization equiva-
lent with theirs can be achieved by simpler means, as states above.

Structure of the paper. In Section 2 we introduce notations, definitions and
lemmas used throughout the paper. The original Okamoto-Uchiyama scheme is
described in Section 3. In Sections 4 and 5 we present two novel versions of the
Okamoto-Uchiyama scheme. The Coron-Naccache-Paillier variant is tackled in
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Section 6. A performance analysis of some of the Okamoto-Uchiyama variants
is provided in Section 7. We conclude in Section 8. A multiprime version of the
Coron-Naccache-Paillier variant is given in Appendix A.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. By |n| we
denote the size of n in bits. We use the notation x

$←− X when selecting a
random element x from a sample space X. We denote by x ← y the assign-
ment of the value y to the variable x. The probability that event E happens is
denoted by Pr[E]. Probabilistic polynomial-time algorithms are referred to as
PPT algorithms. The set of integers {0, . . . , a − 1} is further denoted by [0, a).
For shorthand, we denote the set [0, a + 1) by [0, a]. Multidimensional vectors
v = (v0, . . . , vs−1) are represented as v = {vi}i∈[0,s).

2.1 Computational Complexity

In order to determine the computational complexity of our proposed schemes,
we use the complexities of the mathematical operations listed in Table 1. These
complexities are in accordance with the algorithms presented in [10, 17]. We do
not use the explicit complexity of multiplication, but instead we refer to it as M(·)
for clarity. When presenting the complexity of performing an exponentiation we
assume that the exponent has k bits. Also, in the case of the Chinese remainder
theorem (CRT) we consider that the resulting modulus has µ bits and that we
have r moduli.

Operation Complexity
Multiplication M(µ) = O(µ log µ log log µ)
Exponentiation O(kM(µ))
Modular inverse O(µM(µ))

CRT O(log rM(µ))

Table 1: Computational complexity for µ-bit numbers

2.2 Number Theoretic Prerequisites

We further present some definitions and lemmas from [19] that are needed for
describing the public key encryption schemes presented in this paper.

Definition 1. Let p be an odd prime. We define the p-Sylow subgroup of Z∗
p2 as

Γ = {x ∈ Z∗
p2 | x ≡ 1 mod p}.
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Remark that Z∗
p2 is a cyclic group of order p(p−1). Therefore, we obtain the

following consequence.

Lemma 1. Let p be an odd prime. Then the p-Sylow subgroup of Z∗
p2 has cardi-

nality p.

Lemma 2. Let p be an odd prime, g ∈ Z∗
p2 and Γ the p-Sylow subgroup of Z∗

p2 .
If gp−1 mod p2 has order p, then gp−1 ∈ Γ .

Definition 2. Let p be an odd prime and Γ the p-Sylow subgroup of Z∗
p2 . We

define the logarithmic function L(·) on Γ as

L(x) = x− 1
p

, for any x ∈ Γ.

Lemma 3. Let L(·) be the logarithmic function on Γ . Then for any x, y ∈ Γ we
have L(xy) ≡ L(x) + L(y) mod p.

Lemma 4. Let L(·) be the logarithmic function on Γ . Also, let x ∈ Γ such that
L(x) ̸= 0 and y ≡ xm mod p2, where m ∈ Zp. Then the following holds

m ≡ L(y)
L(x)

≡ y − 1
x− 1

mod p.

2.3 Public Key Encryption
A public key encryption (PKE) scheme usually consists of three PPT algorithms:
Setup, Encrypt and Decrypt. The Setup algorithm takes as input a security pa-
rameter and outputs the public key as well as the matching secret key. Encrypt
takes as input the public key and a message and outputs the corresponding ci-
phertext. The Decrypt algorithm takes as input the secret key and a ciphertext
and outputs either a valid message or an invalidity symbol (if the decryption
failed).

Definition 3 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a PKE scheme
is captured in the following game:

Setup(λ): The challenger C generates the public key, sends it to adversary A
and keeps the matching secret key to himself.

Query: Adversary A sends to C two equal length messages m0, m1. The chal-
lenger flips a coin b ∈ {0, 1} and encrypts mb. The resulting ciphertext c is
sent to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the
game if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind-cpa
A (λ) = |Pr[b = b′]− 1/2|

where the probability is computed over the random bits used by C and A. A
PKE scheme is ind-cpa secure, if for any PPT adversary A the advantage
ADV ind-cpa

A (λ) is negligible.



5

3 The Okamoto-Uchiyama PKE scheme

The Okamoto-Uchiyama scheme was introduced in [19] and the authors prove
that inverting the encryption function is as hard as factoring. The scheme was
also proven ind-cpa secure in the standard model under the p-subgroup assump-
tion3. We shortly describe the algorithms of the Okamoto-Uchiyama cryptosys-
tem.

Setup(λ): Generate two distinct large prime numbers p, q such that |p| = |q| = λ
and compute n = p2q. Randomly select g ∈ Zn such that gp ≡ gp−1 mod p2

has order p in Z∗
p2 . Let h ≡ gn mod n. Output the public key pk = (n, g, h, λ)

and the corresponding secret key sk = (p, q).
Encrypt(pk, m): To encrypt a message m ∈ [0, 2λ−1) we choose r

$←− Zn and
compute c ≡ gmhr mod n. Output the ciphertext c.

