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Abstract

We study the possibility of schemes whose public parameters have been generated along with
a backdoor. We consider the goal of the big-brother adversary to be two-fold: It desires utility
(it can break the scheme) but also exclusivity (nobody else can). Starting with hash functions,
we give new, strong definitions for these two goals, calling the combination high effectiveness.
We then present a construction of a backdoored hash function that is highly effective, meaning
provably meets our new definition. As an application, we investigate forgery of X.509 certificates
that use this hash function. We then consider signatures, again giving a definition of high
effectiveness, and showing that it can be achieved. But we also give some positive results, namely
that for the Okamoto and Katz-Wang signature schemes, certain natural backdoor strategies
are provably futile. Our backdoored constructions serve to warn that backdoors can be more
powerful and damaging than previously conceived, and to help defenders and developers identify
potential backdoors by illustrating how they might be built. Our positive results illustrate that
some schemes do offer more backdoor resistance than others, which may make them preferable.
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1 Introduction

“Backdoors” are a long-standing concern in cryptography. This paper asks, just how effective can
backdoors be, in terms of the capabilities they give the big-brother adversary? We answer this via
new, strong definitions, and ways to achieve them. Overall, our results serve as a warning that
backdoors can be much more effective than previously conceived. As an introduction to the topic
of backdoors, we start with Dual EC as a canonical example.
The Dual EC backdoor. Dual EC is a pseudo-random number generator (PRNG) designed
by the NSA and then standardized as NIST SP 800-90 and ANSI X9.82. It includes (as public
parameters) a pair g, h of generators of an elliptic curve group. Shumow and Ferguson [47] pointed
out a potential backdoor, specifically the discrete logarithm x of h to base g. They showed how to
use x to predict PRNG outputs without having the seed, and this was later shown to allow attacks
on TLS [14].

Could the NSA have generated g and h = gx so as to know and retain the backdoor x? The
Snowden revelations (project Bullrun and SIGINT) suggest so. It also appeared that the NSA
went to considerable efforts to ensure adoption and standardization of Dual EC, including (as
per Reuters, 2013) paying RSA corporation $10 million to make Dual EC the default method for
pseudo-random generation in their BSafe library. Full accounts of the Dual EC story are in [10,13].
The setting. Research on backdoors, although present prior to Dual EC, intensified after it [2,4,
6,18,20,23,30]. It sits within a broader field of work on subversion [5,7,33,38,43,48,49,54–56] that
we will discuss in Section 2. Focusing for now on backdoors, let us begin with the model, clarifying
in particular the premises, goals and assumptions.

The adversary in this domain is often called big-brother, or the big-brother adversary. It
designs a scheme S that uses public parameters pk that have been generated with a backdoor bd,
as (pk, bd)←$ S.BKg. Big-brother represents power, such as a government or Intelligence Agency.
It is assumed to have the political clout and leverage to enable S, with pk, to be deployed (even
standardized) and used, even in the face of potential suspicions, or evidence, of backdooring. But
governments aren’t the only concern. Big-brother could also be a large corporation targeting its
employees.
Backdoor effectiveness. As a framework to capture and understand both prior work and ours,
one can see big-brother’s goal, in designing a backdoored scheme S, as having two parts:
• Utility: Big-brother, through knowledge of the backdoor bd, should be able to violate security

of Spk , but
• Exclusivity: Others, meaning entities possessing pk but not bd, should not be able to violate

security of Spk .
Utility of course represents the main intent of big-brother in creating backdoors, but exclusivity is
equally important. For example a big-brother government or Intelligence Agency wants to ensure
that other governments and their Intelligence Agencies cannot violate security of S. A big-brother
corporation wants to ensure that its competitors and the public cannot violate security of S.

The amalgam of utility and exclusivity is called effectiveness. It is a measure of the quality of
the backdoored scheme from the point of view of big-brother.
Building backdoored schemes. A foundational line of work gives particular, explicit construc-
tions of effective backdoored schemes. In particular this has been done for PRGs [20] and collision-
resistant (CR) hash functions [2,23]. This work serves as a warning, highlighting what big-brother
could potentially do and what risks or threats we face. As part of this, the works formalize notions
of effectiveness that they show their schemes meet.
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We revisit building backdoored schemes. We argue that the notions of effectiveness in prior
work are limited. This, as we will see, is true for both utility and exclusivity. We will give new,
stronger definitions of both. We then build backdoored schemes that (provably) achieve them. We
call these schemes highly effective.
Intent. It should go without saying that our intent, in providing highly-effective backdoored
schemes, is not to help big brother. Rather, it is to help defenders and developers by, first, warning
that the risks and threats from backdooring are even greater than indicated by prior work, and
second, helping them identify backdoors by giving examples of how they may be built. Finally, our
definitional frameworks may be of use for proving that certain schemes are resistant to (algorithmic)
backdoor attempts.
Backdooring hash functions. We start with collision-resistant hash functions and then move
to other primitives. A backdoored hash function BH allows big-brother to generate a hashing key
hk along with a backdoor bd as (hk, bd)←$ BH.BKg. The hashing key hk is public and defines
a deterministic evaluation algorithm BH.Ev(hk, ·) : {0, 1}∗ → {0, 1}BH.ol that is the actual (pub-
lic) hash function that everyone will use. A collision is a pair of distinct points e1, e2 such that
BH.Ev(hk, e1) = BH.Ev(hk, e2). The main security goal is collision resistance (CR). Effectiveness as
per Fischlin, Janson and Mazaheri (FJM) [23] is quite natural, asking for:
• Basic Utility: Given hk, bd, one can efficiently violate CR, meaning produce some distinct e1, e2

such that BH.Ev(hk, e1) = BH.Ev(hk, e2).
• Basic Exclusivity: An adversary given hk but not bd cannot violate CR.
We’ll refer to the combination as basic effectiveness. FJM [23] build a hash function BH satisfying
this. Roughly, hk is the image of bd under a one-way function F, and BH.Ev(hk, ·) behaves anoma-
lously if (and only if) its input maps to hk under F. Albertini, Aumasson, Eichlseder, Mendel and
Schläffer (AAEMS) [2] give a backdoored version of SHA1. Certain provably secure hash functions
can also be viewed as backdoored hash functions achieving basic effectiveness. For example, the
VSH (Very Smooth Hash) algorithm of Contini, Lenstra and Steinfeld [15] uses a public modulus
N = pq; knowing the factorization allows one to find collisions (which then reveal φ(N)).
Limitations of basic utility. Basic utility allows big-brother to find some collision e1, e2. But
in its quest for subversion, big-brother wants significantly more. We illustrate with two examples.

A commonly considered goal for big-brother in this setting [50,51,57] is forgery of TLS certifi-
cates allowing it to impersonate a website legit.com. Suppose the latter has a certificate CERT
issued by a certificate authority CA. The certificate consists of data (content) CERT.D and the
CA’s RSA signature SIGCA on the hash h = BH.Ev(hk,CERT.D). The data includes legit.com’s
public key D.PK, its identity D.ID = legit.com, and other auxiliary information. X.509 is the
standard format for such certificates. Big-brother wants to construct a certificate CERT that allows
it to impersonate legit.com. Since it cannot forge the CA signature, it wants (using its backdoor
for BH) to alter the data to D such that BH.Ev(hk,D) = h, allowing it to reuse the signature SIGCA.
But not just any choice of D allowing this will do; there are significant constraints. First, the ID
field D.ID must continue to be legit.com, so that the forged certificate allows impersonation of
this website. Second, big-brother wants the public key D.PK to be one for which it knows the
secret key, so that the forged certificate allows it to masquerade as legit.com in a TLS handshake.

The goal that emerges when given the backdoor is not to find some collision for BH.Ev(hk, ·)
but rather, given a point h, to create a preimage e of h under BH.Ev(hk, ·) such that e embeds
certain desired information in certain specific places in a way that allows the desired subversion.

Another example is password-based authentication. User U has password pwd. The server holds
(h, s) where h = BH.Ev(hk, pwd ∥ s) and s is a public, random salt, as specified by PKCS#5 [35].
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To authenticate itself, U sends pwd to the server (over a TLS connection), and the latter checks
that BH.Ev(hk, pwd ∥ s) = h. Assume (as is common) that the server’s file of hashed passwords
is compromised and big-brother knows h, s. To impersonate U, it wants to find pwd such that
BH.Ev(hk, pwd ∥ s) = h. Again, the task (given the backdoor) is to find a preimage e under
BH.Ev(hk, ·) of a target h such that e is not arbitrary but embeds some desired information (here
the salt) in some desired way or place.

Beyond basic utility, FJM [23] and AAEMS [2] suggest that utility be the ability to violate
preimage resistance. In the former this is formalized as: given h = BH.Ev(hk, x) for random x, the
backdoor bd allows finding some x′ satisfying BH.Ev(hk, x′) = h. But this will not suffice for the
above subversion tasks because (1) big-brother wants to find, not some preimage x′, but one that
is constrained to have a particular structure, and (2) the x under which the given h was computed
was not random but itself structured. We will accordingly formalize a new, high-utility definition
that allows both the subversion tasks above.
Limitations of basic exclusivity. Having seen that basic utility is limited, we argue the same
for basic exclusivity. Recall this asks that an adversary not having the backdoor bd be unable to
violate CR. This fails to consider that collisions created by big-brother using bd can reveal the
backdoor, making it easy to find further collisions. Indeed, this happens for basic constructions of
backdoored schemes such as outlined above. We will address this by formalizing a high-exclusivity
goal inspired by definitions of collision-resistance for chameleon hash functions given by Derler,
Samelin and Slamanig (DSS) [19].
Our new definitions. We define high utility and high exclusivity, referring to the amalgam as
high effectiveness. We first summarize the requirements and then discuss them. High utility below
is parameterized by a predicate P(·, ·) called the constraint:
• High Utility: There is an efficient algorithm BH.FP that given the backdoor bd, a string u called

the constraint-parameter, and a target h ∈ {0, 1}BH.ol, returns an e such that (1) BH.Ev(hk, e) =
h and (2) P(e, u) = true.

• High Exclusivity: An adversary given hk and an oracle for BH.FP(bd, ·, ·) should not be able to
find any non-trivial collision for BH.Ev(hk, ·).

In high utility, the constraint parameter u represents the information we want to embed in e, and
the constraint predicate P checks that e embeds u correctly. In the case of certificate subversion, u
would be the values of the fields D.ID and D.PK that big-brother wants the certificate data D to
contain, and the constraint predicate Pcert would, given e, u, parse e as a certificate and check that
the appropriate fields have values as given by u. For subversion of password-based authentication,
u is the salt and P(e, u) checks that u is a suffix of e. In this way, through choices of P, we can
capture a variety of subversion tasks.

High exclusivity now allows the adversary access to BH.FP(bd, ·, ·) as a way to capture possession
of preimages created by big-brother in the past. The oracle of course trivially allows creation of
some collisions, and the requirement is that the adversary not find further collisions. This in
particular precludes an output of BH.FP revealing the backdoor. Saying precisely what it means
for a collision to be “non-trivial” is delicate and our formal definition in the body of the paper is
more fine-grained, giving the adversary an additional oracle.
The HEB construction. Is it possible to build highly-effective backdoored hash functions? We
show, through construction, that the answer is “yes.”

To expand on this, first note that one cannot hope to achieve high effectiveness for all P. It is,
for example, impossible for the predicate P(e, u) that returns true iff e = u; intuitively, one needs
some “room” in e for the backdoor to exploit. We show how to build a highly-effective backdoored
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hash function BH for any constraint predicate satisfying a certain condition, that we define and call
embeddability. The class of predicates meeting this condition is large and includes in particular the
Pcert predicate allowing certificate subversion as well as predicates allowing subversion of password-
based authentication.

Our construction is a transform HEB (Highly Effective Backdoor) that takes (1) a standard
collision-resistant hash function G (2) a signature scheme S and (3) an embedding function Emb, for
the target predicate P, that is compatible with S, G, as we will define in Section 4. (Embeddability,
for now, just asks that such an embedding exists.) It returns a backdoored hash function BH =
HEB[G, S, Emb] as in Figure 6. We exhibit an efficient preimage finding algorithm BH.FP for which
we prove that high utility for P is achieved (Proposition 4.1). Theorem 4.2 proves high exclusivity
of BH assuming collision-resistance of the starting hash function G and strong unforgeability of the
signature scheme S. The design of HEB extends ideas of [30], who used a signature scheme to
backdoor a machine learning model.

Application. As an application of our theoretical results, we outline a PKI certificate forgery
attack. We consider X.509-format certificates where the hash function is an instance of our above-
discussed backdoored construction for the constraint predicate Pcert. Now, given a legitimate
certificate CERT, we use the backdoor to create a forged certificate CERT on big-brother’s choice
of certificate data. Section 6 describes this in detail. We note that this application relies crucially
on high-utility as we have defined it.

Detectability. In the design of backdoored schemes, big-brother may strive for some degree of
undetectability, but examination of the code or description of a scheme will usually allow one to
deduce that a backdoor could exist. This is true for past work [2,20,23]. In particular, examination
of a collision may reveal (as it does in our HEB construction) that it was created using the
backdoor. This, however, neither removes backdoors as a serious threat nor makes research on
them uninteresting. History indicates that detectability has not deterred the planting of backdoors.
In the political arena, big-brother may be an entity with power, capable of ensuring or mandating
deployment, standardization and use of the scheme despite potential for, or even evidence of,
backdooring. The story of Dual EC supports this perspective. That the design admitted a backdoor
was noted early, but this did not prevent its placement in products. Such situations may be even
more of a threat in totalitarian regimes. We also note that limited forms of black-box undetectability
as in [7, 30,54] are possible and provided by HEB as well.

Relation to CHFs. Like backdoored hash functions (BHFs), Chameleon Hash Functions (CHFs)
[37] admit a trapdoor that allows finding collisions. There is however a fundamental difference,
namely that CHFs are randomized. This precludes their directly replacing conventional hash func-
tions like SHA256 in conventional usages like PKI or password hashing, a limitation to which BHFs,
being deterministic, are not subject.

Nonetheless, at the technical and definitional levels, BHFs and CHFs are closely related. Ac-
cordingly we undertake in Section 5 a detailed study of the relations between the two primitives,
using for this purpose the comprehensive definitions of CHFs of DSS [19]. We prove that a highly-
effective BHF admits a correct (Proposition 5.4) and collision-resistant (Theorems 5.5, C.1) CHF,
considering DSS’s notions of either enhanced or full CR.

