
Harmonizing PUFs for Forward Secure
Authenticated Key Exchange with Symmetric

Primitives

Harishma Boyapally1,2, Durba Chatterjee2, Kuheli Pratihar2,
Sayandeep Saha3, Debdeep Mukhopadhyay2, and Shivam Bhasin1

1 Nanyang Technological University, Singapore
2 Indian Institute of Technology Kharagpur, India

3 Université catholique de Louvain
harishma.boyapally@ntu.edu.sg,durba.chatterjee94@gmail.com,

its.kuheli96@gmail.com, sayandeep.saha@uclouvain.be,

debdeep.mukhopadhyay@gmail.com,sbhasin@ntu.edu.sg

Abstract. Physically Unclonable Functions (PUFs) have been a potent
choice for enabling low-cost, secure communication. However, in most
applications, one party holds the PUF, and the other securely stores
the challenge-response pairs (CRPs). It does not remove the need for
secure storage entirely, which is one of the goals of PUFs. This paper
proposes a PUF-based construction called Harmonizing PUFs (H PUFs),
allowing two independent PUFs to generate the same outcome without
storing any confidential data. As an application of H PUF construction,
we present H-AKE: a low-cost authenticated key exchange protocol for
resource-constrained nodes that is secure against replay and imperson-
ation attacks. The novelty of the protocol is that it achieves forward
secrecy without requiring to perform asymmetric group operations like
elliptic curve scalar multiplications underlying traditional key-exchange
techniques.

Keywords: Harmonizing PUFs · PUF-Throughput · AKE · Forward
Secrecy.

1 Introduction

Secure communication is an age-old problem where two parties wish to exchange
information in the presence of an eavesdropping adversary secretly. Symmetric
and public-key encryption schemes enable parties to encrypt their messages,
hiding them from adversaries. According to Kerckhoff’s principle, although the
schemes themselves are public, security is ensured by keeping only a key string se-
cret. Such secret keys are typically stored in non-volatile device memory (NVM)
in practical applications. However, with the continuous advances in technology,
the adversarial models in cryptography have evolved significantly. Invasive and
semi-invasive adversaries are a reality, and they can easily retrieve the secret

from device memory, as pointed out in several recent works [23,22,17]. A plausi-
ble solution to this issue is making the memory tamper-resilient, which might not
be economical for small devices in IoT, CPS, and automotive sectors. Addition-
ally, such low-end devices are the prime targets for attackers as they are easily
accessible. Physically Unclonable Functions (PUFs) have been established as po-
tential candidates to solve the above-mentioned secret storage problem. Based
on uncontrollable manufacturing process variations, PUFs generate uniformly
random bit(s) as the output response (making it suitable for cryptographic ap-
plications) when queried with an input bit-string (known as a challenge) [12,20].
The fascinating feature of a PUF is that the responses are unpredictable and
depend solely upon the physical characteristics of the device on which it is in-
stantiated. For the same PUFs instantiated on two different ICs, although the
implemented circuit is the same, the responses are statistically independent or
unique, thus working as a device-level fingerprint. These factors make PUF a
strong candidate for on-the-fly secret generation, removing the need for highly
fortified NVMs.

In PUF-based literature to design mutual authentication protocols between
two PUF-enabled devices (nodes) [8,5,9,6,26], there is a requirement for a third
party enabled by a server. Due to the unclonability and unique nature of PUF
outputs, the server is expected to securely store the challenge-response pairs
(CRP) corresponding to all the nodes in the network. It acts as a single point
of failure and therefore is assumed to be a trusted entity with secure storage
capabilities and requires to be available for the nodes to perform AKE, incur-
ring an increase in latency. A survey of state-of-the-art works on PUF-based
AKE protocols [10,6] motivate the requirement of building protocols that al-
leviate the requirement of complex crypto-primitives by rely on the ability of
the nodes to compute light-weight symmetric operations. Additionally, the ex-
isting schemes achieve forward secrecy using asymmetric primitives that de-
pend on elliptic curve discrete log, computational and decisional Diffie-Hellman
problems [8,5,9,6,19,26]. If these protocol are not properly designed, there is
a possibility of man-in-the-middle attacks which can be seen in Diffie-Hellman
key exchange-based schemes. For a thorough analysis of the proposed proto-
col’s forward secrecy, we model our adversary similar to the one discussed in
one presented in a recent work [2], where they proposed a symmetric key based
authenticated key exchange scheme. However, their scheme requires secure key
storage, which we avoid using PUFs, making it more secure against key stealing
from the device, since the secrets are generated on-the-fly.

This paper addresses the shortcomings associated with existing PUF-based
literature. The contributions are summarized as follows:

– Harmonizing PUFs: We propose Harmonizing PUFs (H PUF), a PUF-based
construction that enables two distinct PUFs with independent output re-
sponses to eventually generate the same string. We solve the long-standing
issue of asymmetry in PUF-based communication, where one party holds the
PUF and stores the CRPs securely. We eliminate the need for storing the

2

responses securely while requiring only the challenge and so-called harmo-
nizing vectors, both of which can be made public.

– Forward Secure Authenticated Key Exchange: As an application of the
H PUF construction, we propose a low-cost AKE protocol (H-AKE) with
minimal assumptions, suitable for low-resource devices. Thus the protocol is
best suited for node-to-node communication. It efficiently enables AKE on
low-cost devices since there is no requirement to support public-key primi-
tives contrary to traditional PUF-based AKEs. Throughout the communi-
cation, the need for a TTP is eliminated. As a trade-off, we require to store
a challenge and a harmonizing vector making it a linear storage overhead.
However, this information can be publicly stored, without any costly pro-
tections required for secure storage. Both authentication and key exchange
are performed within one round of communication. The key feature of the
H PUF-based AKE is that it achieves forward secrecy by depending only
on the H PUF primitive and random oracles. To validate our proposals, we
implement the H PUF construction on FPGAs to analyse the computation
overhead. We also provide the accuracy and overall communication overhead
of the protocol.

The rest of the paper is organized as follows. In Section 2 we present the
definition and security requirements of a H PUF, followed by a straightforward
construction. Section 3 presents a potential application of H PUF for forward
secure AKE with rigorous security evaluation and details of implementation
overheads. We conclude in Section 4.