Decrypt(sk, c): Compute cp ≡ cp−1 mod p2, gp ≡ gp−1 mod p2 and recover m
from the relation

m ≡ L(cp)
L(gp)

mod p.

4 The Unbalanced Okamoto-Uchiyama PKE scheme

In the unbalanced Okamoto-Uchiyama scheme we reduce the size of p (denoted
λp), while keeping the size of n constant (denoted λn). This modification only
impacts the description of the Setup and Encrypt algorithms, which we briefly
describe below. Therefore, we have λn = 2λp + λq, where λq = |q| and λp ≤ λq.
Note that when λp = λq we obtain the Okamoto-Uchiyama cryptosystem, which
we further refer to as the balanced Okamoto-Uchiyama scheme.

Setup(λp, λq): Generate two distinct large prime numbers p, q such that |p| =
λp and |q| = λq. Let n = p2q. Randomly select g ∈ Zn such that gp ≡
gp−1 mod p2 has order p in Z∗

p2 . Let h ≡ gn mod n. Output the public key
pk = (n, g, h, λp) and the corresponding secret key sk = (p, q).

Encrypt(pk, m): To encrypt a message m ∈ [0, 2λp−1) we choose r
$←− Zn and

compute c ≡ gmhr mod n. Output the ciphertext c.

Remark 1. Modifying the size of p does not impact the security proofs from [19].
Therefore, as long as factoring is hard, the unbalanced version is secure. We
discuss how to choose λp such that factoring remains difficult in Section 7.

3 To the author’s knowledge, the only method for breaking this assumption is to know
the factorisation of n.
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5 The Multiprime Okamoto-Uchiyama PKE scheme

5.1 Description

We further describe the multiprime Okamoto-Uchiyama encryption scheme. In
this case we split up n into multiple primes. Therefore, we have λn = 2tλp + λq,
where λq is the size of the square free prime factor q and λp ≤ λq. Note that the
case t = 1 and λp = λq corresponds to the original cryptosystem [19]. Also, if
we set t = 1, we obtain the unbalanced version.

Setup(λp, λq): Generate t + 1 distinct large prime numbers p1, . . . , pt, q such
that |p1| = . . . = |pt| = λp and |q| = λq. Let n = p2

1 . . . p2
t q. Randomly select

g ∈ Zn such that for any i ∈ [1, t] the element gpi
≡ gpi−1 mod p2

i has order
pi in Z∗

p2
i
. Let h ≡ gn mod n. Output the public key pk = (n, g, h, λp, t) and

the corresponding secret key sk = (P, q), where P = {pi}i∈[1,t].
Encrypt(pk, m): To encrypt a message m ∈ [0, 2λpt−1), we choose r

$←− Zn and
compute c ≡ gmhr mod n. Output the ciphertext c.

Decrypt(sk, c): For each i ∈ [1, t] compute cpi
≡ cpi−1 mod p2

i , gpi
≡ gpi−1 mod

p2
i and recover mi from the relation

mi ≡
L(cpi

)
L(gpi)

mod pi.

Let n′ = p1 . . . pt. Using the CRT, compute the unique m ∈ Zn′ such that
m ≡ mi mod pi.

Correctness. The recovery of m is possible due to the following relation

cpi ≡ cpi−1 ≡ (gmhr)pi−1 ≡ gm(pi−1)(grn/pi)pi(pi−1) ≡ gm(pi−1) mod p2
i ,

which according to Lemmas 2 and 4 implies

m ≡ L(cpi
)

L(gpi
)

mod pi.

Optimizations. In the Setup phase, we have to compute a special type of g.
An efficient way to perform this step is to first randomly select gi

$←− Z∗
p2

i
such

that gpi−1
i mod p2

i has order pi for i ∈ [1, t] and then choose a random element
gt+1

$←− Z∗
q . Afterwards use the CRT to compute an element g ∈ Z∗

n such that
g ≡ gi mod p2

i for all i and that g ≡ gt+1 mod q.
Another possible optimisation is to memorize the values used during the

Decrypt algorithm that are known beforehand. More precisely, during the Setup
phase we can precompute the values L(gpi

)−1 mod pi, p2
i and n′, where i ∈ [1, t].

These values can enhance the secret key, and therefore can be used to speed up
the decryption process at the cost of using more memory.
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5.2 Security Analysis

In this section we first introduce a novel security assumption called the square-
free factor problem and prove that inverting the encryption function of our pro-
posal is as hard as breaking this assumption. Note that, when t = 1, the sff
assumption is equivalent with factoring the modulus. Then we generalise the p-
subgroup problem stated in [19] and prove the ind-cpa security of our proposal.
Note that for simplicity we assume, without losing generality, that λp = λq = λ
when conducting the security analysis.

Definition 4 (Square-Free Factor - sff). Choose t + 1 distinct large prime
numbers p1, . . . , pt, q ≥ 2λ. Let A be a PPT algorithm that returns an integer.
We define the advantage

ADV sff
A (λ) = Pr[A(n) = q | n = p2

1 . . . p2
t q].

