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Abstract. Given two elliptic curves and the degree of an isogeny be-
tween them, finding the isogeny is believed to be a difficult problem—
upon which rests the security of nearly any isogeny-based scheme.
If, however, to the data above we add information about the behavior of
the isogeny on a large enough subgroup, the problem can become easy,
as recent cryptanalyses on SIDH have shown.
Between the restriction of the isogeny to a full N -torsion subgroup and
no “torsion information” at all lies a spectrum of interesting intermediate
problems, raising the question of how easy or hard each of them is. Here
we explore modular isogeny problems where the torsion information is
masked by the action of a group of 2 × 2 matrices. We give reductions
between these problems, classify them by their difficulty, and link them
to security assumptions found in the literature.

Keywords: Isogenies · Post-quantum · Security reductions.

1 Introduction

Isogeny-based cryptography is a fast-changing field, with new schemes and as-
sumptions appearing at a sustained pace and, recently, a series of powerful at-
tacks shaking its foundations. It may be difficult for an outsider to make sense of
the scores of different assumptions, and understand what level of security they
actually offer. Luckily, in parallel with the accumulation of new assumptions,
works on security reductions have helped somewhat systematize the landscape
and reduce the amount of hypotheses to keep track of [41,67,66,59]. Also worth
mentioning is the project “Is SIKE broken yet?”1, which tries to collect most
isogeny assumptions and track the best reductions and attacks known on them.

The goal of this work is to add another layer to our understanding of isogeny-
based cryptography by giving a framework that encompasses several seemingly
unrelated assumptions and proving reductions between them. We start from
two well-known problems: on one hand SIDH [50], also known as the Compu-
tational Supersingular Isogeny (CSSI) problem, which was recently solved quite
∗ Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. Date of this document: 2024-03-18.
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efficiently and in fair generality [15,56,63]; on the other hand the generic (fixed-
degree) isogeny problem, for which no general classical or quantum algorithm
better than exponential is known, and which is the foundation of all isogeny-
based cryptography. SIDH has sometimes been described as an isogeny problem
with torsion-point information [60], but what is known as “torsion-point infor-
mation” in the cryptographic community has long been known as a special type
of level structure among mathematicians. By generalizing the SIDH problem to
other types of level structures, we obtain a family of problems, some easy, some
hard, which happen to have reductions to/from isogeny problems that had pre-
viously appeared in the literature without apparent connection. Along the way,
we extend the SIDH attacks to a more general setting, we prove that, some-
what ironically, some proofs of knowledge based on SIDH are at least as hard as
CSIDH [18], and we improve on the best generic algorithms to compute isogenies
of ordinary curves [36].

Torsion-point information, a.k.a. level structures. In the generic fixed-
degree isogeny problem, one is given a pair of curves E,E′ isogenous of expo-
nentially large degree d, and is tasked with finding a d-isogeny ϕ : E → E′,
for instance by exhibiting a generator for kerϕ. In SIDH and variants, next to
E,E′ we add an (ordered) basis (P,Q) of E[N ] for some fixed parameter N ≈ d
coprime to d (typically N = 2a or N = 3b) and its image (ϕ(P ), ϕ(Q)) under
the secret isogeny. The goal is again to find ϕ.

The extra information provided by (P,Q, ϕ(P ), ϕ(Q)) has been called torsion-
point information in [60] and follow-ups. It is precisely this information that is
exploited by the attacks on SIDH [15,56,63]; its absence in the generic isogeny
problem is the reason why the rest of isogeny-based cryptography still stands.

A curve E together with a basis (P,Q) of E[N ] is called a full level structure
of level N in the literature on modular curves. More generally, a level structure
of level N is a basis of E[N ] up to change of basis by some group of matrices
Γ ≤ GL2(Z/NZ). So, for example, when Γ is the group of diagonal matrices a
Γ -level structure is the set of bases (aP, bQ) for all a, b ∈ Z/NZ such that ab
is invertible, and when Γ = GL2 the associated level structure is the set of all
possible bases.

Once we interpret SIDH as a generic isogeny problem between curves with
full level structure, it becomes natural to define isogeny problems with Γ -level
structures for arbitrary subgroups Γ . The interpretation is that we are given
tuples (E,P,Q) and (E′, P ′, Q′), with the promise that there exists an isogeny
ϕ : E → E′ mapping (P,Q) to one of the bases in the orbit of (P ′, Q′) by Γ .
Thus, when Γ is the diagonal group, the Γ -SIDH problem is to find ϕ knowing
that ϕ(P ) = aP ′ and ϕ(Q) = bQ′ for some unknown a, b ∈ Z/NZ such that ab
is invertible. The GL2-SIDH problem is simply the generic isogeny problem.

Related work. Level structures were first considered in the context of isogeny-
based cryptography by Arpin [3], who studied the relation between supersingular
isogeny graphs with level structure and Eichler orders in a quaternion algebra.
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In [6] it is proved that supersingular isogeny graphs with Borel level structure
have the Ramanujan property, which is then used to construct a proof of isogeny
knowledge with statistical zero-knowledge. The follow-up work [26] proves similar
expansion properties for graphs with other level structures.

Level structures in disguise appeared in isogeny schemes quickly after SIDH
was broken: the key exchange M-SIDH [43] is a variant of SIDH using the group of
scalar matrices to mask the torsion point information, thus blocking the attacks;
the trapdoor one-way function FESTA [8] uses a diagonal matrix as a trapdoor
to mask a standard SIDH problem. Recent attacks against special instances of
M-SIDH and FESTA [21] function by, essentially, reducing the Γ -SIDH problem
to a plain SIDH problem.

