
Extremely Simple
(Almost) Fail-Stop ECDSA Signatures

Mario Yaksetig

BitFashioned
mario@bitfashioned.com

Abstract. Fail-stop signatures are digital signatures that allow a signer
to prove that a specific forged signature is indeed a forgery. After such a
proof is published, the system can be stopped.
We introduce a new simple ECDSA fail-stop signature scheme. Our pro-
posal is based on the minimal assumption that an adversary with a quan-
tum computer is not able to break the (second) preimage resistance of
a cryptographically-secure hash function. Our scheme is as efficient as
traditional ECDSA, does not limit the number of signatures that a signer
can produce, and relies on minimal security assumptions. Using our con-
struction, the signer has minimal computational overhead in the signa-
ture producing phase and produces a signature indistinguishable from a
‘regular’ ECDSA signature.

Keywords: Fail-stop signatures · Formal Methods Analysis · ECDSA.

1 Introduction

Presently, the Internet relies heavily on the Elliptic Curve Digital Signature
Algorithm (ECDSA) as this signature scheme represents the backbone for the
issuance of digital signatures online. This issue is even more relevant in the cryp-
tocurrency landscape, where the majority of blockchain platforms use ECDSA to
secure their transactions. Effectively, this signature scheme secures a hundreds
of billions of dollars since the cryptocurrency funds of each user are secure only
as long as no one can steal their funds. Therefore, strengthening the ECDSA
scheme, which secures these funds, is of extreme importance.

In this work, we introduce a new protocol that allows legitimate users to
prove whether or not a specific signature is a forgery. This is particularly useful
in a setting involving a dispute between the real user and an adversary who
maliciously obtained the secret key.

1.1 Motivation

Blockchains are not designed to be easily upgraded, and such upgrades are tra-
ditionally very controversial. To cause no friction and no need for any type of
hard forks, we introduce a new fail-stop variant of the ECDSA scheme that al-
lows users to prove whether or not a signature using a specific key is legitimate



2 M. Yaksetig

or not without requiring any change to existing ECDSA verification algorithms.
This is useful as it implies that smart contracts and existing wallet and node
infrastructure can remain unchanged.

Fail-stop signatures, which can detect and halt forgery attempts, represent
an innovative step forward in cryptographic security. In a world where ECDSA-
based cryptocurrencies face relentless security breaches leading to substantial
financial losses, the integration of fail-stop signatures could provide a powerful
defense. This approach significantly reduces the risk of fraudulent transactions,
and enables a dispute resolution in case of a key compromise.

1.2 Our Contributions

We introduce a very lightweight addition to the traditional ECDSA to en-
code quantum-secure secret key information in the nonce used to produce each
ECDSA signature. This encoding allows the signer to, in an event of a dispute,
selectively open the nonce used in that signature and prove whether or not a
signature is well-formed. Unlike the original failstop signatures [4], our proposal
does not set a limit on signatures that can be constructed using the same secret
key and does not affect the signature size, which remains exactly the same as
a traditional ECDSA signature. Our approach can be integrated in any elliptic-
curve based digital signature scheme and also complements existing fallback
designs as proposed by Chaum et al. [2, 1].

Arguably, the most important part of our construction is that an adversary
able to break the ECDLP is not able to obtain the secret preimage used to
generate the nonce for any individual signature. This feature allows the real
owner of the signing keys to prove that a specific signature is a forgery.

1.3 Fail-stop Signatures

Fail-stop signatures operate similarly to traditional digital signatures. The signer
has a secret key that is used to produce signatures. These signatures can then
be verified by any party who knows the corresponding public key. A signature
that is successfully verified under the public key is considered acceptable. Fail-
stop signatures introduce an additional property where a signer can prove that
a specific signature is forged. Therefore, in the case of a dispute, a signer can
provide a judge with a proof of forgery. The judge can then test if the signature
is correct and provide a verdict of whether or not the provided signature is
a forgery. If the proof is accepted, then there is substantial evidence that the
computational assumption of the system is broken.

Definition 1 (Fail-stop Signatures). A fail-stop signature scheme (FSS) is
a 5-tuple (Gen,Sign,Test,Prove,Verify), where:

– Gen(params, rA, rC) → (sk, pk). This is a polynomial-time two-party protocol
for generating the keys. The protocol is executed by the signer A, and a
trusted center C, who both get params = (k, λ,N) as input. Furthermore,



Extremely Simple (Almost) Fail-Stop ECDSA Signatures 3

each party has a secret random string, rA and rC . N is the maximal number
of signatures that the signer is willing to construct using the same secret key.
k is the security parameter for the recipient and λ is the security parameter
for the signer.

– Sign(sk, i,mi) → σ. This is a polynomial-time algorithm that on input the
secret key sk, a message number i ≤ N , and a message sequence m =
(m1, ...,mi) from M, constructs a signature on mi if the previously signed
messages were {m1, ...,mi−1}. The output σ is called the correct signature.

– Test(pk,m, σ) → OK/NotOK. This is a polynomial-time algorithm that on
input the public key pk, a message m ∈ M, and a signature σ on m out-
puts either OK or NotOK. If Test(pk,m, σ) = OK, then σ is an acceptable
signature on m.

– Prove(sk,m, σ′, hist) → π. This is a polynomial-time algorithm that on input
the secret key sk, a message m ∈ M, a possible signature σ′ on m, and
the history hist of previously signed messages (plus their signatures) either
outputs the string π = “not a forgery” or a bit string proof π ∈ {0, 1}∗.