The Square-Free Factor assumption states that for any PPT algorithm A the
advantage ADV sff

A (λ) is negligible.

Theorem 1. Inverting the encryption algorithm of the multiprime Okamoto-
Uchiyama PKE is intractable if the sff assumption is intractable.

Proof. Let’s assume that there exists a PPT adversary A that given a ciphertext
c recovers m with non-negligible probability. We further construct another PPT
algorithm B that given as input n can find the prime factor q with non-negligible
probability.

The first step of B is to generate the elements g and h that are needed to run
A. Therefore, B randomly chooses g

$←− Z∗
n and computes h ≡ gn mod n. Note

that gpi−1 mod p2
i has order pi with probability (pi − 1)/pi. Therefore, g and

h have the same distribution as in the original scheme with an overwhelming
probability (p1 − 1) . . . (pt − 1)/(p1 . . . pt).

In the next step B constructs a “ciphertext” c′. More precisely, B randomly
generates z′ $←− Zn and computes c′ ≡ gz′ mod n. We further show the relation
between the distribution of “ciphertexts” c′ and the distribution of real cipher-
texts c.

Let c ≡ gm+nr mod n be a real ciphertext. We denote by z = m + nr. Let
the order of g modulo p1, . . . , pt be p1p′

1, . . . , ptp
′
t, respectively, while the order

modulo q is denoted as q′. Let ℓ = lcm(p′
1, . . . , p′

t, q′).
Then the distribution of c is given by the distribution of z = (z1, z2), where we

have z1 ≡ z mod p1 . . . pt and z2 ≡ z mod ℓ. Similarly, we define z′ = (z′
1, z′

2) as
z′

1 ≡ z′ mod p1 . . . pt and z′
2 ≡ z′ mod ℓ. Remark that z1 is randomly distributed

in [0, 2λt−1), while z′
1 is randomly distributed in Zp1...pt

, which is roughly the
size of [0, 2λt). Therefore, the probability of obtaining a given z1 is at most twice
than that of z′

1. Hence, a non-negligible fraction of z1 is also non-negligible in
z′

1.
Note that gcd(n, ℓ) = 1, since gcd(pi, ℓ) = 1 and gcd(q, ℓ) = 1. Therefore,

when z1 and z′
1 are fixed, we have that the distributions of z2 and z′

2 are statis-
tically close.
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Given the values (g, h, c′) generated by B, adversary A will output a message
m with non-negligible probability. Bear in mind that m should satisfy m < 2λt−1

and z′ ≡ m mod p1 . . . pt. The probability of z′ to be greater or equal than 2λt−1

is

n− 2λt−1

n
≃ 2λ(2t+1) − 2λt−1

2λ(2t+1) = 2λt−1(2λt+λ+1 − 1)
2λt−12λt+λ+1 ≃ 1,

which is non-negligible. Therefore, with overwhelming probability we have z′ ̸≡
m mod n, and thus gcd(z′ −m, n) ̸= 1.

We claim that gcd(z′ −m, n) = p1 . . . pt in almost all the cases. Let i ∈ [1, t].
The property z′ −m ≡ 0 mod pi is equivalent with z′ −m = αpi, where α > 0.
If αpi ≡ 0 mod p2

i then we have that α ≡ 0 mod pi. Therefore, the probability of
having z′−m ̸≡ 0 mod p2

i is (pi−1)/pi. In the case of q we have z′−m ̸≡ 0 mod q
with probability (q− 1)/q. Hence, we obtain that gcd(z′−m, n) = p1 . . . pt with
overwhelming probability (p1 − 1) . . . (pt − 1)(q − 1)/(p1 . . . ptq). Therefore, B
computes q = n/(p1 . . . pt)2 with non-negligible probability. ⊓⊔

Definition 5 (p-Subgroups - ps). Choose t + 1 distinct large prime numbers
p1, . . . , pt, q ≥ 2λ and compute n = p2

1 . . . p2
t q. Let Γi be the pi-Sylow subgroup

of Z∗
p2

i
. We define the set ∆i = {x ∈ Z∗

n | xpi−1 ∈ Γi}. We denote by ∆ =
∆1∩ . . .∩∆t and ∆̄ = Z∗

n \∆. Let A be a PPT algorithm that returns 1 on input
(x, n) if x ∈ ∆. We define the advantage

ADV ps
A (λ) =

∣∣∣Pr[A(x, n) = 1|x $←− ∆]− Pr[A(x, n) = 1|x $←− ∆̄]
∣∣∣ .

The p-Subgroups assumption states that for any PPT algorithm A, the advantage
ADV ps

A (λ) is negligible.

Theorem 2. The multiprime Okamoto-Uchiyama PKE is ind-cpa secure if and
only if the ps assumption is intractable.

Proof. We further denote by E(m) the encryption of a message m. Note that
breaking the ps assumption is equivalent with distinguishing between E(0) and
E(1). To see that we first compute

E(0)pi−1 ≡ (g0hr0)pi−1 ≡ gr0n(pi−1) ≡ 1 mod p2
i ,

and

E(1)pi−1 ≡ (g1hr1)pi−1 ≡ gpi−1gr1n(pi−1) ≡ gpi−1 mod p2
i .