Backdoored signature schemes. The above outlook on backdooring can be brought to many
primitives beyond hash functions. We illustrate with backdoored signatures. We define, for these,
high utility and high exclusivity, as usual calling the combination high effectiveness. We then
give a simple construction of a highly-effective backdoored signature scheme. In addition, and in a
different vein, we also give positive results, showing that certain natural candidate backdoors fail for
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the Okamoto [41] and Katz-Wang [36] signature schemes. We now elaborate on these contributions.
A backdoored signature scheme BS allows generation of public parameters π along with a

backdoor bd as (π, bd)←$ BS.BPg. Users generate their signing and verifying keys individually as
(vk, sk)←$ BS.Kg(π). Basic utility might ask that possession of bd allows creation of some forgery,
meaning a message m and a valid signature for it under the verification key vk of some user. We
define high utility as asking for much more, namely that given any user verification key vk, and any
target message m, the backdoor allows creation of a signature for m relative to vk. Likewise, basic
exclusivity might simply ask that standard SUF-CMA security be maintained for adversaries not
having bd, but we define high exclusivity as asking that this be true even with access to an oracle
for producing backdoored signatures.

A natural way to define a backdoored signature scheme is to use our construction of a backdoored
hash function. Due to the embeddability restriction on the constraint predicate, however, this will
not allow backdoor-based forgery of arbitrary messages, failing high utility. We instead give a very
simple alternative backdoored signature scheme which we prove achieves high effectiveness.

In the Okamoto signature scheme [41], the public parameters consist, like in Dual EC, of a pair
g, h of group elements. The proof of security shows that forgery allows one to find the discrete
logarithm x of h to base g. This leads to x being a natural candidate for a backdoor. Curiously, we
show that knowledge of x does not allow backdooring. Our result (Theorem 8.1) is that Okamoto
retains SUF-CMA security even against adversaries knowing x assuming SUF-CMA security of
the Schnorr [46] signature scheme. We present a similar result for the Katz-Wang [36] signature
scheme.
Postscript. This work was written prior to, and without knowledge of, the xz backdoor, dis-
covered on March 29, 2024 [24]. While current understanding of the cryptographic portion of the
backdoor [52] is different from our backdoored constructions, and from our X.509 application in
Section 6, it also shows interesting similarities, such as the embedding of a signature and attacker-
chosen data in a certificate which triggers alternate execution during certificate validation. The
discovery of the xz backdoor shows that backdoors targeting high levels of efficacy are a realistic
possibility, and motivates research, such as ours, on this topic. Once full details of xz are known,
our framework may have further value, towards characterizing and understanding the capabilities
and limitations of this backdoor, specifically by capturing it formally and assessing what definitions
of utility, exclusivity, and potentially even indistinguishability, it meets.

2 Related work

Subverting cryptography. “Backdoors” are recurring concerns in cryptography. They have
been observed in a variety of settings, including parameter generation in Dual EC [10,47], malicous
code changes in Linux [22], and governmental exceptional access [1]. They have been imagined in
many more. To situate our investigation of “backdoored hash functions,” it is useful to consider
three categories in this area of subverted cryptography. We summarize their respective notions of
a “backdoor” in Figure 1.

In a first category, code can be maliciously modified from its algorithmic specification. This
has been studied as algorithm substitution attacks (ASAs) [7] and as kleptography [54–56]. Here,
an adversary’s goal is to both modify an algorithm such that it exfiltrates secret information,
and to keep this modification undetected. A limiting assumption in ASAs/kleptography is black-
box-only access to algorithms. In a second category, backdoors are imagined as processes that
allow an authority to access arbitrary secret keys. The authority can thus overcome usual security
guarantees, but this extra power is well known to the public. Anamorphic cryptography [5, 38, 43]
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Goals
Subversion Undetectability

ASAs/Kleptography ✓ ✓

Exceptional access ✓ ✕

Basic algorithmic backdoors ✓ ✕

Highly-effective algorithmic backdoors ✓✓ ✕

Figure 1: Categories of subversion, and whether the subversion aims to be undetected. Note that
a backdoor key could be kept secret while the presence of a backdoor is easily detected. The point
of this comparison is to note that while such undetectability could improve a backdoor, it is not
usually required in models or in practice.

and earlier work on subliminal channels [33,48,49] have considered this type of extra-cryptographic
subversion.

Third, and the category considered in this work, is maliciously designed algorithms or param-
eters. These have been studied for PRGs [18, 20], NIZKs [6], PKE [4], and hash functions (more
on this below). Unlike an ASA, algorithms are assumed to be implemented honestly, and code can
be inspected. Unlike anamorphic cryptography, public and secret keys are distributed as intended.
However, this work considers backdoors that are stronger than prior work, along both dimensions
of utility and exclusivity.

Hash functions. We now turn to existing work on hash functions. Definitions of backdoored
hash functions have been considered by [2, 23] and we give a thorough comparison to the latter
in Section 5. An explicit construction of maliciously designed SHA1 parameters was given by [2].
Implementations of hash functions have been studied from a kleptographic perspective as subverted
random oracles [44] and from a proof-techniques perspective as programmable hash functions [32].
From the kleptographic perspective, [9] studied defense techniques for subverted hash functions,
for which the model excluded domains of {0, 1}∗ (which we consider) among other definitional
differences.

“Backdoored hash functions” also brings to mind asymmetric notions of hash functions. Chamel-
eon hash functions were introduced by Krawczyk and Rabin in 2000 [37], and a recent overview
and strengthening was given by [19]. Here, the backdoor key is used constructively for signature
schemes and other applications; we include a detailed comparison to chameleon hash functions in
Section 5. Another notion, that of trapdoor hash functions, was considered in 2019 by [21]. A
trapdoor hash function is unkeyed, but includes a keyed hint function, with which certain bits
of a hash preimage can be recovered. Trapdoor hash functions have found applications in secure
two-party computation and despite the similar name, are different objects than backdoored hash
functions.

A variety of prior work [50, 51, 57] has considered the implications of weak hash functions for
PKI, a theme we also pursue.

Techniques. Outside of subverting cryptography, a related set of techniques and definitions have
been given for subverting machine learning models. The 2022 work of Goldwasser, Kim, Vaikun-
tanathan and Zamir (GKVZ) studies the possibility of inserting undetectable backdoors in a ma-
chine learning model [30]. Their techniques are similar to ours in Section 4. In GKVZ, a strongly
unforgeable signature triggers alternate execution in a model, modifying classifier output when a
signature is correctly parsed and verified. Our high exclusivity definition offers additional oracles
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providing backdoored hash function inputs, and the non-replicability condition of GKVZ offers an
oracle providing backdoored model inputs. We note that the embeddability notion we formalize in
Section 4 is more general than the parsing of GKVZ, but that these techniques seem to be quite
generically applicable to subversion.

3 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. By x ∥ y we denote the concatenation of strings x, y. If Z is a string, we let Z[a..b] be
the substring of Z between indices a and b, inclusive, or ε if b < a. If S is a finite set, then |S|
denotes it size. We say that a set S is length-closed if, for any x ∈ S it is the case that {0, 1}|x| ⊆ S.
(This will be a requirement for message and output spaces.)

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. If A is an algorithm, we let y ← A[O1, . . .](x1, . . . ; r) denote running A on
inputs x1, . . . and coins r with oracle access to O1, . . ., and assigning the output to y. We let
y←$ A[O1, . . .](x1, . . .) be the result of picking r at random and computing y ← A[O1, . . .](x1, . . . ; r).
We let OUT(A[O1, . . .](x1, . . .)) denote the set of all possible outputs of A when invoked with inputs
x1, . . . and oracles O1, . . .. Algorithms are randomized unless otherwise indicated. Running time is
worst case, which for an algorithm with access to oracles means across all possible replies from the
oracles. The abbreviation “p.p.t.” denotes “probabilistic polynomial time.”

An adversary is an algorithm. We use ⟨Alg⟩ to denote a description of algorithm Alg. We use
⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in {0, 1}∗. The image
of a function f : D→R is the set Im(f) = {f(x) : x ∈ D} ⊆ R. We may interchangeably refer to
the boolean false and integer 0, or to the boolean true and integer 1.
Games. We use the code-based game-playing framework of BR [8]. A game G starts with an
optional Init procedure, followed by a non-negative number of additional procedures called oracles,
and ends with a Fin procedure. Execution of adversary A with game G begins by running Init (if
present) to produce input←$ Init. A is then given input and is run with query access to the game
oracles. When A terminates with some output, execution of game G ends by returning Fin(output).
By Pr[G(A)] we denote the probability that the execution of game G with adversary A results in
Fin(output) being the boolean true.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G. In games, integer variables, set variables, boolean
variables and string variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
false and ⊥. Tables are initialized with all entries being ⊥. Games may occasionally Require: some
condition, which means that all adversaries must obey this condition. This is used to rule out
trivial wins.
Collision resistance. A hash function G consists of algorithms for key generation G.Kg and
evaluation G.Ev : OUT(G.Kg) × G.Dom → {0, 1}G.ol, where the domain of the hash function is
G.Dom and the output length is G.ol. A standard security notion is the collision resistance of G,
which is captured by game Gcr

G in Figure 2. If A is an adversary, we let Advcr
G (A) = Pr [ Gcr

G (A) ]
be its cr advantage.
Unforgeability of signatures. A signature scheme S specifies algorithms S.Kg, S.Sign, S.Vfy,
key spaces S.VK, S.SK, and signature length S.sl. Key generation S.Kg produces a verification key
vk ∈ S.VK and signing key sk ∈ S.SK via (vk, sk)←$ S.Kg. Signing takes as input a signing key
sk ∈ S.SK and message m ∈ {0, 1}∗ to return a signature σ ∈ {0, 1}S.sl via σ←$ S.Sign(sk, m),
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Game Gcr
G

Init:
1 gk←$ G.Kg ; Return gk

Fin(x1, x2):
2 Require: (x1, x2) ∈ G.Dom× G.Dom
3 If (x1 = x2) then return false
4 Return (G.Ev(gk, x1) = G.Ev(gk, x2))

Game Gsuf-cma
S

Init:
1 (vk, sk)←$ S.Kg ; Q ← ∅
2 Return vk

Sign(m):
3 σ←$ S.Sign(sk, m)
4 Q ← Q∪ {(m, σ)}
5 Return σ

Fin(m, σ):
6 If (m, σ) ∈ Q then return false
7 Return S.Vfy(vk, m, σ)

Figure 2: Collision resistance (left) and strong unforgeability (right).

where S.sl ∈ N is a constant signature length. Deterministic algorithm S.Vfy takes as input a
verification key vk ∈ S.VK, message m ∈ {0, 1}∗, and signature σ ∈ {0, 1}S.sl to return a bit d via
d← S.Vfy(vk, m, σ).

Correctness of scheme S asks that for all (vk, sk) ∈ OUT(S.Kg), for all m ∈ {0, 1}∗, it holds
that S.Vfy(vk, m, S.Sign(sk, m)) = 1.

The security notion that we will make use of is strong unforgeability. This is captured by game
Gsuf-cma

S of Figure 2. If A is an adversary, we let Advsuf-cma
S (A) = Pr

[
Gsuf-cma

S (A)
]

be its suf-cma
advantage. Strongly unforgeable signatures have been constructed based on bilinear CDH [12],
strong RSA [17,27], and generally from one-way functions [29, Section 6.5].

4 Backdoored hash functions

Definitions. A backdoored hash function BH consists of four algorithms. Backdoored key gen-
eration BH.BKg returns a (public) hash key hk ∈ BH.HK and (private) backdoor bd ∈ BH.BD
via (hk, bd)←$ BH.BKg. We define honest key generation BH.Kg to run (hk, bd)←$ BH.BKg and
return only hk. The deterministic hash evaluation function BH.Ev : BH.HK×BH.Dom→{0, 1}BH.ol

has domain BH.Dom a length-closed set and output hash length BH.ol. Note that if we restrict
attention to the pair of BH.Kg and BH.Ev, these together form a standard hash function, for which
one can consider cr security as in Section 3.

The high utility capabilities of BH are captured by its fourth algorithm, BH.FP (“find preimage”)
and by a constraint predicate P. Let P : BH.Dom × {0, 1}∗→ {true, false} be a predicate. We say
that BH achieves high utility relative to P, if for every constraint-parameter u ∈ {0, 1}∗ and every
y ∈ {0, 1}BH.ol, if e←$ BH.FP(bd, u, y) then we have (1) BH.Ev(hk, e) = y and (2) P(e, u) = 1. In
other words, the backdoor bd allows one to compute a preimage of any target hash, where the
preimage also satisfies the constraint predicate. Such a notion strengthens basic backdoor notions,
which we explain further below.

Recall that effectiveness of a backdoor asks for both utility and exclusivity. High exclusivity
requires that a backdoored hash function remains collision-resistant to anyone without bd. This is
captured by game Gcfe

BH,P of Figure 3, where “cfe” denotes collision-finding exclusivity. If A is an
adversary, we let Advcfe

BH,P(A) = Pr
[

Gcfe
BH,P(A)

]
be its cfe advantage. The difference from standard

cr is the addition of the GetPmg,GetColl oracles, which allow an adversary to view preimages
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Game Gcfe
BH,P

Init:
1 (hk, bd)←$ BH.BKg ; E ← ∅
2 Return hk

GetPmg(u, y):
3 e←$ BH.FP(bd, u, y) ; E ← E ∪ {e}
4 Return e

GetColl(u, e∗):
5 y ← BH.Ev(hk, e∗) ; e←$ BH.FP(bd, u, y)
6 If (e ̸= e∗) then E ← E ∪ {e}
7 Return e

Fin(e1, e2):
8 Require: (e1, e2) ∈ BH.Dom× BH.Dom
9 Return (e1 /∈ E) ∧ (e2 /∈ E) ∧ (e1 ̸= e2) ∧ (BH.Ev(hk, e1) = BH.Ev(hk, e2))

Figure 3: Collision-finding exclusivity (cfe) of a backdoored hash function BH.

or second preimages, respectively, that have been produced by the backdoor. These are subject
to adversary-chosen constraint-parameters u. An adversary A wins game Gcfe

BH,P if it produces any
collision which was not generated by BH.FP directly. The addition of these two oracles can be
viewed as a formalization of “backdoor key exposure” as discussed in [23], which arises when bd is
visible in outputs of BH.FP. We leave a full comparison to Section 5.
Predicates and embeddings. Let us now turn to some details of realizing constraints in con-
structions. For this, we introduce a message embedding function Emb for predicate P. This is
a map Emb : Emb.ES × {0, 1}∗ → {0, 1}∗, where Emb.ES is a set (the “embedding space”) that
must be specified and depends on the intended predicate. There is also an inverse Emb−1 :
{0, 1}∗→ (Emb.ES×{0, 1}∗)∪{⊥} such that (1) for all (x, u) ∈ Emb.ES×{0, 1}∗, if e← Emb(x, u)
then P(e, u) = 1 and Emb−1(e) = (x, u), and (2) Emb−1(e) = ⊥ for all e /∈ Im(Emb). We say that
Emb is a correct embedding function for predicate P if these two properties are satisfied.

