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Abstract. SHA2 has been widely adopted across various traditional
public-key cryptosystems, post-quantum cryptography, personal identi-
fication and network communication protocols, etc. Hence, ensuring the
robust security of SHA2 is of critical importance. There have been sever-
al differential fault attacks based on random word faults targeting SHA1
and SHACAL-2. However, extending such random word-based fault at-
tacks to SHA2 proves significantly more difficult due to the heightened
complexity of the boolean functions in SHA2.

In this paper, assuming random word faults, we find some distinctive
differential properties within the boolean functions in SHA2. Leveraging
these findings, we propose a new differential fault attack methodology
that can be effectively utilized to recover the final message block and its
corresponding initial vector in SHA2, forge HMAC-SHA2 messages, ex-
tract the key of SHACAL-2, and extend our analysis to similar algorithm
like SM3. We validate the effectiveness of these attacks through rigorous
simulations and theoretical deductions, revealing that they indeed pose
substantial threats to the security of SHA2. In our simulation-based ex-
periments, our approach necessitates guessing T bits within a register,
with T being no more than 5 at most, and having a approximate 95%(for
SHA512) probability of guessing just 1 bit. Moreover, upon implement-
ing a consecutive series of 15 fault injections, the success probability for
recovering one register(excluding the guessed bits) approaches 100%. Ul-
timately, approximately 928 faulty outputs based on random word faults
are required to carry out the attack successfully.

Keywords: SHA2, Differential Fault Attack, HMAC, SM3, Compres-
sion Function



1 Introduction

1.1 Background

SHA2 (Secure Hash Algorithm 2) family [1], serving as an advanced successor to
SHA1 algorithm, was officially introduced by the National Institute of Standards
and Technology (NIST) in the year 2001. This cryptographic suite encompasses
four variants: SHA224, SHA256, SHA384, and SHA512, each sharing a con-
sistent structural design in their compression function while differing in terms
of data block length. The compression function of SHA2 is a core component
within SHACAL block cipher algorithm [2] and HMAC (Hash-based Message
Authentication Code) [3], wherein it integrates secret keys into the message
content for enhanced security. SHA2 has been widely adopted across various
public-key cryptosystems, personal identification and network communication
protocols, etc. Notably, SHA256 and SHA512 have been prominently adopted as
key derivation functions across both traditional public-key cryptography schemes
and emerging post-quantum cryptography protocols. This application extends
to well-known algorithms such as ECDSA, EdDSA, SM2, and to cutting-edge
post-quantum algorithms like Dilithium and Kyber, etc. Furthermore, SHA2 al-
gorithms have become a staple selection for authentication mechanisms within
an array of secure communication protocols. These include but are not limited to
TLS/SSL, IPSEC, SSH (Secure Shell), PGP, PIN verification, OTP (One-Time
Password) systems, and others. This widespread adoption underscores the per-
vasive role that SHA2 plays in ensuring data integrity and authenticity across
diverse digital domains.

The robustness of hash algorithms, which hinges on the inherent properties
of their compression functions and resilience to a multitude of attack strategies
including collision attacks [4] and differential attacks [5] is paramount for se-
curity. Despite the lack of publicly disclosed design intricacies, SHA2 is widely
perceived as more impervious to various attacks such as birthday attacks [6], d-
ifferential attacks [7], in comparison with MD5 and SHA1 algorithms. However,
the computational complexity often renders many of these theoretical attacks
impractical in real-world scenarios. As an alternative, over the past decade or
so, a significant body of literature has shifted towards researching the implemen-
tation security of hash algorithm, primarily focusing on side channel attacks and
fault attacks.

Side channel attacks on various implementations of hash algorithm, especial-
ly on HMAC, have been continuously discovered during the last dozen years.
McEvoy et al. proposed a differential power analysis(DPA) on HMAC-SHA2 [8],
which employs the leakage information of the calculation of the modular ADDs
and XORs to reveal the secret initial state in HMAC-SHA2 and thereby can
mount a forgery attack. Meanwhile, Fouque etc. proposed a template attack on
HMAC [9], which can recover the secret key k by measuring a single execution of
HMAC-SHA1 incorporating k. These attacks are realistic and have been demon-
strated many times in real products [10,11,12]. Furthermore, as another category
of physical attacks, fault attacks [13,14,15] have also been demonstrated to be
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effective against hash algorithms. Generally, adversary manages to disturb the
registers and the corresponding boolean functions in the compression function
(by means of voltage clitches, laser or electro-magnetic injection and so on) to
output faulty results, and exploits them to do input recovery.

1.2 Previous Works

The known fault attacks against hash algorithms and their derivatives predomi-
nantly employ difference-based methodologies, which encompass differential fault
attacks (DFA) and algebraic fault attacks (AFA). These attack strategies typi-
cally assume transient faults as the underlying fault models.

The first fault attack (i.e., DFA) based on 32-bit random word fault model,
was introduced in FDTC 2009 [13], which utilizes the arithmetical differential re-
lation between the faulty and correct boolean function f(x, y, z) = x⊕y⊕z(with
same message) to recover the key in SHACAL-1 manually. It is noteworthy that,
due to the attack which relies on the adversary’s knowledge of the final round
output rH (which is distinct from the output H of SHA1) in SHACAL-1 where
the final addition operation is absent, such an attack cannot be applied to the
hash algorithms with the final addition step. Therefore, as an improvement,
Hemme and Hoffmann have combined and extended the methodology proposed
in FDTC 2011 [14], introducing a novel approach that specifically targets the
cyclic shifts in the compression function of SHA1 to enable the recovery of the
input of compression function in SHA1. However, in view of the more complex
boolean functions, the DFA in [13,14] can not be expanded to SHA2. Similarly,
there exist analogous DFAs based on random register word faults for SHACAL-2
as well [16,17]. Such attacks not only require knowledge of the correct and faulty
output of the last round in SHACAL-2(i.e., knowing every boolean differential
value and lacking initial vector), but also fundamentally involve searching for
the key through leveraging boolean and arithmetic difference pairs. These are
unfeasible in SHA2. In addition, Bagheri et al. first introduced a DFA against
SHA3 at INDOCRYPT 2015 [18], where with 80 faulty outputs, it was possible
to recover 1592 bits (out of the total 1600 bits) of the internal state. Subse-
quently, in FDTC 2016, Luo et al. [19] improved this method by extending the
random bit fault model to a random byte fault model. However, due to the
fundamentally distinct message compression structure in SHA2 as opposed to
the sponge construction in SHA3, the DFA techniques developed for SHA3 are
not applicable to the analysis of SHA2. To the best of our knowledge, the fault
attacks [15,20] based on round counter fault appear to be the only currently
feasible fault attacks on SHA2. Such attacks attempt to solve equations in order
to recover message blocks by reducing the number of rounds or bypassing the
comparison between round counter and total number of rounds, effectively de-
creasing the number of rounds calculated in the compression function to fewer
than 16. However, these require extremely high accuracy in the term of time and
position for fault injection. Furthermore, a low-cost measure such as verifying
the round counter can effectively hinder such attacks.
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After that, scholars have turned their attention to researching the more prac-
tical and feasible fault attacks, i.e., AFA. AFA do not require manual analysis
of differential paths within hash algorithms; instead, they derive algebraic equa-
tions based on both the faulty and correct results, feeding these into tools such
as SAT solvers to reveal the message or initial state of the compression function.
Thus, its outcomes are empirically derived rather than grounded in theoretical
deduction. The AFAs presented in [21,22] are capable of forging the initial state
of HMAC-SHA2 without being able to actually recover the key in HMAC-SHA2.
Luo et al. in DATE 2017 [23] first proposed an AFA on SHA3, and later in [24]
expanded upon the fault models employed. In general, since AFA lacks theoreti-
cal foundation for the differential relationships within the compression function,
it often serves as an alternative to DFA, becoming advantageous when specific
differential paths cannot be manually derived by DFA.

In summary, as of the current understanding, there is no reported DFA specif-
ically tailored to exploit vulnerabilities within the compression function of SHA2,
especially considering its final addition step. Consequently, the security of SHA2
under random word fault model remains an open question and necessitates fur-
ther investigation.

1.3 Our Contributions

In this paper, we discovered and established several unique differential properties
of the boolean functions(Ch(x, y, z) = (x ∧ y) ⊕ (x′ ∧ y) and Maj(x, y, z) =
(a∧ b)⊕ (a∧ c)⊕ (c∧ b)) within the compression function of SHA2. By utilizing
these properties, we proposed a novel differential fault attack strategy targeting
the compression function of SHA2 that is predicated on the random word fault
model. We successfully executed such attack on SHA2, HMAC-SHA2, SHACAL-
2 and SM3 [25](holding similar boolean functions), showcasing its efficacy.