This implies that the order of E(0)pi−1 mod p2
i divides pi − 1 and the order of

E(1)pi−1 mod p2
i is pi since gpi−1 mod p2

i has order pi. Therefore, E(0)pi−1 ∈ ∆̄
and E(1)pi−1 ∈ ∆, for all i ∈ [1, t].

Now, let’s assume that there exists a PPT adversary A that can distinguish
between E(0) and E(1). We further construct another PPT algorithm B that
can break the ind-cpa security of our proposal.
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Once B receives a ciphertext c, he computes the value x ≡ cg−m0 mod n

and chooses r
$←− Zn. Let ḡ ≡ g(m1−m0)+rn mod n, h̄ ≡ ḡn mod n and ℓ =

lcm(p1 − 1, . . . , pt − 1, q − 1). We denote by Ē(m) the encryption of m using ḡ
and h̄. If B receives the encryption of m0, we have

x ≡ hr0 ≡ h̄r0/(m1−m0+rn) mod n,

and

x ≡ gm1−m0hr1 ≡ ḡh̄(r1−r)/(m1−m0+rn) mod n,

otherwise. Note that since gcd(n, ℓ) = 1, m1 −m0 + rn is randomly distributed
in Zℓ. Also, m1−m0 + rn is invertible modulo ℓ with non-negligible probability.
Therefore, x is either Ē(0) or Ē(1) with overwhelming probability.

We further prove that with a non-negligible probability the order of ḡpi
≡

ḡpi−1 mod p2
i is pi for all i ∈ [1, t]. Remark that gcd(m1 − m0, p1 . . . pt) = 1

with probability (p1 − 1) . . . (pt − 1)/(p1 . . . pt). Now we assume that there exist
ki < pi such that ḡki

pi
≡ 1 mod pi. Then ki(m1 −m0) ≡ 0 mod pi for all i ∈ [1, t].

This implies that k1 . . . kt(m1−m0) ≡ 0 mod p1 . . . pt. Since m1−m0 is coprime
with the modulus, we obtain that k1 . . . kt ≡ 0 mod p1 . . . pt, which leads to a
contradiction. Therefore, with an overwhelming probability we have ḡ ∈ ∆.

On input (ḡ, h̄, x), adversary A outputs the correct bit b with non-negligible
probability. Algorithm B simply relays b and according to the arguments pre-
sented above, it guesses correctly whether c is the encryption of m0 or m1.

We further prove the converse statement. Thus, let’s assume that there exists
a PPT adversary A that guesses correctly if a ciphertext encrypts either m0 or
m1. We assume, without loss of generality, that m0 < m1. We will construct a
PPT machine B which can distinguish between E(0) and E(1).

Given a ciphertext c algorithm B computes x ≡ cm1−m0gm0+nr mod n, where
r

$←− Zn. If B receives an encryption of 0, we have

x ≡ (hr0)m1−m0gm0+nr ≡ gm0hr0(m1−m0)+r mod n

and

x ≡ (ghr1)m1−m0gm0+nr ≡ gm1hr1(m1−m0)+r mod n.

Therefore, x is either E(m0) or E(m1).
On input (g, h, x) adversary A outputs a bit b. Therefore, if algorithm B

outputs b, then with non-negligible probability it guesses correctly whether c is
the encryption of 0 or 1. ⊓⊔
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6 The Coron-Naccache-Paillier PKE scheme

To decrease the complexity of the decryption process, the authors of [9] introduce
a slightly modified version of the Okamoto-Uchiyama encryption scheme. We
further describe the Coron-Naccache-Paillier optimisation.

Setup(λ, λu): Generate a large prime number u such that |u| = λu. Also, gen-
erate two distinct large prime numbers p, q such that |p| = |q| = λ and
p−1 = uv. Let n = p2q. Randomly select g ∈ Zn such that gp ≡ gp−1 mod p2

has order p in Z∗
p2 . Compute G ≡ gv ∈ Z∗

n and h ≡ Gn mod n. Output the
public key pk = (n, G, H, λ) and the corresponding secret key sk = (p, q).

Encrypt(pk, m): To encrypt a message m ∈ [0, 2λu−1), we choose r
$←− Zn and

compute c ≡ GmHr mod n. Output the ciphertext c.
Decrypt(sk, c): Compute cp ≡ cu mod p2, gp ≡ Gu mod p2 and recover m from

the relation

m ≡ L(cp)
L(gp)

mod p.

Remark 2. In the original paper [9], the authors encrypt messages of size λ− 1,
but that leads to an incorrect decryption since the order of G is u < 2λ−1,
and thus a wrap-around of the message is possible. This problem is fixed in our
description.

Remark 3. In [9], the authors claim without proof that their optimisation is
equivalent with factoring n. They only state that “equivalence to factoring is
easily derived from the original security proof included in [19]”. When we tried
to follow the same line of reasoning as in Theorem 1, the following problem
occurred. When choosing G randomly4 from Z∗

n, the probability of Gu mod p2

having order p is

u

p
≃ 2λu

2λ
= 2λu

2λ−λu
,

which is negligible5. Therefore, the proof breaks down because Gu will almost
never have the correct order, namely p, leading to the simulation failing to gener-
ate the correct distributed G with non-negligible probability. Hence, we consider
that the optimisation is not equivalent to factoring, until proven otherwise.

