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Abstract

We propose a new key exchange protocol based on the Generalised Diffie-Hellman Key Exchange.
In the latter, instead of using a group-action, we consider a semigroup action. In our proposal,
the semigroup is the set of oriented knots in S3 with the operation of connected sum. As a
semigroup action, we choose the action of the semigroup on itself through the connected sum.
For the protocol to work, we need to use knot invariants, which allow us to create the shared
secret key starting from the same knot represented in two different ways. In particular, we use
finite type invariants. The security of the protocol is guaranteed by the hardness of decomposing
knots in the semigroup.

Keywords: Generalised Diffie-Hellman Key Exchange, Public Key Cryptography, Knot Theory,
Connected Sum, Finite Type Invariants, Semigroup Action, Semigroup-based Cryptography.

1 Introduction

Knots, which are ambient isotopy types of embeddings S1 ↪→ S3 (see Figure 1 and Definition
2.1), were used by humankind since ancient times, at the latest since the invention of the shoelace.
The mathematical study of knots however started with Lord Kelvin, hypothesizing that atoms are
actually knots and molecules are links flowing in the aether. His collaborator Peter Tait then
initiated the field of knot theory. The basic problem being: Given two knots, are they the same or
not? Following the development of topology in the early 20th century, numerous knot invariants like
the Alexander polynomial [Rob99] were developed to give answers to this problem. The interest in
knot theory rose when deep connections were found to the study of 3- and 4-manifolds. For example,
knots were used to prove that there are exotic R4, i.e. manifolds that are homeomorphic but not
diffeomorphic to R4 [FQ14]. Jones and Witten revolutionized the field with the discovery of the Jones
polynomial [Jon85] and its relation to Quantum field theory [Wit89] from which quantum topology
emerged. These breakthroughs were followed by the discovery of Khovanov homology [Kho00] and
knot Floer homology [OS17], which vastly generalize the Jones and the Alexander polynomial and
provide active fields of research.

In this paper we are mainly interested in two aspects of knot theory. The first is an operation
called the connected sum (see Figure 5) that takes two oriented knots, cuts them open and glues
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them together, respecting the orientation, to produce a new oriented knot. It turns out that, with
this operation, oriented knots form the abelian semigroup Knots. The second is a class of knot
invariants (see Section 2.1.3) called finite type invariants. They have many interesting features, one
of them being that they are efficiently computable.

In the last 30 years, applications of knot theory to other scientific disciplines were found. In
chemistry, we can decide whether a molecule is chiral or not. Molecules can have very different
properties depending on their chirality. In biology, one can study the knottedness of the DNA in
a cell. And in quantum computing, one studies anyons which give naturally a braid that can be
studied in knot-theoretic terms.

In the paper, we propose an application of knot theory in cryptography, in particular we propose
a Key Exchange Protocol. We know of three instances where knots were considered in cryptography.
After getting the fields medal, Jones was asked whether knotted antennas would help sending mes-
sages securely. Together with Przytycki they investigated the problem. More promising attempts
were the protocol of Marzuoli and Palumbo in [MP11] and the secret-key agreement proposed by
Zucker in [Zuc05]. In the first one, they are proposing a symmetric protocol, the weakness of which
is that they have to agree in secret on as much information as is used to describe the message. The
second one is more close to our proposal since it is also a Key Exchange protocol, but the author is
using knots deriving just from braids. Moreover, the use of the Jones Polynomial allows us to break
it, since it is multiplicative. We will discuss in Section 4 why it is necessary to avoid such invariants.

In cryptography, we are concerned with exchanging messages securely, i.e. in such a way that an
eavesdropper outside the conversation cannot obtain the original message. To do this, the message
is “reformed” using a cryptographic key and only the designated recipient can retrieve the original
message again using a key (not necessarily the same one). One of the main problems facing cryp-
tography is how to generate and exchange these keys (Key Exchange Problem). One of the most
widely used ways is the Diffie-Hellman Key Exchange, proposed in [DH76] and described below in
Protocol 2.17. The original protocol works for a finite cyclic group G (in the first proposal G = F×

q ),
but it can be generalised using a group action or a semigroup action, obtaining the Generalised
Diffie-Hellman Key Exchange, described below in Protocol 2.21. In our case, the semigroup that
we consider is Knots. The semigroup action is the action of the semigroup on itself, through the
connected sum.

In the past, several cryptosystems based on group-actions have been proposed. The most famous
are the one proposed by Anshel, Anshel and Goldfeld [AAG99] and Ko et al. [KLC+00], where the
groups considered are the braid groups and the action is the conjugation, and the one proposed by
Castryck et al. [CLM+18], known as CSIDH (Commutative Supersingular Isogeny Diffie-Hellman).
The latter is part of Isogeny-based Cryptography; the set considered is that of Fp-isomorphism classes
of supersingular elliptic curves over Fp, characterised by the fact that the ring of endomorphisms is
an order O in an imaginary quadratic field. The acting group is the ideal-class group cl(O) which
acts through the application of isogenies.

As we will see also in our case, the use of semigroup actions instead of group actions brings certain
advantages. First of all, given the poorer algebraic structure, many attacks cannot be applied or
generalised. Generic algorithms for the group case like Pollard’s rho [Pol78], Pollard’s lambda [Pol78]
and Shank’s baby-step-giant-step [Sha71] require at some point the existence of inverses, which is
obviously not ensured in the case of semigroups.

The choice of considering Knots and the semigroup action on itself brings certain advantages.
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First of all, referring to the aforementioned attacks, no knot admits an inverse except for the trivial
one, i.e. the unknot U , as stated in Proposition 2.6. Furthermore, in order to propose a well-defined
cryptosystem, one must find a mathematical problem which is supposed to be computationally hard.
Our cryptosystem is based on the difficulty of factoring a connected sum of knots while knowing one
of the two knots used (Problem 2.11). The particularity of this problem is that it admits a unique
solution, thanks to Proposition 2.7.

The paper is organised as follows. In Section 2 we give all the necessary preliminaries. It
is divided in two subsections: in the first one, we give the preliminaries of knot theory and in the
second one, there are the preliminaries related to Public-Key Cryptography. In Section 3, we describe
our proposed new cryptosystem, with an indication of the size of the keys. Section 4 is dedicated
to the cryptoanalysis; there we analyse both generic attacks for the semigroup action problem and
knot theoretic attacks. Moreover, we briefly discuss the efficiency. Finally, we give a possible choice
of parameters for a 128-bit security level and we conclude with some open questions.

Acknowledgement The authors would like to thank their respective advisors Joachim Rosenthal
and Anna Beliakova for their generous support and their helpful suggestions. The second author
would like to thank Peter Feller, Józef Przytycki and Daniel Tubbenhauer for interesting conversa-
tions on the use of knot invariants in cryptography.

2 Preliminaries

In this section we introduce the required topics for understanding the proposed cryptosystem.
A reader coming from the knot-theory-side may skip the part on knots (although one might want
to refresh the memory on finite type invariants from Section 2.1.3), while a reader coming from the
cryptography-side may skip the part on cryptography.

2.1 Crash course on knots

We discuss the relevant notions and results from knot theory, but leave out most of the proofs.
For a general introduction to knot theory we refer to [Rob99].

2.1.1 Basic notions and problems from knot theory

Intuitively, knots are exactly what one expects them to be. We think of them as tied ropes where
we glue the ends together and allow the rope to “wiggle”. Let us start by giving a mathematically
precise definition.

Definition 2.1. A knot is described by either of the following (equivalent) definitions.

1. Knots are smooth embeddings S1 ↪−→ R3, considered up to ambient isotopy 1

2. Knots are (finite) polygonal closed lines in R3, considered up to the ∆-move seen in Figure 2.

1Two embeddings g, h : N ↪−→ M are called ambient isotopic, if there is a continuous map (called ambient isotopy)
F : M × [0, 1] → M such that F0 = idM and F1 ◦ g = h.

3



Figure 1: Some examples of knots (diagrams). The unknot U , the (right-handed) Trefoil knot and
the oriented Figure-Eight knot.

Figure 2: A local picture of the ∆-move.

If one allows several components, one speaks of a link. Usually, we picture knots by knot diagrams.
They are generic projections of the knot to a plane allowing only singularities of a certain kind, called
crossings. The complexity of a knot diagram can be measured by its number of crossings. Of course,
a knot has many different diagrams, depending on its position in R3 and the chosen projection. The
Reidemeister theorem allows us to handle this problem.

Theorem 2.2 (Reidemeister). Two knot diagrams represent the same knot if and only if they are
related by planar isotopies and a finite sequence of the Reidemeister moves, represented in Figure 3.