The principal advantages of our proposed differential approach can be sum-
marized as follows:

– The proposed approach takes advantage of previously undiscovered differ-
ential properties of boolean functions and has a lower computational com-
plexity. Generally, the boolean functions Ch(x, y, z) and Maj(x, y, z), which
are integral components of the SHA2 hash function, have historically been
regarded as challenging for differential analysis due to their inherently com-
plex operational behavior. Specifically, the presence of the final addition step
in SHA2, which incorporates an unknown initial vector, has commonly been
thought to directly hinder the effectiveness of differential analysis. Howev-
er, this paper presents some novel transformations of the boolean functions,
which mitigate the confused impact of the faulty registers serving as inputs to
boolean functions. This innovative approach enables the discovery of boolean
differential properties between fault-induced outputs and original inputs, fa-
cilitating the recovery of state registers within compression function with
an overwhelming probability. A significant distinction from previous DFAs
on SHA1 is the reduced uncertainty in our methodology: In contrast to the
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DFAs on SHA1 that might require guessing up to 16 bits, our innovative
technique reduces the uncertainty to just T bits, where 1 ≤ T ≤ 5, and
with a 95% probability, T is equal to 1 when recovering both the final initial
vector and message block. Comprehensive details are provided in Section 3.

– The developed methodology is highly versatile and can be broadly applied to
various hash functions and cryptographic algorithms, not limited to SHA2
(including SHA224/256/384/512), HMAC-SHA2, SHACAL-2, SM3, etc. We
have successfully managed to recover the final message block and its cor-
responding initial vector in SHA2. Furthermore, we have demonstrated the
capability to forge messages for HMAC-SHA2 and recover the secret key
used in SHACAL-2. Particularly, we have proved that the boolean functions
employed within SM3 [25] are indeed functionally equivalent to Ch(x, y, z)
and Maj(x, y, z). These findings further underscore the broad applicabili-
ty of our differential fault attack methodology across diverse cryptographic
constructs. See Section 4 for more details.

– Such attacks exhibit an impressively high success probability, which hold-
s considerable practical significance. We have thoroughly substantiated this
through comprehensive theoretical analysis and experimental validation. The
experimental results demonstrate that when 15 random word faults are in-
troduced into a specific register, the success rate for correctly restoring the
corresponding register in the right half of the last round input within SHA2
approaches nearly 100%. Correspondingly, targeting the left half of the last
round input, the attack achieves a almost 100% probability to successfully
recover n−T bits of every register, where n is the bit length of word register.
See Section 5 for more details.

The comparative analysis of our attacks against previous differential fault
attacks [13,14,16,17,15,20] is depicted in Table 1, where “Number of fault in-
jection” refers to the minimum number of fault injections required to achieve a
success probability of at least 99% of attack(excluding the guessing step).

Table 1. Comparison with previous attack

Attacks Fault model
Complexity Number of Algorithms
of guessing fault injection of analysis

Our attack Random word fault 2T (T ≈ 1) 928
SHA2, HMAC-SHA2,
SHACAL-2 and SM3

[13] Random word fault 216 120 SHACAL-1
[14] Random word fault 216 1000 SHA1, SHACAL-1

[16,17] Random word fault – 128/240 SHACAL-2
[15,20] Round counter fault – 16 SHA2, SHACAL-2

The structure of the remainder of this paper is as follows: In Section 2, we
present the fundamental theory of boolean operations and the architecture of
both SHA2 and HMAC-SHA2. Section 3 delves into the core concepts of the
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differential theory applied to boolean functions along with the associated proofs.
Section 4 provides concrete examples of differential attacks on SHA2, HMAC-
SHA2, SHACAL-2, and SM3. Finally, in Sect. 5, we detail the experimental
aspects that validate the effectiveness of the proposed key recovery method.

2 Preliminaries

2.1 Notations

Throughout the paper, we define the notations listed in Table 2.

Table 2. Notations

Symbols Definition

n Bit length of one word

N Times of fault injection

T The number of bits required to guess when recovering one register

Zn
2 Set of integers with bit length n

⊕ Exclusive-OR (XOR)

· or & Logical bitwise AND, i.e., boolean AND

′ Logical bitwise NOT

+
Addition modulo 2t when the bit length of operators equals to n ;
logical bitwise OR When the bit length of operators equals to 1.

∨ 32-bit logical OR

xy Abbreviation of x · y. Higher priority than XOR and OR

xi the i-th bit value of n-bit x
N−1∑
j=0

xj x0 + . . .+ xN−1. When xj ∈ Z2, equals to the sum of logical OR

− Subtraction modulo 2n

≫ t Circular right shift by t positions

x ∥ y Concatenation of two operators x and y

Ch(x, y, z) (x&y)⊕ (x′&z), where x, y, z ∈ Zn
2 .

Maj(x, y, z) (x&y)⊕ (x&z)⊕ (y&z), where x, y, z ∈ Zn
2 .∑

0 (x),
∑

1 (x), (x ≫ i)⊕ (x ≫ j)⊕ (x ≫ k),
σ0 (x), σ1 (x) where x ∈ Zn

2 is n-bit operator, and i, j and k depend on n.

H(M, IV ) Hash function with message M and IV .

Vi i-th initial input in Compression function in F .

M i i-th message block in M .

F (Vi,M
i) Compression function in H(M, IV ) with input Vi and M i

r The number of message blocks

R The round number of executing compression function

f(Vi,j ,Wj) j-th round of transformation in the i-th group of F

P (X) The probability of event X

Bin(N, p)
binomial distribution, where N the number of trials.
and p denotes the probability of success in each trial

X ∼ Bin(N, p) Event X follows Bin(N, p)
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2.2 SHA2 family

We recap briefly the SHA2 family hash algorithms(SHA224, SHA256, SHA384
and SHA512) below, which have the similar structure of compression function.
In SHA224 / SHA256, the word size n is 32 and the round number R is 64, while
n is 64 and R is 80 in SHA384/SHA512. The whole hash function H(M, IV )
with inputs the padded message M = M0||M1||...||Mr−1 and the initial vector
IV is described in Fig. 1, where M i(i ∈ {0, ..., r− 1}) is the i-th message block,
F is the compression function of SHA2 and Vi is the input of i-th function
F (Vi,M

i)(where V0 = IV ).

Fig. 1. Compression process of SHA2

Fig. 2. Structure of HMAC

Message Extension. As shown in Fig. 1, the message block M i must be
extended as R n-bits words Wj(j = 0, ..., R− 1). First, the message block M i is
split into sixteen n-bit words W0, ...,W15(i.e., M

i = W0||...||W15), and thereby
is extended R words Wj by the following equation

Wj = σ1 (Wj−2) +Wj−7 + σ0 (Wj−15) +Wj−16 (16 ≤ j < R) . (1)

Compression function. As depicted in Fig. 3, the compression function F em-
ploys an R-round iterative transformation, denoted as f(Vi,j ,Wj)(j = 0, ..., R−
1), which operates on the internal state for every round j from 0 to R −
1. The internal state Vi,j(i = 0, ..., r) is composed of eight concatenated n-
bit word registers: aj , bj , cj , dj , ej , fj , gj and hj(j = 0, ..., R), such that Vi,j =
aj ||bj ||cj ||dj ||ej ||fj ||gj ||hj . This state is initially initialized with a constant ini-
tial vector V0. i.e., V0 = V0,0 = a0||b0||c0||d0||e0||f0||g0||h0. The transformation
function f comprises several boolean functions namely Maj(x, y, z), Ch(x, y, z),∑

0 (x),
∑

1 (x) and the additions modulo 2n defined in Table 2, where Kj repre-
sents a predefined constant for each round. Following the execution of R rounds
of transformation f , a final modulo 2n addition takes place between the initial
input Vi,0 and the output from the (R− 1)-th round, Vi,R. This calculation pro-
duces the intermediate result Vi+1, which serves as the input for the subsequent
iteration of the compression function F . Ultimately, after processing all groups,
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Fig. 3. Compression function of SHA2

the final state Vr becomes the hash value H(M, IV ) when hashing the message
M with the initialization vector IV .

In our subsequent analysis, the spotlight is on two specific boolean functions
within the round transformation f(Vi,j ,Wj): the Ch(ej , fj , gj) function and the
Maj(aj , bj , cj) function.

2.3 HMAC of SHA2

HMAC is represented by

HMAC (M,k, IV ) = H
(
k̄ ⊕ opad ∥H

(
k̄ ⊕ ipad ∥M, IV

)
, IV

)
,

where M represents the message being authenticated, k denotes the secret
key, and k̄ signifies the padded version of k that has been padded with zeroes to
reach a specific length. opad and ipad are both 8n-bit values that serve as unique
padding for distinct stages of the HMAC process. The structure of HMAC can
be visually illustrated in Figure 2. This figure would outline the dual hashing
mechanism where the inner hash processes the concatenation of the XOR-ed
padded key using ipad with the message M , along with an initialization vector
IV . The result of this inner hash is then combined with the XOR-ed padded key
using opad and rehashed, again incorporating the initial value IV . This double-
hash approach ensures the integrity and authenticity of the message based on
the security properties of the hash function H.
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2.4 Boolean Theorems

The boolean operations, denoted by the symbols “⊕”, “·” , “′” and “+” (as
detailed in Table 2), when their operands are single-bit, exhibit the following
distinctive properties.