This work was prompted by a question raised at the Leuven Isogeny Days
2022: is it possible to solve the “SIDH with only one point” problem in polynomial
time, i.e., the problem where one is only given (E,P ) and (E′, ϕ(P )) with P of
order N? We answered in the affirmative when N contains a large smooth square
factor, thus, in particular, when N = 2a or N = 3b, by giving a reduction to the
standard SIDH problem (see Corollary 12). This result having been circulated
privately for more than a year, it has already been used to break some ad hoc
instances of class group actions on ordinary curves [16, § 6], and to extend the
attacks on overstretched FESTA [21, Remark 5].

Contributions. We generalize the SIDH problem to isogeny problems with
arbitrary level structures. In doing so, we:

– Identify several interesting types of level structures which correspond to
problems related to M-SIDH, FESTA, CSIDH, proofs of isogeny knowl-
edge [37,34], etc., which had not previously been known to be connected;

– Give our main technical contribution: a polynomial-time reduction between
different level structures (Corollary 10);

– As a special case, show an attack against “SIDH with only one point” (Corol-
lary 12), which has already been weaponized in [16,21];

– As another special case, prove that breaking SIDH-based proofs of isogeny
knowledge [34] is at least as hard as breaking CSIDH (Corollary 13 and
Lemma 14);

– Improve upon the best generic algorithm [36] to compute isogenies between
ordinary curves (Section 5.6).

Limitations. We stress that it is rare that the security of a cryptographic scheme
reduces to a Γ -SIDH problem as stated here. For example, the security of key
exchange schemes typically depends on DDH- or CDH-like assumptions which
are usually stronger than the corresponding Γ -SIDH one. In the interest of con-
ciseness, we also avoid discussing decisional variants of Γ -SIDH, with the only
exception of Section 5.5.

Some high profile schemes that fit quite badly in our framework are SQIsign
and its variants [38,23,31], whose security reduces to a distinguishing problem
on isogeny walks generated according to an ad-hoc distribution. Pre-quantum
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schemes such as verifiable delay functions [39] and delay encryption [13] are also
out of the scope of this work.

Despite all this, it is often the case that the best known attack against any
isogeny-based scheme consists in solving an instance of a Γ -SIDH problem, thus
our classification is especially valuable for cryptanalysts. In what follows when-
ever we mention “breaking a cryptosystem”, we mean finding its secrets, rather
than just breaking the assumption.

Ultimately, we hope that our framework will help better systematize and
assess the landscape of assumptions in isogeny-based cryptography.

Outline. We formally define level structures in Section 2. In Section 3 we define
the isogeny problem with level structure, and discuss how the inputs and the
outputs of the problem are represented. We give our main technical contribution
in Section 4: a polynomial-time reduction between isogeny problems with differ-
ent level structures. We conclude in Section 5 with a review of isogeny problems
with level structure that have previously appeared in the literature, and spell
out the consequences of our reduction.

Notation. We will work with several groups of 2 × 2 matrices. We will use
asterisks ∗ to denote entries of matrices that can take arbitrary values, and leave
zero entries blank, thus ( ∗ ∗ℓ

∗ ) represents any upper-triangular matrix whose
upper right coefficient is divisible by ℓ. We will use the same notation to mean
the group of all matrices having a certain form.

GL2 denotes the group of invertible 2 × 2 matrices and SL2 its subgroup of
determinant-1 matrices. We write Γ ≤ ∆ to indicate that Γ is a subgroup of ∆.

Lower-case Greek letters ϕ, ψ, χ will be used to denote isogenies. To reduce
clutter, we will write ϕP instead of ϕ(P ) for the value of ϕ at a point P .

Throughout the document, p is a prime, q a power of p, N an integer coprime
to p, and d coprime to N . We write Õ(x) as a shorthand for O(xpolylog(x)).

2 Level structures

In this section we consider an elliptic curve E defined over some finite field Fq. In
the cases of cryptographic interest which motivated this work, E is supersingular
and the finite field is either a prime field Fp or a quadratic extension Fp2 , but
the main results of this work apply in general.

Let N be a positive integer coprime to q. The torsion subgroup E[N ], i.e.,
the group of points of order dividing N , taken over the algebraic closure of Fq,
is isomorphic to (Z/NZ)2. We call a basis of E[N ] any ordered pair of points
(P,Q) that generate E[N ]. Denote by BE(N) the set of all bases of E[N ].

The group GL2(Z/NZ) of 2× 2 invertible matrices with coefficients modulo
N acts on BE(N) on the left by(

a b
c d

)
· (P,Q) = (aP + bQ, cP + dQ).
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Consider a subgroup Γ ≤ GL2 (from now on all matrix groups will implicitly
have coefficients in Z/NZ). If (P,Q) is a basis, we write Γ ·(P,Q) for its Γ -orbit,
that is the set

{γ · (P,Q) | γ ∈ Γ} .

The Γ -level structures (of level N) on E are precisely the Γ -orbits of the bases
of E[N ], forming a partition of BE(N). We write BE(Γ ) for the set of Γ -level
structures on E.

Said otherwise, a Γ -level structure is a basis of E[N ], up to transformation by
elements of Γ ≤ GL2. So, for example, when Γ = {( 1 0

0 1 )} the Γ -level structures
are just the bases of E[N ].

A pair (P,Q) of points in E[N ] forms a basis of E[N ] if and only if the Weil
pairing eN (P,Q) is a primitive N -th root of unity. If γ ∈ GL2, by the alternating
property of the Weil pairing,

eN
(
γ · (P,Q)

)
= eN (P,Q)det γ .

Hence, the action of SL2 partitions BE(N) into φ(N) orbits, each corresponding
to one value of the pairing. We will chiefly be interested in subgroups Γ ≤ SL2,
so that it makes sense to talk about the value of the Weil pairing on a Γ -level
structure. If S ∈ BE(Γ ) is one such level structure, we write eN (S) for the value
of the Weil pairing.