Definition 2.3. When a knot is endowed with an orientation, it is called an oriented knot. There
is a corresponding Reidemeister theorem for oriented knots. We distinguish two types of crossings
called the positive and the negative crossing seen in Figure 4. The set of oriented knots is denoted
by Knots.

We consider the following operation on oriented knots.

Definition 2.4. Given two oriented knots K and K ′ we define the connected sum K#K ′ by cutting
open the two knots and glueing the corresponding ends (given by the orientation) together as in
Figure 5 to get a new knot.

Figure 3: The three Reidemeister moves for knot diagrams.
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Figure 4: The positive and the negative crossing.

Figure 5: The connected sum of two Trefoil knots.

The connected sum of two knots is well defined, because cutting the knots at different spots
results in isotopic knots. Note that it is not well defined for unoriented knots, since we have a
choice, which arcs we glue together in the unoriented case. It is obvious that taking the connected
sum with the unknot U yields an isotopic knot. The following Proposition is immediate.

Proposition 2.5. (Knots,#,U) form an abelian semigroup.

We call a knot that cannot be written in a non-trivial way as the connected sum of two other
knots prime. The semigroup of oriented knots has the following properties proven in [Rob99].

Proposition 2.6. Apart from the unknot, no knot has an inverse with respect to the connected sum.

Proposition 2.7. For any knot there is a unique (up to reordering) decomposition into prime knots.

In cryptography, one is usually interested in problems that are hard to solve. Topology is full of
such problems and, in particular, we have examples in knot theory.

Problem 2.8 (Unknotting Problem). Given a diagram D. Does it represent the unknot?

Problem 2.9 (Recognition Problem). Given two knot diagrams D and D′. Do they represent the
same knot?

Problem 2.10. Given a knot diagram D of a knot K. Are there non-trivial knots K1 and K2 such
that K1#K2 = K? Can you find (diagrams of) K1 and K2?

Problem 2.11. Given a knot diagram D of a knot K = K1#K2 and assume you know (a diagram
of) K1. Find (a diagram of) K2.

It was shown in [HLP99] that Problem 2.8 is in NP (which stands for Nondeterministic Poly-
nomial time). It is the set of decision problems verifiable in polynomial time by a deterministic
Turing machine. So far the best unknotting algorithms are exponential ([Bur11a], [Bur11b], [Lac15],
[Dyn06]). The other problems however have no general solutions. The hardness of Problem 2.11 is
what we use to our advantage in the construction of the cryptosystem.
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2.1.2 Encoding knots

The following part is dedicated to transferring the cryptosystem into the world of computers.
Since we are using knots, we need to have some way of encoding these topological objects. We will
introduce the so called PD (planar diagram) notation.

PD notation. Consider a knot diagram D. We can see it as a 4-regular graph with the additional
information about which strand goes over which one at every vertex. The goal now is to encode this
information efficiently. Choose a starting point on an arc of the knot and the direction along the
knot, given by the orientation. Start by labelling this arc with 1. The next will get labelled with
2 and so on until every arc has a number associated to it. Now, we associate to each crossing a
quatern with the labels of the four arcs attached to it: we start with the label of the unique incoming
undergoing arc and we conclude with the other three in counter-clockwise order. At the end, form
a list with all these quaterns. This holds the information about the underlying 4-regular graph. An
example is seen in Figure 2.1.2.

Figure 6: The PD notation of the Figure Eight knot pictured above is the following list:
[(1, 6, 2, 7), (5, 2, 6, 3), (3, 1, 4, 8), (7, 5, 8, 4)].

PD notation and connected sum. Notice that the PD notation in Figure 7 for the connected
sum of twice the Figure Eight knot splits into two sublists where in the first one there are all the
numbers between 1 and 9 and in the second one there are the the remaining ones from 9 over 16 to
1. This fact is true in general for the code of the connected sum, if the starting point for the code
lies on one of the connecting arcs. If the starting point lies somewhere else, we can get it to lie on
the connecting arc by shifting every number by a fixed shift modulo twice the number of crossings.

To perform the connected sum of two knots we can use the previous observation to split the first
arc of the two knots and combine the list of tuples, shifting the numbers of the second list.

PD notation and Reidemeister moves. We analyze how Reidemeister moves performed on the
diagram change the PD notation. A visualization is seen in Figure 8. There are several possibilities
for each move, depending on the orientation of the arcs and the signs of the crossings. In the
following we will show one case per move.

– Reidemeister 1+ (R1p): It adds a crossing with tuple (i, i+ 1, i+ 1, i+ 2).
– Reidemeister 1- (R1m): It deletes a crossing with tuple (i, i+ 1, i+ 1, i+ 2).
– Reidemeister 2+ (R2p): It adds two crossings between arcs belonging to the same region. The

crossings are of the form (i, j, 1 + 1, j + 1) and (i+ 1, j + 2, i+ 2, j + 1).
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Figure 7: The PD notation for the connected sum of two Figure Eight knots is
[(1, 6, 2, 7), (5, 2, 6, 3), (3, 9, 4, 8), (7, 5, 8, 4), (9, 15, 10, 14), (13, 11, 14, 10), (11, 16, 12, 1), (15, 12, 16, 13)].

– Reidemeister 2- (R2m): It deletes two crossings of the form (i, j, 1 + 1, j + 1) and (i + 1, j +
2, i+ 2, j + 1).

– Reidemeister 3 (R3): This move changes three crossings (j, i, j+1, i+1), (j+1, k+2, j+2, k+
1), (i+1, k+1, i+2, k) to (i, k+2, i+1, k+1), (j +1, i+1, j+2, i+2), (j, k+1, j+1, k) (see
Figure 8).

This gives us the tools to apply random Reidemeister moves to a knot diagram using the PD notation,
because we can see from the code where we can do which move. For this, we use a weight system
that assigns weights to (R1p,R1m,R2p,R2m,R3) according to which we randomly decide which kind
of move to perform. An example of this is seen in Figure 9.

Figure 8: A visualization of how the PD notation transforms under the Reidemeister moves.

PD notation and coding. It is important to note that PD notation is supported by the Mathe-
matica package “KnotTheory” from Bar Natan and Morrison [BNMea].

2.1.3 Finite type invariants

To take knots apart we use functions defined on diagrams that do not change under planar
isotopies and Reidemeister moves. These functions are called knot invariants. Prominent examples
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Figure 9: An example of the output of the code in Appendix B where random Reidemeister moves
were performed to the connected sum of the Trefoil and the Figure Eight with weight system (R1p=5,
R1m=5, R2p=8, R2m=8, R3=30).

include the knot signature, the Jones polynomial, the Alexander polynomial and the finite type
invariants studied in this section. Note that these invariants usually do not distinguish all knots and
it is common to trade calculability of the invariant for its power to detect knots.

We now consider finite type invariants. An introduction can be found in [BN95]. Let V (for
Vassiliev invariant) be an invariant of knots with values in Z, i.e. a function

V : {Knot Diagrams} → Z

that does not change under Reidemeister moves. Extend V to an invariant of oriented 1-singular
knots, which are knots that have a singularity locally looking like , using the (local) formula

V
( )

= V
( )

− V
( )

. (1)

Further extend V to the set of oriented m-singular knots by using 1 repeatedly.

Definition 2.12. We say that V is a finite type invariant (of degree m), if its extension to oriented
(m+ 1)-singular knots vanishes.

Example 2.13 (Conway polynomial). The (Alexander-)Conway polynomial ∆ provides a source of
finite type invariants. It is a polynomial (in the formal variable z) knot invariant, with value 1 on
the unknot, satisfying the following local (skein) relation

∆
( )

−∆
( )

= z ·∆
( )

It is immediate from the definition that the coefficient of zm in the Conway polynomial is a finite
type invariant of degree m.

In some sense, finite type invariants forget a lot of data. They carry a “finite” amount of
information in the sense of Theorem A.3. Nevertheless there is the following conjecture.
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m 0 1 2 3 4 5 6 7 8 9 10 11 12
# Finite type invariants of degree m 1 1 2 3 6 10 19 33 60 104 184 316 548

Table 1: The list of the number of linearly independent finite type invariants of a given degree m.

Conjecture 2.14. The set of all finite type invariants distinguishes knots.

The following property of finite type invariants is crucial for the purpose of our paper. We
postpone the proof to Appendix A.

Corollary 2.15. A finite type invariant of degree m can be computed in polynomial time O(cm)
(depending on the number of crossings c).

The proof will give an explicit way of constructing any finite type invariant. In Table 1, we see
the list of the number of linearly independent finite type invariants.