Theorem 1 (operational rules).
x, y, z ∈ Z2 are 1-bit values and satisfy:

1. distributive law.

(a) (x⊕ y) · z = (x · z)⊕ (y · z).
(b) (x+ y) · z = (x · z) + (y · z).

2. absorption law. x+ xy = x, x+ x′y = x+ y.
3. (x · y)′ = x′+ y′, (x+ y)′ = x′ · y′, (x⊕ y)′ = x′y + y′x.

Theorem 2 (Transformation between boolean and arithmetic opera-
tions). Given x, y ∈ Zn

2 , there exists the following transformation

x+ y = (x⊕ y) + ((x · y) ≪ 1) .

3 Methodology of Attack

In this section, we meticulously explore the specific differential characteristics
of the boolean functions within SHA2 and formulate some deductions based on
these properties. Subsequently, we introduce a differential fault attack strategy
on SHA2 which can effectively recover the initial vector Vr−1 and message block
Mr−1 in the final compression function.

3.1 Some Lemmas of Differential Fault Characteristic of Boolean
Functions

Lemma 1. If x ⊕ σ = x + ∆(x, σ,∆ ∈ Zn
2 ), then the bits of x, σ,∆ satisfy

σi (∆i ⊕ xi) = σi+1 ⊕∆i ⊕∆i+1(i = 0, . . . , n− 2) and σ0 = ∆0.

Proof. Let c is the carry of the addition modulo 2n of x and σ. The bits of c
satisfy

ci =

{
0 i = 0
(ci−1∆i−1)⊕ (ci−1 ⊕∆i−1)xi−1 0 < i < n

and

xi ⊕ σi = xi ⊕∆i ⊕ ci (0 ≤ i < n) .

Hence, ci = σi ⊕∆i(∆0 = σ0) and ci+1 = ∆i+1 ⊕ σi+1 = ci∆i ⊕ (ci ⊕∆i)xi.
Substituting ci with σi ⊕∆i, we have

σi (∆i ⊕ xi) = σi+1 ⊕∆i ⊕∆i+1 (2)
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Lemma 2. Given

{
x⊕ σj = x+∆j

x⊕ eσj = x+ Λj for j = 0, . . . , N − 1, where σj ∈ Zn
2 is

an unknown random number, ∆j , Λj ∈ Zn
2 are known values and x, e ∈ Zn

2 are
unknown constants, every bit ei of e for i = 0, . . . , n− 1 can be determined with

probability 1− ( 12 )
N
.

Proof. From Lemma 1, the following equations can be obtained.

σj
i

(
∆j

i ⊕ xi

)
= σj

i+1 ⊕Aj
i (3)

σj
i ei

(
Λj
i ⊕ xi

)
= σj

i+1ei+1 ⊕Bj
i (4)

Hence, we can deduce

(σj
i )′σ

j
i+1 = (σj

i )′A
j
i , (5)

σj
i+1ei′ei+1 = Bj

i ei′, (6)

σj
i+1eiei+1′ = eiα

j
i+1 ⊕ ei(σ

j
i )′α

j
i , (7)

where Aj
i = ∆j

i+1⊕∆j
i , B

j
i = Λj

i+1⊕Λj
i , α

j
i = ∆j

i ⊕Λj
i and αj

i ⊕αj
i+1 = Aj

i ⊕
Bj

i . Equations (3) and (4) can deduce equation (7) by multiplying ei respectively
and eliminating xi.

By equations (5), (6) and (7), the following relations hold.

1. Case 1: obtain e0.

From Lemma 1, we have σj
0 = ∆j

0 and σj
0e0 = Λj

0 for j = 0, ..., N − 1. Hence,(
N−1∑
j=0

σj
0

)
e0 =

N−1∑
j=0

Λj
0. By virtue of the randomness of σj

0, e0 =
N−1∑
j=0

Λj
0

holds with probability 1− ( 12 )
N

when σj
0 = 1 for a j ∈ {0, ..., N − 1}.

2. Case 2: obtain ei+1 when ei = 0.

If ei = 0, then σj
i+1ei+1 = Bj

i ( by equation (6)).

(
N−1∑
j=0

σj
i+1

)
ei+1 =

N−1∑
j=0

Bj
i .

Similarly, ei+1 =
N−1∑
j=0

Bj
i holds with probability 1− ( 12 )

N
when ei = 0.

3. Case 3: obtain ei+1 when ei = 1.

If ei = 1, then σj
i+1ei+1′ = αj

i+1 ⊕ σj
i ′α

j
i ( by equation (7)).

When i = 0, σj
0 = ∆j

0 and σj
1e1′ = αj

1 ⊕∆j
0′α

j
0.

When i > 0, there are two cases:

(a) If ei−1 = 0, then σj
i = Bj

i−1;

(b) If ei−1 = 1, then αj
i = σj

i−1′α
j
i−1. So when αj

i = 0, σj
i+1ei+1′ = αj

i+1;

when αj
i = 1, σj

i−1 = 0 and σj
i = Aj

i−1(by equation (5)).
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Hence,

ei+1 =



(
N−1∑
j=0

(
αj
i+1 ⊕Bj

i−1′α
j
i

))
′ ei−1 = 0, ei = 1 , i > 0 N−1∑

j=0,αj
i=0

(
αj
i+1

)
+

N−1∑
j=0,αj

i=1

(
αj
i+1 ⊕Aj

i−1′α
j
i

) ′ ei−1 = 1, ei = 1, i > 0(
N−1∑
j=0

(
αj
1 ⊕∆j

0′α
j
0

))
′ ei = 1, i = 0

holds with probability 1− ( 12 )
N

when ei = 1.

Lemma 3. Given

{
x⊕ eσj = x+ Λj

x⊕ e′εj = x+ Ψ j for j = 0, . . . , N − 1, where σj , εj ∈ Zn
2

are unknown random numbers, Λj , Ψ j ∈ Zn
2 are known values and x, e ∈ Zn

2 are

unknown constants, every bit ei of e can be determined with probability 1−( 12 )
N
.

Proof. From Lemma 1 and equation (6), we can deduce

σj
i+1ei′ei+1 = Bj

i ei′
εji+1eiei+1

′ = Cj
i ei

(8)

where Bj
i = Λj

i+1 ⊕ Λj
i and Cj

i = Ψ j
i+1 ⊕ Ψ j

i .
Hence,

ei+1 =


N−1∑
j=0

Bj
i ei = 0(

N−1∑
j=0

Cj
i

)′

ei = 1

holds with probability 1 − ( 12 )
N
, where e0 equals to

N−1∑
j=0

Λj
0 as in Case 1 of

Lemma 2.

Lemma 4. Given that

{
x⊕ σj = x+∆j

x⊕ eσj = x+ Λj for j = 0, . . . , N−1, where σj ∈ Zn
2

is unknown random number, ∆j , Λj ∈ Zn
2 are known random numbers , every bit

of σj , ∆j and Λj follows binomial distribution Bin(N, 1
2 ), e ∈ Zn

2 is known ran-
dom constant and x ∈ Zn

2 are unknown constant (whose every bit follows Bin(N, 1
2 )),

every bit xi(0 ≤ i < n− 1) of x ∈ Zn
2 can be determined with an average proba-

bility 1
4 ((1− ( 12 )

Ei+1)(1− ( 14 )
Ei)) + 1

2 (1− ( 12 )
Ei), where Ei is the expected value

that σj
i is known for j = 0, ..., N − 1.

Proof. Let σj
i+1 = F

(
σj
i , xi

)
, where F

(
σj
i , xi

)
can be defined as

F
(
σj
i , xi

)
=


Aj

i σi = 0

∆j
i+1 ⊕ xi σi = 1

Bj
i ei+1 = 1, ei = 0

αj
i+1 ⊕ σj

i ′α
j
i ei+1 = 0, ei = 1

(9)
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and σj
0 = ∆j

0 for j = 0, ..., N − 1.
we denote the expected value by Ei, which represents the average probability

in N fault injections that i-th bit of σj , i.e., σj
i (j = 0, ..., N − 1) is known for

every j ranging from 0 to N−1 and random e. Ei satisfies the following equation
when xi is unknown, and Ei is larger than

N
4 at least.

Ei =

{
N i = 0
Ei−1

2 × 1
2 +N × 1

4 + Ei−1 × 1
4 = N

2i +
N
4 i ∈ {1, . . . , n− 1} (10)

By the equations (3) and (4) in Lemma 2, we can deduce

σj
i (ei+1 ⊕ ei)xi = σj

i

(
∆j

iei+1 ⊕ Λj
iei

)
⊕Aj

iei+1 ⊕Bj
i

(ei+1 ⊕ ei)σ
j
i+1 = Bj

i ⊕
(
Aj

i ⊕ σj
iα

j
i

)
ei

, (11)

where Aj
i = ∆j

i+1⊕∆j
i , B

j
i = Λj

i+1⊕Λj
i , α

j
i = ∆j

i ⊕Λj
i and αj

i ⊕αj
i+1 = Aj

i ⊕Bj
i .