Remark 4. In the original paper [9], the ind-cpa security of the scheme is
claimed without proof to be equivalent with the ps assumption as introduced
in [19]. In reality, the claim is partially true. More precisely, the ind-cpa security
can be linked to the following version of the ps assumption6.

4 In [19, Theorem 6], this step is equivalent to choosing g
$←− Z∗

n.
5 Compared with the non-negligible value of (p− 1)/p as in [19, Theorem 6].
6 see Appendix A for the proof
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Definition 6 (Strong Prime p-Subgroups - sp-ps). Choose t + 1 distinct
large prime numbers p1, . . . , pt, q ≥ 2λ such that pi − 1 has a large prime factor
denoted ui for all i ∈ [1, t]. Let Γi be the pi-Sylow subgroup of Z∗

p2
i
. We define the

set Ωi = {x ∈ Zn | xui ∈ Γi}. We denote by Ω = Ω1 ∩ . . . ∩Ωt and Ω̄ = Z∗
n \Ω.

Let A be a PPT algorithm that returns 1 on input (x, n) if x ∈ Ω. We define the
advantage

ADV sp-ps
A (λ) =

∣∣∣Pr[A(x, n) = 1|x $←− Ω]− Pr[A(x, n) = 1|x $←− Ω̄]
∣∣∣ .

The Strong Prime p-Subgroups assumption states that for any PPT algorithm A,
the advantage ADV ps

A (λ) is negligible.

7 Implementation and Performance Analysis

7.1 Parameter Selection

The fastest currently known algorithm for factoring composite numbers is the
Number Field Sieve (NFS) [14]. The expected running time of the NFS depends
on the size of the modulus n and not on the size of its factors. More precisely,
the expected running time is approximately

L[n] = e1.923(log n)1/3(log log n)2/3
.

In [13,14], the authors extrapolate the running time needed to factor a modulus
of size λn from the computational effort required to factor a 512-bit modulus.
Hence, a λn-bit modulus offers a security equivalent to a block cipher of d-bit
security if

L[2λn ] ≃ 50 · 2d−56 · L[2512]. (1)

Since we start from a secure Okamoto-Uchiyama PKE and we want to op-
timize decryption by decreasing the size of some of the factors of the modulus,
while keeping the size of the modulus constant, the NFS cannot be expected to
factor n. Unfortunately, this strategy can make the resulting PKEs vulnerable
to the Elliptic Curve Method (ECM) [11], if we lower the size of the factors be-
low a certain threshold. Compared to the NFS, the ECM has the running time
determined by the size of the smallest factor. Thus, if p is the smallest factor,
then the running time of the ECM is

E[n, p] = (log2 n)2e
√

2 log p log log p.

Similarly to the NFS, Lenstra [12] extrapolates the equivalent security provided
by a module of size λn with the smallest prime of size λp to be

E[2λn , 2λp ] ≥ 80 · 2d−56 · E[2768, 2167]. (2)
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From Equations (1) and (2) we can deduce the following equivalency

E[2λn , 2λp ] ≥ 80 · 2log2(L[2λn ]/(50·L[2512])) · E[2768, 2167]. (3)

A different model for predicting the security against the NFS and the ECM
is provided in [7]. Compared to Lenstra’s model, Brent uses known historical
factoring records to predict the year a modulus of a given size will be factored.
Using the least-squares fit, Brent obtains the following equation for the NFS

D1/3
n = Y − 1928.6

13.24
or equivalently Y = 13.24 ·D1/3

n + 1928.6 (4)

and for the ECM

D1/2
p = Y − 1932.3

9.3
or equivalently Y = 9.3 ·D1/2

p + 1932.3, (5)

where Dn is the number of digits of the factored modulus and Dp is the number
of digits of the largest prime factor found using the ECM.

Using regression analysis we update Brent’s equations using data points from
[2, 18, 25] for the NFS and from [6, 27] for the ECM. These data points are
presented in Figures 1 and 2.

Therefore, the updated equation for the NFS is

D1/3
n = Y − 1926

13.97
or equivalently Y = 13.97 ·D1/3

n + 1926 (6)

and for the ECM

D1/2
p = Y − 1939

8.207
or equivalently Y = 8.207 ·D1/2

p + 1939. (7)

Equations (4) to (7) are presented in Figures 3 and 4. Note that the black
dots represent the acquired data points. We can see that in the case of the
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Modulus key size 3072 7680 15360
Lenstra model 800(3) 1617(4) 2761(5)

Regression model 749(4) 1457(5) 2385(6)

Table 2: Equivalent key sizes

NFS the estimates are close, while in the case of the ECM the new estimate
is more pessimistic from a security point of view. Using the updated estimates
(Equations (6) and (7)) we obtain the following equivalency

D1/2
p = 13.97 ·D1/3

n − 13
8.207

. (8)

According to NIST [5], the recommended key sizes for composite modules are
λn = 3072/7680/15360. We preferred to use NIST recommendations instead of
the ones from [13,14] since these key sizes are the ones used by the industry and
the key sizes from [13,14] are criticized as being to conservative [25]. Therefore,
using Equations (3) and (8) we obtain the equivalent size of the smallest prime.
The results are presented in Table 2. Note that in parenthesis we provide the
maximum number of prime factors that n can have. Based on these equivalences,
we obtain the parameters for the Okamoto-Uchiyama schemes that offer protec-
tion against the NFS and the ECM (see Table 3). We can see that the only key
sizes that support a multiprime version are 7680 in the regression model and
15360 in both models.