Remark 2.16. Finite type invariants are supported in the “KnotTheory” package of Mathematica
[BNMea].

2.2 Crash course on cryptography

The aim of this section is to introduce the notions of cryptography, particularly relating to key
exchanges, which we will use in the main part of the article.

The purpose of cryptography is to find ways (protocols) to communicate securely, assuming the
presence of eavesdroppers. In particular, we want to transform our messages (encryption phase) in
such a way that opponents will find it to be unintelligible text and only the predestined receiver will
be able to trace the original message (decryption phase).

In order to carry out encryption and decryption, we need so-called cryptographic keys. This
brings us to the Key Exchange Problem: how can two parties exchange keys in such a way as to
establish a secure communication channel? This process is called the key exchange protocol and, in
the next section, we will propose one based on knots.

There are two main types of cryptography: symmetric-key cryptography (or single-key cryp-
tography) and asymmetrical cryptography (or public-key cryptography). In the first one, the two
parties (Alice and Bob) use the same secret key to encrypt and decrypt the message. The main
problem in this case is that they need to communicate this key to each other via a secure chan-
nel. The commonly used symmetric cryptosystem is the Advanced Encryption Standard (AES)
[DR99, JV02].

In public-key crytography, there are two keys involved: a public one known to everybody and a
private one known only to the owner; depending on the algorithm, one will be used to encrypt and
the other to decrypt. One of the earliest and most famous examples of Public-Key Exchange (PKE)
is the Diffie-Hellman key exchange [DH76], proposed by Diffie and Hellman in 1976 and described
below in Protocol 2.17. It allows the two parties to establish a shared secret key over an insecure
channel, i.e. even in the presence of eavesdroppers who can monitor the channel.

Protocol 2.17 (Diffie-Hellman Key Exchange).
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1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.

2. Alice chooses a ∈ {1, . . . , ord(G)}, computes ga and sends it to Bob. Her secret key is a.

3. Bob chooses b ∈ {1, . . . , ord(G)}, computes gb and sends it to Alice. His secret key is b.

4. Alice computes (gb)a = gba.

5. Bob computes (ga)b = gab.

The secret common key is gba = gab.

The security of the system is based on the following hard problem:

Problem 2.18 (Diffie-Hellman Problem (DHP)). Let G be a finite cyclic group and let g be a
generator. Given ga and gb, find gab.

We will say that a mathematical problem is easy if there exists a polynomial-time algorithm
which can solve it. If there are no deterministic or probabilistic polynomial-time algorithms that
can solve it, we will call it hard.

Actually, if someone is able to solve the Discrete Logarithm Problem (DLP): given G an abelian
group and a, b ∈ G such that b = am for some m ∈ Z, find 0 ≤ n < ord(G) such that an = b, they
can also solve the DHP.

Remark 2.19. In a cryptosystem, we need the computations required for implementation to be
feasible, and those needed to break it to be not. In the Diffie-Hellman Key Exchange 2.17, we have
that ga can be computed in O(log a) group multiplications, while the best algorithm to solve the
DLP requires O(

√
ord(G)).

Notice that we define the Diffie-Hellman protocol using the group action of Z×
ord(G) over G given

by
Z×
ord(G) ×G → G

(n, g) 7→ gn.

Therefore it is possible to naturally extend the Diffie-Hellman protocol from a generic group action
and even from a semigroup action, as shown in [Mon02].

Definition 2.20. Let G be a semigroup and let S be a set. The semigroup G acts on S if there
exists a map

G× S → S

(g, s) 7→ g · s,

satisfying (gh) · s = g · (h · s) for all g, h ∈ G and all s ∈ S.
If the semigroup is abelian, the map is called a G-action on the set S.

We can then define the Generalized Diffie-Hellman Key Exchange.

Protocol 2.21 (Generalized Diffie-Hellman Key Exchange).

1. Alice and Bob publicly agree on a G-action on a finite set S and an element s ∈ S.
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2. Alice chooses a ∈ G, computes a · s and sends it to Bob. Her secret key is a.

3. Bob chooses b ∈ G, computes b · s and sends it to Alice. His secret key is b.

4. Alice computes a · (b · s).

5. Bob computes b · (a · s).

The secret common key is a · (b · s) = (ab) · s = (ba) · s = b · (a · s).

In order to obtain a secure cryptosystem, we need to choose an action that makes the following
mathematical problem hard.

Problem 2.22 (Diffie-Hellman Semigroup Action Problem (DHSAP)). Let G be an abelian semi-
group, S a finite set and · a G-action on S. Given x, y, z ∈ S such that y = g · x and z = h · x for
some g, h ∈ G, find (gh) · x.

Notice that, on the other hand, in order to be able to calculate the key, we need the action to
be computationally feasible, i.e. we need to be able to easily calculate every g · s and also every
multiplication in G.

There is a generalised version of the DLP which use a generic semigroup action, the so-called
Semigroup Action Problem.

Problem 2.23. (Semigroup Action Problem (SAP)) Let G be an abelian semigroup, S a finite set
and · a G-action on S. Given x, y ∈ S such that y = g · x for some g ∈ G, find h ∈ G such that
y = h · x.

As with the DLP and the DHP, if one is able to solve the SAP, one can automatically solve the
DHSAP; indeed, let g̃ ∈ G such that g · x = g̃ · x, therefore we could solve the DHSAP computing

g̃ · (h · x) = (g̃h) · x = (hg̃) · x = h · (g̃ · x) = h · (g · x) = (hg) · x = (gh) · x.

It is still an open question if the DHSAP and the SAP are equivalent, therefore all the attacks
considered attempt to solve the Semigroup Action Problem.

Remark 2.24. If we are considering a semigroup G, we can always take S = G and consider as a
semigroup action just the semigroup operation. This is actually what we will do in the next section
with S = G = Knots.

3 Cryptosystem

The proposed cryptosystem is built by using the semigroup of oriented knots in the (Generalized
Diffie-Hellman Key Exchange) Protocol 2.21 with the choices as in Remark 2.24. The security of
the protocol is ensured by the fact that the general Problem 2.23 in our case translates to Problem
2.11, which is believed to be hard.

Protocol 3.1 (Knot-based Diffie-Hellman). All knots in this protocol are presented in PD notation,
as described in Subsection 2.1.2.

11



1. Alice and Bob publicly agree on a knot K, a positive integer n and a finite type invariant V
taking values in Z.

2. Alice chooses a knot A with at most n crossings, computes A#K, complexifies the obtained
knot by applying random Reidemeister moves and sends it to Bob. Her secret key is A.

3. Bob chooses a knot B with at most n crossings, computes B#K, complexifies the obtained
knot by applying random Reidemeister moves and sends it to Alice. His secret key is B.

4. Alice computes V (A#(B#K)).

5. Bob computes V (B#(A#K)).

The secret common key is V (A#B#K) = V (B#A#K) ∈ Z.

There are two things about this protocol that are worth dwelling on. At first, there is the fact
that we complicate the knot A#K (respectively B#K). The reason is that otherwise, it is very
easy to see where the connected sum was made and we can decompose the knot by looking at its
PD notation. The other thing that makes our protocol not quite a standard Diffie-Hellman protocol
is that, in the end, we compute a knot invariant. The reason is that even though we know that
Alice and Bob share the same knot A#B#K = B#A#K, they have very different presentations of
that knot. Thus, the presentations themself are useless for doing encryption, so we compute a knot
invariant to get an integer, which is the same for both Alice and Bob.

Notice that the bottleneck of the protocol is the computation of the finite type invariant, which
requires O(cm) operations, where c is the number of crossings of the final knots A#B#K and
B#A#K (recall that in their description these two knots can have a different number of crossings)
and m is the degree of the chosen finite type invariant V . The other operations that we are doing
are a juxtaposition of integer strings to perform the connected sum and addition/removal of integers
in strings to apply Reidemeister moves.

Key size. Assume that in the complexification phase of the knot, both Alice and Bob apply random
Reidemeister moves until they obtain an equivalent knot with at most 2n crossings (recall that we
know exactly how many crossings we are adding/removing with each move).

In order to describe a knot with n crossings, we need all the positive integers from 1 to 2n, just
to enumerate all the edges. Following the encoding procedure, we have to write each integer between
1 and 2n twice in the string of integers, since each edge is related to two crossings. Recall that we
need at most (up to a constant)

⌊log2(n)⌋∑
i=1

i2(i−1) − 1 = 2⌊log2(n)⌋⌊log2(n)⌋ − 2⌊log2(n)⌋ ≃ n(log2(n)− 1) bits

to describe all the integers from 1 to n.
Summing up, given a knot with n crossings, we need roughly 2n(log2(2n)−1) bits to describe all

the integers from 1 to 2n that represent the edges and, since we need to use each of them twice, we
need roughly 4n(log2(2n)−1) bits to describe Alice’s private key and Bob’s private key respectively.