Two illustrative examples are prefix and suffix embeddings. Suppose one wants to find a preim-
age e of hash y, with the constraint that e begins with prefix u, or ends with suffix u. For a prefix
embedding, let n ∈ N and Embn

pfx.ES = {0, 1}n. Then the predicate Pn
pfx and embedding function

Embn
pfx are given on the left side of Figure 4. Similarly, for suffixes, let Embn

sfx.ES = {0, 1}n, with
the predicate Pn

sfx and embedding function Embn
sfx on the right side of Figure 4. The choice of n

here is important: it will matter for the feasibility of constructing a backdoored hash function. In
particular, setting n = 0 or n = 1 will not satisfy the conditions of Proposition 4.1 and Theorem 4.2,
but larger values of n will.

A variety of predicates and embedding functions may be desirable in practice. Predicate P(e, u)
could capture whether e is a valid X.509 certificate containing information u; this is considered in
more detail in Section 6. A predicate could capture whether e can be parsed as human-readable
text or otherwise does not “look suspicious.” Increasingly useful predicates will come with imple-
mentation challenges beyond constructing a backdoored hash function BH, but the ones described
above are already potent.
Warmup construction. We begin with a basic construction of a backdoored hash function. This
is essentially the construction of [23, Section 7.1] in our syntax, without accounting for a predicate.
Given a one-way function F : {0, 1}k→{0, 1}ℓ and a cr hash function G, backdoored hash function
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Pn
pfx(e, u):

1 If (|e| ≠ |u|+ n) then return false
2 Return (e[1..|u|] = u)

Embn
pfx(x, u):

3 Return u ∥x

EmbInvn
pfx(e):

4 If (|e| < n) then return ⊥
5 x← e[(|e| − n + 1)..|e|]
6 u← e[1..(|e| − n)]
7 Return (x, u)

Pn
sfx(e, u):

1 If (|e| ≠ |u|+ n) then return false
2 Return (e[(|e| − |u|+ 1)..|e|] = u)

Embn
sfx(x, u):

3 Return x ∥u

EmbInvn
sfx(e):

4 If (|e| < n) then return ⊥
5 x← e[1..n]
6 u← e[(n + 1)..|e|]
7 Return (x, u)

Figure 4: Practical examples of predicates and embedding functions. The embedding space is
Embn

pfx.ES = Embn
sfx.ES = {0, 1}n for a fixed n. The boxed code is not strictly required to have a

correct embedding function for these predicates, but it will be required for a condition in Proposi-
tion 5.4 and more.

BH0.Kg:

1 bd←$ {0, 1}k ; t← F(bd)
2 gk←$ G.Kg ; hk ← (gk, t)
3 Return hk

BH0.Ev(hk, e):

4 (gk, t)← hk
5 If (|e| = k + G.ol) then
6 bd ′ ← e[1..k]
7 If (F(bd ′) = t) then return e[(k + 1)..|e|]
8 Else return G(gk, e)

BH0.BKg:

9 bd←$ {0, 1}k ; t← F(bd)
10 gk←$ G.Kg ; hk ← (gk, t)
11 Return (hk, bd)

BH0.FP(bd, u, y):

12 // In the warmup, u is ignored
13 Require: y ∈ {0, 1}G.ol

14 e← bd ∥ y

15 Return e

Figure 5: Warmup construction of backdoored hash function BH0.

BH0 is specified by the component algorithms in Figure 5. BH0 achieves some degree of utility and
exclusivity. To an entity with bd, finding a preimage of target y is simple: bd ∥ y is a preimage
because the trigger (F(bd ′) = t) passes in BH0.Ev, which then returns y. In terms of exclusivity, t
is public but bd remains hard to find assuming F is one-way. We omit the analysis as we will next
consider a highly effective construction. In particular, we would like to find preimages satisfying a
predicate P, and achieve stronger cfe exclusivity.

Construction. Let us now turn to meeting these high effectiveness requirements of utility and
cfe exclusivity. Let S be an suf-cma signature scheme and let G be a cr family of hash functions.
We say that message embedding function Emb : Emb.ES × {0, 1}∗→{0, 1}∗ is compatible with
S, G if Emb.ES = {0, 1}G.ol+S.sl. That is, the embedding information consists of an output of
G and a signature. Our highly-effective-backdoor transform HEB associates to S, G, and an
Emb compatible to S, G a backdoored hash function BH = HEB[G, S, Emb] which is defined in
Figure 6. We let BH.HK = OUT(G.Kg)× S.VK and BH.BD = S.SK, with hash evaluation function
BH.Ev : BH.HK × {0, 1}∗ → {0, 1}BH.ol. Note that we assume a correct embedding function Emb
for predicate P; these have been given for common predicates in Figure 4, but it may not be the
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BH.Kg:

1 (vk, sk)←$ S.Kg
2 gk←$ G.Kg
3 hk ← (gk, vk)
4 Return hk

BH.Ev(hk, e):

5 (gk, vk)← hk
6 w ← Emb−1(e)
7 If (w = ⊥) then return G(gk, e)
8 ((y ∥σ), u)← w

9 If S.Vfy(vk, (y, u), σ) then return y

10 Else return G(gk, e)

BH.BKg:

11 (vk, sk)←$ S.Kg
12 gk←$ G.Kg
13 hk ← (gk, vk) ; bd ← sk
14 Return (hk, bd)

BH.FP(bd, u, y):

15 Require: y ∈ {0, 1}BH.ol

16 σ←$ S.Sign(bd, (y, u))
17 e← Emb((y ∥σ), u)
18 Return e

Figure 6: Construction of backdoored hash function BH for predicate P with associated embedding
function Emb.

case that every predicate has a correct embedding function, or that every embedding function is
compatible with S, G.

In the remainder of this section, we show that BH produced by transform HEB[G, S, Emb] is
in fact highly effective, achieving high utility as long as G, S, Emb are correct (Proposition 4.1)
and achieving cfe exclusivity as long as G, S are cr and suf-cma, respectively (Theorem 4.2). The
bottom line of this result is that highly-effective backdoors are possible to construct from standard
building blocks, for useful constraints.

Proposition 4.1 Let S be a signature scheme, G a family of functions, and Emb an embedding
function for predicate P which is compatible with S, G. Let BH = HEB[G, S, Emb]. If S is a correct
signature scheme and Emb is a correct embedding function for predicate P, then BH achieves high
utility for P.

Proof of Proposition 4.1: Consider any (hk, bd)←$ BH.BKg, u ∈ {0, 1}∗, and y ∈ {0, 1}BH.ol.
The function BH.FP, on inputs bd,u, and y, returns e← Emb((y ∥σ), u) where σ←$ S.Sign(bd, (y, u)).
Property (1) of high utility requires that BH.Ev(hk, e) = y. Let us consider BH.Ev(hk, e) of con-
struction BH. On lines 6,7, since e ∈ Im(Emb), w ̸= ⊥. If Emb, Emb−1 satisfy our notion of a correct
embedding, w is recovered as ((y ∥σ), u). That is, Emb−1(Emb((y ∥σ), u)) = ((y ∥σ), u). Next, the
signature verification on line 9 runs S.Vfy(vk, (y, u), σ) where σ←$ S.Sign(bd, (y, u)). This passes
as long as S is a correct signature scheme, and BH.Ev(hk, e) thus returns y on line 9.
Property (2) of high utility asks that P(e, u) = 1. This is proven by line 17, where e← Emb((y ∥σ), u).
Correctness of the embedding function Emb for predicate P implies that P(e, u) = 1.

Theorem 4.2 Let S be a signature scheme, G a family of functions, and Emb an embedding func-
tion for predicate P which is compatible with S, G. Let BH = HEB[G, S, Emb]. Given an adversary
A against the cfe exclusivity of BH we can build adversaries AS, AG such that

Advcfe
BH,P(A) ≤ Advsuf-cma

S (AS) + Advcr
G (AG) . (1)

If A makes qp GetPmg queries and qc GetColl queries then AS makes (qp + qc) Sign queries.
The running times of AS, AG are close to that of A.
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Games G0 , G1 , G2

Init:
1 (vk, sk)←$ S.Kg ; gk←$ G.Kg ; hk ← (gk, vk) ; bd ← sk
2 E ← ∅ ; Q ← ∅
3 Return hk

GetPmg(u, y):
4 σ←$ S.Sign(bd, (y, u)) ; e← Emb((y ∥σ), u)
5 E ← E ∪ {e} ; Q ← Q∪ {((y, u), σ)}
6 Return e

GetColl(u, e∗):
7 y ← BH.Ev(hk, e∗)
8 σ←$ S.Sign(bd, (y, u)) ; e← Emb((y ∥σ), u)
9 If ((e = e∗) ∧ (e /∈ E)) then bad← true ; return ⊥ // Game G2

10 If (e ̸= e∗) then E ← E ∪ {e} ; Q ← Q∪ {((y, u), σ)}
11 Return e

Fin(e1, e2):
12 If (e1 = e2) then return false
13 If (e1 ∈ E) ∨ (e2 ∈ E) then return false // Game G0
14 For i = 1, 2 do
15 y′

i ← G(gk, ei) ; wi ← Emb−1(ei)
16 If (wi ̸= ⊥) then
17 ((yi ∥σi), ui)← wi

18 If (((yi, ui), σi) ∈ Q) then return false // Games G1, G2

19 If S.Vfy(vk, (yi, ui), σi) then bad← true ; y′
i ← yi

20 Return (y′
1 = y′

2)

Figure 7: Games G0, G1, G2 for the proof of Theorem 4.2. G0, G1 contain the boxed code and G2
does not. Lines 13,18,9 are only present in G0, G1, G2, respectively.

Proof of Theorem 4.2: Consider game G0 of Figure 7. We claim that

Advcfe
BH,P(A) = Pr [ G0(A) ] . (2)

To justify Eq. (2), we claim that the Fin(e1, e2) return value is the same in G0 as it is in Gcfe
BH,P. (The

Init, GetPmg, and GetColl oracles are identical, instantiated with scheme BH.) In particular,
the three checks made in Fin are identical. The first two checks are captured in lines 12,13 of
G0, which check whether (e1 = e2) or if some ei ∈ E . For the third, we claim that on line 20
of G0, it is the case that y′

i = BH.Ev(hk, ei), meaning that G0 checks whether BH.Ev(hk, e1) =
BH.Ev(hk, e2). Consider y′

i of G0. Lines 15-19 of G0 correspond to lines 6-10 of BH.Ev in Figure 6.
That is, y′

i = BH.Ev(hk, ei) = G(gk, ei) if there is no valid parsing of w nor verified signature, and
y′

i = BH.Ev(hk, ei) = yi if the parsing and signature do pass. This proves Eq. (2).

We next turn to game G1 and claim that

Pr [ G0(A) ] ≤ Pr [ G1(A) ] . (3)

The difference between games G0, G1 is the inclusion of line 13 versus 18 (the boxed code is present
in both). To prove Eq. (3), we show that if G0(A) outputs true, then G1(A) outputs true. There
are two cases. If wi = ⊥ for both i, then this follows immediately from the exclusion of line 13 in
G1. If wi ̸= ⊥ for at least one i, then we claim that line 18 returns false only if line 13 would have
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Adversary AS(vk):

1 gk←$ G.Kg ; hk ← (gk, vk) ; E ← ∅
2 (e1, e2)← A[GetPmgS,GetCollS](hk)
3 For i = 1, 2 do
4 wi ← Emb−1(ei)
5 If (wi ̸= ⊥) then
6 ((yi ∥σi), ui)← wi

7 If S.Vfy(vk, (yi, ui), σi) then
8 Return ((yi, ui), σi)

Oracle GetPmgS(u, y):

9 σ ← Sign((y, u))
10 e← Emb((y ∥σ), u) ; E ← E ∪ {e}
11 Return e

Oracle GetCollS(u, e∗):

12 w∗ ← Emb−1(e∗)
13 If ((w∗ ̸= ⊥) ∧ (e∗ /∈ E)) then
14 ((y∗ ∥σ∗), u∗)← w∗

15 If S.Vfy(vk, (y∗, u∗), σ∗) then
16 Return ⊥
17 Halt on output ((y∗, u∗), σ∗)
18 y ← BH.Ev(hk, e∗)
19 σ ← Sign((y, u))
20 e← Emb((y ∥σ), u)
21 If (e ̸= e∗) then E ← E ∪ {e}
22 Return e

Adversary AG(gk):

1 (vk, bd)←$ S.Kg ; hk ← (gk, vk)
2 E ← ∅
3 (e1, e2)← A[GetPmgG,GetCollG](hk)
4 Return (e1, e2)

Oracle GetPmgG(u, y):

5 σ←$ S.Sign(bd, (y, u))
6 e← Emb((y ∥σ), u) ; E ← E ∪ {e}
7 Return e

Oracle GetCollG(u, e∗):

8 y ← BH.Ev(hk, e∗)
9 σ←$ S.Sign(bd, (y, u))

10 e← Emb((y ∥σ), u)
11 If ((e = e∗) ∧ (e /∈ E)) then return ⊥
12 If (e ̸= e∗) then E ← E ∪ {e}
13 Return e

Figure 8: Adversaries AS and AG for the proof of Theorem 4.2.

also returned false. More precisely,

((yi, ui), σi) ∈ Q =⇒ ei ∈ E .

Let us consider what is implied when ((yi, ui), σi) ∈ Q. The tuple must have been added to
Q either on line 5 or 10. If the former, this must have occured on a GetPmg(ui, yi) query
where line 4 computed σi←$ S.Sign(bd, (yi, ui)). The embedding then added to set E on line 5,
call it e′, was e′ ← Emb((yi ∥σi), ui). Thus e′ ∈ E . To show that in fact ei = e′ we use the
correctness of the embedding function. Concretely, we have both ((yi ∥σi), ui) ← Emb−1(ei) and
e′ ← Emb((yi ∥σi), ui). This implies ei = e′. For the second option, suppose the tuple was added to
Q during a GetColl(ui, e∗) query. Then for some e′ ̸= e∗, line 8 computed σi←$ S.Sign(bd, (yi, ui))
and e′ ← Emb((yi ∥σi), ui). Now e′ ∈ E and by the argument above, we in fact have ei = e′. This
completes our justification that ((yi, ui), σi) ∈ Q =⇒ ei ∈ E , and thus of Eq. (3).