It is noted that, xi just can be determined when σj
i = 1 and σj

i+1 is known
for some j (See equation (3)).

1. Case 1: {ei+1, ei} = {1, 0}
(a) When {ei+1, ei} = {1, 0}, we have σj

i

(
xi ⊕∆j

i

)
= Aj

i ⊕ Bj
i and σj

i+1 =

Bj
i by equation (11).

For j = 0, ..., N − 1, if σj
i = 1(= F

(
σj
i−1, xi−1

)
), then xi = ∆j

i+1 ⊕Bj
i ;

Otherwise, if there exist Aj
i ⊕Bj

i = 1, then xi = ∆j
i ′.

(b) The average probability P (recovering xi|{ei+1, ei} = {1, 0}) of re-
covering xi when {ei+1, ei} = {1, 0}
Since σj

i+1 is known which equals to Bj
i for any j, the average probability

of recovering xi mainly depends on the condition that σj
i is known and

equal to 1. From equation (10), we have P (recovering xi|{ei+1, ei} =
{1, 0}) = 1− ( 12 )

Ei .
2. Case 2: {ei+1, ei} = {0, 1}

(a) When {ei+1, ei} = {0, 1}, we have σj
i

(
xi ⊕ Λj

i

)
= Bj

i and σj
i+1 = αj

i+1⊕
σj
i ′α

j
i .

For j = 0, ..., N − 1, if σj
i = 1(= F

(
σj
i−1, xi−1

)
), then xi = Λj

i+1,

Otherwise, if there exists Bj
i = 1, then xi = Λj

i ′.
(b) The average probability P (recovering xi|{ei+1, ei} = {0, 1})

Similarly, the recovery of xi depends on the known σj
i s equaling to 1.

Hence, P (recovering xi|{ei+1, ei} = {1, 0}) = 1− ( 12 )
Ei .

3. Case 3: {ei+1, ei} = {1, 1}. There are also two sub-phases:
(a) If {ei+2, ei+1, ei} = {1, 1, 1}, substituting {ei+2, ei+1, ei} = {1, 1, 1} into

equation (11), we have σj
i ′α

j
i = αj

i+1 and σj
i+1′α

j
i+1 = αj

i+2. If σ
j
i = 1,

then αj
i+1 = αj

i+2 = 0. Therefore, σj
i+1 and xi cannot be determined

when σj
i = 1.

12



(b) If {ei+2, ei+1, ei} = {0, 1, 1}, we have σj
i+1

(
xi+1 ⊕ Λj

i+1

)
= Bj

i+1 simi-

larly.
For j = 0, ..., N − 1 and i > 0, if xi+1 has been known, σj

i = 1(=

F
(
σj
i−1, xi−1

)
) and

(
xi+1 ⊕ Λj

i+1

)
= 1, then σj

i+1 = Bj
i+1 and xi =

∆j
i+1⊕Bj

i+1; Otherwise, if there exist σj
i = 1 and Bj

i+1 = 1, then σj
i+1 =

1, xi+1 = Λj
i+1 and xi = ∆j

i+1′.
(c) The average probability P (recovering xi|{ei+2, ei+1, ei} = {0, 1, 1})

The key conditions recovering xi are as follow: 1) xi+1 is known whose
average probability is 1−( 12 )

Ei+1 (see Case 2); 2) σj
i is known and equals

to 1 and 3)
(
xi+1 ⊕ Λj

i+1

)
= 1 depending on Λj

i+1 with a probability 1
2 .

Hence, P (recovering xi|{ei+2, ei+1, ei} = {0, 1, 1}) = (1 − ( 12 )
Ei+1)(1 −

( 14 )
Ei).

4. Case 4 : {ei+1, ei} = {0, 0}. There are two sub-phases:
(a) If {ei+2, ei+1, ei} = {0, 0, 0}, we have Bj

i = Bj
i+1 = 0. There is no

available information for deducing xi.

(b) If {ei+2, ei+1, ei} = {1, 0, 0}, we have σj
i+1

(
xi+1 ⊕∆j

i+1

)
= Aj

i+1⊕Bj
i+1

and σj
i+2 = Bj

i+1.

If xi+1 has been known, σj
i = 1(= F

(
σj
i−1, xi−1

)
) and xi+1 ⊕∆j

i+1 =

1, then σj
i+1 = Aj

i+1 ⊕ Bj
i+1 and xi = ∆j

i+2 ⊕ Bj
i+1; Otherwise, for

j = 0, ..., N−1, if there exist σj
i = 1 and Aj

i+1⊕Bj
i+1 = 1, then σj

i+1 = 1

and xi = ∆j
i+1′.

(c) The average probability P (recovering xi|{ei+2, ei+1, ei} = {1, 0, 0})

Similar to Case 3, P (recovering xi|{ei+2, ei+1, ei} = {1, 0, 0}) = (1 −
( 12 )

Ei+1)(1− ( 14 )
Ei).

In summary, the mean probability of successfully recovering xi, denoted
henceforth as P (recovering xi) or more succinctly as Pi, satisfies the condition
that

Pi =


(
1−( 1

2 )
Ei+1

)(
1−( 1

4 )
Ei

)
4 +

1−( 1
2 )

Ei

2 i ∈ {0, . . . , n− 3}
1−( 1

2 )
Ei

2 i = n− 2
(12)

When Ei(larger than N/4 at least) is enough large, Pi approximates to 3
4 ,

which means there are 3
4 bits of x can be recovered. Specially, when {ei+2, ei+1, ei} =

{0, 0, 0} and {ei+2, ei+1, ei} = {1, 1, 1} with probability 1
4 , xi can not be deter-

mined even if inducing more faults σj . Alternatively, the indetermination of the
remain bits of x can be effectively offset by leveraging the randomness of the
eight distinct instances of e within Algrithm 2.

In addition, it is noted that the most significant bit xn−1 can not be recovered
due to no σn

j .
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Lemma 5. Given Maj (a, b, c) = ab⊕bc⊕ac, Maj (a, b⊕ σ, c)−Maj (a, b, c) =
(b⊕ (a⊕ c)σ)− b and Maj (a, b, c⊕ σ)−Maj (a, b, c) = (c⊕ (a⊕ b)σ)− c hold,
where a, b, c, e, f, g, σ ∈ Zn

2 .

Proof. From Theorem 2, we have

Maj (a, b⊕ σ, c) = Maj (a, b, c)⊕ (a⊕ c)σ
= Maj (a, b, c) + (a⊕ c)σ − (Maj (a, b, c) (a⊕ c)σ) ≪ 1
= Maj (a, b, c) + (a⊕ c)σ − (b (a⊕ c)σ) ≪ 1
= Maj (a, b, c) + (b⊕ (a⊕ c)σ)− b

.

Similarly, equation Maj (a, b, c⊕ σ)−Maj (a, b, c) = (c⊕ (a⊕ b)σ)− c can also
be proved.

Lemma 6. Given Ch (e, f, g) = ef⊕e′g, Ch (e, f ⊕ σ, g)−Ch (e, f, g) = (f ⊕ eσ)−
f and Ch (e, f, g ⊕ σ)−Ch (e, f, g) = (f ⊕ e′σ)−f hold, where a, b, c, e, f, g, σ ∈
Zn
2 .

Proof. From Theorem 2, we have

ch (e, f ⊕ σ, g) = ch (e, f, g)⊕ eσ
= ch (e, f, g) + eσ − (ch (e, f, g) eσ) ≪ 1
= ch (e, f, g) + eσ − (efσ ≪ 1)
= ch (e, f, g) + (f ⊕ eσ)− f

Similarly, equation Ch (e, f, g ⊕ σ)−Ch (e, f, g) = (f ⊕ e′σ)− f can also be
demonstrated to hold true using the same methodology.

3.2 Recovery of Initial Input and Message Block in Final
Compression Function

By leveraging the preceding lemmas and adopting the random word fault mod-
el, we are able to recover the initial input and message block within the final
compression function of SHA2 (as depicted in Figure 1). It is important to note
that this random word fault model presupposes a scenario where only one reg-
ister, say x, is randomly perturbed during each fault injection. In such cases,
the faulty version of the register after the j-th injection, denoted as xj , can be
represented as x ⊕ σj . Here, σj is a random number for each j = 0, ..., N − 1,
with its individual bits following a binomial distribution Bin(N, 1/2). Following
the fault injection process, the subsequent conclusion can be derived.