– Verify(pk,m, σ′, π) → Accept/Reject. This is a polynomial-time algorithm
that on input the public key, a message m ∈ M, a possible signature σ′ on
m and a string proof π outputs either Accept or Reject. If the result is Accept,
the proof π is called a valid proof of forgery.

A proof of forgery is always non-interactive so that it can subsequently be
shown to others, and the system can be stopped in consensus. The proof must
satisfy two requirements1:

– The ability to prove forgeries must work independently of the computational
power of potential forgers.

– It must be infeasible for the signer to construct signatures that she can later
prove to be forgeries2.

Since it is equally important that fail-stop signatures cannot be forged, the
signer still has to take part in choosing the keys. However, the recipients of
signatures must be sure that the signer cannot disavow her own signatures. It is
therefore necessary that the recipients or a center trusted by the recipients also
participate in the key generation.

2 Simple Fail-stop ECDSA

The core idea behind our construction is that a signer can secretly hide special
information when generating the nonce for each ECDSA signature.

Our design proposes two simple changes to the traditional ECDSA protocol.
First, the signer generates an additional secret value α. Second, the signer uses

1 It can be shown that these two properties imply security against forgery
2 We skip this requirement as we do not desire the involvement of additional parties
during key generation. Our construction, however, also supports this functionality.



4 M. Yaksetig

this extra secret value and hashes it along with the message and its index, to
generate the nonce for each signature. This ensures that the nonce is unique for
every message and that it is random, assuming the hash function behaves as a
random oracle. We refer the reader to Table 1 and Table 2 for a detailed protocol
description.

Keygen(1λ) Sign(α, i,m) Test(pk,m, σ)

α
$← Zq z ← H(m) Parse: (r, s)

p← σ
sk← H(α) k ← H(α, i,m) If (r, s) /∈ Zq

pk← sk ·G (ex, ey)← k ·G Return NotOK
return (α, pk) r ← ex mod p w ← s−1

If r = 0 mod p z ← H(m)
Pick another k u1 ← zw mod p
and start again u2 ← rw mod p
s← k−1 · (z + r · sk) (ex, ey)← u1 ×G + u2 × pk

If s = 0 mod p If (ex, ey) = (0, 0)
Pick another k Return NotOK
and start again If r = ex mod p
Return σ = (r, s) Return OK

Table 1. Extended ECDSA Construction

3 Discussion

Verifpal Formal Verification. We analysed our construction using Verif-
pal [3]. We defined an active attacker, where the adversary is in charge of deliv-
ering the messages and define a quantum adversary. To do so, we use the leak
command and expose all the secret values that are considered ‘protected’ by the
ECDLP. The tool output that regardless of the compromise of the ECDSA se-
cret key value, only the honest owner of the secret preimage α is able to produce
well-formed signatures.

Implementation. We are implementing the protocol as an extension to Eth-
Signer. Upon completion, the team intends to obtain a security audit by inde-
pendent reputable external parties.

Formal Security Proofs. Presently, we are producing the adequate complete
proofs of security of our construction. The next step is to, upon completing
the formalization, publish an extended version exposing the construction and
corresponding proofs.



Extremely Simple (Almost) Fail-Stop ECDSA Signatures 5

Prove(α,m, σ′, hist) Verify(pk,m, σ, π)

Parse: (r, s)
p← σ′ Parse: π′ p← π

Parse: i
p← hist′ If π′ = “Not a forgery”

k ← H(α, i,m) Return Reject
(ex, ey)← k ·G If π′ = (α, i)
r′ ← ex mod p sk′ ← H(α)
If r′ ̸= r pk′ ← sk′ ·G
π ← (α, i) If pk′ ̸= pk
If r′ = r Return Reject
π ← “Not a forgery” If pk′ = pk

Return π Parse: (r, s)
p← σ

k ← H(α, i,m)
(ex, ey)← k ·G
r′ ← ex mod p
If r′ ̸= r
Return Reject

Table 2. Prove and Verify algorithms of Fail-Stop ECDSA

4 Conclusion

We introduce a new very simple and cheap fail-stop signature scheme. Our con-
struction is very useful and practical, however, slightly differs from the original
fail-stop signature definition for usability and practical deployment reasons. We
expect this work to set a foundation for a fruitful debate around key compromise
in the cryptocurrency space.

References

1. Chaum, D., Larangeira, M., Yaksetig, M.: Tweakable sleeve: A novel sleeve construc-
tion based on tweakable hash functions. Cryptology ePrint Archive, Paper 2022/888
(2022), https://eprint.iacr.org/2022/888

2. Chaum, D., Larangeira, M., Yaksetig, M., Carter, W.: W-ots(+) up my sleeve! a
hidden secure fallback for cryptocurrency wallets. Cryptology ePrint Archive, Paper
2021/872 (2021), https://eprint.iacr.org/2021/872

3. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: Cryptographic protocol analysis for
the real world. In: Proceedings of the 2020 ACM SIGSAC Conference on Cloud
Computing Security Workshop. p. 159. CCSW’20, Association for Computing Ma-
chinery, New York, NY, USA (2020)

4. Pedersen, T.P., Pfitzmann, B.: Fail-stop signatures. SIAM J. Comput.
26(2), 291–330 (apr 1997). https://doi.org/10.1137/S009753979324557X,
https://doi.org/10.1137/S009753979324557X