Let us now turn to G2. Games G1, G2 are identical-until-bad, so by the Fundamental Lemma of
Game Playing [8] we have

Pr [ G1(A) ] = Pr [ G2(A) ] + (Pr [ G1(A) ]− Pr [ G2(A) ])

≤ Pr [ G2(A) ] + Pr [ G2(A) sets bad ] .
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We next construct adversaries AS, AG for which we claim that

Pr [ G2(A) sets bad ] ≤ Advsuf-cma
S (AS) (4)

Pr [ G2(A) ] ≤ Advcr
G (AG) . (5)

This will complete the proof of Eq. (1) and the theorem statement.

We begin by explaining adversary AS, which is in game Gsuf-cma
S and runs A as specified in Figure 8.

We now make use of the two bad flags in game G2 on lines 9,19. Suppose that bad ← true on
line 9 of G2. Then there is a GetColl(u, e∗) query such that e∗ /∈ E and e∗ = Emb((y ∥σ), u)
where σ←$ S.Sign(bd, (y, u)). Now let us consider lines 12-15 of oracle GetCollS. On this query,
w∗ = Emb−1(e∗) and since e∗ is an embedding, we can parse ((y∗ ∥σ∗), u∗)← w∗. Due to correctness
of the embedding we have y∗ = y, σ∗ = σ, and u∗ = u. Now verification on line 15 computes
S.Vfy(vk, (y∗, u∗), σ∗) = S.Vfy(vk, (y, u), σ), which passes if S is a correct signature scheme. In this
scenario, G2(A) sets bad and adversary AS returns ⊥, then halts on output ((y∗, u∗), σ∗). Since
e∗ /∈ E we know that ((y∗, u∗), σ∗) /∈ Q (as AS does not query Sign until line 19). Thus ((y∗, u∗), σ∗)
is a winning output in game Gsuf-cma

S (AS).

It could also be the case that bad ← true on line 19 of G2. Then A returned (e1, e2) such that
S.Vfy(vk, (yi, ui), σi) = 1 and ((yi, ui), σi) /∈ Q. We may assume now that bad has not been
previously set on line 9, else execution would have ended; this guarantees that all Sign queries have
been appropriately added to the accounting set Q. Therefore this ((yi, ui), σi) tuple is precisely a
valid message-signature pair which wins game Gsuf-cma

S . This completes the proof of Eq. (4). Note
that AS makes one Sign query for each of A’s GetPmgS or GetColl queries, proving the running
time in the theorem statement.

Finally, let us justify Eq. (5). Adversary AG, which is in game Gcr
G , runs A as specified in Figure 8.

A’s view is again that of game G2; initialization, GetPmgG, and GetCollG return the same
responses as in G2. Now, if G2(A) returns true, and since the boxed code is not executed in G2,
then it must be that G(gk, e1) = G(gk, e2). This is precisely the winning condition of AG’s game
Gcr

G and proves Eq. (5). AG maintains running time close to that of A.

5 Comparison to prior definitions

In the prior section we have seen that highly-effective backdoors are indeed possible to construct.
This is not the first paper to consider backdoored or asymmetric hash functions; thus we can ask
to what extent highly-effective backdoors are stronger than existing notions. We focus on two main
notions. The first is basic backdoored hash functions, for which the most recent definitions have
been given by FJM in 2018 [23]. AAEMS [2] gave similar, less formal notions in 2014, along with
the concrete demonstration of an instantiation of SHA1 with backdoored parameters. We visit this
genre of basic backdoor definitions first, proving that the definition of a highly-effective backdoor
is strictly stronger.

We then turn to chameleon hash functions (CHFs), which have seen significant research and
applications. CHFs have a diverse array of security definitions, which have been summarized
in [19]. There is a tradeoff in comparing a highly-effective backdoored hash function BH to a
CHF CH: while BH.Ev is deterministic and operates like a “standard” hash function, certain CH
constructions can achieve notions of indistinguishability. To clarify the difference, we show that one
can construct a CHF CH from BH, such that CH satisfies correctness and collision resistance, but
not indistinguishability. However, stepping back to the motivation for BH, we have not required
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Games Gf-pr
FH,b / Gf-2pr

FH,b

Init:
1 (fhk, fbd)←$ FH.BKg
2 m←$ FH.Dom ; y ← FH.Ev(fhk, m)
3 If (b = 1) then return (fbd, fhk, y, m )
4 If (b = 0) then return (fhk, y, m )

Fin(m′):
5 Require: m′ ∈ FH.Dom
6 Return (FH.Ev(fhk, m′) = y) ∧(m′ ̸= m)

Game Gf-cr
FH,b

Init:
7 (fhk, fbd)←$ FH.BKg
8 If (b = 1) then return (fbd, fhk)
9 If (b = 0) then return fhk

Fin(m1, m2):
10 Require: (m1, m2) ∈ FH.Dom× FH.Dom
11 Return (m1 ̸= m2) ∧ (FH.Ev(fhk, m1) = FH.Ev(fhk, m2))

Figure 9: FJM exclusivity (b = 0) and backdoor utility (b = 1) for f-pr, f-2pr, and f-cr. The boxed
code indicates the difference between first and second preimage resistance.

a notion of indistinguishability. Instead, we require that BH.Ev is deterministic and maintains
hash function syntax; this is not true of CHFs. Thus there are similarities (as we prove) but the
applications are inherently different, and result in different achieved goals.
Relation to FJM [23]. We begin with basic backdoored hash functions as defined by Fischlin,
Janson, and Mazaheri at CSF 2018 [23]. We provide their notions in our syntax here, and highlight
differences. Call an FJM backdoored hash function FH. This includes a key-generation algorithm
FH.Kg which generates a (public) hash key fhk ∈ FH.HK via fhk←$ FH.Kg, and a deterministic
hash function FH.Ev : FH.HK×FH.Dom→{0, 1}FH.ol. Backdoored key-generation algorithm FH.BKg
produces (fhk, fbd)←$ FH.BKg. However, there is no specified preimage-finding FH.FP algorithm.

Remark 5.1 Technically, FH.BKg in FJM returns algorithm descriptions, not keys. That is,
FH.BKg produces (⟨FH.Kg⟩, ⟨FH.Ev⟩, fbd, r)←$ FH.BKg. In their stronger notion, r = ε, which
is the case we consider. To simplify notation, we equivalently consider ⟨FH.Kg⟩ and ⟨FH.Ev⟩ to be
captured by public key fhk.

FJM consider collision resistance, preimage resistance, and second preimage resistance as prop-
erties that a backdoor could undermine. Utility and exclusivity are defined in terms of games which
are given in our syntax in Figure 9. For each of x ∈ {f-cr, f-pr, f-2pr}, backdoor utility is captured by
game Gx

FH,1. The associated advantage of an adversary A is Advx
FH,1(A) = Pr

[
Gx

FH,1(A)
]
. FJM

say that a backdoor achieves basic utility if there exists a p.p.t. adversary B such that Advx
FH,1(B)

is nonnegligible. For each of x ∈ {f-cr, f-pr, f-2pr}, basic exclusivity is then captured by game Gx
FH,0.

The associated advantage of an adversary A is Advx
FH,0(A) = Pr

[
Gx

FH,0(A)
]
. Basic exclusivity

(for f-cr, f-pr, or f-2pr) asks that Advx
FH,0(A) is negligible for all p.p.t. adversaries A.

A highly-effective backdoored hash function BH as presented in Section 4 is stronger than a
basic backdoored hash function FH along a few dimensions. A quick sketch of differences is as

16



FH.Kg:
1 (fhk, fbd)←$ BH.BKg ; Return fhk

FH.BKg:
2 (fhk, fbd)←$ BH.BKg ; Return (fhk, fbd)

FH.Ev(fhk, m):
3 Return BH.Ev(fhk, m)

Figure 10: Construction of FJM backdoored hash function FH from highly-effective BH.

follows. First, in terms of utility, BH includes an algorithm BH.FP which finds preimages of any
target y with probability 1; this is in contrast to nonnegligible probability as in games Gx

FH,1 of
Figure 9. Moreover, if BH achieves utility with respect to P, then preimages produced by BH.FP are
guaranteed to satisfy an additional predicate, a constraint which is not captured in basic utility.
In terms of exclusivity, cfe includes GetPmg and GetColl oracles, which grant an adversary
additional powers to view outputs of BH.FP. Constructions like BH0 of Section 4 satisfy basic
exclusivity but the backdoor is revealed by one query to GetPmg. Finally, FJM only consider one
of x ∈ {f-cr, f-pr, f-2pr} at a time. For example, FH is said to be effective if it achieves f-cr utility
and f-cr exclusivity, but different goals are not simultaneously considered. (Why not f-2pr utility
and f-cr exclusivity?) The notion of Section 4 asks for cfe exclusivity since that is strongest, and
asks for preimage-finding utility, since that is more powerful than finding a collision.

Formally, given BH which is highly effective, we can construct FH which satisfies basic utility
and exclusivity as defined by FJM. We consider the most powerful notions of utility (f-2pr, f-pr)
and the strongest notion of exclusivity (f-cr). These are stated precisely and proved below. The
other direction does not hold, with a justification that follows. Thus high effectiveness is indeed
capturing a new, stronger aspect of backdoors.
BH =⇒ FJM. We first prove that given a highly effective BH, we can construct an FJM back-
doored hash function FH. This requires two statements. First, if BH achieves high utility then FH
achieves utility (Proposition 5.2). Second, if BH meets cfe exclusivity then FH meets f-cr exclusivity
(Theorem 5.3). We now proceed to the formal statements.

Proposition 5.2 Let BH be a backdoored hash function. From BH we construct FH as in Figure 10.
If BH achieves high utility for any predicate P then FH achieves f-pr utility, meaning that we give
a p.p.t. adversary B1 with Advf-pr

FH,1(B1) = 1. Moreover, if P is such that (P(e, u) = true) =⇒
(e ̸= u), then FH achieves f-2pr utility, meaning that we give a p.p.t. adversary B2 achieving
Advf-2pr

FH,1 (B2) = 1. Two examples of such a P are the prefix and suffix predicates, with n > 0, of
Figure 4.

The above proposition says that the constructed FH achieves f-pr utility regardless of predicate, and
achieves f-2pr utility for most predicates. In particular, the only requirement is that P(e, e) = false,
which constrains BH.FP to find a second preimage. The proof of Proposition 5.2 is straightforward
and is provided in Appendix A. We next provide the formal statement of exclusivity.

Theorem 5.3 Let BH be a backdoored hash function and P any predicate. From BH we construct
FH as in Figure 10. If B is an adversary in game Gf-cr

FH,0, then we can construct adversary A in
game Gcfe

BH,P such that

Advf-cr
FH,0(B) ≤ Advcfe

BH,P(A) . (6)
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Adversary A has running time close to that of B and makes zero GetPmg,GetColl queries.

The proof of Theorem 5.3 is similarly straightforward and in Appendix A. With this theorem, we
complete the justification that a highly-effective BH implies an effective FH as defined by FJM,
showing that the former is at least as strong as the latter. We next turn to showing that it is in
fact strictly stronger.
FJM ≠⇒ BH. The other direction does not hold, which we now explain. The first reason in
syntactic; BH requires an algorithm BH.FP to be specified but FH of FJM does not. One might
work around this by noting that if FH achieves basic utility (with respect to preimages) then there
is an adversary B which achieves nonnegligible advantage Advf-pr

FH,1(B). Then one could define:

BH.FP(bd, u, y):
m′ ← B(fbd, fhk, y) ; Return m′

With some probability it is the case that FH.Ev(fhk, m′) = y, meaning that BH.Ev(hk, m′) = y if
we define BH.Ev to simply evaluate FH.Ev. However, FJM does not require this probability to be 1
for all y, and there is no syntax for requiring a predicate P(m′, u) to be satisfied. Thus high utility
of BH is not achieved, even for the vacuous predicate P(m′, u) which always returns true.

Moreover, the exclusivity goal is different. While FJM ask that FH be collision-resistant to
anyone without fbd, cfe exclusivity asks that BH be collision-resistant with the addition of GetPmg
and GetColl oracles. The warmup construction BH0 in Figure 5 provides an explicit separation.
This was proved to satisfy basic exclusivity (in the sense of f-cr, f-pr, or f-2pr) in [23, Section 7.1] as
long as the underlying hash function G is correspondingly secure. However, let P always return true
and recall that BH0.FP(bd, u, y) returns e← bd ∥ y. An adversary A with one query in game Gcfe

BH0,P
can choose y and obtain e← GetPmg(ε, y). An e produced using bd is of the form bd ∥ y and thus
bd is learned by A. Now A can produce a fresh collision using bd and achieve Advcfe

BH0,P(A) = 1.
This completes the analysis of highly-effective backdoors in comparison to basic effective back-

doors: the new notion of high effectiveness is strictly stronger than existing definitions. Next we
turn to a differently motivated, and well researched, category of asymmetric hash function.
Relation to Chameleon Hash Functions. CHFs may be motivated more by constructive ap-
plications than by fears of subversion, but they share similarities with backdoored hash functions.
Introduced by Krawczyk and Rabin in 2000 [37], we pull from the recent definitions of Derler,
Samelin, and Slamanig at PKC 2020 [19]. A chameleon hash function CH consists of four algorithms
(and public parameters). Key generation produces a public and secret key via (pk, sk)←$ CH.Kg.
Randomized hash evaluation takes as input a message m to produce (h, r)←$ CH.Hash(pk, m),
where h is considered the hash digest and r is a check value. Validation of a hash digest h
and check value r is computed via the deterministic algorithm d ← CH.Check(pk, m, r, h), where
d ∈ {0, 1} indicates whether validation was successful. The “chameleon” notion is captured
by algorithm CH.Adapt which computes a new check value via r′←$ CH.Adapt(sk, m, m′, r, h).
Correctness of CH asks that for all (pk, sk) ∈ OUT(CH.Kg), for all m, m′ ∈ CH.Dom, for all
(h, r) ∈ OUT(CH.Hash(pk, m)), for all r′ ∈ OUT(CH.Adapt(sk, m, m′, r, h)), it is the case that
CH.Check(pk, m, r, h) = CH.Check(pk, m′, r′, h) = 1.