Proposition 1. Given both correct and faulty hash values denoted as {A, ...,H}
and {Aj , ..., Hj} of SHA2 under random word fault model for any j ∈ ZN , it
is possible to recover the (R − 1)-th input registers {aR−1, bR−1, ..., hR−1} and
their corresponding faulty versions {ajR−1, b

j
R−1, ..., h

j
R−1} with an overwhelm-

ingly high probability when the number N of fault injection is sufficiently large.
Moreover, it requires to guess the leftmost T bits in one of the four registers
aR−1, bR−1, cR−1, or dR−1 and T is usually equal to 1 with overwhelmingly high
probability. .
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Proof. Step.1 Recovering eR−1, fR, f0 with faulty fR−1 in R−1-th round.
As shown in Fig. 4, if fault injection is induced into fR−1 for N times, then

fR−1 is disturbed as f j
R−1 = fR−1 ⊕ σj , and the final outputs A,E and G are

changed as Aj , Ej and Gj for j = 0, ..., N − 1.
From Lemma 6, we have

Gj −G =
(
fR−1 ⊕ σj

)
− fR−1

Aj −A =
(
fR−1 ⊕ eR−1σ

j
)
− fR−1

(13)

Let Gj − G = ∆j and Aj − A = Λj , then eR−1 can be determined from

Lemma 2 with probability
(
1− ( 12 )

N
)n

. Thereby, fR and f0 can be recovered.

Step.2 Recovering fR−1, gR and g0 with faulty fR−2 in R−2-th round.
By the same way, if fault injection is induced into fR−2, then fR−2, H, B

are changed into f j
R−2 = fR−2 ⊕ σj , Hj and Bj , repectively.

Hj −H =
(
fR−2 ⊕ σj

)
− fR−2

Bj −B =
(
fR−2 ⊕ eR−2σ

j
)
− fR−2

(14)

From Lemma 2, eR−2(i.e., gR and g0) can be recovered with probability(
1− ( 12 )

N
)n

.

Step.3 Recovering gR−1(hR) and h0 with faulty fR−3 and gR−3 in
R− 3-th round.

If fault injection is induced into fR−3 for N times, then fR−3 is changed into
f j
R−3 = fR−3⊕σ and the output C is changed into Cj for j = 0, ..., N −1. Since

the differential value of f j
R−3 − fR−3 can not be obtained from the hash output,

fault injection is still required to be induced into gR−3 for N times, then gR−3

is changed into gjR−3 = gR−3 ⊕ ε and the output C is changed into CN+j for
j = 0, ..., N − 1. Hence, from Lemma 6, we have the following equations

Cj − C =
(
fR−3 ⊕ eR−3σ

j
)
− fR−3

Cj+N − C =
(
gR−3 ⊕ eR−3′εj

)
− gR−3

. (15)

From Lemma 3, let Cj − C = Λj , Cj+N − C = Ψ j , then eR−3, i.e., hR and

h0 can be recovered with probability
(
1− ( 12 )

N
)n

.

Step.4 Recovering hR−1 with faulty fR−4 and gR−4 and in R− 4-th
round.

Consistently with the approach described above, fault injection is introduced
into both registers fR−4 and gR−4 respectively, the faulty f j

R−4(= f j
R−4 ⊕ σj),

the corresponding faulty output Dj , gjR−4(= gjR−4 ⊕ εj) and the corresponding

faulty output Dj+N satisfy the following equations

Dj −D =
(
fR−4 ⊕ eR−4σ

j
)
− fR−4

Dj+N −D =
(
gR−4 ⊕ eR−4′εj

)
− gR−4

. (16)

From Lemma 3, let Dj −D = Λj , Dj+N −D = Ψ j , then eR−4, i.e., hR−1 can

be recovered with probability
(
1− ( 12 )

N
)n

.
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Fig. 4. Fault injection on fR−1
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In summary, the four sequential steps outlined above enable the recovery of
registers {eR−1, fR−1, gR−1, hR−1}, {fR, gR, hR} and {f0, g0, h0} with a proba-
bility Pr satisfying

Pr =

(
1−

(
1

2

)N
)4n

. (17)

Meanwhile, the recovery needs conducting 6N fault injections.
It should be noted that steps 1 and 2 should mount the same attacks as

steps 3 and 4 when Gj , G, Hj and H are not obtained for attacker in SHA224
or SHA384. Specially, N times of fault injections are induced to disturb fR−1

and gR−1 in step 1(fR−2 and gR−2 in step 2), and input the faulty Aj and
AN+j(Bj and BN+j in step 2), respectively. As stated in step 3, eR−1(fR−1)
can be recovered using Lemma 3.

Step.5 Recovering aR−1 ⊕ cR−1 and partial bits of bR−1(denoted as
part(bR−1)) with faulty bR−1 in R− 1-th round.

As shown in Fig. 4, if fault injection is induced into bR−1 for N times, then
bR−1 is disturbed as bjR−1(= bR−1 ⊕ σj) randomly, and the final outputs A and

C are changed as Aj and Cj for j = 0, ..., N − 1.
From Lemma 5, we have

Cj − C =
(
bR−1 ⊕ σj

)
− bR−1

Aj −A =
(
bR−1 ⊕ (aR−1 ⊕ cR−1)σ

j
)
− bR−1

. (18)

From Lemma 2, let Cj − C = ∆j , Aj − A = Λj , then aR−1 ⊕ cR−1 can be

recovered with probability
(
1− ( 12 )

N
)n

.

Since aR−1 ⊕ cR−1 is known in equation (18), bR−1 can also be recovered
from Lemma 4 with a probability Pi approximating to 3

4 , which depends on the
value of aR−1⊕ cR−1. In view of the randomness of aR−1⊕ cR−1, about

1
4 bits of

bR−1 denoted by part(bR−1) cannot be determined even when N is sufficiently

large to the extent that
(
1−

(
1
2

)N)n ≈ 1.

Step.6 Recovering aR−1 ⊕ bR−1 and partial bits of cR−1(denoted as
part(cR−1)) with faulty cR−1 in R− 1-th round.

By the same way with Step.5, cR−1, A and D are disturbed as cjR−1(= cR−1⊕
σj), Aj and Dj by fault injection for j = 0, ..., N − 1, respectively.

From Lemma 5, we have

Dj −D =
(
cR−1 ⊕ σj

)
− cR−1

Aj −A =
(
cR−1 ⊕ (aR−1 ⊕ bR−1)δ

j
)
− cR−1

. (19)

Naturally, aR−1 ⊕ bR−1 and part(cR−1)(depending on the randomness of
aR−1 ⊕ bR−1) can be recovered from Lemmas 2 and 4.

Step.7 Recovering more bits of aR−1, bR−1 and cR−1.
Since knowing aR−1 ⊕ bR−1 and aR−1 ⊕ cR−1, i.e., knowing bR−1 ⊕ cR−1,

part(bR−1) and part(cR−1) as mentioned above can be progressively refined or
updated with more known bits by Algorithm 1. Consequently, the corresponding
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bits of aR−1(denoted by part(aR−1)) with respect to part(bR−1) and part(cR−1)
also can be updated. From Lemma 4, the probability of undetermined bits of
part(bR−1) and part(cR−1) is (1−Pi)

2 which approximates to 1
24 when knowing

aR−1 ⊕ bR−1 and aR−1 ⊕ cR−1.

Algorithm 1 Algorithm of updating bits of target registers

Require: u(= b⊕ c), part(b) and part(c)
Ensure: updated part(b) and part(c)

For i = 0 to n− 1
If bi is known in part(b) and ci is unknown in part(c).

update ci = ui ⊕ bi and set ci known in part(c).
Else If ci is known in part(c) and bi is unknown in part(b).

update bi = ui ⊕ ci and set bi known in part(b).
return part(b) and part(c)

Step.8 Recovering bR−1 ⊕ dR−1 and updating part(cR−1) with faulty
bR−2 in R− 2-th round.

Analogously, if bR−2 is randomly disturbed by conducting N instances of
fault injection, aR−2 ⊕ cR−2(i.e., bR−1 ⊕ dR−1) can be recovered by Lemma 2,
and thereby part(cR−1)(i.e., bR−2) can be updated with more known bits by
Lemma 4. The probability of undetermined bits of part(bR−1) and part(cR−1)

is (1− Pi)
3
approximates to 1

26 when knowing bR−1 ⊕ dR−1.

Step.9 Recovering more bits of aR−1, bR−1, cR−1 and dR−1.

Since knowing aR−1 ⊕ cR−1, bR−1 ⊕ cR−1, bR−1 ⊕ dR−1 and the updated
part(cR−1), the corresponding part(aR−1), part(bR−1) and part(dR−1) with re-
spect to part(cR−1) still can be recovered by Algorithm 1.

When the number of undetermined bits reaches a predefined lower threshold
T (where T is conventionally set to 1), this signifies that n−T bits of the registers
aR−1, bR−1, cR−1, and dR−1 have been successfully recovered. However, if this
condition is not met, the fault injection process can be iteratively continued.