7.2 Complexity

Using the complexities provided in Table 1, we computed the asymptotic run
times of the decryption algorithm for each Okamoto-Uchiyama variant. We also

1960 1980 2000 2020

4

6

Brent
Updated

Fig. 3: D1/3 versus year Y

1990 2000 2010 2020
6

7

8

9

10 Brent
Updated

Fig. 4: D1/2 versus year Y for ECM
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|n| t |p| |q| Model Type

3072
1 1024 1024 - Balanced
1 800 1472 Lenstra Unbalanced
1 749 1574 Regression Unbalanced

7680

1 2560 2560 - Balanced
1 1617 4446 Lenstra Unbalanced
1 1457 4766 Regression Unbalanced
2 1457 1852 Regression Multiprime

15360

1 5120 5120 - Balanced
1 2761 9838 Lenstra Unbalanced
1 2385 10590 Regression Unbalanced
2 2761 4316 Lenstra Multiprime
2 2385 5820 Regression Multiprime

Table 3: Okamoto-Uchiyama parameters’ size

determined the size of the message space for each variant. The results are pro-
vided in Table 4. Note that by parallel multiprime we mean the multiprime
version in which we use two separate threads to compute m1 and m2.

Scheme Decryption Complexity |m|
Balanced O(2λM(2λ) + λM(λ)) λ− 1

Unbalanced O(2λpM(2λp) + λpM(λp)) λp − 1
Multiprime O(2tλpM(2λp) + tλpM(λp) + log tM(tλp)) λpt− 1

Parallel Multiprime O(2λpM(2λp) + λpM(λp) + log tM(tλp)) λpt− 1

Table 4: Performance analysis

The comparison of the computational complexity of the four variants is
presented in Figures 5 and 6. Note that we only provide the comparison for
λn = 7680/15360 since these are the only module sizes that support all variants.
In the case of λn = 3072, we can easily deduce that the unbalanced version
(UnB) will run faster than the balanced one (Bal). Note that in Figure 6 the
two dots for each multiprime version (Mp) correspond to the two equivalence
models: Lenstra - upper dot and Regression - lower dot.

From the two plots we can see that the parallel multiprime version (PMp) has
a running time comparable to the unbalance version, and since the multiprime
version has a larger message space, it should be preferred. Nevertheless, if only
one thread is available and messages are below a certain threshold (denoted by
dotted lines), then the unbalanced version is preferred, otherwise the multiprime
version should be used.
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7.3 Implementation Details

We further provide the reader with benchmarks for the four Okamoto-Uchiyama
PKE schemes. Note that besides the parameters from Table 3, we also used the
parameters from Table 5 (see Figures 5 and 6).

|n| t |p| |q| Model Type
7680 1 2001 3678 Regression Unbalanced

15360 1 3801 7758 Lenstra Unbalanced
1 3282 8796 Regression Unbalanced

Table 5: Additional Okamoto-Uchiyama parameters’ size

We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00 GHz
and used GCC to compile it (with the O3 flag activated for optimization). Note
that for all computations we used the GMP library [3]. To calculate the running
times we used the omp_get_wtime() function [1]. For the parallel multiprime
variant we used the OMP library [1] to parallelize decryption. To obtain the aver-
age running time in seconds we chose to encrypt 100 128/192/256-bit messages.
Therefore, we wanted to simulate a key distribution scenario.

The results are provided in Table 6. Note that with blue we marked the
additional parameters and the decryption times for the parallel multiprime ver-
sion are given in the second row of t = 2. Also, the optimized version of the
decryption algorithm is denoted by Decrypt (opt).

In Table 6 we omitted encryption times, since they are similar to each other
for a given λn. More precisely, for 3072 we obtain 0.009679, for 7680 we have
0.096855 and for 15360 we have 0.550525. We can see from Table 6 that the
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conclusions from Section 7.2 hold. We can also see that the multiprime version
has the shortest time to generate the parameters, while the unbalanced version
the longest time. Nevertheless, generating parameters is a one-time operation.

|n| t |p| |m| Setup Decrypt Decrypt (opt)

3072
1 1024 1023 0.058187 0.003073 0.001537
1 800 799 0.120665 0.001535 0.000772
1 749 748 0.121719 0.001231 0.000614

7680

1 2560 2559 1.696050 0.034409 0.017205
1 1617 1616 5.828290 0.010711 0.005353
1 1457 1456 6.644670 0.007872 0.003932
1 2001 2000 3.158020 0.019550 0.009751

2 1457 2913 0.476329 0.015782 0.007897
0.008538 0.004511

15360

1 5120 5119 17.04490 0.203512 0.101740
1 2761 2760 70.11920 0.040647 0.020362
1 3801 3800 37.98000 0.089592 0.044745
1 2385 2384 103.1440 0.031670 0.015889
1 3282 3281 44.25260 0.063980 0.032011