About the private common key, recall that it is an integer number that we obtain computing a
finite type invariant of a knot with at most 3n crossings, since K as at most n crossings and both
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Alice and Bob complexify their secret knots to obtain an equivalent knot with at most 2n crossings.
Therefore, thanks to Corollary A.4, we need at most ⌊3n log2(M)⌋ bits to describe the common
secret key.

4 Cryptanalysis

In the following, we analyse the security and the efficiency of the proposed protocol. We explain
how other invariants than the ones of finite type fail and discuss a similar, but in some sense very
different, protocol of Marzuoli–Palumbo [MP11].

4.1 Security analysis

We discuss several possible attacks on the proposed protocol and either explain why they fail or
give our opinion on how likely they would work to break the protocol.

Notice that the underlying mathematical problem is the following one.

Problem 4.1. Given V a finite type invariant and the values V (K), V (A#K) and V (B#K), find
V (A#B#K).

Notice that if, for example, we would have chosen the Jones polynomial [Jon85] as our knot
invariant the protocol would break. This is because the Jones polynomial J is multiplicative with
respect to the connected sum, so one can compute J(A) = J(A#K)

J(K) and J(B) = J(B#K)
J(K) , which leads

to J(A#B#K) = J(A)J(B)J(K). Thus, we want to avoid knot invariants which have a connected
sum formula. We don’t know of any such general formula for finite type invariants. But it may be
(and we actually know it for some of them as discussed in Section 4.3) that the specific finite type
invariant we choose has such a formula. The strength of the proposed protocol however then lies
in the fact that we are free to choose another finite type invariant for which we know no connected
sum formula.

The study of an attack for a given finite type invariant is far from exhaustive. It is possible that
some of them allow ad hoc attacks and should therefore be excluded.

There is a related mathematical problem, which is the SAP 2.23 on Knots.

Problem 4.2. Given two knots K and K ′, construct a knot A (if it exists) such that K ′ = A#K.

Notice that, solving the previous problem allows an attacker to solve the underlying problem
4.1. Indeed, given K and A#K as in the protocol, if he finds A, since he also knows B#K, he can
compute A#B#K; at this point, he only has to calculate the finite type invariant of A#B#K in
order to get the secret shared key.

In the following, we discuss several possible attacks on the SAP on Knots. We divide them into
two families: those related to the generic SAP and those that explicitly use the Knot Theory.

4.1.1 Generic attacks for the semigroup action problem

Here we analyse the generic attacks on the SAP described in [MMR07] and [Maz03].
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Feasibility of the SAP. In general, when we try to solve the SAP, we are looking for an h ∈ G
such that g · x = h · x, not necessarily for the specific g. For this reason, we are interested in the
following set

Gx,g = {h ∈ G | h · x = g · x}.

The parameters G, S and x need to be chosen in such a way that |Gx,g| is small with respect to
|G|. In our case we have G = S = Knots, x = K ∈ S and the action is just the connected sum.
Thanks to Proposition 2.7, we know that, given K and K ′#K, the knot K ′ is unique, therefore
GK,K′ = {K ′} and |GK,K′ | = 1 for all K,K ′ ∈ Knots.

Structure of the semigroup. Various attacks on DH realised through a group action are known
and it is therefore legitimate to ask whether some of them can also be applied or generalised to
semigroup actions. First, notice that we can partition the semigroup G, following the notation in
[Maz03], as G = G0 ∪G1, where

G1 = {g ∈ G | g−1 exists} and G0 = G∖G1.

Practically, if G has a large subgroup, it can be a problem. Indeed, we can try to solve the SAP
in G0 by brute force, with an exhaustive search. If we found no solutions, then we can restrict the
SAP to G1, which is a group. Now all the attacks that we know for groups are applicable. In our
case, this strategy does not apply, because G1 = {U}, thanks to Proposition 2.6.

4.1.2 Knot theoretic attacks

Attacking the basic structure and the complexification phase. In our proposed protocol there
are three steps which need our attention. Taking the connected sum, complexifying the diagram,
and the evaluation via a knot invariant. We have already discussed above, at the begginning of the
section, the choice of the finite type invariant. The connected sum poses no problems for security.
Provided that the knot is in a general position, it is commonly accepted that decomposition as in
Problem 2.11 is very hard. However, if you just take the connected sum and leave the knot as it
is, it is easy to decompose it by looking at its PD notation. So the question becomes, whether
the algorithm using random Reidemeister moves achieves a position for the knot which is random
enough that one cannot decompose the knot easily. This is still an open question.

Brute force attack. Of course, the first attack that one can always try is the brute force attack,
which means that the attacker has to compute A′#K, for all A′ ∈ Knots with at most n crossings,
until he finds the correct one, which is A#K. But recall that he doesn’t have a way to compare
directly A′#K with A#K, since the second one is complexifyied in the protocol and Problem 2.9 is
hard. The best thing that he could do is computing a fixed invariant of A′#K and A#K and check
if it is the same. In general, in order to avoid brute force attacks, it is sufficient to set the parameters
of the cryptosystem appropriately. We will give an example of a possible choice of parameters in
Subsection 4.4. But recall that we don’t have a computable complete invariant, so it could happen
that more than one knot A′ satisfy that A′#K and A#K have the same fixed invariant. In that case,
the attacker could change the invariant and compute it only for previously acceptable candidates or
for each of them (if they are few) he can compute the finite type invariant of A′#B#K and check
which one works as the cryptographic key.
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n 1 2 3 4 5 6 7 8 9 10 11
# Prime knots with n crossings 0 0 1 1 2 3 7 21 49 165 552

12 13 14 15 16 17 18 19
2176 9988 46972 253293 1388705 8053393 48266466 294130458

Table 2: The list of the number of prime knots with n crossings from the online encyclopedia of
integer sequences.

Problem with small knots. One thing to keep in mind is that knots with up to around 15 cross-
ings can be taken apart with knot invariants. This forces us to use bigger knots. Otherwise one
could compare the invariants of the public knots to a table of knots with their invariants and try
the corresponding knot. The number of knots however increases very fast as seen in Table 2, which
means that this procedure is not possible for bigger knots.

Attack for braid group cryptography. Knots and braids (see Figure 10) are intimately related
by the Alexander and Markov Theorem proven in [BB05]. The basic idea is that closing up a
braid yields a knot (or a link). But the group structure on braids is not related to the semigroup
structure on knots. There are cryptographic protocols involving braid groups (see [Gar10]) which are
now broken. They were successfully attacked by using the faithful Lawrence representation of the
braid group, where one could transfer the underlying problem into the world of matrices (compare
[Law90], [Big01], and [Kra02]). Contrary to braid groups, we know no reasonable representation of
the semigroup of knots, so attacks of this form are not available.

Figure 10: An example of a braid with three strands, the group structure of the braid group given
by stacking and the closure of a braid.

Knots seen as graphs. In general, a linear representation of the problem could be a weakness;
indeed, if we can represent the action as a matrix action on a vector space, then the SAP may be
solved easily. One can think of a knot as a graph (keeping track of over- or undercrossing) and to a
graph we can associate the adjacency matrix. Anyway, we can’t represent the connected sum as a
matrix action. Moreover, if we consider a complicated knot and the adjacency matrix associated to
it, we can’t obtain enough information to understand which knot it is.

We are therefore unable to represent the action as a linear one, or at least we are unable to do
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so by exploiting the one related to braid groups nor the point of view of graphs. This obviously
does not represent an exhaustive study of all possible ways in which one can try to represent the
connected sum as a linear action.

4.2 Efficiency analysis

We show here that our proposed protocol can be ran in polynomial time, depending on the
crossing number. We have three knots involved K, A, and B with the number of crossings cK , cA,
and cB. Taking the connected sum is an easy operation. Complicating the diagram is not very
costly as well, since the application of Reidemeister moves in terms of the PD notation is efficient.
This leaves the computation of the finite type invariant which uses ∼ (cK + 2cA + 2cB)

m steps for
a finite type invariant of degree m, thanks to Corollary 2.15.

4.3 Other invariants

In principal, one can choose any knot invariant for the protocol to work. Maybe, there is a
knot invariant that we do not know and that fits the protocol better then the finite type ones.
However there are some features of certain knot invariants that make the protocol very slow or even
attackable. We discuss them here.