3 Modular isogeny problems

Let E,E′ be isogenous elliptic curves over Fq, so that #E(Fq) = #E′(Fq). From
now on we let ϕ : E → E′ be an isogeny of degree d defined over Fq.

Suppose gcd(d,N) = 1; then ϕ defines a bijection between BE(N) and
BE′(N). Let Γ ≤ GL2 and let S ∈ BE(Γ ) be a level structure. The image
ϕ(S) of S under ϕ is a Γ -level structure on E′.

We can now define generalizations of the classic SIDH problem.

Definition 1 (Γ -SIDH). Fix coprime integers d and N and a subgroup
Γ ≤ GL2(Z/NZ).

Let E,E′ be elliptic curves defined over Fq such that there exists an
Fq-rational isogeny ϕ : E → E′ of degree d. Assuming gcd(N, q) = 1, let
S ∈ BE(Γ ) be a Γ -level structure.

The (d, Γ )-modular isogeny problem (of level N) asks, given (E,S,E′, ϕ(S))
to compute ϕ. When d is clear from context, we call this the Γ -SIDH problem.

Although the S in SIDH stands for “supersingular”, we consider these prob-
lems for ordinary and supersingular elliptic curves alike. For groups Γ of special
interest, we will also give other names.

Remark 2. When d and N have common factors, the image ϕ(S) is not well
defined, however the problem of computing ϕ given some information on how
it behaves on E[N ] is still meaningful. This problem, though, is usually much
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easier to solve: If ℓ is a prime dividing d, either ϕ(E[ℓ]) is trivial, in which case
ϕ factors as ϕ′ ◦ [ℓ] with deg ϕ′ = d/ℓ2, or ϕ(E[ℓ]) is the kernel of an ℓ-isogeny
ψ : E′ → E′′ such that ϕ = ψ̂ ◦ ϕ′ with deg ϕ′ = d/ℓ. By repeatedly removing
common factors of d and N in this way, we reduce to a Γ -SIDH problem.

Remark 3. The isogeny ϕ may not be unique. In this case we just ask for any
isogeny that satisfies the statement.

Alternatively, one may be given a tuple (E,S,E′, S′) and be asked whether
there exists a d-isogeny such that E′ = ϕ(E) and S′ = ϕ(S). Variations on
this decisional problem occur in cryptography, and we will point to them where
relevant.

We were purposefully vague on the data structures involved in the definition
of Γ -SIDH. Indeed the meaning of “given S” and “compute ϕ” may vary depend-
ing on context. It shall be understood that elliptic curves are represented by
some projective model (e.g., a Weierstrass equation), and points by their coor-
dinates in the model. We shall assume that the factorization of N is known, and
that the modular groups Γ have some simple description, e.g., through a set of
generators, or implicitly such as in “Γ0, the subgroup of triangular matrices of
determinant 1”. The representation of level structures and isogenies is subtler.

Representing isogenies. “Computing an isogeny” is usually understood as
“computing a generator of its kernel”. From this data, we can use Vélu’s formulas
to evaluate the isogeny at any point. However, in some cases of interest the
points of the kernel may be defined over prohibitively large field extensions, or
the isogeny may have large prime degree preventing the use of Vélu’s formulas.

Instead, following [67,55], we will say that an algorithm (efficiently) represents
an isogeny ϕ : E → E′ if, given any point P ∈ E(Fqk) as input, it outputs ϕ(P )
in time poly(k log(q)). The goal of the Γ -SIDH problem will thus be to output
a representation of ϕ, for instance as an arithmetic circuit.

Representing level structures. A level structure may be exponentially large,
so representing it by the list of its bases is out of question. As a first attempt,
we may represent S ∈ BE(Γ ) through an arbitrary basis in S and the group Γ ,
but even this representation may turn out to be prohibitively expensive. We now
illustrate different ways of representing level structures through two examples.

Example 4. For supersingular curves, one never needs to look far to complete
a basis. Indeed, if P ∈ E(Fq) is a point of order N , then a point Q such that
(P,Q) forms a basis of E[N ] is always defined over an extension of Fq of degree
at most 6 (or even 2, when j(E) ̸= 0, 1728). It is thus possible to represent a
level structure by an arbitrary basis (P,Q) and the group Γ at little extra cost.

Familiar examples are SIDH [50] and B-SIDH [28] public keys: these are
triples (E,P,Q) where E is a supersingular curve over Fp2 , and (P,Q) is a basis
of E[N ], defined over Fp2 in SIDH’s case, or over Fp4 in B-SIDH’s case. In both
cases Γ is the trivial group.
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When N factors into primes as N = ℓe11 · · · ℓerr , it may be more advantageous
to use the decomposition

E[N ] = E[ℓe11 ]⊕ · · · ⊕ E[ℓerr ]

and use a pair (Pi, Qi) of generators of E[ℓeii ] for each factor. Indeed the fields
of definition of each E[ℓeii ] will tend to be much smaller than their compositum,
the field of definition of E[N ]. The group Γ will then act on E[ℓeii ] in a similar
way as Γ mod ℓeii .

Example 5. Ordinary curves behave differently: even when a point of order N is
defined over some field Fq, a full basis of E[N ] is, in general, only defined over
an extension of degree O(N). However some level structures may be appropri-
ately described by a single point of order N . For example, given a basis (P,Q),
its orbit under the group of upper-triangular matrices consists of all the bases
(aP + bQ, cQ), i.e., all the bases whose second generator lies in ⟨Q⟩. Such a level
structure may thus simply be encoded by an arbitrary generator of ⟨Q⟩, or even
by some implicit definition, such as “the unique subgroup of order N defined
over the extension of degree n of Fq”.