2 Harmonizing PUF (H PUF)

In this Section, we introduce the concept of Harmonizing PUFs (H PUFs) with a
formal syntax and security definition along with a straightforward construction
to realize H PUFs. Eventually, we present a specific construction using a PUF
primitive.

2.1 The Main Idea

A pair of PUFs (P1,P2) take as input, a public challenge C and generate un-
predictable and statistically independent responses (R1, R2) as output. On the
other hand, a pair of H PUFs (H1,H2) are PUF-based constructions, that, given
a challenge C and a unique pair of harmonizing vectors (V1, V2) generate the
same outcome (R).

We define the syntax of H PUF as follows. H PUF is an ensemble of four algo-
rithms.

– H PUF.Setup
(
1λ, n(·),m(·), l(·)

)
: It takes as input the security parameter λ ∈

N, polynomials n(·), m(·) and l(·) and outputs two functions bH : {0, 1}l(λ)×

3

{0, 1}m(λ)×{0, 1}m(λ) → {0, 1}l(λ) and fH : {0, 1}l(λ)×{0, 1}m(λ) → {0, 1}m(λ)

and a family of PUFs defined as P = {P : {0, 1}n(λ) → {0, 1}m(λ)}.

– H PUF.Sample
(
i, 1λ

)
: Takes as input the security parameter λ and outputs

a PUF instance Pi sampled from the family of PUFs P.

– H PUF.Comp HV
(
i, j, Ci,j

)
: Takes as input two identifiers i, j, the n(λ)-bit

challenge Ci,j and uniformly samples harmonizing vector Vi
$←− {0, 1}m(λ)

and computes
Vj = bH

(
Vi,Pi(Ci,j),Pj(Ci,j)

)
Outputs Vi, Vj .

– H PUF.Query
(
i, j, Ci,j , Vi

)
: It takes the challenge and harmonizing vector as

inputs and outputs R = fH
(
Pi(Ci,j), Vi

)
.

Correctness. The construction is secure if

R = fH
(
Pi(Ci,j), Vi

)
= fH

(
Pj(Ci,j), bH

(
Vi,Pi(Ci,j),Pj(Ci,j)

))
We define the harmonizing PUFs Hi and Hj as

Hi(Ci,j , Vi) = fH(Pi(Ci,j), Vi) and Hj(Ci,j , Vj) = fH(Pj(Ci,j), Vj)

For k ∈ [1, 2], under the assumption that PUF Pk is unpredictable, the knowledge
of C and Vk does not reveal Pk(C). To rephrase, Pk(C) is independent of C and
V1, V2. At the same time, the shared secret R is unpredictable by a probabilistic
poly-time (PPT) adversary, even with the knowledge of C and (V1, V2), without
physical access to P1, P2, H1 or H2. We formalize these security guarantees below.

Definition 1. Security Properties: Let P = {Pi : C → R} be a family of inde-
pendent and unique PUFs. We define a pair of H PUFs (Hi,Hj) as a composition
with the PUF-based constructions of (Pi,Pj) (as per the syntax) that take chal-
lenge C ∈ C and the harmonizing vector pair (Vi, Vj)← V × V as input (where,
V is an arbitrary set), such that the following conditions hold:

– Correctness: Hi(C, Vi) = Hj(C, Vj) = R where, R ∈ R

– For security parameter λ, let k ∈ {i, j}, r be a string chosen uniformly at
random, negl be a negligible function and D be a PPT distinguisher. Then,

• given Vi, Vj ← H PUF.Comp HV
(
i, j, C

)
and Pk(C), D cannot distin-

guish between C and a uniformly sampled string C ′, i.e,∣∣Pr[D(C, Vk, Pk(C))]− Pr[D(C, Vk, Pk(C))]
∣∣ ≤ negl(λ)

• given challenge C, and harmonizing vector Vk, D cannot distinguish the
PUF output Pk(C) from a uniformly random string, i.e,∣∣Pr[D(C, Vk,Pk(C)) = 1]− Pr[D(C, Vk, r) = 1]

∣∣ ≤ negl(λ)

This property is an extension of the unpredictability property of PUFs.

4

• given challenge C, and both harmonizing vectors (Vi, Vj), D cannot dis-
tinguish H PUF output from a uniformly random string, i.e,∣∣Pr[D(C, Vi, Vj , R) = 1]− Pr[D(C, Vi, Vj , r) = 1]

∣∣ ≤ negl(λ)

A Straightforward Construction. The abstract syntax of H PUF, can be
realized in several ways. Here we begin with one of the simplest possibilities.
To adopt H PUFs for building key exchange protocols, they can be instantiated
in two phases: Setup() and Query(). Let P1,P2 be two PUF instances with
challenge and response spaces C = {0, 1}n and R = {0, 1}m respectively and
C ∈ C.

– Setup (P1,P2, C): Samples a uniformly random string V1 ← {0, 1}m. Com-
putes V2 as

V2 = P1(C)⊕ P2(C)⊕ V1 (1)

Outputs the tuple (C, V1, V2) publicly. Note that V2 is also a uniformly ran-
dom string.

– Query (Pi, C, Vi): For i ∈ [1, 2], computes the shared secret as:

R = Pi(C)⊕ Vi

Note that, the algorithms H PUF.Setup(), H PUF.Sample() and H PUF.Comp HV()
from the syntax are performed offline in Setup()) and algorithm H PUF.Query()
is performed online in Query().

The correctness of this construction follows from Equation 1. Due to the
unpredictability property of PUFs, any PPT adversary who has knowledge of the
public information (C, V1, V2), cannot guess P1(C), P2(C) or R with more than
negligible probability (as per Definition 1). Given uniformly random (V1, V2),
adversary can only learn P1(C)⊕P2(C), but nothing about the secret R will be
revealed (as P1(C) and P2(C) are individually unknown).