Security of a chameleon hash function is captured by a variety of notions, which depend on
the application. In all cases, collision resistance is expected, but the definition varies. In many
cases, indistinguishability is also expected, meaning that it is hard to tell whether (h, r) is an
output of CH.Hash or has been computed with the aid of CH.Adapt. The notion of a backdoored
hash function BH in this paper is different than that of chameleon hash functions; it is not strictly
stronger or weaker. Below, we show that given BH one can construct a chameleon hash function
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Games Gch-ecr
CH / Gch-full

CH

Init:
1 (pk, sk)←$ CH.Kg ; F ← ∅ ; H ← ∅
2 Return pk

Adapt(m, m′, r, h):
3 If (CH.Check(pk, m, r, h) ̸= 1) then return ⊥
4 r′←$ CH.Adapt(sk, m, m′, r, h)
5 If (r′ = ⊥) then return ⊥
6 H ← H∪ {h} // Game Gch-ecr

CH
7 F ← F ∪ {(h, m), (h, m′)} // Game Gch-full

CH
8 Return r′

Fin(m1, m2, r1, r2, h):
9 b← ((m1 ̸= m2) ∧ CH.Check(pk, m1, r1, h) ∧ CH.Check(pk, m2, r2, h))

10 Return (b ∧ (h /∈ H)) // Game Gch-ecr
CH

11 Return (b ∧ (|F ∩ {(h, m1), (h, m2)}| ≤ 1)) // Game Gch-full
CH

Figure 11: Full and enhanced collision resistance of a chameleon hash function CH, as defined
by [19]. Lines 6,10 are only included in game Gch-ecr

CH while lines 7,11 are only included in game
Gch-full

CH .

CH satisfying correctness and collision resistance, although not indistinguishability. In combination
with Proposition 4.1 and Theorem 4.2, this gives rise to a chameleon hash function from OWFs
and CRHFs.

However, let us step back to the motivation of BH. Given that CHFs exist and have been
instantiated in myriad constructions, why wouldn’t a backdooring entity simply mandate use of
a CHF? We contend that the goals of big-brother are better achieved by simpler, deterministic
constructions, which use conventional hash function syntax. What about indistinguishability?
While this is not ruled out by a backdoored hash function BH, the question becomes whether a
message m looks contrived. However, a larger question is the following. If a scheme is obviously
backdoored, what additional power does distinguishing individual outputs provide to users? In
some cases, users could reject a hash that they determine to be produced by the backdoor. In other
cases, in particular if a scheme is standardized, there may not be a choice regardless. We contend
that both cases are worth study, and the focus of this paper is on the latter.

Nonetheless, the goals of highly effective backdoors and CHFs overlap. We now present this for-
mally, proving that given highly-effective BH we can construct a CHF CH that achieves correctness
and collision resistance.
BH =⇒ CH (with collision resistance). Given BH we now show how to construct CH which
satisfies correctness and collision resistance. In particular, we can achieve “enhanced” collision
resistance immediately, and the strongest notion of “full” collision resistance with an additional
min-entropy assumption. We include the definitions of [19] as games Gch-ecr

CH ,Gch-full
CH of Figure 11.

If A is an adversary, we let Advch-ecr
CH (A) = Pr

[
Gch-ecr

CH (A)
]

be its ch-ecr (enhanced cr) advantage
and we let Advch-full

CH (A) = Pr
[

Gch-full
CH (A)

]
be its ch-full (full cr) advantage. We state the enhanced

cr result below, for which the proof is simple, and provide the proof in Appendix B. The full cr
result requires more setup to formally state, and we do so along with a proof in Appendix C.

Proposition 5.4 Let BH be a backdoored hash function. From BH we construct chameleon hash
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CH.Kg:
1 (hk, bd)←$ BH.BKg ; pk ← hk ; sk ← bd ; Return (pk, sk)

CH.Hash(pk, m):
2 r←$ Emb.ES ; e← Emb(r, m) ; h← BH.Ev(pk, e)
3 Return (h, r)

CH.Check(pk, m, r, h):
4 Return (h = BH.Ev(pk, Emb(r, m)))

CH.Adapt(sk, m, m′, r, h):

5 e′←$ BH.FP(sk, m′, h)
6 (r′, u)← Emb−1(e′)
7 Return r′

Figure 12: Construction of CH from BH for the proofs of Proposition 5.4, Theorem 5.5, and
Theorem C.1 (full cr).

function CH as in Figure 12. Let P be a predicate with a correct embedding function Emb such that
(P(e, u) = true) =⇒ (Emb−1(e) = (x, u)) for some x ∈ Emb.ES. For example, this is satisfied by
the prefix and suffix embeddings in Figure 4. If BH achieves high utility for P then CH is correct.

Theorem 5.5 Let BH be a backdoored hash function. From BH we construct chameleon hash
function CH as in Figure 12. Let P be a predicate with a correct embedding function Emb such that
(P(e, u) = true) =⇒ (Emb−1(e) = (x, u)) for some x ∈ Emb.ES. Suppose BH achieves high utility
for P. Then if B is an adversary in game Gch-ecr

CH , we can construct adversary A in game Gcfe
BH,P

such that

Advch-ecr
CH (B) ≤ Advcfe

BH,P(A) . (7)

If B makes q Adapt queries then A makes q GetPmg queries. Adversary A has running time
close to that of B.

6 Application: Forged certificates

Certificates and PKI. Hash functions are prevalent building blocks in a variety of schemes,
one of which is public-key infrastructure (PKI) as realized by X.509 certificates and certificate
authorities (CAs). For simplicity, suppose there is one honest CA who is operating with signature
scheme Sca and hash function SHA256. Let (vkca, skca) be the verification and signing keys of the
CA. As specified in RFC 5280 [16], a certificate C consists of a sequence of key-value pairs, some of
which are mandatory. The important fields for our discussion are:

• C.tbsCert , consisting of the certificate’s identifying, validity, and other certificate data. At a
minimum, this specifies the CA who signed the certificate and includes information to recover
vkca.

• C.sigAlg , the name of the signature algorithm, such as “PKCS #1 SHA-256 With RSA
Encryption.”

• C.sigValue , a signature on message C.tbsCert, using the algorithm specified in C.sigAlg
and the CA’s signing key skca.

Issuance of a certificate takes as input a tbsCert′ and auxiliary information csr (representing a
certificate signing request) to produce either ⊥, or a signed certificate C. Deterministic validation of
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Validate(C, aux):
1 First, perform expiry, revocation, and other checks.
2 Extract vkca from (C, aux)
3 Extract (⟨Hca⟩, hkca, ⟨Sca⟩) from C.sigAlg
4 h← Hca.Ev(hkca, C.tbsCert)
5 Return Sca.Verify(vkca, h, C.sigValue)

Validate(C∗, aux):
6 First, perform expiry, revocation, and other checks.
7 Extract vkca from (C∗, aux)
8 Extract (⟨BH⟩, hk∗, ⟨Sca⟩) from C∗.sigAlg
9 h← BH.Ev(hk∗, C∗.tbsCert)

10 Return Sca.Verify(vkca, h, C∗.sigValue)

Figure 13: Validation of an X.509 certificate, simplified. Validate may be run on an honest certificate
C (above) or a backdoored certificate C∗ (below).

a certificate takes as input a certificate C and auxiliary information aux (representing a certificate
chain, and local store of root certificates) to produce a bit d ∈ {0, 1}.

In our application, we are more interested in validation than issuance, as we explain below. We
consider the C.sigAlg field to consist of scheme descriptions ⟨Hca⟩, ⟨Sca⟩ and public parameter hkca.
For common hash functions, hkca may be empty, but ⟨Hca⟩ and hkca can together be considered to
encapsulate an algorithm like SHA256. At a high level, validation Validate proceeds as in Figure 13.
Backdoor threat model. We assume that an honest CA is operating with signature scheme
Sca and hash function Hca = SHA256, neither of which is backdoored or otherwise known to be
weak. We assume there is a public certificate C which has been signed by the CA. Let h =
Hca.Ev(hkca, C.tbsCert); h is publicly computable. These are all standard aspects of PKI. The
threat model for a backdoored hash function newly supposes that a hash function BH (with a
particular public parameter hk∗) is an accepted algorithm by Validate for at least some client. The
goal of the backdooring entity is for arbitrary certificate data tbsCert′, to find certificate C∗ such
that Validate(C∗, aux) = 1 for honest aux, where C∗.tbsCert is “close to” the intended tbsCert′.

In real-world systems, weak hash functions have been exploited to find carefully constructed
collisions [39,40,51,53,57]. At Eurocrypt 2007 [50], Stevens, Lenstra, and de Weger presented two
X.509 certificates with the same MD5 hash value and thus signature. The two certificates were
produced at the same time, and the cost was estimated to be “2 months real time” [50]. The
backdoor threat model supposes a big-brother adversary who wants to do even better: to forge
(almost) arbitrary certifcates, at arbitrary times, and to do so easily.
Instantiation of a backdoored hash function. To achieve this end, a big-brother adversary
uses a highly effective backdoored hash function, in particular one for the predicate P in Figure 14.
This can be instantiated via the transform BH = HEB[G, S, Emb]. As G we use SHA256, or
whichever function is in use as Hca. As S we use an suf-cma signature scheme with short signatures,
such as BLS [11]. We use the embedding function Emb given in Figure 14. At a high level, the
specification in Figure 14 then allows a big-brother adversary to forge the following, given an honest
certificate C: for any desired tbsCert′, they use BH.FP with bd∗ to find tbsCert∗ which is identical
to tbsCert′ except for two additional fields. They then build certificate C∗ which includes data
tbsCert∗, specifies BH with hk∗ as the hash algorithm, and copies the signature on C. If BH is
highly effective for predicate P, and if Validate(C, aux) = 1, then Validate(C∗, aux) = 1. Figure 13
shows the sequence of Validate steps on forgery C∗.
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P(e = tbsCert∗, u = tbsCert′):
1 If ((tbsCert∗.fh = ⊥) ∨ (tbsCert∗.fσ = ⊥)) then return false
2 If ((tbsCert∗.f = tbsCert′.f) for all other fields f) then return true
3 Else return false

Emb((y ∥σ), u = tbsCert′):

4 For all fields f, do: tbsCert∗.f← tbsCert′.f
5 tbsCert∗.fh ← y ; tbsCert∗.fσ ← σ

6 Return tbsCert∗

Emb−1(e = tbsCert∗):
7 y ← tbsCert∗.fh ; σ ← tbsCert∗.fσ

8 tbsCert′.f← tbsCert∗.f for all fields f except fh, fσ

9 Return ((y ∥σ), tbsCert′)

Certificate forgery using BH:
10 (hk∗, bd∗)←$ BH.BKg
11 Choose a target honest certificate C with hash h.
12 Choose any tbsCert′ which specifies the same CA and vkca as C.
13 tbsCert∗←$ BH.FP(bd∗, u = tbsCert′, y = h)
14 C∗.tbsCert← tbsCert∗

15 C∗.sigAlg specifies (⟨BH⟩, hk∗, ⟨Sca⟩)
16 C∗.sigValue← C.sigValue
17 Return C∗

Figure 14: Predicate P and embedding Emb used to forge X.509 certificates (above). How a
backdooring entity uses BH to forge certificates (below). We use f to denote any X.509 field name.
Field labels fh, fσ are fixed by the big-brother adversary to embed a target hash and big-brother
signature, respectively, into a certificate, and are known in the algorithms of BH.

The above shows how a certificate forgery can work, but a few remarks are in order. First, is it
noticeable? Yes; hk∗ = (gk∗, vk∗) is public and anyone looking at C∗ can parse Emb−1(C∗.tbsCert)
to see y, σ, tbsCert′ where S.Vfy(vk∗, (y, tbsCert′), σ) = 1. However, care could be taken to make
the forgery less noticeable. Specifically, there may be more subtle ways to embed (G.ol + S.sl) extra
bits into a certificate, but we have presented a simple case of inserting them into named fields
fh, fσ. These could be X.509 extension fields, for example, so may be overlooked. Second, what
about the expiry and revocation checks in Validate? We claim that if tbsCert∗ is arbitrary save for
two fields fh, fσ, then the validity dates and other information can be easily chosen to pass these
checks. Third and finally, what does such a forged certificate actually look like? We present a more
thorough example in Appendix D.

Remark 6.1 It has been suggested that for backdoored symmetric primitives such as hash function
components [23] and PRGs [18, 20], usage of asymmetric schemes will be noticed or impractical
due to an obvious timing difference. The X.509 validation process is interesting in that a signature
verificaton is computed anyway; an additional verification inside the hash function becomes less
drastic. However, real-life events [24] suggest that timing detection is still possible.

7 Backdoored signatures

Inspired by this application, we now turn to signatures. A backdoored signature scheme should
allow the big-brother adversary to forge signatures. For basic utility, one might start with asking for
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the ability to create some valid signature. Indeed, the application presented in the previous section
already implicitly contains a backdoored signature scheme with basic utility (via a hash-then-sign
design). It allows one with bd to forge signatures on messages that are restricted by the predicate
embedding, assuming access to one honest signature.

In this section, we give definitions for backdoored signatures with high effectiveness. Intuitively,
high utility should allow the owner of the backdoor to forge signatures for arbitrary messages, while
high exclusivity asks that the scheme remains unforgeable even if one can observe signatures created
by the backdoor. We start with these definitions and then turn to a construction meeting those.

Definitions. A backdoored signature scheme BS consists of six algorithms. Backdoored parameter
generation BS.BPg returns public parameter π and (private) backdoor bd via (π, bd)←$ BS.BPg.
Similar to our definition of backdoored hash functions, we define honest parameter generation
BS.Pg to run (π, bd)←$ BS.BPg and return only π. Key generation BS.Kg returns a verification
and signing key via (vk, sk)←$ BS.Kg(π). Signing takes as input a signing key sk and message
m ∈ {0, 1}∗ to return a signature via σ←$ BS.Sign(π, sk, vk, m). Deterministic algorithm BS.Verify
takes as input a verification key vk, message m ∈ {0, 1}∗, and signature σ to return a bit d
via d ← S.Vfy(π, vk, m, σ). Additionally, a backdoored signature scheme specifies an algorithm
BS.BSign. On input m ∈ {0, 1}∗, vk as well as bd, the backdoor signing algorithm returns a
signature via σ←$ BS.BSign(π, bd, vk, m).

We define high effectiveness for BS as the amalgam of high utility and high exclusivity. High
utility asks that for every (π, bd)←$ BS.BPg, (vk, sk)←$ BS.Kg(π) and m ∈ {0, 1}∗, we have
BS.Verify(π, vk, m, BS.BSign(π, bd, vk, m)) = 1. High exclusivity means that BS remains unforge-
able to anyone without bd, even if they see signatures created using the backdoor. This is captured
by game Gffe

BS,n on the left of Figure 15, where n is the number of users and “ffe” denotes forgery-
finding exclusivity. If A is an adversary, we let Advffe

BS,n(A) = Pr
[

Gffe
BS,n(A)

]
be its ffe advantage.