The case where N is a power of a prime is well-known to be related to
the theory of isogeny volcanoes [52,44]. These are graphs with elliptic curves for
nodes and ℓ-isogenies for edges. The nodes are arranged into levels, corresponding
to the endomorphism rings of the curves: At the top level, the crater, lie the
curves with the largest endomorphism ring; at the bottom, the floor lie the curves
with smallest endomorphism ring; from one level to the next the endomorphism
ring grows or shrinks by a factor ℓ. ℓ-isogenies between curves on the same level
are only possible on the crater, at every other level ℓ-isogenies can only go up or
down one level. On the other hand, isogenies of degree d coprime to ℓ are only
possible between curves on the same levels of the respective ℓ-isogeny volcanoes.

Miret, Sadornil, Tena, Tomàs, Rosana, and Valls [57] show that the structure
of the ℓ-Sylow of E(Fq), i.e. of the largest subgroup of E(Fq) of order a power of
ℓ, is controlled by the level in the volcano. At the floor of the volcano, the ℓ-Sylow
is cyclic and is thus naturally identified with a ( ∗ ∗

∗ )-level structure of level, say,
ℓe; however a basis of the full E[ℓe] will only be defined over an extension of
degree O(ℓe). At the other end, on the crater, the ℓ-Sylow may be isomorphic
to (Z/ℓe/2Z)2 and thus all bases of E[ℓe/2] would be defined, but we would have
trouble representing any meaningful level structure of level ℓe ≫ ℓe/2.

Because d is coprime to ℓ, the isogeny ϕ must be between curves on the same
level of their respective ℓ-isogeny volcanoes, and thus preserve the structure of
the ℓ-Sylows. Therefore, whichever representation of Γ -level structures works
for E also works for E′.

As the examples show, there is not a single “good way” of representing level
structures. In what follows we will enunciate algorithms assuming all points
of E[N ] are always defined over the base field, for coherence with the most
cryptographically relevant cases. The reader is left with the task of adjusting
the algorithms to other representations where appropriate.
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Restricting to SL2. In most cases it makes sense to restrict to Γ -SIDH prob-
lems for Γ ≤ SL2. Indeed, provided we can solve discrete logarithms in the
subgroup of N -th roots of unity of Fq, we can reduce any Γ -SIDH problem to a
(Γ ∩ SL2)-SIDH as follows.

Lemma 6. Let Γ ≤ GL2(Z/NZ) and denote by µN ⊂ F×
qr the subgroup of N -th

roots of unity. Given an oracle to solve discrete logarithms in µN , there exists
a reduction from Γ -SIDH to (Γ ∩ SL2)-SIDH with complexity polynomial in r,
log(q) and log(N).

Proof. Let (E,S,E′, S′) be a Γ -SIDH problem. If E(Fq) has order divisible by
N , then by assumption E[N ] ⊂ E(Fq2r ). We can thus choose a representative
(P,Q) of S and compute its order-N Weil pairing ζ := eN (P,Q) ∈ Fqr . Let
S = (Γ ∩ SL2) · (P,Q); in other words, S is the set of bases obtained by acting
on the basis (P,Q) with matrices in Γ having determinant 1. Thanks to the
compatibility of the Weil pairing with isogenies,

eN (ϕ(S)) = eN (S)deg ϕ = ζd.

Choose now a representative (P ′, Q′) of ϕ(S) and compute its Weil pairing
ξ := eN (P ′, Q′). Use the oracle to compute the discrete logarithm x of ζd to base
ξ and find a matrix γ ∈ Γ with det γ = x. Define S

′
= (Γ ∩ SL2) · γ · (P ′, Q′);

then S
′
= ϕ(S). Hence, (E,S,E′, S

′
) is an instance of (Γ ∩ SL2)-SIDH and has

the same solutions as the original problem. ⊓⊔

In the next sections we shall focus our attention on groups Γ ≤ SL2, which
happen to be the most common in cryptography.

4 A reduction

We come to the main technical result of this work: a reduction between the
Γ -SIDH problems for different modular groups Γ .

For ℓ an integer dividing N , define the subgroup

Γ0(ℓ) =
{(

a b
c·ℓ d

)}
≤ SL2(Z/NZ).

For Γ ≤ Γ0(ℓ), define its ℓ-conjugate as

Γ ∗ =
{(

a b·ℓ
c′ d

) ∣∣ (
a b
c·ℓ d

)
∈ Γ and c′ ≡ c (mod N/ℓ)

}
;

it is easily verified that Γ ∗ is a subgroup of SL2. The main subroutine of the
reduction is Algorithm 1, which constructs from a curve E with Γ -level structure
an ℓ-isogenous curve E′ with Γ ∗-level structure.

The correctness of Algorithm 1 follows from the following lemma:

Lemma 7. Let N, ℓ be positive integers with ℓ | N . Let E be an elliptic curve and
(P,Q) a basis of E[N ]. Let ψ : E → E′ be an ℓ-isogeny with kernel ⟨(N/ℓ) ·Q⟩
and let ψ̂ be its dual. A point Q′ ∈ E′[N ] satisfies ψ̂Q′ = Q if and only if
eN (ψP,Q′) = eN (P,Q) and ℓQ′ = ψQ. In that case, the pair (ψP,Q′) forms a
basis of E′[N ].
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Algorithm 1: Changing from Γ -level structure to Γ ∗-level structure.
Input: Integers N and ℓ |N , a subgroup Γ ≤ Γ0(ℓ) ≤ SL2(Z/NZ),

an elliptic curve E with Γ -level structure S.
Output: An elliptic curve E′ with Γ ∗-level structure S′ and an ℓ-isogeny

ψ : E → E′ such that ψ̂Q′ ∈ ⟨Q⟩ for all (_, Q) ∈ S and (_, Q′) ∈ S′.
1 Pick an arbitrary basis (P,Q) ∈ S;
2 Let K := (N/ℓ) ·Q;
3 Compute an isogeny ψ : E → E′ with kernel ⟨K⟩;
4 Let P ′ := ψP and Q′′ := ψQ;
5 Compute Q′ such that ℓQ′ = Q′′ = ψQ and eN (P ′, Q′) = eN (P,Q);
6 Let S′ := Γ ∗ · (P ′, Q′) and return

(
E′, S′, ψ

)
.