2.2 Possible Instantiations of H PUFs

One may observe that the construction described in the last subsection does
not specify the PUF being used. The H PUF construction is general enough
to be instantiated with any PUF. However, each construction’s efficiency, ap-
plicability, and security depend on the underlying PUFs. It is feasible to con-
struct a pair of H PUFs from weak PUFs. Generating multi-bit responses is also
straightforward and reliable, thanks to the properties of several known weak PUF
constructions such as SRAM PUFs [14]. However, due to the limited challenge-
response space of the weak PUFs, their applicability is mainly limited for key-
generation purposes. On the other hand, strong PUFs, with their exponential
size challenge-response space, enable the realization of diverse cryptographic ap-
plications. Without loss of generality, we mainly focus on strong PUF-based

5

Table 1. Comparison with state-of-the-art PUF-based AKE protocols for resource-
constrained nodes. Hash, Mac, Enc, HashToPoint, ECMult, ECAdd, BPair, PRF are
hashing, message authentication code, symmetric encryption/decryption, mapping to
an elliptic curve point, elliptic curve point multiplication, elliptic curve point addition,
Bilinear pairing, pseudorandom function operations.

√
implies that the protocol is se-

cure against replay/impersonation attacks. The security assumptions MAC, ECDLP,
ECDHP, CDH, and ECCDH, are message authentication code, elliptic curve discrete
log problem, elliptic curve Diffie-Hellman problem, computational Diffie-Hellman prob-
lem, and elliptic curve computation Diffie-Hellman problem, respectively.

Computation Cost
Messages
Exchanged

Communication
Overhead (in bits)

Replay Impersonation Forward Secrecy TTP

Aman [1]
2017

4 Hash + 12 Mac + 10 Enc 7 7872
√ √

MAC Yes

Chatterjee [8]
2017

8 Hash + 6 HashToPoint + 4 ECMult 7 9312 Insecure Insecure ECDLP Yes

Braeken [5]
2018

20 Hash + 7 ECMult + 4 ECAdd 5 1956
√ √ ECDHP,

ECDLP
Yes

Chatterjee [9]
2019

14 Hash + 20 HashToPoint +
8 ECMult+16 ECAdd + 4 BPair

10 9856
√ √

ECDLP Yes

Byun [6]
2019

6 Hash + 12 PRF + 3 MultGroup 3 1952
√ √

CDH Yes

Li [19]
2020

12 Hash + 14 ECMult + 4 ECAdd 3 4160
√ √

ECCDH No

Zheng [26]
2021

12 Hash + 4 Enc 13 2880
√ √

Insecure Yes

H-AKE(Our) 8 Hash 2 1216
√ √ H PUF,

Hash
No

constructions and their potential applications in this paper. Looking forward, in
Section 3, we leverage this property of strong PUFs, to build a forward secure au-
thenticated key exchange protocol without depending on complex cryptographic
operations. However, the ease of applicability for strong PUFs comes with a
cost, as there are several usability issues associated with strong PUFs. Most im-
portantly, they suffer from low throughput and vulnerability to model-building
attacks.

Another issue that is relevant to both strong and weak PUFs is their re-
liability, which is often handled by using error-correcting codes [15] or Fuzzy
Extractors [11]. Given these issues, it is rather evident that the straightforward
construction presented in the last subsection needs to be augmented in several
ways to be practically applicable. For this purpose we chose the throughput
enhanced PUF construction presented in [3] for our experimental evaluation.
In this work, machine learning based modelling attacks are out of scope, since
the proposed protocol does not reveal the challenge-response information in the
plain.

In the next section, we present an application of our H PUF design by building
an authenticated key exchange scheme between two resource-constrained devices.
This scheme is forward secure without relying on computationally hard problems
or public key primitives.

6

3 H-AKE: Authenticated Key-Exchange With Forward
Secrecy

In this section, we first discuss existing and relevant PUF-based AKE protocols.
Next, we present the system and threat model and the design goals. Then, we
provide the details of our H PUF-based AKE (H-AKE) protocol, followed by a
detailed security analysis.

3.1 State-of-the-art PUF-based AKE Protocols

In the past two decades, PUFs have been broadly studied as hardware security
primitives to generate on-the-fly keys eliminating the requirement of key storage
by design. PUFs are extensively used to build authentication protocols [10,1,24],
for IoT and CPS networks. Due to their lightweight nature and unpredictability
property, they become good candidates to provide strong security. In literature,
several PUF-based mutual authentication protocols [1,16,13,25,4] are proposed
between a resource-constrained PUF-enabled node and a server. They require
secure storage of secrets and to compute complex cryptographic operations on
the server, making them unsuitable for AKE between two resource-constrained
nodes, which is the focus of this work. A detailed survey on some recent node-
to-node AKE protocols is presented in [10,6] and discussed their security against
various attacks like replay, impersonation, and PUF modelling. The protocols
proposed in [1,8,9] require a TTP to store the challenge response pair (CRP)
information securely and assist the resource-constrained devices during the au-
thentication, thus making them the root-of-trust. In [6], although the protocol
eliminates the TTP assumption, it is not proven to be forward secure. The pro-
tocol proposed in [9] while eliminating secure CRP storage, requires the PUF-
enabled devices to perform complex cryptographic operations like pairings. A
3-handshake PUF-based node-to-node AKE protocol is protocol is presented
in [19], without the requirement of a TTP. However, it requires the nodes to
perform 14 elliptic curve point multiplication operations. In a recent work [26],
the resource-constrained devices perform only lightweight operations. However,
it still requires a TTP that securely stores CRPs for authentication and ex-
changes 13 messages to establish the session key. Moreover, it is not forward
secure.

Efficiency of H-AKE Protocol. In Table 1, we present a detailed comparison
of the existing PUF-based protocols with H-AKE protocol. We can observe that
H-AKE protocol performs well in terms of computation cost, messages exchanged,
communication overhead, security properties, and computational assumptions to
obtain forward secrecy. It requires each node to perform only four hash opera-
tions and performs mutual authentication and key exchange by exchanging two
messages. The overall communication overhead is extremely low (only 1216 bits)
compared to existing solutions. We obtain forward secrecy without depending on
resource-intensive asymmetric key operations like elliptic curve scalar multipli-
cations or bilinear pairings. The security of H-AKE depends only on the H PUF
primitive and hash functions.

7

Table 2. Frequently Used Notations in the Protocol

Symbol Definition

Idj Identity of Nodej
Hj H PUF embedded in Nodej
noncei Nonce for i-th session

Ci Challenge for i-th session

Ri Shared secret for i-th session

Vj,i Harmonizing vector of Nodej for challenge Ci

H Collision resistant hash function

Ki Session key for i-th session

3.2 Formal modelling and Design Goals

Table 2 presents some frequently used notations. The system model, threat
model, and design goals of our H-AKE scheme are described below.