Note that the difference from standard suf security is that A can also ask for signatures created
using the backdoor via oracle BSign. An adversary A wins game Gffe

BS,n if it produces a valid pair
of message and signature for some user which was not generated by the Sign or BSign oracle.

Single-user ≠⇒ multi-user. We define the game in a multi-user setting. In contrast to the
unforgeability of a normal signature scheme, unforgeability for backdoored signature schemes in the
single-user setting does not generally imply unforgeability in the multi-user setting. The intuitive
reason for this is that the signature created using the backdoor depends on the target verification
key for which the signature is forged. A standard guessing argument will fail because the reduction
will not be able to simulate signatures created by the backdoor for verification keys other than the
challenge one. Below we will give a concrete counterexample separating the single-user from the
multi-user setting. It essentially exploits that if the backdoor signing algorithm does not depend
on the target verification key, a forged signature will verify under different (if not all) possible
verification keys.

Indistinguishability. We define an additional property for BS, namely indistinguishability of
honest and forged signatures. We define this via the multi-user game Gind

BS,n on the right of Figure 15.
For an adversary A, we let Advind

BS,n(A) = 2Pr
[

Gind
BS,n(A)

]
−1 be its ind advantage. Note that this

is different from undetectability. While it may be obvious that a scheme contains a backdoor, this
property ensures that a signature does not leak whether the backdoor has actually been used.

Related notions. The above notion is similar to identity-based signatures, except that user keys
are generated only from π, not using the secret “master” key bd. Interestingly, there are already
definitions of registration-based encryption, which has a similar end: to remove reliance on the
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Game Gffe
BS,n

Init:
1 (π, bd)←$ BS.BPg ; E ← ∅
2 For i = 1, 2, . . . , n do
3 (vki, ski)←$ BS.Kg(π)
4 Return (π, vk1, . . . , vkn)

Sign(i, m):
5 σ←$ BS.Sign(π, ski, vki, m)
6 E ← E ∪ {(i, m, σ)} ; Return σ

BSign(i, m):
7 σ←$ BS.BSign(π, bd, vki, m)
8 E ← E ∪ {(i, m, σ)} ; Return σ

Fin(i, m, σ):
9 If (i, m, σ) ∈ E then return 0

10 Return BS.Verify(π, vki, m, σ)

Game Gind
BS,n

Init:
1 (π, bd)←$ BS.BPg ; b←$ {0, 1}
2 For i = 1, 2, . . . , n do
3 (vki, ski)←$ BS.Kg(π)
4 Return (π, vk1, . . . , vkn)

Chall(i, m):
5 σ0←$ BS.Sign(π, ski, vki, m)
6 σ1←$ BS.BSign(π, bd, vki, m)
7 Return σb

Sign(i, m):
8 σ←$ BS.Sign(π, ski, vki, m)
9 Return σ

BSign(i, m):
10 σ←$ BS.BSign(π, bd, vki, m)
11 Return σ

Fin(b′):
12 Return (b = b′)

Figure 15: Games defining forgery-finding exclusivity (left) and indistinguishability (right) over n
users.

master secret for user key-generation in IBE. Some examples are [26, 28]. In the former, user keys
are generated only from the security parameter. In the latter, a CRS is allowed. In both, updatable
public parameters are used in encryption and decryption. There does not seem to be a notion of
registration-based signatures, however.

While our aim is to define highly-effective backdoored signatures, different categories of cryp-
tographic subversion have been studied, such as subversion-resilient signatures [3] or anamorphic
signatures [38]. Their goals are, however, quite different, as outlined in Section 3.

Naive construction. We construct a backdoored signature scheme BS0 from a standard signa-
ture scheme in Figure 16. The idea is simple: The public parameter consists of a verification key
and the backdoor is the corresponding signing key. The verification algorithm will accept signatures
produced by either the backdoor signing key or the signing key of a user. Utility of the backdoor
thus follows directly from the correctness of the signature scheme. Turning to exclusivity, we need
to modify the signing algorithm to also include the user’s verification key. More specifically, both
signing algorithms create a signature on the concatenation of the user verification key and the ac-
tual message. This is necessary to achieve multi-user forgery-finding exclusivity. Note that without
the verification key, a signature that was created using the backdoor verifies under all possible
verification keys. We capture exclusivity of BS0 in Theorem 7.1.

Theorem 7.1 Let S be a signature scheme. From S we construct the backdoored signature scheme
BS0 as in Figure 16. Let n be a positive integer and let B be an adversary in game Gffe

BS0,n. Then
we can construct adversary A in game Gsuf-cma

S such that

Advffe
BS0,n(B) ≤ (n + 1) ·Advsuf-cma

S (A) . (8)
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BS0.BPg:

1 (vk, sk)←$ S.Kg
2 π ← vk ; bd ← sk
3 Return (π, bd)

BS0.Kg(π):

4 (vk, sk)←$ S.Kg
5 Return (vk, sk)

BS0.Sign(π, sk, vk, m):

6 Return S.Sign(sk, (vk ∥m))

BS0.BSign(π, bd, vk, m):

7 Return S.Sign(bd, (vk ∥m))

BS0.Verify(π, vk, m, σ):

8 If S.Vfy(vk, (vk ∥m), σ) then return 1
9 Return S.Vfy(π, (vk ∥m), σ)

Figure 16: Construction of backdoored signature scheme BS0 from a signature scheme S.

If B makes q signing queries, then A makes at most q signing queries as well. Further, adversary
A has running time close to that of B.

Proof: To show Eq. (8), note that the game Gffe
BS0,n describes an (n+1)-user game for standard suf-

cma security. The only difference is that in order to sign, the verification keys are first concatenated
with the message. The theorem thus follows directly from a simple guessing argument, as first shown
in [25].

Adding indistinguishability. The above scheme does not satisfy indistinguishability because
verification will only work for one of the verification keys. In order to achieve indistinguishability,
we can add a non-interactive zero-knowledge proof. Whenever a signature is computed (either
using the backdoor or the user signing key), one would commit to the signature and then prove in
zero-knowledge that the signature verifies. Verification then simply verifies that proof.
Existing schemes with backdoors. One might wonder whether it is possible to show for exist-
ing signature schemes that they contain such a highly-effective backdoor. Often signature schemes
specify a trusted setup. One example is the signature scheme based on the identification scheme of
Guillou and Quisquater [31]. In their scheme, the public parameters consist of an RSA modulus.
Knowing the factorization indeed allows one to compute arbirtrary signatures which are identically
distributed to honestly generated signatures. Thus, the scheme can be viewed as a backdoored
scheme that satisfies utility, forgery-finding exclusivity and indistinguishability.

8 Positive results for signatures

In this section we provide positive results for existing schemes where the setup suggests that the
scheme could potentially be backdoored. Our goal is then to show that this potential backdoor is
not effective. To capture this, we define an additional game, namely backdoor unforgeability under
chosen message attack (buf-cma). The game is given in Figure 17 and is essentially the suf-cma
game for signatures, but the adversary is additionally given the backdoor.
Okamoto signatures. The Okamoto signature scheme [41] is based on a prime-order group
(G, p, g). The parameter generation chooses an additional group element h at random. We may
ask (as was the case for Dual EC) whether the discrete logarithm α of h to base g can be used as
a backdoor to the scheme; that is, to forge signatures. We denote the Okamoto signature scheme
which retains the discrete logarithm by BOS and give its full description in Figure 18. It is worth
noting that existing security proofs rely on solving the discrete logarithm for h. Maybe somewhat
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Game Gbuf-cma
BS

Init:
1 (π, bd)←$ BS.BPg ; E ← ∅
2 (vk, sk)←$ BS.Kg(π)
3 Return (π, bd, vk)

Sign(m):
4 σ←$ BS.Sign(π, sk, vk, m)
5 E ← E ∪ {(m, σ)} ; Return σ

Fin(m, σ):
6 If (m, σ) ∈ E then return 0
7 Return BS.Verify(π, vk, m, σ)

Figure 17: Game defining backdoor uf-cma of a backdoored signature scheme.

BOS.BPg:

1 α←$ Zp

2 h← gα

3 Return (h, α)

BOS.Kg(h):

4 s1, s2←$ Zp

5 vk ← (g−s1 h−s2 )
6 sk ← (s1, s2)
7 Return (vk, sk)

BOS.Sign(h, sk, m):

8 (s1, s2)← sk
9 r1, r2←$ Zp

10 x← gr1 hr2

11 e← H(x, m)
12 y1 ← r1 + es1 mod p

13 y2 ← r2 + es2 mod p

14 Return σ ← (e, y1, y2)

BOS.Verify(h, vk, m, σ):

15 (e, y1, y2)← σ

16 x← gy1 hy2 vke

17 If H(x, m) = e then return 1
18 Return 0

Figure 18: Backdoored Okamoto signature scheme BOS for a prime-order group (G, p, g) and hash
function H. The parameter generation picks h in a way such that the discrete logarithm α is known.

surprisingly, we are able to provide an alternative proof showing buf-cma for BOS relying on the
security of the Schnorr signature scheme [45], which we recall in Figure 19.

Theorem 8.1 Let BOS and SS be the backdoored Okamoto signature scheme and the Schnorr
signature scheme, respectively. Let B be an adversary in game Gbuf-cma

BOS . Then we can construct
adversary A in game Gsuf-cma

SS such that

Advbuf-cma
BOS (B) ≤ Advsuf-cma

SS (A) . (9)

Adversary A makes the same number of signing queries as B. Further, A has running time close
to that of B.

Proof: We construct adversary A as shown in Figure 20. A gets as input the verification key vk =
gsk for SS. It picks α to compute h and runs adversary B on (h, vk ′, α), where vk ′ = vk−1 = g−sk .
When B issues a signing query on m, A forwards this query to its own oracle to receive a signature
(e, y), where e = H(x, m) for x = gr and y = r + e · sk. A now picks y2 at random and computes
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SS.Kg:

1 sk←$ Zp

2 vk ← gsk

3 Return (vk, sk)

SS.Sign(sk, m):

4 r←$ Zp

5 x← gr

6 e← H(x, m)
7 y ← r + e · sk mod p

8 Return σ ← (e, y)

SS.Verify(vk, m, σ):

9 (e, y)← σ

10 x← gyvk−e

11 If H(x, m) = e then
12 Return 1
13 Return 0

Figure 19: Schnorr scheme SS for a prime-order group (G, p, g) and hash function H.

Adversary A(vk):

1 α←$ Zp ; h← gα

2 vk′ ← vk−1

3 (m, σ)← B[Sign](h, vk′, α)
4 (e, y1, y2)← σ

5 y ← y1 + α · y2 mod p

6 Return (m, (e, y))

Oracle Sign(m):

7 σ ← Gsuf-cma
SS .Sign(m)

8 (e, y)← σ

9 y2←$ Zp ; y1 ← y − α · y2 mod p

10 σ′ ← (e, y1, y2)
11 Return σ′

Figure 20: Adversary A for the proof of Theorem 8.1.

y1 = y − αy2. Note that this is a valid Okamoto signature since

gy1 · hy2 · (vk ′)e = gy−αy2 · gαy2 · g−sk·e = gy−e·sk = gy · vk−e = x .

When B terminates and outputs a forgery (m, (e, y1, y2)), A computes y = y1 + α · y2 and outputs
(m, (e, y)) as its own forgery. If B’s forgery is valid, then

gy1 · hy2 · (vk ′)e = gy1+αy2 · vk−e = gy · vk−e = x .

Hence, A outputs a valid forgery as well.

Remark 8.2 For better concrete security bounds, the verification key is often included inside the
hash. In this case, the above proof still holds by programming the random oracle accordingly.
However, this introduces an additional statistical term to the bound which accounts for the event
that the random oracle has already been queried on a value x that is later used for a signature.
Since x is distributed uniformly, the probability that this bad event happens is negligible.

Katz-Wang signatures. A similar result can be proven for the Katz-Wang signature scheme [36].
In Katz-Wang, the public parameters also include a group element h and the verification key is
a tuple (gsk , hsk). Signing works as in Schnorr, except that it computes (gr, hr) from which e is
computed as H(gr, hr, m). The signature is then the tuple (e, y), where y = r + sk · e. Thus, a
reduction can simulate signatures using its own signing oracle and programming the random oracle
accordingly.
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[21] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor hash
functions and their applications. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 3–32. Springer, Heidelberg, Aug. 2019. (Cited on 7.)

[22] E. Felten. The linux backdoor attempt of 2003, 2013. https://freedom-to-tinker.com/2013/
10/09/the-linux-backdoor-attempt-of-2003/. (Cited on 6.)

[23] M. Fischlin, C. Janson, and S. Mazaheri. Backdoored hash functions: Immunizing HMAC
and HKDF. In S. Chong and S. Delaune, editors, CSF 2018 Computer Security Foundations
Symposium, pages 105–118. IEEE Computer Society Press, 2018. (Cited on 2, 3, 4, 5, 7, 10,
15, 16, 18, 22.)

[24] A. Freund. Openwall oss-security mailing list, 29 Mar. 2024. https://www.openwall.com/lists/
oss-security/2024/03/29/4. (Cited on 6, 22.)

[25] S. Galbraith, J. Malone-Lee, and N. Smart. Public key signatures in the multi-user setting.
Information Processing Letters, 83(5):263–266, 2002. (Cited on 25.)

29

https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.openwall.com/lists/oss-security/2024/03/29/4


[26] S. Garg, M. Hajiabadi, M. Mahmoody, and A. Rahimi. Registration-based encryption: Re-
moving private-key generator from IBE. In A. Beimel and S. Dziembowski, editors, TCC 2018,
Part I, volume 11239 of LNCS, pages 689–718. Springer, Heidelberg, Nov. 2018. (Cited on 24.)

[27] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random
oracle. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 123–139. Springer,
Heidelberg, May 1999. (Cited on 9.)

[28] N. Glaeser, D. Kolonelos, G. Malavolta, and A. Rahimi. Efficient registration-based encryption.
In ACM CCS 2023, pages 1065–1079. ACM Press, Nov. 2023. (Cited on 24.)

[29] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-
versity Press, Cambridge, UK, 2004. (Cited on 9.)

[30] S. Goldwasser, M. P. Kim, V. Vaikuntanathan, and O. Zamir. Planting undetectable back-
doors in machine learning models : [extended abstract]. In 63rd FOCS, pages 931–942. IEEE
Computer Society Press, Oct. / Nov. 2022. (Cited on 2, 5, 7.)

[31] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security
microprocessor minimizing both trasmission and memory. In C. G. Günther, editor, EURO-
CRYPT’88, volume 330 of LNCS, pages 123–128. Springer, Heidelberg, May 1988. (Cited on
25.)