2 2761 5521 7.584640 0.081344 0.040684
0.041635 0.021137

2 2385 4769 15.86700 0.063377 0.031778
0.032505 0.016557

Table 6: Message size and running times

8 Conclusions

In this work we introduced two novel versions of the Okamoto-Uchiyama cryp-
tosystem. The first one, called the unbalanced Okamoto-Uchiyama PKE, lowers
the size of p in order to decrease decryption time at the cost of shrinking the
message space. The second one, called the multiprime Okamoto-Uchiyama PKE,
increases the number of factors and achieves a decryption time comparable with
the unbalanced version if multiple threads are available. An advantage of the
multiprime variant is that it has a larger message space than the unbalanced
version and, sometimes, even larger than the original PKE. Therefore, if parallel
threads are available we recommend the multiprime version due to its larger mes-
sage space, otherwise, if short messages are sent we recommend the unbalanced
variant.

We also argue why we did not compare our variants to the Coron-Naccache-
Paillier PKE. Since equivalence to factoring is not proven in the original paper
and there are doubts about why simply modifying the proof of the Okamoto-
Uchiyama PKE does not work, we chose to discuss the Coron-Naccache-Paillier
PKE separately from the Okamoto-Uchiyama variants. For completeness, in Ap-
pendix A we provide an unbalanced and a multiprime variant of the Coron-
Naccache-Paillier PKE, study their security and provide performance bench-
marks. As in the case of the Okamoto-Uchiyama PKE, we recommend the un-
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balance version for short messages when decryption parallelization is not possible,
and the multiprime one otherwise.

Future work. We leave for future work the adaptation to unbalanced and multi-
prime mode, as well as the performance comparison with other factoring related
cryptosystems such as Paillier [20] or RSA [4,22,24].
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A The Multipleprime Coron-Naccache-Paillier PKE
scheme

A.1 Preliminaries

Before presenting the multiprime generalization, we first introduce the general-
ized CRT as stated in [21].

Theorem 3 (Generalized Chinese Remainder Theorem). Let m1, m2, . . . ,
mt be positive integers. For a set of integers a1, a2, . . . , at the system of congru-
ences

x ≡ ai (mod mi), for i ∈ [1, t]

has solutions if and only if

ai ≡ aj (mod gcd(mi, mj)), for i ̸= j, i, j ∈ [1, t]. (9)

If Equation (9) holds, then the solution will be unique modulo lcm(m1, m2, . . . , mt).

A.2 Description

For completeness, we further describe the multiple prime generalisation of the
Coron-Naccache-Paillier optimisation. Bear in mind that when t = 1 and λp =
λq we obtain the optimisation presented in [9] and when t = 1 we obtain the
unbalanced version of the Coron-Naccache-Paillier scheme. The reader can easily
see that we can also use the optimisation techniques presented in Section 5 to
speed-up this proposal.

https://members.loria.fr/PZimmermann/records/top50.html
https://members.loria.fr/PZimmermann/records/top50.html
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Setup(λp, λq, λu): Generate t distinct large prime numbers u1, . . . , ut such that
|u1| = . . . = |ut| = λu. Also, generate t + 1 distinct large prime numbers
p1, . . . , pt, q such that |p1| = . . . = |pt| = λp, |q| = λq and pi − 1 = uivi,
for i ∈ [1, t]. Let n = p2

1 · . . . · p2
t q. Randomly select g ∈ Zn such that

for any i ∈ [1, t] the element gpi
≡ gpi−1 mod p2

i has order pi in Z∗
p2

i
. Let

ℓ = lcm(p1u1v1, . . . , ptutvt). Using the generalized CRT compute the unique
v ∈ Zℓ such that v ≡ vi mod piuivi. Compute G ≡ gv ∈ Z∗

n and H ≡
Gn mod n. Output the public key pk = (n, G, H, λ, t) and the corresponding
secret key sk = (P, q), where P = {pi}i∈[1,t].

Encrypt(pk, m): To encrypt a message m ∈ [0, 2λut−1), we choose r
$←− Zn and

compute c ≡ GmHr mod n. Output the ciphertext c.
Decrypt(sk, c): For each i ∈ [1, t] compute cpi ≡ cui mod p2

i , gpi ≡ Gui mod p2
i

and recover mi from the relation

mi ≡
L(cpi

)
L(gpi

)
mod pi.

Let n′ = p1 · . . . · pt. Using the CRT compute the unique m ∈ Zn′ such that
m ≡ mi mod pi.

Correctness. The first thing we need to show is that in the Setup phase the
conditions of Theorem 3 are satisfied. We note that

gcd(piuivi, pjujvj) = gcd(vi, vj) | vi − vj ,

and therefore v exists.
To recover m we only need to prove that we end up with the same relations

as in the case of the Okamoto-Uchiyama decryption algorithm. Therefore, we
have

cpi
≡ cui ≡ (GmHr)ui ≡ (gmhr)vui ≡ (gmhr)pi−1 mod p2

i ,

since v ≡ vi mod pi(pi − 1).