System Model:

– Our system consists of N resource-constrained nodes (Node1, . . .NodeN)
where each node Nodei is embedded with the PUF instance Pi : {0, 1}n →
{0, 1}2n.

– A pair of H PUFs (H1,H2) defined as per Definition 1, are PUF-based con-
structions of (P1,P2). Then, for any Ci ∈ {0, 1}n, there exists a pair of
harmonizing vectors (V1,i, V2,i) ∈ {0, 1}2n × {0, 1}2n and shared secret R
such that the following condition holds:

H1(Ci, V1,i) = P1(Ci)⊕ V1,i

= R

= P2(Ci)⊕ V2,i = H2(Ci, V2,i)

(2)

– Let H : {0, 1}∗ → {0, 1}4n be a collision-resistant one-way hash function
modelled as a random oracle.

– The PUF-enabled resource-constrained nodes are capable of performing hash
and XOR operations.

Threat Model:

We assume that the initial one-time setup is performed in a trusted en-
vironment. Any information exchanged in this phase is not accessible to any
third-party/adversary. We assume that the adversary can control the communi-
cation channel actively or passively. It can collect publicly stored challenge and
harmonizing vector pairs. The adversary cannot mount a physical attack on the
device without tampering with the H PUF circuit. It can mount the following
attacks:

8

– Replay and Impersonation: We assume an active eavesdropping adversary
that may attempt to replay messages from a previous session or impersonate
a legitimate node without possessing either H PUFs.

– Perfect Forward Secrecy : We assume an adversary that learns the H PUF’s
response in j-th session, using which it tries to learn the session keys of any
i-th session for i < j. For this work, we do not assume the adversary gains
physical access to either H PUF device, to learn the response j-th session
and it is out of scope for this work.

Design Goals: The proposed H-AKE has the following goals:

– Correctness: Any two legitimate nodes that generate a harmonizing vector
pair during the setup phase should succeed in authentication and secure
session-key establishment without needing to store any CRP or reliance on
a TTP.

– Security:
1. Knowledge of past session keys should not reveal the current session key.
2. Security against replay and impersonation attacks.
3. The protocol should be forward secure.

3.3 Proposed Protocol

The H PUF-based AKE protocol (H-AKE) consists of the following two phases:

Setup Phase: This is a one-time operation performed in a trusted environment.
In this stage, for challenge C1, Node1 and Node2 (with identifiers Id1 and Id2
respectively), generate their corresponding harmonizing vectors (V1,1, V2,1) to
compute shared secret as R1 = H1(C1, V1,1) = H2(C1, V2,1). They proceed as
follows:

– Node1: Randomly samples a challenge C1 ← {0, 1}n and corresponding
harmonizing vector V1,1 ← {0, 1}2n. Computes the shared secret as R1 =
H1(C1, V1,1) = P1(C1) ⊕ V1,1. Stores the tuple ⟨C1, V1,1⟩ locally and sends
⟨C1, R1⟩ to Node2.

– Node2: Computes harmonizing vector as V2,1 = H2(C1, R1) = P2(C1) ⊕
R1 (refer to Equation 2). Stores the tuple ⟨C1, V2,1⟩ locally.

This step is exactly the same as the setup phase of H PUF (refer to Section 2).
As per our threat model, the communication between the two nodes is secure
against any adversary. Therefore, the shared secret is not revealed. The nodes
do not require costly secure storage capabilities; rather, the challenge and har-
monizing vector can be stored locally on the device or in a public cloud. The
nodes participate in forward-secure AKE using this public information while
preserving security against replay and impersonation attacks. Below, we present
the details of H-AKE protocol for the 1-st session identified by a nonce nonce1.
Note, that the nonce in AKE schemes are similar to time stamps, where each
nonce uniquely identifies a session.

9

Online Phase: In this phase, both the nodes mutually authenticate each other
and generate a secure session key using the public challenge and harmonizing
vectors. Without loss of generality, let us assume that Node1 initiates the AKE
phase with Node2 for the 1-st session with challenge C1.

– Node1: In the 1-st session with nonce nonce1, it generates

R1 = H1(C1, V1,1)

and computes

X1 = H(R1||nonce1||Id1||Id2)

It sends the tuple ⟨X1, nonce1, Id1, Id2⟩ to Node2.
– Node2: On receiving ⟨X1, nonce1, Id1, Id2⟩, it generates

R1 = H1(C1, V2,1)

• It checks if

X1 = H(R1||nonce1||Id1||Id2)

to verify that Node1 is authentic.

∗ Samples a uniformly random string r1
R←− {0, 1}2n, new challenge

C2
R←− {0, 1}n and corresponding harmonizing vector V2,2

R←− {0, 1}2n
for the next (2-nd) session.

∗ Generates the new shared secret R2 for the 2-nd session as

R2 = H1(C2, V2,2)

and computes

Y1 = H(R1||Id1||Id2||nonce1)⊕ (R2||r1)
Z1 = H(C2||R2||r1||nonce1||Id1||Id2)

∗ Sends the tuple ⟨Y1, Z1, C2, Id1, Id2⟩ to Node1 and establishes the
session key as

K1 = H(R1||r1||Id1||Id2||nonce1)

• Else, it rejects Node1.

– Node1: On receiving ⟨Y1, Z1, C2, Id1, Id2⟩, it computes

(R′
2||r′1) = H(R1||Id1||Id2||nonce1)⊕ Y1

• It checks if

Z1 = H(C2||R′
2||r′1||nonce1||Id1||Id2)

to verify that Node2 is authentic and integrity of data is maintained.

10

∗ Computes harmonizing vector V1,2 corresponding to challenge C2 for
the 2-nd session as

V1,2 = H1(C2, R
′
2) = P1(C2)⊕R′

2

and establishes the session key as

K1 = H(R1||r1||Id1||Id2||nonce1)

• Else, it rejects Node2.

After session key establishment, both parties erase the shared secrets from
device memory, thus concluding the 1-st session. In the protocol, the nodes start
with the shared secret R1, which they use for authentication and session key
generation. During this process, they secretly agree on a new challenge (C2),
shared secret (R2) and harmonizing vectors (V1,2, V2,2) for the 2-nd session. It
can be noted that the harmonizing vectors are not sent in plaintext during the
communication, yet they do not require secure storage on the node devices. This
process updates the long-term secret, which here is the shared secret generated
by H PUFs in each session while performing an authenticated key exchange.
Thus a rogue node cannot force a legitimate node to update its challenge and
harmonizing vectors, without passing the authentication. At the same time, an
adversary gaining knowledge of R2 in 2-nd session cannot learn the session key
K1 or R1 of the previous session, without breaking the collision-resistance prop-
erty of hash function (H) or without violating the property of random oracle.