[32] D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. Journal of
Cryptology, 25(3):484–527, July 2012. (Cited on 7.)

[33] T. Horel, S. Park, S. Richelson, and V. Vaikuntanathan. How to subvert backdoored encryp-
tion: Security against adversaries that decrypt all ciphertexts. In A. Blum, editor, ITCS 2019,
volume 124, pages 42:1–42:20. LIPIcs, Jan. 2019. (Cited on 2, 7.)

[34] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algorithm
(ECDSA). International Journal of Information Security, 2001. (Cited on 35.)

[35] B. Kaliski. PKCS #5: Password-based cryptography specification. RSA Laboratories, Sept.
2000. Version 2.0. (Cited on 3.)

[36] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security
reductions. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM CCS 2003, pages 155–164.
ACM Press, Oct. 2003. (Cited on 6, 27.)

[37] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS 2000. The Internet Society, Feb.
2000. (Cited on 5, 7, 18.)

[38] M. Kutylowski, G. Persiano, D. H. Phan, M. Yung, and M. Zawada. Anamorphic signatures:
Secrecy from a dictator who only permits authentication! In H. Handschuh and A. Lysyan-
skaya, editors, CRYPTO 2023, Part II, volume 14082 of LNCS, pages 759–790. Springer,
Heidelberg, Aug. 2023. (Cited on 2, 6, 24.)

[39] A. Lenstra, X. Wang, and B. de Weger. Colliding x.509 certificates. Cryptology ePrint Archive,
Report 2005/067, 2005. https://eprint.iacr.org/2005/067. (Cited on 21.)

[40] A. K. Lenstra and B. de Weger. On the possibility of constructing meaningful hash collisions
for public keys. In C. Boyd and J. M. G. Nieto, editors, ACISP 05, volume 3574 of LNCS,
pages 267–279. Springer, Heidelberg, July 2005. (Cited on 21.)

30

https://eprint.iacr.org/2005/067


[41] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer,
Heidelberg, Aug. 1993. (Cited on 6, 25.)

[42] OpenSSL. https://www.openssl.org/. (Cited on 38.)

[43] G. Persiano, D. H. Phan, and M. Yung. Anamorphic encryption: Private communication
against a dictator. In O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II,
volume 13276 of LNCS, pages 34–63. Springer, Heidelberg, May / June 2022. (Cited on 2, 6.)

[44] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Correcting subverted random oracles. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
241–271. Springer, Heidelberg, Aug. 2018. (Cited on 7.)

[45] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, Aug. 1990. (Cited
on 26.)

[46] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, Jan. 1991. (Cited on 6.)

[47] D. Shumow and N. Ferguson. On the possibility of a back door in the NIST sp800-90 dual
EC PRNG. CRYPTO’07 Rump Session, 2007. https://rump2007.cr.yp.to/15-shumow.pdf.
(Cited on 2, 6.)

[48] G. J. Simmons. The prisoners’ problem and the subliminal channel. In D. Chaum, editor,
CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983. (Cited on 2, 7.)

[49] G. J. Simmons. The subliminal channel and digital signature. In T. Beth, N. Cot, and
I. Ingemarsson, editors, EUROCRYPT’84, volume 209 of LNCS, pages 364–378. Springer,
Heidelberg, Apr. 1985. (Cited on 2, 7.)

[50] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix collisions for MD5 and colliding
X.509 certificates for different identities. In M. Naor, editor, EUROCRYPT 2007, volume 4515
of LNCS, pages 1–22. Springer, Heidelberg, May 2007. (Cited on 3, 7, 21.)

[51] M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik, and B. de Weger.
Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 55–69. Springer, Heidelberg, Aug. 2009.
(Cited on 3, 7, 21.)

[52] F. Valsorda. Bluesky post, 30 Mar. 2024. https://bsky.app/profile/did:plc:
x2nsupeeo52oznrmplwapppl/post/3kowjkx2njy2b. (Cited on 6.)

[53] X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer, Heidelberg, May 2005.
(Cited on 21.)

[54] A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we trust
capstone? In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 89–103. Springer,
Heidelberg, Aug. 1996. (Cited on 2, 5, 6.)

31

https://www.openssl.org/
https://rump2007.cr.yp.to/15-shumow.pdf
https://bsky.app/profile/did:plc:x2nsupeeo52oznrmplwapppl/post/3kowjkx2njy2b
https://bsky.app/profile/did:plc:x2nsupeeo52oznrmplwapppl/post/3kowjkx2njy2b


Adversary B1(fbd, fhk, y):

1 m′←$ BH.FP(fbd, u = ε, y)
2 Return m′

Adversary B2(fbd, fhk, y, m):

3 m′←$ BH.FP(fbd, m, y)
4 Return m′

Adversary A(hk):
5 fhk ← hk
6 (m1, m2)← B(fhk)
7 Return (m1, m2)

Figure 21: Adversaries B1, B2 for the proof of Proposition 5.2, and adversary A for the proof of
Theorem 5.3.
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A Proof of BH =⇒ FJM

Proof of Proposition 5.2: We first consider finding a preimage. Adversary B1 is given in
Figure 21. On inputs fbd, fhk, y, B1 simply runs BH.FP to find a preimage of y. If BH achieves
high utility for P then m′←$ BH.FP(fbd, ε, y) is such that BH.Ev(fhk, m′) = FH.Ev(fhk, m′) = y
and P(m′, ε) = true. The former is all that is needed to be a successful preimage in game Gf-pr

FH,1 so
Advf-pr

FH,1(B1) = 1.

Next we aim to find a second preimage and make the additional assumption on P in the proposition
statement. Adversary B2 is in Figure 21. On inputs fbd, fhk, y, m, B2 runs BH.FP to find a preimage
of y, subject to u = m. If BH achieves high utility for P then m′←$ BH.FP(fbd, m, y) is such that
BH.Ev(fhk, m′) = FH.Ev(fhk, m′) = y and P(m′, m) = true. Our restriction on P then means that
m′ ̸= m, so both winning conditions of game Gf-2pr

FH,1 are met. Thus Advf-2pr
FH,1 (B2) = 1.

Proof of Theorem 5.3: Given adversary B, A operates according to the pseudocode in Fig-
ure 21. By inspection, B is precisely in game Gf-cr

FH,0 instantiated with FH of Figure 10. If B
returns a successful collision (m1, m2) then m1 ̸= m2 and FH.Ev(fhk, m1) = FH.Ev(fhk, m2). Since
FH.Ev(fhk, m) = BH.Ev(hk, m) for this construction, (m1, m2) remains a successful collision in game
Gcfe

BH,P. This proves Eq. (6) and the theorem.
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Game G0

Init:
1 (hk, bd)←$ BH.BKg ; pk ← hk ; sk ← bd
2 E ← ∅ ; H ← ∅
3 Return pk

Adapt(m, m′, r, h):
4 If (h ̸= BH.Ev(pk, Emb(r, m))) then return ⊥
5 e′←$ BH.FP(sk, m′, h)
6 (r′, u)← Emb−1(e′) // where (u = m′)
7 If (r′ = ⊥) then return ⊥
8 E ← E ∪ {e′} ; H ← H∪ {h}
9 Return r′

Fin(m1, m2, r1, r2, h):
10 b← ((m1 ̸= m2) ∧ CH.Check(pk, m1, r1, h) ∧ CH.Check(pk, m2, r2, h))
11 Return (b ∧ (h /∈ H))

Figure 22: Game G0 for the proof of Theorem 5.5. On line 6, we have u = m′ which is guaranteed by
the assumption on P, Emb in the theorem statement; this was proved in the proof of Proposition 5.4.

B Proof of enhanced collision resistance

Proof of Proposition 5.4: To prove the correctness of CH, let (h, r)←$ CH.Hash(pk, m). Then
(h, r) is chosen via r←$ Emb.ES and h ← BH.Ev(pk, Emb(r, m)). Correctness now asks that
CH.Check(pk, m, h, r) = 1, or for this construction that h = BH.Ev(pk, Emb(r, m)). This is satisfied
because BH.Ev and Emb are deterministic. Correctness also considers the outputs of CH.Adapt.
For this, let m′ ∈ CH.Dom and r′←$ CH.Adapt(sk, m, m′, r, h). That is, for e′←$ BH.FP(sk, m′, h),
r′ is such that (r′, u) ← Emb−1(e′). Let us now consider CH.Check(pk, m′, r′, h). This returns
1 iff h = BH.Ev(pk, Emb(r′, m′)). If BH achieves high utility for P, then e′ is found such that
P(e′, m′) = 1 and BH.Ev(pk, e′) = h.

We next claim that Emb(r′, m′) = e′, which in combination with the above will complete the
proof that CH.Check(pk, m′, r′, h) = 1. This is where we use the assumption that (P(e, u) =
true) =⇒ (Emb−1(e) = (x, u)) for some x ∈ Emb.ES. In our case, P(e′, m′) = 1 implies that
Emb−1(e′) = (x, m′) for some x ∈ Emb.ES. As on line 6 of Figure 12, we in fact have x = r′ and
u = m′. That is, Emb−1(e′) = (r′, m′) and thus Emb(r′, m′) = e′.

We have proved that CH is correct but let us briefly justify the additional assumption on P and
Emb. This is in particular satisfied by Pn

sfx and Embn
sfx of Figure 4, and potentially by a larger

class of possible predicates. Assume that the boxed code in Figure 4 is included. Recall that
Embn

sfx.ES = {0, 1}n, Embn
sfx(x, u) = x ∥u, and EmbInvn

sfx(e) = (x, u) where x is the first n bits of e,
and u is the remaining suffix (of unspecified length). Now observe that if Pn

sfx(e, u) = true then u
is a suffix of e such that |e| = |u| + n, where the latter is the condition in the boxed code. Then
e = x ∥u where |x| = n so Emb−1(e) = (x, u), which is the desired property.

Proof of Theorem 5.5: Consider game G0 of Figure 22. We claim that

Advch-ecr
CH (B) = Pr [ G0(B) ] . (10)

Eq. (10) is justified by the fact that G0 is the same as game Gch-ecr
CH when instantiated with scheme
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Adversary A(hk):
1 pk ← hk
2 (m1, m2, r1, r2, h)← B[AdaptA](pk)
3 e1 ← Emb(r1, m1) ; e2 ← Emb(r2, m2)
4 Return (e1, e2)

Oracle AdaptA(m, m′, r, h):
5 If (h ̸= BH.Ev(pk, Emb(r, m))) then return ⊥
6 e′ ← GetPmg(m′, h)
7 (r′, u)← Emb−1(e′)
8 Return r′

Figure 23: Adversary A for the proof of Theorem 5.5.

CH of Figure 12. The set E is additionally accounted for on lines 2,8 but all oracle return values
are as in Gch-ecr

CH .
For the remainder of the proof, we turn to designing an adversary A such that

Pr [ G0(B) ] ≤ Advcfe
BH,P(A) . (11)

Let adversary A operate according to the pseudocode in Figure 23. Eq. (11) requires two expla-
nations. First, the input pk and oracle AdaptA that are given to B in Figure 23 are the same
as in game G0. Second, [G0(B) outputs true] =⇒ [Gcfe

BH,P(A) outputs true]. To justify the first,
note that pk given to B is a properly generated public key of BH.BKg and thus of CH.Kg. The
oracle AdaptA performs the same steps as oracle Adapt of Figure 22, where the call to GetPmg
on line 6 of AdaptA implements the call to BH.FP on line 5 of Adapt. Also note that A makes
one query to GetPmg for each of B’s queries to AdaptA, proving the running time of A in the
theorem statement.
Finally we turn to proving that

[G0(B) outputs true] =⇒ [Gcfe
BH,P(A) outputs true] . (12)

This requires consideration of the three conditions in the Fin oracles of games G0 and Gcfe
BH,P. In

particular, suppose B’s final output is (m1, m2, r1, r2, h) so that A outputs (e1, e2) where ei ←
Emb(ri, mi) for i ∈ {1, 2}. We claim that the following three statements hold, where the lefthand
statement is in game G0(B) and the righthand statement is in Gcfe

BH,P(A):

(m1 ̸= m2) =⇒ (e1 ̸= e2) (13)

(h = BH.Ev(pk, Emb(r1, m1)) = BH.Ev(pk, Emb(r2, m2)))

=⇒ (BH.Ev(pk, e1) = BH.Ev(pk, e2)) (14)

(h /∈ H) =⇒ ((e1 /∈ E) ∧ (e2 /∈ E)) . (15)

If all three of the above hold then Eq. (12) will follow. To start, Eq. (13) holds because Emb is
invertible via Emb−1. Specifically, if e1 = Emb(r1, m1) then Emb−1(e1) = (r1, m1). This holds for
e2 as well, which means that if m1 ̸= m2 then we must have Emb(r1, m1) ̸= Emb(r2, m2). Eq. (14)
has a similarly simple justification: both Emb and BH.Ev are deterministic.
Let us now consider Eq. (15), and suppose that the lefthand statements of Eqs. (13),(14) already
hold. We now prove Eq. (15) by contrapositive; suppose that ei ∈ E for at least one i ∈ {1, 2}.
Looking at game G0, E is updated on lines 5,8. If ei ∈ E then ei ← BH.FP(sk, m′, h′) was computed
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on line 5 for some m′, h′ during a query Adapt(m∗, m′, r∗, h′). Correctness of BH.FP guarantees
that h′ = h. Thus h was added to H on line 8. This contradiction proves Eq. (15) and completes
the proof.

C Proof of full collision resistance

In Section 5 we constructed a chameleon hash function CH given backdoored hash function BH
and embedding function Emb. Theorem 5.5 proved that CH satisfies enhanced collision resistance
if BH satisfies cfe exclusivity. However, “enhanced” is not the strongest notion of cr security for
chameleon hash functions; currently that is full collision resistance as defined by [19] and given in
Figure 11. We can prove that our constructed CH satisfies full cr if an additional assumption is
made on the min-entropy of BH.FP. For example, in our construction BH = HEB[G, S, Emb] of
Section 4, the randomization of BH.FP is coming from the randomization of S.Sign.

The specific definition we use is the following. For BH and embedding function Emb, let R−1
BH,Emb

denote, over choices of m′, r, h and (hk, bd)←$ BH.BKg, the maximum probability that (r′ = r)
when r′ is computed according to experiment: e′←$ BH.FP(bd, m′, h) ; (r′, u)← Emb−1(e′) ; return
r′. Let R−1

BH,Emb(q) denote, over q choices of m′
i, ri, hi and fixed (hk, bd)←$ BH.BKg, the probability

that (r′
i = ri) in at least one of these q experiments with m′

i, ri, hi and bd. This is not precisely
the min-entropy of BH.FP, as there is an additional Emb−1 application; nonetheless it is intuitively
close to the min-entropy of BH.FP.