4.3.1 Computability

First, there is the problem of computability. Low-dimensional topology is notorious for having
complicated (and powerful) constructions which are hard to calculate. This rules out basically all
knot homologies like the Khovanov homology [Kho00] and the knot Floer homology [OS17], as well
as any invariant coming from them, like the Rassmussen invariant [Ras10], the Υ [OSS17] and the
τ invariant [OS03]. Even the Jones polynomial is too costly to calculate, since its computation
time grows exponentially in the number of crossings [Kau87]. The genus, braid index and similar
invariants have no algorithms to calculate them at all [Rob99].

4.3.2 Connected sum formula

As already explained before, the protocol is attackable when the used invariant has a reasonably
nice connected sum formula. Then the attacker does not have to decompose the knot itself, but
rather has to find the invariant of the individual knots. We show here which invariants this excludes.
The HOMFLY, Jones, and Alexander knot polynomials [LM88] are all multiplicative with respect
to the connected sum and are therefore immediately excluded. Even the “Polynomial time knot
polynomial” of Bar Natan [BNvdV19] has a nice enough connected sum formula that it can be
attacked. The signature is additive [Rob99] and the number of 3-colorings is multiplicative [Rob99].

We show here how even some finite type invariants fail. Let us consider fm the m-th coefficient of
the Conway polynomial C considered in Example 2.13, i.e. C(K) =

∑
m∈N fmzm. The polynomial

itself is multiplicative, i.e. C(K#A) = C(K)C(A). While the finite type invariant fm is not
multiplicative, it has the following formula

fm(K#A) =
m∑
i=0

fi(K)fm−i(A).
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Thus, knowing fi(K) and fi(K#A) for 0 ≤ i ≤ m (which are computable in not much more time
than fm(K#A)) allows an attacker to solve for fi(A) (and similarly fi(B)), which is enough to
compute fm(K#A#B).

With exactly the same reasoning, one can also exclude the finite type invariants given by the
m-th coefficient of J(ex) seen as a formal power series in x. This tells us that we have to choose
our finite type invariant carefully enough to avoid these specific ones. But there are plenty of other
finite type invariants.

4.4 Choice of Parameters

Here we will give a possible choice of parameters in order to reach a 128-bit security level, which
means that the attacker would have to perform at least 2128 operations to break the protocol. The
unique parameter that we have to choose is the number of crossings n. As far as we know, the best
attack is the brute force attack described above in this chapter. Moreover, as previously noted, the
considered knots have to have at least 15 crossings.

The main point is to decide which invariant we want to use in the attack. We need an invariant
that is fast to compute and that is as close as possible to being injective. From this point of view,
the “Polynomial time knot polynomial” Z1 [BNvdV19] is the best choice. It requires roughly n6 ring
operations in Z[t, t−1] to be computed for an n-crossing knot. Moreover, it admits a connected sum
formula, as described in [Qua22], i.e.

Z1(K1#K2) = ∆2
K2

Z1(K1) + ∆2
K1

Z1(K2), (2)

where ∆K is the Alexander Polynomial related to the knot K. The Alexander Polynomial requires
roughly n3 operations to be computed for an n-crossing knot.

Let K(m) be the set of prime knots with m crossings. We indicate with pm the cardinality of
K(m); recall that we know pm for m ∈ {1, . . . , 19} from Table 2. Consider n = 95. If we consider
a knot which is the connected sum of five distinct prime knots with 19 crossings, we obtain a knot
with 95 crossings. Therefore, an attacker has to check at least all of them. Let Kα,Kβ,Kγ ,Kδ,Kϵ

be five distinct 19-crossing knots. In this case, the connected formula 2 becomes

Z1(Kα#Kβ#Kγ#Kδ#Kϵ) = ∆2
Kα

∆2
Kβ

∆2
Kγ

∆2
Kδ

Z1(Kϵ) + ∆2
Kα

∆2
Kβ

∆2
Kγ

∆2
Kϵ

Z1(Kδ)+

+∆2
Kα

∆2
Kβ

∆2
Kδ

∆2
Kϵ

Z1(Kγ) + ∆2
Kα

∆2
Kγ

∆2
Kδ

∆2
Kϵ

Z1(Kβ) + ∆2
Kβ

∆2
Kγ

∆2
Kδ

∆2
Kϵ

Z1(Kα),

where we used the fact that the Alexader Polynomial is multiplicative, i.e. ∆K#K′ = ∆K∆K′ for
K,K ′ knots.

Now, we want to understand how many computations we need to do in order to compute Z1 for
all Kα#Kβ#Kγ#Kδ#Kϵ with five distinct 19-crossing prime knots.

(i) First of all, we need to compute ∆K for all K ∈ K(19), which requires roughly 193 · p19
operations.

(ii) Similarly, in order to compute Z1(K) for all K ∈ K(19), we need 196 · p19 operations.

(iii) Now, we compute ∆2
K for all K ∈ K(19); since we already know all ∆K , we just need p19

multiplications.
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(iv) We enumerate all the 19-crossing prime knots from 1 to p19 and we denote them with Ki with
i ∈ {1, . . . , p19}. We want to compute ∆2

Ki1
∆2

Ki2
∆2

Ki3
∆2

Ki4
for all Ki1 ,Ki2 ,Ki3 ,Ki4 ∈ K(19)

with i1 < i2 < i3 < i4. We have
(
p19
4

)
possible quaterns (Ki1 ,Ki2 ,Ki3 ,Ki4) that satisfy the

required characteristics and for each of them we need to do 3 multiplications. In total, we are
performing 3 ·

(
p19
4

)
multiplications.

(v) In the last step, we have to multiply each ∆2
Ki1

∆2
Ki2

∆2
Ki3

∆2
Ki4

from the previous step with
each Z1(Kj) with Kj ∈ K(19) such that j ̸∈ {i1, i2, i3, i4}. This requires (p19 − 4) · 3 ·

(
p19
4

)
multiplications.

Summing up, we need

N = 196 · p19 + 196 · p19 + p19 + 3 ·
(
p19
4

)
+ (p19 − 4) · 3 ·

(
p19
4

)
operations

to compute Z1 just for some knots with at most 95 crossings. Since N > 2128, we have that n = 95
is a suitable parameter in order to reach a 128-bit security level.

5 Conclusion and further development

In the paper, we propose a new Key-Exchange protocol based on the Generalised Diffie-Hellman
Key Exchange protocol. We use the semigroup action given by

#: Knots×Knots → Knots

(K1,K2) 7→ K1#K2,

where # represents the connected sum of two knots.
Since in our protocol Alice and Bob get the same connected sum of three knots, but represented

in two different ways, in the last step we need to compute an invariant of this knot in order to obtain
the same shared secret key. We studied the different possibilities and concluded that the best choice
are finite type invariants, since they give us a bounded positive integer, they can be computed in
polynomial type and they do not admit a connected sum formula.

Furthermore, after the cryptanalysis, the best attack is the brute force attack and, based on this,
we propose a possible choice of parameters for a 128-bit security level.

Open problems. The following problems are still open and are interesting for a future work:

– A much deeper study of finite type invariants is needed. We should study each of them for degree
m ≥ 3, to understand which is the most suitable one. It could be that some of them admit
a connected sum formula, which means that we have to exclude them. We must also exclude
those that only admit too few integer values. This research also is needed to understand which
degree m is most suitable. This choice is fundamental, since the computational complexity of
a finite type invariant of degree m is exactly O(cm), where c is the number of crossings of the
knot. This computation is the bottleneck of the protocol.
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Figure 11: The Gauss diagram for the Figure Eight knot.

– As already mentioned, the weak point in our protocol is the use of the knot invariant. Even
though finite type invariants seem to work in principal, probably they make the protocol too
slow. So the main goal would be to replace them with a better invariant, i.e. an invariant with
the same good properties as the finite type ones (no connected sum formula), but that could
be computed in less time.

– Another unanswered question is: how many times do we have to apply Reidemester moves to
get an equivalent knot that looks as random as possible?

– We know that for each knot we can associate a list using the PD notation, but when is the
converse true? Given a string of tuples of natural numbers, when is it the PD notation asso-
ciated to a knot? If we could answer to this question, it would help with the implementation,
because at that point we just have to create strings of the right form.

– The choice of parameters requires a further investigation: we found a lower bound, which is
not necessarily the best one. A deeper investigation, using combinatorial techniques, can lead
to a better choice of parameters.

– Finally, no attempt has yet been made to implement our protocol.