We illustrate H-AKE for i-th session with nonce noncei in Figure 1. The
session key is established in one round, and each node performs 1 XOR and four
hash operations. Note that traditional, as well as PUF-based AKE protocols,
depend on elliptic curve discrete log problem or decisional/computational Diffie-
Hellman assumptions to achieve forward secrecy (as shown in Table 1). However,
H-AKE protocol is forward secure by depending on the H PUF and collision-
resistant hash functions modelled as random oracles.

3.4 Security Analysis

In this section, we formally prove the security of H-AKE against the security
definition. The proof uses the well-known Canetti-Krawczyk [7] and extended
Canetti-Krawczyk [18] models for AKE. Then we discuss robustness against re-
play and impersonation attacks. Finally, we show that H-AKE protocol is forward
secure.

Security Definition for H AKE. Our security definition involves m parties
P1,P2, · · · ,Pm and an adversary A. The parties and A are PPT algorithms.
Each party Pi for i ∈ [1, n] has its own H PUF instance Hi, a challenge and
harmonizing vector pair corresponding to the remaining parties. We assume that
all the challenges are unique. All the uncorrupted parties follow the protocol and
respond accordingly.

11

Node1(Id1) Node2(Id2)

Input: Ci, V1,i, noncei

Ri = H1(Ci, V1,i)

Input: Ci, V2,i

Else, Reject.

Ri = H2(Ci, V2,i)

If Xi = H(Ri||noncei||Id1||Id2)
Authenticate Node1

Else, Reject.Authenticate Node2

〈Yi, Zi, Ci+1, Id1, Id2〉

ri ← {0, 1}2n

Xi = H(Ri||noncei||Id1||Id2)

Ci+1 ← {0, 1}n

V2,i+1 ← {0, 1}2n

Yi = H(Ri||Id1||Id2||noncei)⊕ (Ri+1||ri)
Zi = H(Ci+1||Ri+1||ri||noncei||Id1||Id2)
Ki = H(Ri||ri||Id1||Id2||noncei)If Zi = H(Ci+1||R′

i+1||r′i||noncei||Id1||Id2)

Ki = H(Ri||r′i||Id1||Id2||noncei)
V1,i+1 = H1(Ci+1, R

′
i+1)

(R′
i+1||r′i) = H(Ri||Id1||Id2||noncei)⊕ Yi

Ri+1 = H2(Ci+1, V2,i+1)

〈Xi, noncei, Id1, Id2〉

Fig. 1. H PUF-based Forward Secure Authenticated Key Exchange

A has complete control over the network, it can decide to drop, modify, store
and replay the messages. The adversary A can activate different (Pi,Pj) pairs
of its own choice to run multiple instances of the protocol. We define a protocol
instance between (Pi,Pj) as sid = ⟨i, j, Ci,j , Vi, Vj⟩. For a pair of parties, only
one protocol instance is initiated by the adversary and a new instance is initiated
only if the past instance is finished either in accept or reject.

We define the following queries:

– send(i,m): A can use this query to send message m to the party Pi. If the
adversary sends the message ⟨⊤, j⟩, then Pi initiates the protocol instance
with the first message and acts as an initiator, while party Pj acts as a
responder.

– reveal(i, j): Pi reveals the session key to A it established with Pj if the
protocol instance is accepted and finished. Else, it will send ∅.

– corrupt(i, j): On receiving this query Pi responds with H PUF response
related to party Pj . Then the challenge and corresponding responses are
marked as corrupted for both parties.

– test(i, j): This query is made only once throughout the game. The query
is handled by Pi as follows: If all the protocol instances are accepted and
finished, then it responds with a failure symbol ⊥. Else, it flips a fair coin

b, samples a random element k0
$←− K, where K is the range of session key

space, sets k1 = k, where k is the real session key between Pi and Pj , and
returns kb.

We define our security game for AKE protocol as follows:
Security Games for H AKE: In this game, the challenger C sets up a

protocol environment with m parties P1,P2, · · · ,Pm. If party Pj , receives the

12

message m = ⟨⊤, j⟩, it initiates the protocol (if there does not exist a protocol
instance between Pi and Pj that has not finished), and if it receives a protocol
message it responds to it according to the protocol specification. C performs the
setup phase, which includes generating the challenge and harmonizing vector
pairs for all pairs of parties.

AKE Game: A is allowed to ask q−1 reveal queries and one test query to
a protocol instance where, neither the initiator nor the responder is corrupted,
under the following conditions

– if Pi is an initiator, then reveal query cannot be made on any responder
party receiving the message from Pi, and all the responders must be uncor-
rupted.

– if Pi is the responder, the reveal query cannot be made on the initiator
party and it should be uncorrupted.

At the end of the game, A outputs a bit b′ and wins the game if b = b′ where b
is the bit chosen during the test query.

Replay Game: A may make upto q send and corrupt queries. It wins
the game in a fresh session if there are at least two responders that accept the
same message, if there is a responder oracle that accepts a message from an
uncorrupted sender that has not been sent by the latter or if there is an initiator
party that accepts without having a corresponding responder from which the
message originated.

ForwardSecrecy Game: If the adversary A issues the query corrupt(i, j)
either during a protocol instance or after the protocol instance is finished, then
it wins the game if it can a) distinguish between a random string chosen from
the session key space and the actual session key or b) distinguish between ran-
dom string from {0, 1}2n and corresponding shared secret, corresponding to any
accepted and finished protocol instances in the past (other than the instance,
where A made the corrupt query), under the conditions that A did not make
reveal or corrupt query on that instance before it was accepted and finished.