Proof. Let Q′ be such that ψ̂Q′ = Q, then, by the properties of the Weil pairing

eN (ψP,Q′) = eN (P, ψ̂Q′) = eN (P,Q). (1)

Moreover ψQ = ψψ̂Q′ = ℓQ′.
Conversely, let Q′ be a point satisfying Eq. (1) and such that ℓQ′ = ψQ.

By the non-degeneracy of the Weil pairing we have ψ̂Q′ ∈ Q + ⟨P ⟩. Writing
ψ̂Q′ = Q+ xP for some x ∈ Z/NZ, we have

ℓQ′ = ψψ̂Q′ = ψQ+ xψP = ℓQ′ + xψP,

hence x = 0 because ψP has order N .
In either case, because the Weil pairing from Eq. (1) has maximal order,

(ψP,Q′) must be a basis of E′[N ]. ⊓⊔

We are now ready to present a reduction from Γ -SIDH to Γ ∗-SIDH. The idea
underlying the algorithm is visualized in the diagram below, where the vertical
arrows represent the ℓ-isogenies constructed by Algorithm 1: The key point is
that all matrices in Γ are upper-triangular modulo ℓ, hence by construction the
isogenies ψ, χ are parallel with respect to ϕ, i.e., kerχ = ϕ(kerψ), which implies
the existence of ϕ′.

E0,
(
P0, Q0

)
E1,

(
P1, Q1

)

E0

⟨N/ℓ·Q0⟩,
(
ψP0, ψ̂

−1Q0

)
E1

⟨N/ℓ·Q1⟩,
(
χP1, χ̂

−1Q1

)

ϕ

ϕ′

ψ ψ̂ χχ̂

Theorem 8. Let ϕ : E → E′ be an isogeny of degree d coprime to N , and let
N be coprime to the characteristic. Let ℓ divide N and let Γ ≤ Γ0(ℓ). Given an
instance of a Γ -SIDH problem with solution ϕ, Algorithm 2 outputs an instance
of a Γ ∗-SIDH problem with solution ϕ′ = χϕψ̂/ℓ.
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Algorithm 2: Γ -SIDH to Γ ∗-SIDH reduction.
Input: Integers N and ℓ |N , a subgroup Γ ≤ Γ0(ℓ) ≤ SL2(Z/NZ),

a Γ -SIDH instance (E0, S, E1, ϕ(S)).
Output: A Γ ∗-SIDH instance (E′

0, S
′, E′

1, ϕ
′(S′)) together with ℓ-isogenies

ψ : E0 → E′
0, χ : E1 → E′

1 such that χ ◦ ϕ = ϕ′ ◦ ψ.
1 Run Algorithm 1 with input (E0, S) and let (E′

0, S
′, ψ) be the result;

2 Run Algorithm 1 with input (E1, ϕ(S)) and let (E′
1, ϕ

′(S′), χ) be the result;
3 Return

(
E′

0, S
′, E′

1, ϕ
′(S′)

)
and (ψ, χ).

Proof. Fix (P0, Q0) ∈ S, (P1, Q1) ∈ ϕ(S), (P ′
0, Q

′
0) ∈ S′, and (P ′

1, Q
′
1) ∈ ϕ′(S′).

By definition of Γ -SIDH, there exists a matrix γ =
(
a b
c·ℓ d

)
∈ Γ such that

γ · (P1, Q1) = (ϕP0, ϕQ0). Thus we have d(N/ℓ) · Q1 = (N/ℓ) · ϕQ0, implying
that kerχ = ϕ(kerψ) and therefore χϕψ̂(E′

0[ℓ]) = χϕ(kerψ) = χ(kerχ) = {0}.
This proves that ϕ′ := χϕψ̂/ℓ is a well-defined isogeny.

Lemma 7 shows that (P ′
0, Q

′
0) and (P ′

1, Q
′
1) form bases of the respective

N -torsion subgroups, and that ψ̂Q′
0 = Q0 and χ̂Q′

1 = Q1. Using the proper-
ties of the dual isogeny, we readily see that ψ̂P ′

0 = ℓP0 and χ̂P ′
1 = ℓP1.

To each of the isogenies in the diagram, we associate a matrix representing
its action (on the left) on the N -torsion, with respect to the bases (P0, Q0),
(P1, Q1), (P ′

0, Q
′
0) and (P ′

1, Q
′
1). Thus, ϕ acts like γt, ψ and χ act like ( 1 ℓ ),

and ψ̂ and χ̂ act like ( ℓ 1 ). Writing ( x y
w z )

t for the matrix of ϕ′, we obtain the
relations

( 1 ℓ )
(
a c·ℓ
b d

)
≡ ( x wy z ) ( 1 ℓ ) (mod N); [from χ ◦ϕ = ϕ′ ◦ψ](

a c·ℓ
b d

)
( ℓ 1 ) ≡ ( ℓ 1 ) (

x w
y z ) (mod N). [from ϕ ◦ ψ̂ = χ̂ ◦ϕ′]