A Finite type invariants are computable in polynomial time

The aim of this appendix is to show how one can compute finite type invariants in polynomial
time. Additionally, we will see a way to construct any finite type invariant.

A.1 Gauss diagrams

We first consider Gauss diagrams. They are closely related to PD notation in the sense that the
former are a visualization of the latter.

Start with a knot diagram with n crossings. Label its crossings starting at a basepoint on the
knot, following the orientation, with the numbers 1 to 2n such that every crossing has two numbers
assigned to it. To construct the Gauss diagram, we draw a circle with 2n dots with labels from 1 to
2n and connect the points belonging to the same crossing with a line and decorate it using the sign
of the crossing. In addition, we give an orientation to the line to indicate which strand passed over
the other one. See an example in Figure 11. We can consider arbitrary Gauss diagrams which do
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not need to come from knots. In fact, there are examples of Gauss diagrams that cannot be realised
as knot in R3 without introducing singularities.

Definition A.1. The space of Gauss diagrams D is the Q vector space spanned by all Gauss
diagrams.

A Gauss subdiagram D′ of D is a diagram in which some arcs of D have been deleted and we
say D′ ⊂ D. We can define the following endomorphism:

ϕ : D → D

D 7→
∑

Di⊂D

Di .

A.2 The Polyak space and the proof

Clearly, ϕ doesn’t yield a knot invariant. Just introducing more crossings in a diagram changes
its image under ϕ. To make ϕ an invariant, we need to introduce relations in the space of Gauss
diagrams D.

Definition A.2. The Polyak space P is defined to be A with the following relations:

= 0

+ + = 0

+ + + = + + +

The space Pm is obtained by setting all diagrams with more than m arcs to zero. It yields a finite
dimensional vector space. The restriction of ϕ to Pm is denoted by ϕm. It is a universal finite type
invariant in the sense of the next theorem.

Theorem A.3 ([GPV00]). V is a finite type invariant of degree m (with values in Q) if and only if
V = f ◦ ϕm, where f : Pm → Q is a linear functional.

From this we can prove Corollary 2.15.

Proof of Corollary 2.15. To compute the map ϕm one needs to compute all
∑m

i=1

(
c
i

)
Gauss subdi-

agrams, which requires the stated polynomial amount of operations of Gauss diagrams:
m∑
i=1

(
c

i

)
∼

m∑
i=1

ci ∼ cm.

The evaluation of these subdiagrams via f doesn’t add computational cost.
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Note that the previous proof allows us to construct any finite type invariant and thus, can be seen
as a blueprint to construct finite type invariants. One can calculate a basis of the finite dimensional
vector space Pm and then choose any linear functional on this basis. Note that the finite type
invariant in principle takes values in Q. It is more convenient to have an invariant that takes values
in Z, which is easily obtained by scaling the invariant by the least common multiple of the divisors
of the values on the basis of Gauss subdiagrams, such that they evaluate to integers. The following
corollary is immediate.

Corollary A.4. Let the knot K have a diagram with c crossings and let V be a finite type invariant
of degree m. Define M := maxD Gauss diagram V (D). We have the following bound:

|V (K)| ≤ M · 2c.

B Mathematica code for the complication algorithm

The code for the function “Randomeister” which performs random Reidemeister moves to a knot
in PD notation was written by Kutluay [Kut] and modified by us.
Needs["KnotTheory‘"];
ConnectedSumFigureEightTrefoilPD :=
PD[X[20, 1, 21, 2], X[2, 11, 3, 12], X[3, 22, 4, 23],
X[4, 10, 5, 9], X[16, 5, 17, 6], X[25, 6, 26, 7], X[7, 14, 8, 15],
X[8, 23, 9, 24], X[10, 22, 11, 21], X[19, 13, 20, 12],
X[13, 19, 14, 18], X[24, 16, 25, 15], X[26, 17, 1, 18]];

Upby2[m_, r_Integer] := If[m > r, m + 2, m];

Downby2[m_, r_Integer] := If[m > r, m - 2, m];

MaxArc[K_PD] := 2*Length[K];

Fig8PDs = {PD[X[1, 1, 2, 2]], PD[X[2, 1, 1, 2]], PD[X[2, 2, 1, 1]],
PD[X[1, 2, 2, 1]]};

Fig8Q[K_PD] := MemberQ[Fig8PDs, K];

Fig8SpecialCase[r_Integer] :=
If[r == 1, {X[1, 1, 2, 2] -> X[3, 1, 4, 4],
X[2, 1, 1, 2] -> X[4, 3, 1, 4], X[2, 2, 1, 1] -> X[4, 4, 1, 3],
X[1, 2, 2, 1] -> X[3, 4, 4, 1]}, {X[1, 1, 2, 2] -> X[1, 1, 2, 4],
X[2, 1, 1, 2] -> X[4, 1, 1, 2], X[2, 2, 1, 1] -> X[4, 2, 1, 1],
X[1, 2, 2, 1] -> X[1, 4, 2, 1]}];

R1Type[r_Integer, t_Integer] :=
Switch[t, 1, X[r + 1, r + 1, r + 2, r], 2,
X[r, r + 1, r + 1, r + 2], 3, X[r + 1, r, r + 2, r + 1], 4,
X[r, r + 2, r + 1, r + 1]];

Reide1onFig8[K_PD, r_Integer, t_Integer] :=
Append[K /. Fig8SpecialCase[r], R1Type[r, t]];

Reide1plusGeneric[K_PD, r_Integer, t_Integer] :=
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Append[K /. {X[i_, j_, k_, l_] ->
X[Upby2[i, r], Upby2[j, r], Upby2[k, r],
Upby2[l, r]]} /. {X[r, j_, r + 3, l_] ->

X[r + 2, j, r + 3, l]} /. {X[i_, r, k_, r + 3] ->
X[i, r + 2, k, r + 3]} /. {X[i_, r + 3, k_, r] ->
X[i, r + 3, k, r + 2]} /. {X[i_, MaxArc[K], k_, 1] ->
X[i, MaxArc[K] + 2, k, 1]} /. {X[MaxArc[K], j_, 1, l_] ->
X[MaxArc[K] + 2, j, 1, l]} /. {X[i_, 1, k_, MaxArc[K]] ->
X[i, 1, k, MaxArc[K] + 2]}, R1Type[r, t]];

R1p[K_PD, r_Integer, t_Integer] :=
If[Fig8Q[K], Reide1onFig8[K, r, t], Reide1plusGeneric[K, r, t]];

Reide1minusGeneric[K_PD, r_Integer] :=
DeleteCases[K,
crs_ /; crs == X[r, r, r + 1, r - 1] ||
crs == X[r - 1, r, r, r + 1] || crs == X[r, r - 1, r + 1, r] ||
crs == X[r - 1, r + 1, r, r]] /. {X[i_, j_, k_, l_] ->
X[Downby2[i, r], Downby2[j, r], Downby2[k, r], Downby2[l, r]]};

Reide1minusOnArc1[K_PD] :=
DeleteCases[K,

crs_ /; crs == X[1, 1, 2, MaxArc[K]] ||
crs == X[MaxArc[K], 1, 1, 2] ||
crs == X[1, MaxArc[K], 2, 1] ||
crs == X[MaxArc[K], 2, 1, 1]] /. {X[i_, j_, k_, l_] ->
X[i - 1, j - 1, k - 1, l - 1]} /. {X[MaxArc[K] - 1, j_, k_,
l_] -> X[1, j, k, l]} /. {X[i_, MaxArc[K] - 1, k_, l_] ->

X[i, 1, k, l]} /. {X[i_, j_, MaxArc[K] - 1, l_] ->
X[i, j, 1, l]} /. {X[i_, j_, k_, MaxArc[K] - 1] ->
X[i, j, k, 1]};

Reide1minusOnMaxArc[K_PD] :=
DeleteCases[K,

crs_ /; crs == X[MaxArc[K] - 1, MaxArc[K], MaxArc[K], 1] ||
crs == X[MaxArc[K], MaxArc[K], 1, MaxArc[K] - 1] ||
crs == X[MaxArc[K] - 1, 1, MaxArc[K], MaxArc[K]] ||
crs == X[MaxArc[K], MaxArc[K] - 1, 1, MaxArc[K]]] /. {X[i_,
j_, k_, l_] -> X[i, j, k, l]} /. {X[MaxArc[K] - 1, j_, k_,
l_] -> X[1, j, k, l]} /. {X[i_, MaxArc[K] - 1, k_, l_] ->

X[i, 1, k, l]} /. {X[i_, j_, MaxArc[K] - 1, l_] ->
X[i, j, 1, l]} /. {X[i_, j_, k_, MaxArc[K] - 1] ->
X[i, j, k, 1]};