Definition 2. The H-AKE protocol described in Section 3.3 is said to be se-
cure in the AKE Game for i (∈ N)-th session and security parameter λ, if
any PPT adversary A, cannot distinguish between the actual session key Ki =

H(Ri||ri||Id1||Id2||noncei) from uniformly random string K ′ R←− {0, 1}4n, i.e,

∣∣∣Pr[A(H(Ri||ri||Id1||Id2||noncei) = 1]− Pr[A(K ′) = 1]
∣∣∣ ≤ negl(λ)

Theorem 1. H-AKE is secure as per Definition 2, under the assumptions that
a) (H1,H2) that form an H PUF pair as per Definition 1 are independent and
unpredictable and b) H is a collision-resistant one-way hash function modelled
as a random oracle.

Proof. Let A be a PPT adversary against the H PUF based AKE protocol for
target session with nonce noncei and challenge Ci. Note that A is restricted

13

from creating two different sessions with the same nonce. A can distinguish the
session key Ki from a uniformly random string only in two ways:

– Key Replication Attack: By forcing to establish another session with the same
session key Ki as the target session, without querying the random oracle H
on (Ri||ri||Id1||Id2||noncei).

– Forging Attack: By eavesdropping on the communication to gain enough
information to query the random oracle H on (Ri||ri||Id1||Id2||noncei).

Since, two sessions cannot have the same nonce, A can force to establish
two sessions with the same session key only by forcing collision on the random
oracle H, which is possible only with negligible probability. So, A must per-
form a forging attack. Under the assumption that H1 and H2 are defined as per
Definition 1, A can distinguish between Ri (shared secret) from a uniformly
random string with no more than negligible advantage. Further, under the as-
sumption that ri is sampled uniformly at random, A can distinguish Yi from

H(Ri||Id1||Id2||noncei) ⊕ S for some random S
R←− {0, 1}4n only with negligible

advantage. Since, we model the one-way hash function H as a random oracle, A
cannot learn Ri, Ri+1 and ri from Xi and Zi with more than negligible proba-
bility. Finally, A can distinguish between Yi and S′⊕(Ri+1||r1) for some random

S′ R←− {0, 1}4n only with negligible advantage. So the adversary cannot mount a
forging attack.

Therefore, A cannot distinguish between Ki and a uniformly random string
with more than a negligible advantage, proving that the protocol is secure as
per Definition 2.

Below, we prove the protocol’s security against replay and impersonation attacks.
Next, we prove that it is forward secure.

Replay Attacks: To establish the session key in j-th session, Node1 sends
⟨Xj , noncej , Id1, Id2⟩ and Node2 responds with ⟨Yj , Zj , Cj+1, Id1, Id2⟩. An eaves-
dropping PPT adversary A in i-th (i > j) session can mount a replay attack
in three ways, either by a) replaying Node1’s message, Node2’s message from
j-th session or by replaying either’s message in j-th session to another node, say
Node3 in i-th session.

Case a) A sends ⟨Xi, noncei⟩ = ⟨Xj , noncej⟩ in i-th session. Node2 accepts A
as an authentic node if

H(Ri||noncei||Id1||Id2) = Xi = Xj = H(Rj ||noncej ||Id1||Id2)

As per the security definition, A is restricted from establishing two sessions
with the same nonce. So, A can replay only by forcing collision on the random
oracle H, the probability of which is only negligible.

Case b) Node1 accepts A as an authentic node in i-th session if

Zi = H
(
Ci+1||T ||noncei||Id1||Id2

)
14

where,
T =

(
R′

i+1||r′i
)
= H

(
Ri||Id1||Id2||noncei

)
⊕ Yi

A replays ⟨Yj , Zj , Cj+1⟩ from j-th in i-th session. Now, by replacing Zi with Zj

and Yi with Yj , we have

Zi = Zj = H(Cj+1||Rj+1||rj ||noncej ||Id1||Id2) (3)

and

H
(
Ci+1||T ||noncei||Id1||Id2

)
= H

(
Ci+1||H

(
Ri||Id1||Id2||noncei

)
⊕ Yj ||noncei||Id1||Id2

)
= H

(
Cj+1

∥∥∥
H
(
Ri||Id1||Id2||noncei

)
⊕H(Rj ||Id1||Id2||noncej)⊕

∥∥∥(Rj+1||rj)∥∥∥noncei∥∥∥Id1∥∥∥Id2)
(4)

The adversary wins in the Replay Game only by forcing Equations. 3 and 3
to be equal. The probability of this is same as that of finding collisions in the
hash function H. Under the assumption that H is collision-resistant, the adver-
sary wins only with negligible probability

Case c) For simplicity let us assume that A replays the message from Node1 as
an initiator node to Node2 in j-th session as the initiator message to Node3 in its
i-th session. Let us also assume that adversary forces both the sessions to have
the same nonce (i.e, noncei = noncej). However from Case a) and Case b), we
can notice that even if the nonces are same, since the identifiers are different for
each node A succeeds only by finding collisions, since the identifier of the nodes
are unique. Thus the probability of it winning is still negligible.

Therefore, the protocol is secure against replay attacks.

Impersonation Attacks: In this attack, we consider two cases where a PPT
adversary A eavesdrops on the communication channel to learn enough informa-
tion to impersonate either Node1 or Node2 in the i-th session. From Theorem 1,
we can say that for any j ̸= i a PPT adversary cannot learn Rj , Rj+1 or rj by
eavesdropping on the j-th session.

To impersonate Node1 in i-th session, A generates ⟨X, nonce⟩ such that X =
H(Ri||noncei||Id1||Id2) without querying the random oracleH on (Ri||noncei||Id1||
Id2). This amounts to a collision on H, violating the collision-resistance property.

To impersonate Node2 in i-th session, A generates ⟨Y, Z⟩ such that

Z = H
((
H(Ci||Ri||Id1||Id2||noncei)⊕ Y

)
||noncei||Id1||Id2

)
15

without querying the random oracle H on (Ri||Id1||Id2||noncei). Again, this
amounts to a collision on H, violating the collision-resistance property.

Therefore, the adversary A succeeds to impersonates Node1 or Node2 only
with negligible probability.