In the (R − 2)-th round, faults are injected into register cR−2 to update
part(dR−1). In the subsequent (R − 3)-th round, fault injections target both
bR−3 (enabling recovery of cR−1 ⊕ cR−3 and updating part(dR−1)) and cR−3 for
updating part(cR−1). Moving on to the (R− 4)-th round, faults are introduced
into bR−4 to recover dR−1⊕ cR−4 and further update part(dR−1), as well as into
cR−4 to recover dR−1⊕bR−4 and again update part(dR−1). This iterative process
allows for the gradual refinement and determination of part(aR−1), part(bR−1),
part(cR−1) and part(dR−1) until all desired bits are resolved.

To sum up, n−T bits of aR−1, bR−1, cR−1 and dR−1 can be recovered by the
following Algorithm 2. Except for the never undetermined most significant bit,
the probability determining every one in the remain bits of aR−1, bR−1, cR−1

and dR−1 is up to 1 − (1 − Pi)
8 which approximates to 99.998%. Hence, the

probability of successfully recovering all remaining bits is given by the following
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equation

Pl =

(
1−

(
1

2

)N
)8n n−3∏

i=0

(1− (1− Pi)
8
), (20)

which approximates to 99% when n assumes either 32 or 64(Pi referring to the
individual bit recovery probability as defined in equation (12)) and N is enough
big such as N = 15. Therefore, T is usually equal to 1. In addition, once the most
significant bit of any one in {aR−1, bR−1, cR−1, dR−1} is determined, all the other
most significant bits can be recovered by the known values aR−1⊕ bR−1, aR−1⊕
cR−1 and cR−1 ⊕ dR−1. Therefore, only one bit is generally needed to guess in
our analysis when recovering the left half registers. By Algorithm 2 above, we
can recover {aR−1, bR−1, cR−1, dR−1}(with one guessed bit), {bR, cR, dR} and
{bR, cR, dR}. Moreover, 8N times of fault injections are needed for recovery.

Finally, {aR−1, bR−1, ..., hR−1}, {bR, cR, dR, fR, gR, hR} and {b0, c0, ..., h0} can
be recovered, in which only one bit in {aR−1, bR−1, cR−1, dR−1} is needed to guess
with overwhelming probability Pr ∗Pl. Meanwhile, the recovery needs 14N times
of fault injections.

Algorithm 2 Algorithm of recovering n−T bits of aR−1, bR−1, cR−1 and dR−1

Require: All the faulty hash results {Sj
0, S

j
1, S

j
2, S

j
3, S

j
4, S

j
5, S

j
6, S

j
7}(=

{Aj , Bj , Cj , Dj , Ej , F j , Gj ,Hj}) for any j = 0, ..., N − 1 and the cor-
rect hash results {S0, S1, S2, S3, S4, S5, S6, S7}(= {A,B,C,D,E, F,G,H})

Ensure: the last n − T bits of aR−1, bR−1, cR−1 and dR−1 denoted by their
respective segments part(aR−1), part(bR−1), part(cR−1), and part(dR−1)
1. Set the value of T (such as T = 1), and let ub to be the length of the
unknown bits of aR−1(or bR−1, cR−1, dR−1).
2. For r = R− 1 to R− 4

2.1. If ub > T
2.1.1. Fault injection is randomly induced into br for N times,

and results in the faulty bjr satisfying bjr = br ⊕ σj and the final output-
s {Sj

0, S
j
1, S

j
2, S

j
3, S

j
4, S

j
5, S

j
6, S

j
7}(= {Aj , Bj , Cj , Dj , Ej , F j , Gj ,Hj}) for j =

0, ..., N − 1.
2.1.2. Let ∆j = Sj

R−r+1 − SR−r+1 = (br ⊕ σj)− br, Λ
j = Sj

R−r−1 −
SR−r−1 = (br ⊕ (ar ⊕ cr)σ

j)− br.
2.1.3. Recover ar ⊕ cr by Lemma 2 and part(br) by Lemma 4.
2.1.4. Select cr as the target of fault injection and then sequentially

replicate the analogous steps 2.1.1 through 2.1.3.
2.1.5. Recover ar ⊕ br by Lemma 2 and part(cr) by Lemma 4.

2.2. Update part(aR−1), part(bR−1), part(cR−1), part(dR−1) by Algorith-
m 1.

return part(aR−1), part(bR−1), part(cR−1), part(dR−1)
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Step.10 Recovering the faulty registers {ajR−1, ..., h
j
R−1} for j = 0, ..., N−

1
As shown in Fig. 4, we have known {aR−1, ..., hR−1}, {b0, c0, d0, f0, g0, h0},

the correct hash values {A, ...,H} and the faulty hash values {Aj , ..., Hj} for
any j ∈ 0, ..., N − 1. Obviously, we have

ajR−1 = Bj − b0, b
j
R−1 = Cj − c0, c

j
R−1 = Dj − d0, and

ejR−1 = F j − f0, f
j
R−1 = Gj − g0, g

j
R−1 = Hj − h0.

Let Ti = Ch(ei, fi, gi) +
∑

1 (ei), Ui = Maj(ai, bi, ci) +
∑

0 (ai), T j
i =

Ch(eji , f
j
i , g

j
i ) +

∑
1

(
eji

)
and U j

i = Maj(aji , b
j
i , c

j
i ) +

∑
0

(
aji

)
(i ∈ 0, ..., R− 1

and j ∈ 0, ..., N − 1), then we have

hj
R−1 = Aj −A− (T j

R−1 + U j
R−1 − TR−1 − UR−1) + hR−1,

where Aj , A, T j
R−1, U

j
R−1, UR−1 and TR−1 are all known.

Hence, djR−1 = Ej − E − (T j
R−1 + hj

R−1 − TR−1 − hR−1) + dR−1.
Q.E.D

Proposition 2. Given both correct and faulty R−1-th round input values denot-
ed as {aR−1, bR−1, ..., hR−1} and {ajR−1, b

j
R−1, ..., h

j
R−1} of SHA2 under random

word fault model for any j ∈ ZN , it is possible to recover the message block
Mr−1 and initial vector Vr−1 of the final compression function F (Vr−1,M

r−1)
with an overwhelmingly high probability when the number N of fault injection is
sufficiently large.

Proof. Step 1. Recovering correct registers aR−2, bR−2, ..., hR−2

Obviously, aR−2 = bR−1, bR−2 = cR−1, cR−2 = dR−1, eR−2 = fR−1, fR−2 =
gR−1, gR−2 = hR−1.

As proven in the Step 4 of proposition 1, if N times fault injections are
induced in fR−5 and gR−5 , then fR−5 and gR−5 are disturbed as f j

R−5(= fR−5⊕
σj) and gjR−5(= gR−5 ⊕ εj) , respectively. Hence, from Lemma 6,

djR−1 − dR−1 =
(
fR−5 ⊕ eR−5σ

j
)
− fR−5

dN+j
R−1 − dR−1 =

(
gR−5 ⊕ eR−5′εj

)
− gR−5

,

where djR−1 and dN+j
R−1 are the j-th faulty values of fourth register when

mounting fault injection toward fR−5 and gR−5, respectively.
From Lemma 3, let djR−1−dR−1 = Λj , dN+j

R−1 −dR−1 = Ψ j , then hR−5 can be

recovered with probability (1− 1
2N

)n and 2N fault injections.
As proven in the Step 5 of proposition 1, if N times fault injections are

induced in bR−3 , then bR−3 are disturbed as bjR−3(= bR−3 ⊕ σj). Hence, from
Lemma 5, we have

djR−1 − dR−1 =
(
bR−3 ⊕ σj

)
− bR−3

bjR−1 − bR−1 =
(
bR−3 ⊕ (aR−3 ⊕ cR−3)σ

j
)
− bR−3

.
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From Lemma 2, aR−3 ⊕ cR−3 can be recovered. Knowing aR−3 = cR−1 and
cR−3 = dR−2, dR−2 can be recovered with probability (1 − 1

2N
)n and N fault

injections.
Step 2. Recovering message WR−2

Knowing TR−2(defined in Step 10 of proposition 1, i.e., Ch(eR−2, fR−2, gR−2)+∑
1 (eR−2)), dR−2, KR−2 and eR−1, we have

WR−2 = eR−1 − TR−2 −KR−2 − dR−2.

Step 3. Recovering faulty registers {ajR−2, ..., h
j
R−2} for any j ∈ ZN

In {ajR−2, ..., h
j
R−2}, only djR−2 and hj

R−2 are unknown values. Moveover,

T j
R−2 and U j

R−2 denoted in step 10 in proposition 1 are known. Hence, we have

hj
R−2 = ajR−1 − T j

R−2 −WR−2 −KR−2 − U j
R−2,

and
djR−2 = ejR−1 − T j

R−2 −WR−2 −KR−2 − hj
R−2.

After the Steps 1-3 above, the R − 2-th correct and faulty round input and
message WR−2 can be recovered with probability (1 − 1

2N
)2n and 3N fault in-

jections.
Step 4. Recovering the message block Mr−1 and initial vector Vr−1

in the compression function F (Vr−1,M
r−1).