R1m[K_PD, r_Integer] :=
If[r != 1 && r != MaxArc[K], Reide1minusGeneric[K, r],
If[r == 1, Reide1minusOnArc1[K], Reide1minusOnMaxArc[K]]];

HasQ[m_][X[i_, j_, k_, l_]] :=
If[m == i || m == j || m == k || m == l, True, False];

FindCrossingsWith[K_PD, m_Integer] := Select[K, HasQ[m]];
EdgeReindexing[m_Integer] := If[m > 0, 2 m - 1, -2 m];
Friend[K_PD, a_Integer, b_Integer] :=
Module[{m = K[[a, b]], l = FindCrossingsWith[K, K[[a, b]]]},
If[Length[l] == 1, {a,
If[Position[K[[a]], m][[1, 1]] == b, Position[K[[a]], m][[2, 1]],
Position[K[[a]], m][[1, 1]]]},

If[l[[1]] === K[[a]], {Position[K, l[[2]]][[1, 1]],
Position[l[[2]], m][[1, 1]]}, {Position[K, l[[1]]][[1, 1]],

22



Position[l[[1]], m][[1, 1]]}]]];
(*Finds the matching number’s coordinates for the number in the a-th \
crossing’s b-th entry*)
AddEdge[X[i_, j_, k_, l_], b_Integer] :=
Module[{m = X[i, j, k, l][[b]]},
Switch[b, 1, -m, 2, If[l - j == 1 || j - l > 1, -m, m], 3, m, 4,
If[l - j == 1 || j - l > 1, m, -m]]];

GetFace[K_PD, a_Integer, b_Integer] :=
Module[{MyFace = {AddEdge[K[[a]], b]}, n, DummyX = K[[a]], A = a,
B = b}, {A, B} = Friend[K, A, Mod[B + 1, 4, 1]];
DummyX = K[[A]];
n = K[[A, B]];
Join[MyFace,
Flatten[Reap[While[n != K[[a, b]], Sow[AddEdge[DummyX, B]];

{A, B} = Friend[K, A, Mod[B + 1, 4, 1]];
DummyX = K[[A]];
n = K[[A, B]];]][[2]]]]];

FindArc[K_PD, m_Integer] :=
Module[{L = Length[FindCrossingsWith[K, m]],
X1 = FindCrossingsWith[K, m][[1]]},
Switch[L,
1, {{Position[K, X1][[1, 1]],
Position[X1, m][[1, 1]]}, {Position[K, X1][[1, 1]],
Position[X1, m][[2, 1]]}},

2, {{Position[K, X1][[1, 1]],
Position[X1, m][[1,
1]]}, {Position[K, FindCrossingsWith[K, m][[2]]][[1, 1]],
Position[FindCrossingsWith[K, m][[2]], m][[1,
1]]}}]]; (*This command can be replaced by Position[K,m]*)

Fig8Faces[K_PD] :=
If[K[[1]] === X[1, 1, 2, 2] ||
K[[1]] === X[2, 1, 1, 2], {{-1}, {1, -2}, {2}}, {{1}, {-1,
2}, {-2}}];

Faces[K_PD] :=
If[Fig8Q[K], Fig8Faces[K],
Module[{EdgeV = ConstantArray[0, 2*MaxArc[K]], i, Halfway},
Reap[For[i = 1, i <= MaxArc[K], i++,
Module[{DummyF1 =

GetFace[K, FindArc[K, i][[1, 1]], FindArc[K, i][[1, 2]]],
DummyF2 =
GetFace[K, FindArc[K, i][[2, 1]], FindArc[K, i][[2, 2]]]},

If[MemberQ[EdgeV[[Map[EdgeReindexing, DummyF1]]], 1],
Goto[Halfway], Sow[DummyF1];
EdgeV[[Map[EdgeReindexing, DummyF1]]] += 1;];
Label[Halfway];
If[MemberQ[EdgeV[[Map[EdgeReindexing, DummyF2]]], 1],
Continue[], Sow[DummyF2];
EdgeV[[Map[EdgeReindexing, DummyF2]]] += 1;];]]]][[2, 1]]];

ExtraXingsType1[a_Integer, b_Integer] :=
Module[{A = Abs[a], B = Abs[b]},
Switch[{Sign[a], Sign[b]}, {1, 1},
PD[X[B + 3, A + 1, B + 4, A],
X[B + 2, A + 1, B + 3, A + 2]], {1, -1},
PD[X[B + 2, A, B + 3, A + 1], X[B + 3, A + 2, B + 4, A + 1]], {-1,
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1}, PD[X[B + 3, A + 1, B + 4, A + 2],
X[B + 2, A + 1, B + 3, A]], {-1, -1},
PD[X[B + 2, A + 2, B + 3, A + 1], X[B + 3, A, B + 4, A + 1]]]];

ExtraXingsType2[a_Integer, b_Integer] :=
Module[{A = Abs[a], B = Abs[b]},
Switch[{Sign[a], Sign[b]}, {1, 1},
PD[X[A, B + 3, A + 1, B + 4],
X[A + 1, B + 3, A + 2, B + 2]], {1, -1},
PD[X[A, B + 3, A + 1, B + 2], X[A + 1, B + 3, A + 2, B + 4]], {-1,
1}, PD[X[A + 1, B + 4, A + 2, B + 3],
X[A, B + 2, A + 1, B + 3]], {-1, -1},
PD[X[A + 1, B + 2, A + 2, B + 3], X[A, B + 4, A + 1, B + 3]]]];

ExtraXings[a_Integer, b_Integer, t_Integer] :=
If[t == 2, ExtraXingsType2[a, b], ExtraXingsType1[a, b]];

ReNumberR2p[m_Integer, a_Integer, b_Integer] :=
If[Abs[b] < m, m + 4, If[Abs[a] <= m <= Abs[b], m + 2, m]];

R2pShifts[K_PD, a_Integer, b_Integer] :=
Map[Function[x, ReNumberR2p[x, a, b]], K, {2}];

R2pXFixes[K_PD, a_Integer, b_Integer] :=
Module[{A = Abs[a], B = Abs[b], MaxArc = MaxArc[K]},
K /. {X[A - 1, j_, A + 2, l_] -> X[A - 1, j, A, l]} /. {X[i_,

A - 1, k_, A + 2] -> X[i, A - 1, k, A]} /. {X[i_,
A + 2, k_, A - 1] -> X[i, A, k, A - 1]} /. {X[B + 2,
j_, B + 5, l_] -> X[B + 4, j, B + 5, l]} /. {X[i_,
B + 2, k_, B + 5] -> X[i, B + 4, k, B + 5]} /. {X[i_,
B + 5, k_, B + 2] -> X[i, B + 5, k, B + 4]} /. {X[
MaxArc + 2, j_, 1, l_] -> X[MaxArc + 4, j, 1, l]} /. {X[
i_, MaxArc + 2, k_, 1] -> X[i, MaxArc + 4, k, 1]} /. {X[i_,
1, k_, MaxArc + 2] -> X[i, 1, k, MaxArc + 4]} /. {X[

MaxArc + 4, j_, 3, l_] -> X[MaxArc + 4, j, 1, l]} /. {X[i_,
MaxArc + 4, k_, 3] -> X[i, MaxArc + 4, k, 1]} /. {X[i_, 3, k_,
MaxArc + 4] -> X[i, 1, k, MaxArc + 4]}];

R2pGeneric[K_PD, a_Integer, b_Integer, t_Integer] :=
Join[R2pXFixes[R2pShifts[K, a, b], a, b], ExtraXings[a, b, t]];

Fig8SpecialCaseR2[K_PD, a_Integer, b_Integer] :=
Switch[K, PD[X[1, 1, 2, 2]],
Switch[{Abs[a], Abs[b]}, {1, 2}, PD[X[3, 1, 4, 6]], {1, 1},
PD[X[5, 1, 6, 6]], {2, 2}, PD[X[1, 1, 2, 6]]], PD[X[2, 1, 1, 2]],
Switch[{Abs[a], Abs[b]}, {1, 2}, PD[X[6, 3, 1, 4]], {1, 1},
PD[X[6, 5, 1, 6]], {2, 2}, PD[X[6, 1, 1, 2]]], PD[X[2, 2, 1, 1]],
Switch[{Abs[a], Abs[b]}, {1, 2}, PD[X[6, 4, 1, 3]], {1, 1},
PD[X[6, 6, 1, 5]], {2, 2}, PD[X[6, 2, 1, 1]]], PD[X[1, 2, 2, 1]],
Switch[{Abs[a], Abs[b]}, {1, 2}, PD[X[3, 6, 4, 1]], {1, 1},
PD[X[5, 6, 6, 1]], {2, 2}, PD[X[1, 6, 2, 1]]]];