Whence
x ≡ a, y ≡ bℓ, wℓ ≡ cℓ, z ≡ d (mod N),

thus ϕ′ acts like
(
a b·ℓ
c′ d

)t for some c′ ≡ c (mod N/ℓ).
Applying the same reasoning to all matrices γ ∈ Γ , we conclude that(

E′
0, (P

′
0, Q

′
0), E

′
1, (P

′
1, Q

′
1)
)

is an instance of a Γ ∗-SIDH problem with solution ϕ′. ⊓⊔

Example 9. Going back to Example 5, Algorithm 2 can be understood as moving
up and down the volcano. For example, suppose one is given curves E0, E1

on the floor of their respective ℓ-volcanoes and seeks to compute an isogeny
ϕ : E0 → E1. The ℓ-Sylows of E0 and E1 are cyclic, say of order ℓe, and are
mapped one onto the other. Thus ϕ is solution to an instance of a Γ0-SIDH
problem of level ℓe.

There are unique rational ℓ-isogenies ψ : E0 → E′
0 and χ : E1 → E′

1,
both ascending, and their target curves E′

0, E
′
1 have ℓ-Sylows isomorphic to

Z/ℓZ× Z/ℓe−1Z. Algorithm 2 reduces the Γ0-problem between E0 and E1 to a( ∗ ∗ℓ
∗ℓe−1 ∗

)
-problem between E′

0 and E′
1, matching the structure of the ℓ-Sylows.
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To finish the reduction, we need to show that from a solution to the Γ ∗-SIDH
problem we can efficiently construct a solution to the original Γ -SIDH problem.
This task essentially consists in evaluating the fractional isogeny ϕ = χ̂ϕ′ψ/ℓ;
see the proof below for details.

A small difficulty arises when analyzing the complexity of Algorithm 1: In-
deed during the computation of ψ̂−1Q in Step 5, it is possible that Q′ is only
defined over an extension field of Fq. This cannot happen if we assume that E[N ]
is defined over Fq for all curves in the isogeny class, as is the case for supersingu-
lar curves. We will only analyze the cost in this case, but note that the ordinary
case can be handled by simply using Q′′ as a representation for ψ̂−1Q.

Corollary 10. Γ -SIDH reduces to Γ ∗-SIDH, with a polynomial overhead in ℓ,
log(N) and log(q).

Proof. Given an instance of Γ -SIDH, we apply Algorithm 2 and pass the result
to a Γ ∗-SIDH oracle, obtaining a representation of ϕ′ : E′

0 → E′
1. We use ϕ′ to

build a representation of ϕ as follows. Let P be a point of E0 of which we want
to know the image ϕP . Compute R such that ℓR = P , then ϕP = ℓϕR. Now
observe that ℓϕ = χ̂ϕ′ψ, hence ϕP = χ̂ϕ′ψR.

We now analyze the cost of Algorithm 1 in terms of field operations. The
choice of the basis (P,Q) is assumed to be free. The scalar multiplication in Step 2
costs O(log(N)). Evaluating ψ costs O(ℓ) operations using Vélu’s formulas. We
can compute Q′ by finding a preimage to Q′′, using a root finding algorithm
such as Cantor–Zassenhaus [14], which costs Õ(ℓ log(q)).

The cost of Algorithm 2 is that of running Algorithm 1 twice. Finally the
additional cost of evaluating ϕP amounts to a division by ℓ and a few ℓ-isogeny
evaluations, thus the same cost as Algorithm 2. ⊓⊔

For an example of how the reduction in this section can be applied concretely,
see Section 5.4 below.

5 Γ -SIDH problems in the wild

We finally review the occurrences of Γ -SIDH problems in the literature, and use
the reduction of Section 4 to reveal some new connections. As previously stated,
we only consider subgroups Γ ≤ SL2. Figure 1 gives an overview of this section:
The table on the left lists groups Γ , the best known attack against the generic
Γ -SIDH problem, and some schemes whose security is “based” on it; the diagram
on the right shows reductions between the problems.

5.1 The generic isogeny problem

When Γ = SL2, a level structure is just the set of all bases of E[N ] with a given
value of the Weil pairing. Assuming we can solve discrete logarithms in µN , an
arbitrary such basis can be computed from E using the technique described in

11



Γ Best attack Schemes
( 1

1 ) poly SIDH
( 1 ∗

1 ) poly [16,21]
( λ

λ ) exp M-SIDH

( ∗
∗ ) exp FESTA, binSIDH,

CSIDH, SCALLOP
( ∗ ∗

∗ ) exp SIDH PoKs
SL2 exp generic

SIDH

( λ
λ )

( ∗
∗ )

( 1 ∗
1 )

( ∗ ∗
∗ )

Coro. 12

Coro. 13

Fig. 1. Γ -SIDH problems, their difficulty and reductions. The Schemes column lists
schemes that can be broken by solving the corresponding Γ -SIDH problem. Note these
are not security reductions: some schemes may have better attacks (e.g., quantum
subexponential time against CSIDH and SCALLOP). The reduction diagram uses
dashed arrows to signify trivial inclusions and continuous arrows to represent reduc-
tions following from Theorem 10: The latter are between a Γ -SIDH problem of level
n2 and a Γ ′-SIDH problem of level n; the filled arrow tip points towards the problem
of level n.

Lemma 6. Thus SL2-SIDH is simply the generic fixed-degree isogeny problem:
given isogenous curves E,E′, find ϕ : E → E′ of degree d.

The best generic algorithms to solve this problem have complexity polynomial
in d, and are not much more advanced than plain exhaustive search. When
d = d1d2, a meet-in the middle approach [1,29] improves slightly over exhaustive
search by intersecting the list of all curves d1-isogenous to E with the list of all
curves d2-isogenous to E′.