Forward Secrecy: Let there be a PPT adversary A with the knowledge of
shared secret (Ri+1) corresponding to (i+1)-th (current) session. From the past
sessions, A also gained the knowledge of (Xj , Yj , Zj , noncej) for j ∈ [1, i]. For
i-th session, A can trivially learn the first 2n bits of H(Ri||ID1||ID2||noncei) (re-
fer to Figure 1). From these strings, A learns the past shared secret Rj with
probability with which H can be invertible. However, under the assumption that
this hash function is one-way and H PUFs are unpredictable, the probability
that A succeeds to learn Rj from Ri+1 is only negligible. Additionally, under
the assumption that H is collision-resistant and modelled as random oracle and
H PUFs are unpredictable, for A

H(Ri||Id1||Id2||noncei) ≈ H(s||Id1||Id2||noncei)
H(Ri||noncei||Id1||Id2) ≈ H(s||noncei||Id1||Id2)

H(Ci+1||Ri+1||ri||noncei||Id1||Id2) ≈ H(Ci+1||Ri+1||t||noncei||Id1||Id2)

where a ≈ b implies that a is statistically indistinguishable from b and s, t are
chosen uniformly at random from {0, 1}2n.

Therefore, without the knowledge of Ri and ri, under the assumption that
H PUFs are independent and unpredictable, and hash function H is modelled
random oracle and is collision-resistant, as per Theorem 1, A cannot learn past
session keys or past shared secrets with more than negligible probability.

3.5 Implementation Details of AKE Protocol

Finally, we use SHA-256 from the libgcrypt library to implement the hash func-
tion H and realize the AKE protocol as a hardware-software co-design. Except
for H PUF, all the remaining components are implemented in the software. The
communication between the software and hardware components is realized us-
ing Universal Asynchronous Receiver/Transmitter (UART). The total latency
to generate the final H PUF response is 780µ seconds. We employ BCH(15,7,2)
error correcting code [21] for 100% accurate AKE protocol implementation. The
overall communication overhead of the protocol is 1216-bits (as nonce, Id1 and
Id2 are 256, 32 and 32-bit strings respectively) and the overall latency is 0.169
seconds.

4 Conclusion

State-of-the-art PUF-assisted communication protocols require at least one party
or TTP to store the CRP database securely. It often becomes a usability and
security issue as having a truly secure memory for low-end devices is challeng-
ing. This paper addresses this long-standing issue by introducing a PUF-based

16

construction called Harmonizing PUFs (H PUFs). H PUFs enable two distinct
PUFs (and therefore two different devices holding them) to eventually gener-
ate the same output with assistance from some public data. To establish the
utility of H PUF, we present a lightweight AKE protocol that does not require
heavy public-key computation or TTP and solely relies on the H PUF and a hash
function. The protocol performs mutual authentication and secure session key
establishment within a single round of communication. The protocol requires
each node to perform only four hash operations, and the overall communica-
tion overhead is only 1216 bits. We achieve forward secrecy without depending
on asymmetric group operations involved in traditional Diffie-Hellman key ex-
change. We show that the H PUF-based AKE protocol (H-AKE) fares well when
compared to the existing PUF-based solutions in terms of computation and
communication overheads as well as provides forward secrecy with minimal as-
sumptions. It is important to note that the idea of H PUF is not limited to strong
PUFs or AKE protocols only but can also be utilized for key generation or use
cases based on weak PUFs.

References

1. Aman, M.N., Chua, K.C., Sikdar, B.: Mutual authentication in iot systems using
physical unclonable functions. IEEE Internet Things J. 4(5), 1327–1340 (2017).
https://doi.org/10.1109/JIOT.2017.2703088, https://doi.org/10.1109/JIOT.2017.
2703088

2. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) Topics in Cryptology -
CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San Fran-
cisco, CA, USA, February 24-28, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12006, pp. 199–224. Springer (2020). https://doi.org/10.1007/978-3-
030-40186-3 10, https://doi.org/10.1007/978-3-030-40186-3 10

3. Boyapally, H., Chatterjee, D., Pratihar, K., Saha, S., Mukhopadhyay, D.: PUF-
COTE: A PUF construction with challenge obfuscation and throughput enhance-
ment. IACR Cryptol. ePrint Arch. p. 1005 (2022), https://eprint.iacr.org/2022/
1005

4. Boyapally, H., Mathew, P., Patranabis, S., Chatterjee, U., Agarwal, U., Mahesh-
wari, M., Dey, S., Mukhopadhyay, D.: Safe is the new smart: Puf-based authentica-
tion for load modification-resistant smart meters. IEEE Trans. Dependable Secur.
Comput. 19(1), 663–680 (2022). https://doi.org/10.1109/TDSC.2020.2992801,
https://doi.org/10.1109/TDSC.2020.2992801

5. Braeken, A.: PUF based authentication protocol for iot. Symmetry 10(8),
352 (2018). https://doi.org/10.3390/sym10080352, https://doi.org/10.3390/
sym10080352

6. Byun, J.W.: End-to-end authenticated key exchange based on differ-
ent physical unclonable functions. IEEE Access 7, 102951–102965 (2019).
https://doi.org/10.1109/ACCESS.2019.2931472, https://doi.org/10.1109/
ACCESS.2019.2931472

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels (2001). https://doi.org/10.1007/3-540-44987-6 28, https:
//doi.org/10.1007/3-540-44987-6 28

17

https://doi.org/10.1109/JIOT.2017.2703088
https://doi.org/10.1109/JIOT.2017.2703088
https://doi.org/10.1109/JIOT.2017.2703088
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://eprint.iacr.org/2022/1005
https://eprint.iacr.org/2022/1005
https://doi.org/10.1109/TDSC.2020.2992801
https://doi.org/10.1109/TDSC.2020.2992801
https://doi.org/10.3390/sym10080352
https://doi.org/10.3390/sym10080352
https://doi.org/10.3390/sym10080352
https://doi.org/10.1109/ACCESS.2019.2931472
https://doi.org/10.1109/ACCESS.2019.2931472
https://doi.org/10.1109/ACCESS.2019.2931472
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28

8. Chatterjee, U., Chakraborty, R.S., Mukhopadhyay, D.: A puf-based secure com-
munication protocol for iot. ACM Trans. Embed. Comput. Syst. 16(3), 67:1–67:25
(2017). https://doi.org/10.1145/3005715, https://doi.org/10.1145/3005715

9. Chatterjee, U., Govindan, V., Sadhukhan, R., Mukhopadhyay, D., Chakraborty,
R.S., Mahata, D., Prabhu, M.M.: Building PUF based authentica-
tion and key exchange protocol for iot without explicit crps in verifier
database. IEEE Trans. Dependable Secur. Comput. 16(3), 424–437 (2019).
https://doi.org/10.1109/TDSC.2018.2832201, https://doi.org/10.1109/TDSC.
2018.2832201