The value R−1
BH,Emb(q) depends on the randomness of BH.FP. As one example, suppose BH =

HEB[G, S, Emb] is instantiated with a deterministic signature scheme. Then there is only one
possible value of e′ for any bd, m′, h and thus one possible r′ in the above experiment. Selecting
m′, r = r′, h shows that R−1

BH,Emb(q) = 1. On the other hand, suppose a randomized signature scheme
is used. In particular, consider ECDSA [34] where the nonce N ∈ {0, 1}k used during signing is
cryptographically random. An embedding value r′ is randomly selected to equal a chosen r only
if a particular signature, and thus particular nonce, is chosen. Over q queries, R−1

BH,Emb(q) ≈ q2

2k ,
where 2k is approximately the ECDSA group order; for example 2k ≈ 2256.

In the below theorem, the term R−1
BH,Emb(q) is not an artifact of looseness; there is a natural set-

ting where the reduction fails. Consider B which aims to produce CHF collision (m1, m2, r1, r2, h).
B can then make a query r3←$ Adapt(m1, m3, r1, h) and r′

1←$ Adapt(m3, m1, r3, h). With some
probability r′

1 = r1; this depends on the randomness of BH.FP, followed by Emb−1. If this occurs,
B still wins because (h, m2) /∈ F . However, the constructed A cannot use either Emb(r1, m1) or
Emb(r3, m3) in a collision because they are both in E . There is no obvious way for A to create
a collision in this setting, as B has made queries for the sole purpose of adding potentially useful
preimages to E .

Thus the below theorem is subtle, but the takeaway is that full cr of CH is achievable if the
underlying scheme BH = HEB[G, S, Emb] uses S with sufficiently random signatures, or otherwise
has sufficiently randomized BH.FP.

Theorem C.1 Let BH be a backdoored hash function. From BH we construct chameleon hash
function CH as in Figure 12. Let P be a predicate with a correct embedding function Emb such that
(P(e, u) = true) =⇒ (Emb−1(e) = (x, u)) for some x ∈ Emb.ES. Suppose BH achieves high utility
for P. Then if B is an adversary in game Gch-full

CH , we can construct adversary A in game Gcfe
BH,P

such that

Advch-full
CH (B) ≤ Advcfe

BH,P(A) + R−1
BH,Emb(q) , (16)
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Games G0 / G1

Init:
1 (hk, bd)←$ BH.BKg ; pk ← hk ; sk ← bd
2 E ← ∅ ; F ← ∅
3 Return pk

Adapt(m, m′, r, h):
4 e∗ ← Emb(r, m)
5 If (h ̸= BH.Ev(pk, e∗)) then return ⊥
6 e′←$ BH.FP(sk, m′, h)
7 (r′, u)← Emb−1(e′) // where (u = m′)
8 If (r′ = ⊥) then return ⊥ // Game G0
9 If (e′ ̸= e∗) then E ← E ∪ {e′}

10 F ← F ∪ {(h, m), (h, m′)}
11 If (FreshHTable[h] = ⊥) then FreshHTable[h]← (r, m)
12 If (Emb(FreshHTable[h]) ∈ E) then FreshHTable[h]← ⊥
13 Return r′

Fin(m1, m2, r1, r2, h):
14 If (m1 = m2) then return false
15 If (h ̸= BH.Ev(pk, Emb(r1, m1))) then return false
16 If (h ̸= BH.Ev(pk, Emb(r2, m2))) then return false
17 If (|F ∩ {(h, m1), (h, m2)}| = 2) then return false
18 If (|F ∩ {(h, m1), (h, m2)}| = 0) then return true
19 If ((FreshHTable[h] = ⊥) ∨ (Emb(FreshHTable[h]) ∈ E)) then
20 bad← true ; Return false
21 Return true

Figure 24: Games G0, G1 for the proof of Theorem C.1. On line 7, we have u = m′ which is
guaranteed by the assumption on P, Emb in the theorem statement; this was proved in the proof of
Proposition 5.4. G1 includes the boxed code while G0 does not.

where if B makes q Adapt queries then A makes q GetColl queries. Adversary A has running
time close to that of B.

Proof of Theorem C.1: Consider game G0 of Figure 24. We claim that

Advch-full
CH (B) = Pr [ G0(B) ] . (17)

Eq. (17) is justified by the fact that G0 is the same as game Gch-full
CH when instantiated with scheme

CH of Figure 12. The set E is additionally accounted for on lines 2,9 and the table FreshHTable
is tracked on the highlighted lines, but these do not alter the Adapt responses in G0. The Fin
procedure is split into several checks that are equivalent to those of Gch-full

CH (the boxed code is
omitted in G0).
Next we turn to G1. Note that this excludes line 8 but correctness of BH.FP and the assumption
on P, Emb in the theorem statement imply that it will never be the case that (r′ = ⊥). Games
G0, G1 thus only differ at line 20 and are identical-until-bad. The Fundamental Lemma of Game
Playing [8] implies that

Pr [ G0(B) ]− Pr [ G1(B) ] ≤ Pr [ G1(B) sets bad ]

Pr [ G0(B) ] ≤ Pr [ G1(B) ] + Pr [ G1(B) sets bad ] .
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Adversary A(hk):
1 pk ← hk ; E ← ∅
2 (m1, m2, r1, r2, h)← B[AdaptA](pk)
3 e1 ← Emb(r1, m1) ; e2 ← Emb(r2, m2)
4 If ((|{e1, e2} ∩ E| = 1) ∧ (FreshHTable[h] ̸= ⊥)) then
5 (r3, m3)← FreshHTable[h] ; e3 ← Emb(r3, m3)
6 If (e1 ∈ E) then return (e2, e3)
7 Else return (e1, e3)
8 Return (e1, e2)

Oracle AdaptA(m, m′, r, h):
9 e∗ ← Emb(r, m)

10 If (h ̸= BH.Ev(pk, e∗)) then return ⊥
11 e′ ← GetColl(m′, e∗)
12 (r′, u)← Emb−1(e′)
13 If (e′ ̸= e∗) then E ← E ∪ {e′}
14 If (FreshHTable[h] = ⊥) then FreshHTable[h]← (r, m)
15 If (Emb(FreshHTable[h]) ∈ E) then FreshHTable[h]← ⊥
16 Return r′

Figure 25: Adversary A for the proof of Theorem C.1.

To complete the proof of Eq. (16), we design an adversary A and prove that

Pr [ G1(B) ] ≤ Advcfe
BH,P(A) (18)

Pr [ G1(B) sets bad ] ≤ R−1
BH,Emb(q) . (19)

We begin with Eq. (18). Let adversary A operate according to the pseudocode in Figure 25. First,
the input pk and oracle AdaptA that are given to B in Figure 25 are the same as in game G1.
Second, [G1(B) outputs true] =⇒ [Gcfe

BH,P(A) outputs true]. To justify the first, note that pk
given to B is a properly generated public key of BH.BKg and thus of CH.Kg. The oracle AdaptA

performs the same steps as oracle Adapt of Figure 24, where the call to GetColl on line 11 of
AdaptA implements the call to BH.FP on line 6 of Adapt. Also note that A makes one query
to GetColl for each of B’s queries to AdaptA, proving the running time of A in the theorem
statement.
Next we turn to proving that

[G1(B) outputs true] =⇒ [Gcfe
BH,P(A) outputs true] . (20)

There are three conditions in the Fin oracles of games G1 and Gcfe
BH,P. Two of the conditions are sim-

ple; suppose B outputs (m1, m2, r1, r2, h) so that A sets e1 = Emb(r1, m1), e2 = Emb(r2, m2). First,
if (m1 ̸= m2) then (e1 ̸= e2) due to correctness of Emb−1. Second, if BH.Ev(pk, Emb(r1, m1)) =
BH.Ev(pk, Emb(r2, m2)) then BH.Ev(pk, e1) = BH.Ev(pk, e2). For the final condition we must con-
sider the sets E ,F . There are two cases where G1(B) outputs true. In the first, |F ∩ {(h, m1),
(h, m2)}| = 0. We claim that if ei ∈ E then (h, mi) ∈ F . This will imply that in this first case, we
must have |E ∩ {e1, e2}| = 0 so that A’s output (e1, e2) is a winning collision. To prove the claim,
suppose ei ∈ E . Then ei was computed on lines 6,7 by BH.FP and it must have been that m′ = mi

during that Adapt query, due to correctness of BH.FP and the condition on Emb. Thus (h, mi)
was added to F .
Let us now consider the second case in which G1(B) outputs true, when |F ∩{(h, m1), (h, m2)}| = 1.
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To analyze this second case, we will use the table FreshHTable. The entry at FreshHTable[h]
is always either ⊥ or a tuple (r, m) such that Emb(r, m) /∈ E and BH.Ev(pk, Emb(r, m)) = h.
These conditions are maintained by lines 5,11,12 of G1. Now suppose execution of G1 has reached
line 19 of Fin. Since the boxed code is included in G1, G1(B) only outputs true at this point if
FreshHTable[h] ̸= ⊥ and Emb(FreshHTable[h]) /∈ E . Correspondingly, in this case adversary A sets
(r3, m3) ← Emb(FreshHTable[h]) and e3 ← Emb(r3, m3). Suppose without loss of generality that
(h, m1) /∈ F and (h, m2) ∈ F . Then m1 has never been encountered during an Adapt query so in
particular m1 ̸= m3. We also have that e1 /∈ E . Thus A returns (e1, e3) which is a collision to hash
h such that e1 /∈ E and e3 /∈ E . This completes the justification of Eq. (18).
The above analysis shows that the sets E ,F must be analyzed carefully. To prove Eq. (19) we now
consider the bad flag of game G1. This is set if line 19 of Fin is reached such that FreshHTable[h] =
⊥ or Emb(FreshHTable[h]) ∈ E . The latter is always prevented by line 12, so we restrict attention
to the chance that FreshHTable[h] = ⊥. Since line 19 is reached, at least one of (h, m1) and (h, m2)
is in F . In particular, FreshHTable[h] was at some point initialized on line 11, but was at a later
time set to ⊥. Suppose that FreshHTable[h] was initially set to (r∗, m∗); note that (r∗, m∗) would
have been a chosen input to Adapt. The entry FreshHTable[h] only becomes set to ⊥ if during
some later query, e∗ = Emb(r∗, m∗) was a random output of BH.FP on line 6, so that e∗ was added
to E . If bad is set in G1 then it must be the case that at least one “repeated” e∗ was chosen over B’s
q queries. Since e∗ only repeats if r∗ does, it must be the case that a “repeated” r∗ was chosen. This
is bounded precisely by R−1

BH,Emb(q), which is the maximum probability, over all possible Adapt
inputs, that a randomly generated r′ collided with a chosen-input r∗. This proves Eq. (19) and the
theorem.

D Forged certificate example

Suppose we have selected target hash h = 680f8b1123be39f4451430d6267a8159033034403ce0df1
abdf11c105031d719. This corresponds to a public certificate C with a valid signature C.sigValue
where C.sigAlg specifies “PKCS #1 SHA-256 With RSA Encryption.” The aim is now to construct
C∗ ̸= C with the same hash h; thus the signature on C can be reused.

A backdooring entity, following the specification of Section 6, does the following. Suppose
they intend to use BH = HEB[G, S, Emb] where G is SHA256, S is ECDSA over secp256k1, and
the embedding is as in Figure 14 of Section 6. We chose ECDSA because it is easily used in
OpenSSL [42]; however a shorter signature scheme like BLS [11] may be easier to embed.

The forgery proceeds as follows. First, the backdoor is generated via (hk∗, bd∗)←$ BH.BKg,
which in particular means generating (vk∗, sk∗) for ECDSA. (Recall that hk∗ = (gk∗, vk∗) and
bd∗ = sk∗ for HEB.) We select:

vk∗ = 04d0722759460447f1719ac66a1734054651f7c557a96166583d686

ad405ca9b6f5fe47a7e425a8722edfa13be606fcbe4053ecacb27f2

b0bc3dd1e83152c9a8a3 .

Next tbsCert′ is chosen, which is the certificate data to be contained in the forgery. Section 6
discussed arbitrary data and in the Introduction, we discussed impersonation of legit.com by
swapping out only the public key of C.tbsCert. For this example, we address the former, and
suppose that the big-brother adversary is simply aiming to forge tbsCert′. Now they use BH.FP
to find a preimage tbsCert∗ of target hash h, where the constraint is that tbsCert∗ is “close to”
tbsCert′. Concretely, tbsCert∗ adds two additional fields. In the first, tbsCert∗.fh = h. In the
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Certificate C∗:
1 Data:
2 Version: 3 (0x2)
3 Serial Number: ...
4 Signature Algorithm: bdhWithRSAEncryption ; hk∗ = (SHA256, 04d0...a8a3)
5 Issuer: C.Issuer
6 Validity
7 Not Before: Jan 1 08:00:00 2024 GMT
8 Not After : Jun 1 08:00:00 2024 GMT
9 Subject: O = Big Brother, CN = *.bigbrother.com

10 Subject Public Key Info: ...
11 X509v3 extensions:
12 X509v3 Basic Constraints: critical
13 CA:TRUE
14 fh: 680f8b1123be39f4451430d6267a8159033034403ce0df1abdf11c105031d719
15 fσ: 304502202b978f95a853dfa2d2574ff9...56ff5dbdeed8948eb7570089e12d5
16 Signature Algorithm: bdhWithRSAEncryption ; hk∗ = (SHA256, 04d0...a8a3)
17 C.sigValue

Figure 26: A certificate forgery. The highlighted lines are the overhead in constructing a hash
collision; that is, these are determined by C or cannot be arbitrarily chosen. The remainder of the
certificate, and in particular the “...” sections may be arbitrarily set by the backdooring adversary.

second, tbsCert∗.fσ = σ, where σ←$ S.Sign(sk∗, (h, tbsCert′)). For our chosen data and h, we
find

σ = 304502202b978f95a853dfa2d2574ff9980a4351e7d6c9c4fcc0529

d636c750fdf4c16a8022100efbb50c105df2a4766cfa94910d3a190

19656ff5dbdeed8948eb7570089e12d5 .

Now the forgery is ready to be put together: it includes data tbsCert∗, signature C.sigValue, and
algorithm specification (⟨BH⟩, hk∗, ⟨Sca⟩). This is shown in Figure 26. Note that our threat model
assumes big-brother has the power to cause (⟨BH⟩, hk∗, ⟨Sca⟩) to be a valid algorithm specification.
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