When E and E′ are supersingular, it is known that the generic isogeny prob-
lem is equivalent to the endomorphism ring problem (computing a quaternion
representation of End(E) and End(E′)) [41,67]2. These are considered to be the
most fundamental problems in isogeny-based cryptography, and a solution to
them would compromise almost all known schemes. The best algorithms known
take Õ(

√
p) classical time [40,42,45] or Õ( 4

√
p) quantum time [11]. The generic

fixed-degree isogeny problem is only known to be equivalent to the endomor-
phism ring problem when d is at least O(p3) [5,9].

In the ordinary case, the theory of isogeny volcanoes applies and yields an
improvement over generic algorithms when d is large enough. The first step
is to ascend to the craters of the ℓ-isogeny volcanoes for each ℓ dividing the
conductors of End(E) and End(E′), which has cost polynomial in the largest
such ℓ. The second step is a collision-search algorithm in the isogeny class of
the maximal order, taking O(

√
C) classical operations [46], or a hidden shift

algorithm taking O(exp(
√
log(C))) quantum operations [53,61,54], where C is

the size of the isogeny class.3 The final step evaluates the actual isogeny of degree
d and can be done in O(exp(

√
log(C))) classical and quantum time [51,25]. The

2 When d contains a large prime factor, the reduction is only quantum [24].
3 The isogeny class of a random curve over Fq has size O(

√
q), however some curves

(e.g., pairing-friendly curves) may be specially constructed with a small isogeny class.
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same theory also applies to supersingular curves defined over a prime field as in
CSIDH [18], or more generally to oriented supersingular curves [35]. We shall
come back to these cases when discussing ( ∗ ∗ )-SIDH in Section 5.6.

5.2 The SIDH problem

Appearance: SIDH key exchange and derivatives [50,49], B-SIDH [28], Séta [32].
Best attacks: polynomial time when N is smooth [15,56,63].

On the opposite end of the spectrum we have Γ = {( 1 0
0 1 )}, which is none

else than (a minimal generalization of) the well-known SIDH problem: we are
given d-isogenous curves E,E′, points P,Q generating E[N ] and their images,
and we want to find the isogeny.

The standard SIDH/SIKE setting [50,49] has d = 2n ≈ 3m = N and the (su-
persingular) curves are chosen so that E[dN ] ⊂ E(Fp2). In some variants [28,32]
d and N are coprime smooth integers, and E[dN ] ⊂ E(Fp4). The attacks on
SIDH [15,56,63] show that in all these instances the SIDH problem can be solved
in polynomial time. More generally, Robert proves the following theorem.

Theorem 11. Let E be an elliptic curve over a finite field Fq. Let N ∈ poly(q)
be a polylog(q)-smooth integer, let S ∈ BE(N), and suppose that S can be rep-
resented over an extension of Fq of size polylog(q).

If ϕ : E → E′ is an isogeny of degree d < N2, the instance (E,S,E′, ϕ(S))
of the SIDH problem can be solved in time polylog(q).

In more detail, in [62, Theorem 1.2] Robert provides an algorithm that, given
(E,S,E′, ϕ(S)) and a point R ∈ E(Fqk), outputs ϕR. The only minor difference
with the statement above is a stronger condition d < N , however this can be
relaxed to d < N2 using the technique described in [63, § 6.4].

Note that, when d is smooth too, one can recover a more traditional repre-
sentation of ϕ as an isogeny walk by evaluating ϕ on E[d].

In conclusion, the only instances where the (generalized) SIDH problem still
appears to be hard are those where N contains a large prime factor, or where
points of E[N ] cannot be represented over small extensions of Fq.

5.3
(
λ

λ

)
-SIDH a.k.a. M-SIDH

Appearance: Masked-torsion SIDH [43].
Reduces to: SIDH, when N has few distinct prime factors.
Best attacks: exponential time [43], polynomial time for “special” supersingular

curves [43] and for curves over Fp [21].

Acting by the group
{(

λ
λ

)}
of determinant-1 scalar matrices has been pro-

posed as a countermeasure against the SIDH attacks. The key exchange scheme
M-SIDH [43] (short for Masked-torsion SIDH) works exactly like SIDH, however,
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before publishing the images of the basis (P,Q) of E[N ], it masks them by a
random scalar λ. That is, an M-SIDH public key is a triple (E′, λϕP, λϕQ).

By definition λ2 = 1, so a straightforward way to solve M-SIDH is to try and
guess λ, thus reducing to an SIDH problem. To protect against this, M-SIDH
chooses N to have r distinct prime factors, so that there are 2r possible solutions
for λ, rendering the attack infeasible.

In [43] it is shown how to solve M-SIDH when the starting curve E is super-
singular and has small endomorphisms. In [21] it is shown how to solve it when
E is defined over a prime field Fp or when E is connected to its Galois conjugate
by a small-degree isogeny. In the general case, the best known attacks consist in
guessing λ mod N ′ where N ′ is a divisor of N with the minimal number of prime
factors such that d ≤ N ′2. As before, the correct guess for λ mod N ′ allows a
reduction to an SIDH problem. The degree d and the integer N are chosen such
that any such N ′ has r distinct prime factors, where r depends on the desired
security level (r = 128, 192, 256 for example), so that the complexity of this
attack is at least 2r.

5.4 ( 1 ∗
1 )-SIDH a.k.a. Unipotent SIDH a.k.a. Γ1-SIDH a.k.a. SIDH1

Appearance: weak instances of class-group actions [16], flawed implementations
of proofs of knowledge [34].

Reduces to: SIDH, when N contains a large smooth square factor.