A.3 Security Analysis

Theorem 4. The multiple prime Coron-Naccache-Paillier PKE is ind-cpa se-
cure if and only if the sp-ps assumption is intractable.

Proof (sketch). We further denote by E(m) the encryption of a message m. Note
that breaking the sp-ps assumption is equivalent with distinguishing between
E(0) and E(1). To see that we first compute

E(0)ui ≡ (G0Hr0)ui ≡ Gr0nui ≡ gr0n(pi−1) ≡ 1 mod p2
i ,

and

E(1)pi−1 ≡ (G1Hr1)ui ≡ GuiGr1nui ≡ gpi−1gr1n(pi−1) ≡ gpi−1 mod p2
i .
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Scheme Decryption Complexity
Balanced O(2λuM(2λ) + λM(λ))

Unbalanced O(2λuM(2λp) + λpM(λp))
Multiprime O(2tλuM(2λp) + tλuM(λp) + log tM(tλp))

Parallel Multiprime O(2λuM(2λp) + λuM(λp) + log tM(tλp))

Table 7: Performance analysis

This implies that the order of E(0)ui mod p2
i divides ui and the order of E(1)ui mod

p2
i is pi since gpi−1 mod p2

i has order pi. Therefore, E(0)ui ∈ Ω̄ and E(1)ui ∈ Ω.
Now, let’s assume that there exists a PPT adversary A that can distinguish

between E(0) and E(1). We further construct another PPT algorithm B that
can break the ind-cpa security of our proposal.

Once B receives a ciphertext C, he computes the value X ≡ CG−m0 mod n

and chooses r
$←− Zn. Let Ḡ ≡ G(m1−m0)+rn mod n, H̄ ≡ Ḡn mod n and ℓ =

lcm(p1 − 1, . . . , pt − 1, q − 1). We denote by Ē(m) the encryption of m using Ḡ
and H̄. If B receives the encryption of m0, we have X = Ē(0) and X = Ē(1),
otherwise.

To prove that Ḡui mod p2
i has order pi for all i ∈ [1, t], we first observe that

Ḡui ≡ ḡpi−1, where ḡ ≡ g(m1−m0)+rn mod n. Using the same arguments as in
the proof of Theorem 2 we obtain that Ḡui ∈ Γi, and thus Ḡui ∈ Ωi.

On input (Ḡ, H̄, X), adversary A outputs the correct bit b with non-negligible
probability. Algorithm B simply relays b and according to the arguments pre-
sented above, it guesses correctly whether c is the encryption of m0 or m1.

We further prove the converse statement. Thus, let’s assume that there exists
a PPT adversary A that guesses correctly if a ciphertext encrypts either m0 or
m1. We assume without loss of generality that m0 < m1. We will construct a
PPT machine B which can distinguish between E(0) and E(1).

Given a ciphertext c, algorithm B constructs an element X ≡ Cm1−m0Gm0+nr,
where r

$←− Zn. If B receives an encryption of 0 we have X = E(m0) and
X = E(m1), otherwise.

On input (G, H, X), adversary A outputs a bit b. Therefore, if algorithm B
outputs b, then with non-negligible probability it guesses correctly whether C is
the encryption of 0 or 1. ⊓⊔

A.4 Complexity and Implementation Details

Similarly to Table 4, we computed the complexity of the decryption algorithm for
the Coron-Naccache-Paillier variants. The results can be seen in Table 7. Note
that the message size for the balanced and unbalanced variants is λu− 1 and for
the multiprime versions is λut − 1. Compared to the Okamoto-Uchiyama, the
Coron-Naccache-Paillier variants have faster decryption times, but at the cost
of a smaller message space and the loss of equivalence with factoring.
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According to [9, 14], λu should be chosen such that the subgroup generated
by G is large enough that it protects the PKE against the baby-step-giant-
step method. According to [5], we should choose λu = 128/192/256. However,
we want to simulate a key distribution scenario, and thus we have to choose
λu = 129/193/257. This implies that the message space is 128/192/256 for the
(un)balanced version and 257/385/513 for the multiprime ones. We further pro-
vide the benchmarks for the Coron-Naccache-Paillier versions in Table 8.

|n| t |p| Setup Decrypt Decrypt (opt)

3072
1 1024 0.063806 0.000436 0.000215
1 800 0.121260 0.000278 0.000139
1 749 0.147123 0.000240 0.000119

7680

1 2560 1.481400 0.002870 0.001431
1 1617 4.954550 0.001399 0.000697
1 1457 8.247510 0.001149 0.000573

2 1457 0.570016 0.002308 0.001162
0.001692 0.000916

15360

1 5120 16.67890 0.011248 0.005606
1 2761 76.39660 0.004128 0.002063
1 2385 112.3960 0.003715 0.001856

2 2761 7.892090 0.008284 0.004155
0.004840 0.002749

2 2385 11.83500 0.007450 0.003733
0.004308 0.002429

Table 8: Running times

Based on Tables 7 and 8, we can see that the parallel multiprime version has
a running time comparable to the unbalance version, and since the multiprime
version has double the message space, it should be preferred. Nevertheless, if only
one thread is available and we only want to distribute symmetric keys, then the
unbalanced version is preferable, otherwise the multiprime version should be
used.
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