Continue iterating through the Steps 1-3 until all 16 sets of intermediate
round messages, specifically {WR−2, ...,WR−17}, have been successfully recov-
ered. Subsequently, the original message block M can be inferred using Equation
1. Furthermore, the initial input vector Vr−1 can also be retroactively derived
by leveraging the recovered message block Mr−1, along with the known inputs
{aR−1, ..., hR−1} from the final compression function stage.

To sum up , the last message block Mr−1 and its corresponding initial vector
Vr−1 can be recovered with probability (1− 1

2N
)32n and 48N fault injections.

Q.E.D
Finally, propositions 1 and 2 can be utilized to realize a practical differential

fault attack. The more detailed procedure for accomplishing this is outlined in
Algorithm 3. It is worth noting that Step 1 in Proposition 2 can be bypassed
if the registers {aR−3, ..., dR−3} have already been successfully retrieved during
the execution of Algorithm 2 as prescribed in Proposition 1. As a result of this
optimization, the cumulative number of fault injections diminishes to 62N − 2
instances.

4 Case of Study

Building upon the theoretical foundations laid out in the aforementioned proposi-
tions, we are poised to apply these concepts in the analysis of SHA2, SHACAL-2,
and HMAC-SHA2. Furthermore, the scope of our attack methodology extends to
encompass other algorithms that employ SHA2-like boolean functions, including
but not limited to SM3 and A5/1. The subsequent sections will delve into the
procedure of our tailored attacks against various modes and algorithms.
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Algorithm 3 Recovery of initial vector Vr−1 and message block Mr−1 in com-
pression function F (Vr−1,M

r−1)

Require: The correct and faulty hash values denoted as {A, ...,H} and
{Aj , ..., Hj} for any j ∈ Z62N

Ensure: Vr−1(= {a0, ..., h0}) and Mr−1

1. According to proposition 1, recovering the last round of correct and faulty
inputs {aR−1, bR−1, ..., hR−1} and {ajR−1, b

j
R−1, ..., h

j
R−1} , where there exist

T indeterminate bits in any one of aR−1, ..., bR−1.
2. guess the leftmost T bits for any one of aR−1, ..., dR−1, and obtain 2T

different aR−1, ..., dR−1.
3. for each guessed aR−1, ..., dR−1

3.1. According to proposition 2, recovering Vr−1 and Mr−1.
3.2. if F (Vr−1,M

r−1) + Vr−1 = {A, ...,H}
return Mr−1 and Vr−1.

return The recovery is failed.

4.1 Attack on SHA2 and its application

As stated in Fig 1, since attacker can not obtain the faulty output(such as
the faulty values of V1, ..., Vr−1) of compression function excepting the last hash
function F (Vr−1,M

r−1), the target of our attack on SHA2 is the last compression
function F . As illustrated in Figure 1, given that the attacker lacks access to the
faulty outputs generated by the intermediate compression functionsexcept for
the final compression function F (Vr−1,M

r−1), our attack strategy on the SHA2
algorithm focuses on F (Vr−1,M

r−1). This limitation necessitates focusing on
this critical stage due to the unavailability of faulty information from preceding
groups.

Therefore, with regard to SHA2 family including SHA224, SHA256, SHA384,
and SHA512, only the final message block Mr−1 and the corresponding initial
state Vr−1 can be recovered using Algorithm 3. Despite this constraint, several
attack scenarios remain viable.

– In dynamic token systems, SHA2 is adopted to compress seed key and iden-
tifier, and finally input the left or right half of hash value. In this case, we
can leverage Lemma 3 instead of Lemma 2 as in the context of SHA224 and
SHA384. Consequently, when there exists a single message block for hash
function, the seed key can indeed be recovered through our attack.

– For identity authentication mechanisms where a user’s password, ID, and
salt are concatenated and hashed to generate a verification hash, our attack
method allows for the recovery of the ID, salt, and hash value. Under cir-
cumstances where the concatenated data fits into a single message block, the
password can also be exposed via our fault attack.

– SHA2 plays a pivotal role in public key cryptography systems, often em-
ployed to hash messages or keys. For instance, in determining ECDSA and
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EdDSA signature schemes, the private key and message serve as inputs to a
hash function or a key derivation function based on hash function. Should
an attacker manage to acquire the output of this process, the security of
these signatures is equally vulnerable to the threats posed by faults in SHA2
itself. Meanwhile, SHA2 is prominently recommended as a critical compo-
nent within post-quantum cryptographic systems, serving roles such as a
pseudo-random number generator and for the compression of key informa-
tion, among other applications. Its inherent security is intrinsically linked
to the robustness of post-quantum cryptography, particularly in hash-based
post-quantum cryptographic schemes where it plays an indispensable role.
In essence, any compromise to SHA2’s security directly impacts the security
of these dependent cryptographic systems.

4.2 Forgery Attack on HMAC-SHA2

As stated in [21,22], an almost universal forgery attack can be conducted suc-
cessfully under the results derived by our fault attacks.

As shown in Fig. 2, there are two hash functions are calculated and the mes-
sage block can be selected arbitrarily in the first hash function. The detailed
process of the forgery attack is depicted in Figure 5. First, input a single mes-
sage block M0 to calculate the correct HMAC value. Next, according to the
proposed propositions, induce fault injections into the last compression func-
tion(highlighted in yellow) using the same message block M0. Through the sub-
sequent deductions in Algorithm 3, the attacker manages to recover the padded
value resulting from H(IV, k̄ ⊕ ipad||M0)(i.e., Mr in Figure 2) as well as the
initial value derived from F (IV, k̄ ⊕ opad)(i.e., V1 in Fig. 2). Finally, after suc-
cessfully recovering these intermediate values, the attacker gains the ability to
forge the HMAC value for any message M whose first message block is M0. This
constitutes an almost universal forgery attack, demonstrating the vulnerability
under such specific conditions.

4.3 Differential fault attack on SHACAL-2

SHACAL-2 is a block cipher algorithm derived from the compression function of
SHA256, characterized by a block size of 256 bits and a key length of up to 512
bits. Developed under the auspices of the NESSIE program, it has been adopted
for securing electronic systems. As depicted in Figure 6, with the exception of
the absence of the ”final addition” operation, the modified compression function
F ′ of SHACAL-2 has the same transformation as in the F function of SHA256
(referenced in Figure 1), executing an identical sequence of 64 rounds denoted
as f . In SHACAL-2, the message block in SHA256 serves as the encryption key,
while the initial vector V0 in SHA256 is treated akin to the plaintext, both being
fed into the F ′ function as inputs.

Our proposed attack is not only viable against SHACAL-2 but also no-
tably more accessible to execute. Initially, leveraging Proposition 1 and inducing
random fault injections, we are able to recover the last input register values
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Fig. 5. Almost universal forgery attack on HMAC

Fig. 6. Structure of SHACAL-2
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{aR−1, ..., hR−1}. Subsequently, according to Proposition 2, we can successful-
ly retrieve both the plaintext (corresponding to the initial vector IV or V0 in
SHA2) and the key (which corresponds to the message block in SHA2).

Furthermore, due to the absence of a final addition step before outputting
the result, as seen in Figure 3, where the internal state registers {aR, ..., hR} are
directly exposed, every boolean differential value σj for any j defined in Lemma 4
becomes known. This means that the recovery of variable x in Lemma 4 does not
rely on the randomness of e, but solely depends on the known σj via Equation 2.
As a consequence, the proposed method offers a notably increased probability
of accurately reconstructing the left half of the registers aR−1, ..., hR−1 with a
relatively lower number of fault injections required.

4.4 Extensions on Other Algorithms Having Similar Boolean
Functions

To the best of our knowledge, several algorithms incorporate similar boolean
functions, specifically Maj and Ch, such as SM3 [25], A5/1, and A2U2 [26],
among others. Considering that our primary analytical scope here pertains to
hash functions, we confine our study to the security resilience of SM3 against the
proposed attack in this context. The examination and analysis of the boolean
functions employed within stream cipher algorithms will be reserved as a topic
for future, in-depth research.

As depicted in Figure 7, SM3 exhibits a structural resemblance to SHA256.
It has boolean functions FFj and GGj which correspond to Maj and Ch re-
spectively, where

FFj(X,Y, Z) = (X&Y ) ∨ (X&Z) ∨ (Y&Z) 16 ≤ j ≤ 63

and

GGj(X,Y, Z) = (X&Y ) ∨ (X ′&Z) 16 ≤ j ≤ 63.

The distinct between FFj and Maj(GGj and Ch) is using the operation
∨ not ⊕. The critical distinction between the function FFj(or GGj ) and the
functionMaj(or Ch) is rooted in their employment of a logical OR operation (∨)
as opposed to the bitwise XOR operation (⊕). However, upon closer deduction,
we have ascertained that despite their apparent operational differences, these
functions FFj(GGj) andMaj(Ch)(or similar constructs) are indeed functionally
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Fig. 7. Structure of SM3

equivalent. The detailed deduction is as follow.