Reide2onFig8[K_PD, a_Integer, b_Integer, t_Integer] :=
Join[Fig8SpecialCaseR2[K, a, b], R2pGeneric[K, a, b, t][[{2, 3}]]];
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R2p[K_PD, a_Integer, b_Integer, t_Integer] :=
If[Fig8Q[K], Reide2onFig8[K, a, b, t], R2pGeneric[K, a, b, t]];

ReNumberR2m[m_Integer, a_Integer, b_Integer] :=
If[b < m, m - 4, If[a < m < b, m - 2, m]];

R2mGeneric[K_PD, a_Integer, b_Integer] :=
Module[{A = Abs[a], B = Abs[b], MaxArc = MaxArc[K]},
DeleteCases[K,
crs_ /; HasQ[A][crs] || HasQ[B][crs], {1}] /. {X[i_, j_, k_,
l_] -> X[ReNumberR2m[i, A, B], ReNumberR2m[j, A, B],
ReNumberR2m[k, A, B], ReNumberR2m[l, A, B]]}];

ReNumberR2mOnArc1[m_Integer, b_Integer] :=
If[b < m, m - 3, If[1 < m < b, m - 1, m]];

R2mOnArc1[K_PD, b_Integer] :=
Module[{B = Abs[b], MaxArc = MaxArc[K]},
DeleteCases[K,

crs_ /; HasQ[1][crs] || HasQ[B][crs], {1}] /. {X[i_, j_, k_,
l_] -> X[ReNumberR2mOnArc1[i, B], ReNumberR2mOnArc1[j, B],
ReNumberR2mOnArc1[k, B], ReNumberR2mOnArc1[l, B]]} /. {X[
MaxArc - 3, j_, k_, l_] -> X[1, j, k, l]} /. {X[i_,
MaxArc - 3, k_, l_] -> X[i, 1, k, l]} /. {X[i_, j_,
MaxArc - 3, l_] -> X[i, j, 1, l]} /. {X[i_, j_, k_,
MaxArc - 3] -> X[i, j, k, 1]}];

R2mOnMaxArc[K_PD, a_Integer] :=
Module[{A = Abs[a], MaxArc = MaxArc[K]},
DeleteCases[K,

crs_ /; HasQ[A][crs] || HasQ[MaxArc][crs], {1}] /. {X[i_, j_,
k_, l_] ->

X[ReNumberR2m[i, A, MaxArc], ReNumberR2m[j, A, MaxArc],
ReNumberR2m[k, A, MaxArc],
ReNumberR2m[l, A, MaxArc]]} /. {X[MaxArc - 3, j_, k_, l_] ->
X[1, j, k, l]} /. {X[i_, MaxArc - 3, k_, l_] ->

X[i, 1, k, l]} /. {X[i_, j_, MaxArc - 3, l_] ->
X[i, j, 1, l]} /. {X[i_, j_, k_, MaxArc - 3] -> X[i, j, k, 1]}];

R2m[K_PD, a_Integer, b_Integer] :=
If[Abs[a] == 1, R2mOnArc1[K, b],
If[Abs[b] == MaxArc[K], R2mOnMaxArc[K, a], R2mGeneric[K, a, b]]];

R3[K_PD, a_Integer, b_Integer, c_Integer] :=
Module[{A = Abs[a], B = Abs[b], C = Abs[c], Xings,
NewXings = PD[X[0, 0, 0, 0], X[0, 0, 0, 0], X[0, 0, 0, 0]]},
Xings = Union[FindCrossingsWith[K, A], FindCrossingsWith[K, B],
FindCrossingsWith[K, C]];

Do[NewXings[[i, j]] =
If[MemberQ[{A, B, C}, Xings[[i, j]]],
Xings[[Friend[Xings, i, j][[1]],
Mod[Friend[Xings, i, j][[2]] + 2, 4, 1]]],
Xings[[i, Mod[j + 2, 4, 1]]]], {i, 3}, {j, 4}];

Join[DeleteCases[K, crs_ /; MemberQ[Xings, crs]], NewXings]];
R1pPairs[K_PD] :=
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Module[{list = {}, i},
For[i = 1, i <= MaxArc[K], i++,
AppendTo[list, {{i, 1}, {i, 2}, {i, 3}, {i, 4}}];];
Flatten[list, 1]];

R1pNumber[K_PD] := 4*MaxArc[K];

R1mFaces[K_PD] :=
If[Fig8Q[K], {}, Cases[Faces[K], face_ /; Length[face] == 1]];

R1mNumber[K_PD] := Length[R1mFaces[K]];

R2pOnSingleArc[K_PD] :=
Module[{list = {}, i},
For[i = 1, i <= MaxArc[K], i++, AppendTo[list, {i, i}];
AppendTo[list, {-i, -i}];];
list];

R2pOnTwoArcs[K_PD] :=
SortBy[#, Abs] & /@ (Flatten[Subsets[#, {2}] & /@ Faces[K], 1]);

R2pTriples[K_PD] :=
Join[Append[#, 1] & /@ Join[R2pOnSingleArc[K], R2pOnTwoArcs[K]],
Append[#, 2] & /@ Join[R2pOnSingleArc[K], R2pOnTwoArcs[K]]];

R2pPairs[K_PD] := Join[R2pOnSingleArc[K], R2pOnTwoArcs[K]];

R2pNumber[K_PD] :=
Module[{l = Map[Length, Faces[K]], f},
f[n_] := 2*(Binomial[n, 2] + n);
Plus @@ Map[f, l]];

R2mFaces[K_PD] :=
If[Length[K] == 2, {},
Cases[Faces[K],
face_ /;
Length[face] == 2 &&
EvenQ[Position[K, Abs[face[[1]]]][[1, 2]] -
Position[K, Abs[face[[1]]]][[2, 2]]]]];

R2mNumber[K_PD] := Length[R2mFaces[K]];

R3Faces[K_PD] :=
Cases[Faces[K],
face_ /;
Length[face] == 3 &&
Length[Union[FindCrossingsWith[K, Abs[face[[1]]]],

FindCrossingsWith[K, Abs[face[[2]]]],
FindCrossingsWith[K, Abs[face[[3]]]]]] ==

3 && (EvenQ[
Position[K, Abs[face[[1]]]][[1, 2]] -
Position[K, Abs[face[[1]]]][[2, 2]]] ||

EvenQ[Position[K, Abs[face[[2]]]][[1, 2]] -
Position[K, Abs[face[[2]]]][[2, 2]]] ||
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EvenQ[Position[K, Abs[face[[3]]]][[1, 2]] -
Position[K, Abs[face[[3]]]][[2, 2]]])];

R3Number[K_PD] := Length[R3Faces[K]];
ReideNumberVector[K_PD] := {R1pNumber[K], R1mNumber[K], R2pNumber[K],

R2mNumber[K], R3Number[K]};(*This is not called for now.*)

OneRandomRmovewithweights[K_PD, L_Listwith5weights] :=
Module[{r1p = R1pNumber[K], r1m = R1mFaces[K], r2p = R2pPairs[K],
r2m = R2mFaces[K], r3 = R3Faces[K], move, list, weights = L, sum,
signlist, wlist},
list = {r1p, Length[r1m], Length[r2p], Length[r2m], Length[r3]};
signlist = Sign /@ list;
wlist = signlist*weights;
sum = Plus @@ wlist;
wlist = wlist/sum;
move = RandomChoice[wlist -> {1, 2, 3, 4, 5}];
Switch[move, 1,
Module[{arc = Random[Integer, {1, MaxArc[K]}],
type = Random[Integer, {1, 4}]}, R1p[K, arc, type]], 2,

Module[{face = RandomChoice[r1m]}, R1m[K, Abs[face[[1]]]]], 3,
Module[{pair = RandomChoice[r2p], type = RandomChoice[{1, 2}]},
R2p[K, pair[[1]], pair[[2]], type]], 4,
Module[{face = RandomChoice[r2m]}, R2m[K, face[[1]], face[[2]]]],
5, Module[{face = RandomChoice[r3]},
R3[K, face[[1]], face[[2]], face[[3]]]]]];

Randomeisterwithweights[K_PD, n_Integer, L_Listwith5weights] :=
FoldList[OneRandomRmovewithweights, K, ConstantArray[L, n]];

Weightlist = {5, 5, 8, 8, 30};
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