10. Delvaux, J., Peeters, R., Gu, D., Verbauwhede, I.: A survey on lightweight entity
authentication with strong pufs. ACM Comput. Surv. 48(2), 26:1–26:42 (2015).
https://doi.org/10.1145/2818186, https://doi.org/10.1145/2818186

11. Dodis, Y., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.)
Advances in Cryptology - EUROCRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3027, pp.
523–540. Springer (2004). https://doi.org/10.1007/978-3-540-24676-3 31, https://
doi.org/10.1007/978-3-540-24676-3 31

12. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: Atluri, V. (ed.) Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS 2002, Washington, DC, USA, November 18-
22, 2002. pp. 148–160. ACM (2002). https://doi.org/10.1145/586110.586132, https:
//doi.org/10.1145/586110.586132

13. Gope, P., Sikdar, B.: Lightweight and privacy-preserving two-factor authenti-
cation scheme for iot devices. IEEE Internet Things J. 6(1), 580–589 (2019).
https://doi.org/10.1109/JIOT.2018.2846299, https://doi.org/10.1109/JIOT.2018.
2846299

14. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic pufs and their
use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hard-
ware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings. Lecture Notes in Computer Science,
vol. 4727, pp. 63–80. Springer (2007). https://doi.org/10.1007/978-3-540-74735-
2 5, https://doi.org/10.1007/978-3-540-74735-2 5

15. Hamming, R.W.: Error detecting and error correcting codes. The Bell Sys-
tem Technical Journal 29(2), 147–160 (1950). https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x

16. Idriss, T., Bayoumi, M.A.: Lightweight highly secure PUF protocol for mutual
authentication and secret message exchange. In: IEEE International Con-
ference on RFID Technology & Application, RFID-TA 2017, Warsaw, Poland,
September 20-22, 2017. pp. 214–219. IEEE (2017). https://doi.org/10.1109/RFID-
TA.2017.8098893, http://doi.ieeecomputersociety.org/10.1109/RFID-TA.2017.
8098893

17. Khan, M.N.I., Ghosh, S.: Comprehensive study of security and privacy of emerg-
ing non-volatile memories. CoRR abs/2105.06401 (2021), https://arxiv.org/abs/
2105.06401

18. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger security of authenticated
key exchange (2006), http://eprint.iacr.org/2006/073

19. Li, S., Zhang, T., Yu, B., He, K.: A provably secure and practical puf-based end-
to-end mutual authentication and key exchange protocol for iot. IEEE Sensors
Journal 21(4), 5487–5501 (2021). https://doi.org/10.1109/JSEN.2020.3028872

18

https://doi.org/10.1145/3005715
https://doi.org/10.1145/3005715
https://doi.org/10.1109/TDSC.2018.2832201
https://doi.org/10.1109/TDSC.2018.2832201
https://doi.org/10.1109/TDSC.2018.2832201
https://doi.org/10.1145/2818186
https://doi.org/10.1145/2818186
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://doi.org/10.1109/JIOT.2018.2846299
https://doi.org/10.1109/JIOT.2018.2846299
https://doi.org/10.1109/JIOT.2018.2846299
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/RFID-TA.2017.8098893
https://doi.org/10.1109/RFID-TA.2017.8098893
http://doi.ieeecomputersociety.org/10.1109/RFID-TA.2017.8098893
http://doi.ieeecomputersociety.org/10.1109/RFID-TA.2017.8098893
https://arxiv.org/abs/2105.06401
https://arxiv.org/abs/2105.06401
http://eprint.iacr.org/2006/073
https://doi.org/10.1109/JSEN.2020.3028872

20. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. Syst.
13(10), 1200–1205 (2005). https://doi.org/10.1109/TVLSI.2005.859470, https://
doi.org/10.1109/TVLSI.2005.859470

21. Peterson, W., Weldon, E.: Error-correcting Codes, Second Edition. MIT Press
(1972)

22. Rivest, R.: Illegitimi non carborundum. Invited keynote talk given at CRYPTO
(2011)

23. Skorobogatov, S.P.: Semi-invasive attacks: a new approach to hardware security
analysis. Ph.D. thesis, University of Cambridge, UK (2005), https://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.614760

24. Wallrabenstein, J.R.: Practical and secure iot device authentication using phys-
ical unclonable functions. In: Younas, M., Awan, I., Seah, W. (eds.) 4th IEEE
International Conference on Future Internet of Things and Cloud, FiCloud 2016,
Vienna, Austria, August 22-24, 2016. pp. 99–106. IEEE Computer Society (2016).
https://doi.org/10.1109/FiCloud.2016.22, https://doi.org/10.1109/FiCloud.2016.
22

25. Zheng, Y., Cao, Y., Chang, C.: Udhashing: Physical unclonable function-based
user-device hash for endpoint authentication. IEEE Trans. Ind. Electron. 66(12),
9559–9570 (2019). https://doi.org/10.1109/TIE.2019.2893831, https://doi.org/10.
1109/TIE.2019.2893831

26. Zheng, Y., Chang, C.: Secure mutual authentication and key-exchange proto-
col between puf-embedded iot endpoints. In: IEEE International Symposium
on Circuits and Systems, ISCAS 2021, Daegu, South Korea, May 22-28, 2021.
pp. 1–5. IEEE (2021). https://doi.org/10.1109/ISCAS51556.2021.9401135, https:
//doi.org/10.1109/ISCAS51556.2021.9401135

19

https://doi.org/10.1109/TVLSI.2005.859470
https://doi.org/10.1109/TVLSI.2005.859470
https://doi.org/10.1109/TVLSI.2005.859470
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614760
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614760
https://doi.org/10.1109/FiCloud.2016.22
https://doi.org/10.1109/FiCloud.2016.22
https://doi.org/10.1109/FiCloud.2016.22
https://doi.org/10.1109/TIE.2019.2893831
https://doi.org/10.1109/TIE.2019.2893831
https://doi.org/10.1109/TIE.2019.2893831
https://doi.org/10.1109/ISCAS51556.2021.9401135
https://doi.org/10.1109/ISCAS51556.2021.9401135
https://doi.org/10.1109/ISCAS51556.2021.9401135

	Harmonizing PUFs for Forward Secure Authenticated Key Exchange with Symmetric Primitives