(XY )⊕ (XZ)⊕ (Y Z)
= (XY Z ′ ∨XY ′Z)⊕ (Y Z)

= (XY Z ′ ∨XY ′Z) (Y Z)′ ∨ (XY Z ′ ∨XY ′Z)
′
(Y Z)

= (XY Z ′ ∨XY ′Z) (Y ′ ∨ Z ′) ∨ (X ′ ∨ (Y Z ′ ∨ Y ′Z)′) (Y Z)
= (XY Z ′ ∨XY ′Z) ∨ (X ′Y Z ∨ Y Z)
= XY Z ′ ∨XY ′Z ∨ Y Z
= Y (XZ ′ ∨ Z) ∨XY ′Z
= Y (Z ∨X) ∨XY ′Z
= XY ∨ (Y ∨XY ′)Z
= XY ∨XZ ∨ Y Z

(21)

(XY )⊕ (X ′Z)
= (XY )(X ′Z)′ ∨ (XY )′(X ′Z)
= (XY ∨XY Z ′) ∨ (X ′Z ∨X ′Y ′Z)
= XY ∨X ′Z

(22)

By the deduction of equations (21) and (22), we can find that Maj is equal
to FFj and Ch is equal to GGj . Therefore, akin to the attacks (differential fault
analysis) Instantiated on SHA2 in Sections 4.1 and 4.3, our proposed fault attack
remains viable for both SM3 and its encryption counterpart. However, a signif-
icant difference arises: unlike SHA2, where an addition operation is performed
between the initial input and the final round output registers before computing
the hash value, SM3 utilizes XOR operations instead. This distinction becomes
critical when considering scenarios like HMAC, where the initial input to the
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compression function is unknown. Consequently, it renders the execution of a
almost forgery attack against SM3 impractical under such conditions.

In conclusion, our proposed attack methodology presents a multitude of po-
tential attack instances, thereby posing a genuine threat to algorithms that incor-
porate the same boolean functions Maj and Ch. This highlights the significance
of understanding and addressing these vulnerabilities in cryptographic systems
utilizing similar functional constructs.

5 Experiments

In this section, we implemented a simulation of the random fault model and car-
ried out the attack to empirically assess the feasibility and effectiveness of our
proposed method. For clarity and brevity, we concentrated on validating Lem-
ma 2 and Algorithm 2, which are central in recovering the right and left halves
of the final round input for SHA256 and SHA512, respectively. It is important
to emphasize that although not explicitly detailed here, other hash algorithms
such as SHA224/384 and SM3 also adhere to a comparable operational structure,
suggesting that similar attack strategies could be applicable to these instances
as well.

Firstly, we systematically simulated fault injection experiments N times,
where N ranged from 1 to 30, specifically targeting register fR−1 as depict-
ed in Fig. 4. For each unique value of N(corresponding to x axis), we executed
1000 attack instances based on Lemma 2 to attempt the recovery of eR−1. Subse-
quently, we computed and contrasted both the empirical and theoretical success
rates(corresponding to y axis) of recovering eR−1. As presented in Fig. 8, the red
and blue lines depict the respective success rates of recovering eR−1 for SHA256
and SHA512. The dashed lines denote theoretical success rates, while solid lines
represent experimental rates. The results indicate that the practical success rate
slightly surpasses its theoretical counterpart. It is worth highlighting that the
empirical success rate approaches an almost perfect 100% for both SHA256 and
SHA512 when N reaches 15, which are achievable in genuine experimental set-
tings. Moveover, it is worthy to note that all the attacks based on Lemma 2
such as the attacks recovering aR−1⊕ cR−1 and aR−1⊕ bR−1, are fundamentally
identical. In addition, apart from the requirement of double fault targets, the
attacks that rely on Lemma 3 exhibit an equivalent success rate to those based
on Lemma 2. Therefore, we will not delve into the specifics here.

Next, we proceeded to validate the practical feasibility and success rate of Al-
g. 2, which fundamentally relies on Lemma 2 and Lemma 4 to recover the left half
of the final round input. Similarly, we designated br and cr(r ∈ R− 1, ..., R− 4)
as 8 targets sequentially and simulated 1 ∼ 50(i.e.,N = 1 ∼ 50) random fault
injections for each target. Subsequently, we executed 1000 repetitive instances
of the attack in Alg. 2 for each N . The experimental and theoretical result-
s are shown in Fig.9. Similarly, the red and blue lines depict the respective
success rates of SHA256 and SHA512. Dashed lines denote theoretical success
rates, while solid lines represent experimental rates (experimental success rate
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Fig. 8. Success rate of recovering e in Lemma 2 when performing N fault injections

for short) for successfully recovering the lower 31 bits of registers in Alg. 2 for
SHA256 or the lower 63 bits for SHA512, depending on N and e(see Lemma 4).
Meanwhile, dash-dot lines indicate the experimental success rates (recovered
success rate for short) of recovery being depending on N , i.e., the success rate
of the attack when the consecutive bit triplet {ei+2, ei+1, ei} within the binary
representation of e does not assume either the all-zero state ({0, 0, 0}) or the
all-one state ({1, 1, 1}).

We can see that the experimental success rates of recovering all the lower
31/63 bits for SHA256 and SHA512 are jumping around 97% and 95% when N
is lager than 9 respectively, while the theoretical average success rate is up to
99% when N is lager than 17/20 for SHA256/SHA512. The recovered success
rates are nearly up to 100% when N is larger than 15, which are slightly larg-
er than the theoretical average success rates. The above results reveal a slight
divergence between the experimental and theoretical success rates. This discrep-
ancy mainly stems from the fact that our theoretical calculations are based on
an expectation of the number of known σj

i values, which assumes a random e
following a binomial distribution with a probability of 1/2 over N fault injection
trials (Bin(1/2, N)). However, in actual experiments, we utilized only eight u-
nique randomly generated e values, which may account for the observed marginal
difference. Moreover, when in the instances that the recovered bits are correct
but their quantity falls short of n − 1 with probability 3% for SHA256( or 7%
for SHA512), the average value of T (the average number of unrecoverable bits)
consistently remains at 3, and its maximum value is 5. It implies that in the most
disadvantageous experimental scenarios of our attacks, which have a relatively
low likelihood (approximately 5% for SHA512 and 3% for SHA256), typically 3

28



bits would need to be deduced or guessed. On the other hand, under more com-
mon circumstances with a significantly higher probability of occurrence (around
95% for SHA512 and 97% for SHA256), it is predominantly the most significant
bit alone that requires estimation.

In conclusion, leveraging the random fault model, we achieve a near-perfect
success rate of approximately 100% in recovering every register within the right
half of the (R − 1)-th input as the value of N approaches 15. Simultaneously,
when the number N of fault injection instances reaches 15, and the number of
bits needing to be guessed, denoted as T , generally amounts to 1(around 95%
for SHA512 and 97% for SHA256) and rarely exceeds a maximum of 5 with
an average value of 3(around 5% for SHA512 and 3% for SHA256), we achieve
similarly impressive recovery success rates nearing 100% (refer to the recovered
success rates depicted in Figure 9) for a register within the left half of the
(R − 1)-th round input. Moreover, there are 928(i.e., 62N − 2) fault injection
instances required for recovering the message block and initial vector in the final
compression function of SHA2.
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Fig. 9. The success rate of recovering the left half of the final round input following
8*N fault injections

6 Conclusion

In view of the complexity of boolean functions in the compression function of
SHA2, the security of SHA2 remains ambiguous when facing differential fault at-
tacks. This study has found some distinct differential fault properties of boolean

29



function in SHA2, and thereby proposed a new differential fault attack which can
be effectively applied on SHA2, HMAC-SHA2, SHACAL-2 and other algorithms
like SM3. Through rigorous theoretical proof and experimental verification, we
have demonstrated that our attacks posed real threat to SHA2 with overwhelm-
ing success probability. Finally, leveraging around 928 faulty outputs of SHA2
hash function, theoretically, facilitate an almost certain and comprehensive re-
covery of the last message block and its corresponding initial vector with an
approximate probability approaching 100%.

The findings of our research reveal the essential characteristic of boolean
functions in SHA2 and its threat on the security of SHA2, which not only ex-
tend the existing body of knowledge in the field of fault attack but also provide
valuable insights for traditional differential analysis. We observed that the al-
gorithms having similar boolean functions Ch(x, y, z) and Maj(x, y, z) still is
vulnerable to our attack. Furthermore, in the compression function of SHA3,
there are indeed multiple boolean functions. The question that we intend to
delve into further is whether these boolean functions exhibit differential char-
acteristics under random word(64 bits) fault model. This investigation aims to
assess the resilience of SHA3 against potential attacks exploiting such differential
properties. In addition, extending our analytical approach to perform a compre-
hensive examination of stream cipher algorithms such as A5/1 and A2U2 holding
similar boolean functions, would be a valuable subject for further research.

However, it should be noted that despite these contributions, there are cer-
tain limitations to our attack, including lack of a practical verification targeting
devices implementing SHA2. These areas open up opportunities for further in-
vestigation and refinement.
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