The next group we consider is Γ1, the group of unitriangular matrices ( 1 ∗
1 ),

a.k.a. the unipotent subgroup of SL2. If (P,Q) ∈ BE(N), its orbit Γ1 · (P,Q)
consists of all bases (R,Q) such that eN (R,Q) = eN (P,Q), i.e., after fixing a
value for the Weil pairing, Γ1-level structures are in one-to-one correspondence
with points of order N . Hence, Γ1-SIDH is the variant of SIDH where, instead
of the image of two generators of E[N ], only the image of a single point of order
N is known. Because the notation of Γ1 for the unipotent subgroup is standard
in the theory of modular forms, we like to dub this the SIDH1 problem.

Applying the reduction of Section 4, we prove a reduction from SIDH1 to
SIDH whenever N contains a large square smooth factor, e.g., when N = ℓe for
some small prime ℓ.

Corollary 12. Let n be an integer and ℓ its largest prime factor. The SIDH1

problem of level n2 reduces to the SIDH problem of level n in poly(ℓ)-time.

Proof. Using Algorithm 2 repeatedly for each prime factor of n, we reduce
SIDH1 to Γ -SIDH with Γ = {( 1 n∗

n∗ 1 )}. But Γ mod n is the trivial subgroup
of SL2(Z/nZ), thus, restricting the level structure to the n-torsion (i.e., multi-
plying the basis generators by n), we obtain an instance of SIDH of level n. ⊓⊔

Even if N is not exactly a square, the corollary above gives a strategy to
attack SIDH1. Indeed, if N = sn2 with a small squarefree factor s, we can
simply ignore s and restrict to the SIDH1 problem of level n2, which reduces to
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SIDH of level n. Should this not be sufficient, we can add a small exhaustive
search on s to reduce to SIDH of level sn.

To the best of our knowledge, SIDH1 has not appeared in the literature as
a security assumption, however we are aware of at least two instances where it
showed up somewhat unexpectedly.

The first instance is in variants of the Couveignes–Rostovtsev–Stolbunov
group action [30,64] designed to be vulnerable precisely to Corollary 12 [16].
These isogeny classes are set up so that a large power ℓe >

√
d divides the

discriminant. A self-pairing is then used to guess the image by ϕ of a point of
order ℓe, leading to an SIDH1 problem. Finally, our reduction is used to reduce
to an SIDH problem that is solved using Robert’s technique. Although this
construction is artificial and not meant as a basis for cryptography, it shows
that some isogeny-based group actions are less strong than originally thought.

The second instance is in proofs of knowledge of isogenies à la SIDH as
seen in [37,34]. Both papers claim computational zero-knowledge based on the
decisional variant of Γ0-SIDH, however an implementation mistake makes them
actually reliant on Γ1-SIDH, and thus broken. We shall give more details on this
in the next section.

5.5 ( ∗ ∗
∗ )-SIDH a.k.a. Borel SIDH a.k.a. Γ0-SIDH a.k.a. SIDH0

Appearance: Proofs of Knowledge (decisional) [37,34,6].
Reduces to: ( ∗ ∗ )-SIDH, when N contains a large smooth square factor.
Best attacks: generic.

Γ0 is the group of determinant-1 upper-triangular matrices, the Borel sub-
group of SL2. The associated level structures correspond to cyclic subgroups of
order N with a given value for the Weil pairing, and are sometimes called Borel
level structures [6,26]. Again, we shorten Γ0-SIDH into SIDH0.

Using the reduction of Section 4, we prove that it is in fact equivalent to
( ∗ ∗ )-SIDH. We are told this isomorphism between level structures is folklore
among experts in modular curves (see [26, § 2.5]), but the algorithmic aspect
appears to be new.

Corollary 13. Let n be an integer and ℓ its largest prime factor. The SIDH0

problem of level n2 and the ( ∗ ∗ )-SIDH problem of level n are poly(ℓ)-time-
equivalent.

Proof. Using Algorithm 2 repeatedly for each prime factor of n, we reduce SIDH0

to Γ -SIDH with Γ = {( ∗ n∗
n∗ ∗ )}. Reducing modulo n we obtain a ( ∗ ∗ )-SIDH

problem of level n.
Conversely, let (E0, S0, E1, S1) be an instance of ( ∗ ∗ )-SIDH. Pick arbitrary

bases (P0, Q0) ∈ S and (P1, Q1) ∈ S1. Lift (P0, Q0) to a basis (P ′
0, Q

′
0) of

E0[n
2] such that nP ′

0 = P0 and nQ′
0 = Q0. Similarly lift (P1, Q1) to a basis

(P ′
1, Q

′
1) of E1[n

2], with the additional constraint en2(P ′
1, Q

′
1) = en2(P ′

0, Q
′
0)
d,

by solving a discrete logarithm for each factor ℓ of n, as in Lemma 6. Then
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(E0, (P
′
0, Q

′
0), E1, (P

′
1, Q

′
1)) is an ( ∗ n∗

n∗ ∗ )-SIDH instance of level n2. Now apply
Algorithm 2 to reduce to ( ∗∗ ∗ )-SIDH and transpose to reduce to SIDH0. ⊓⊔

SIDH0 arises naturally in proofs of knowledge of isogenies à la SIDH [37,34].
To prove knowledge of an N -isogeny ψ : E0 → E1 between supersingular curves,
these schemes eventually produce an N -isogeny ψ′ : E2 → E3 such that kerψ′ =
ϕ(kerψ) for some secret isogeny ϕ of degree d. kerψ = ⟨Q⟩ and kerψ′ = ϕ(⟨Q⟩) =
⟨Q′⟩ are cyclic groups of order N , thus, completing them to bases (P,Q) = E0[N ]
and (P ′, Q′) = E1[N ], we see that ϕ(P,Q) ∈ Γ0 · (P ′, Q′). Hence, recovering ϕ
from ψ and ψ′ is naturally an SIDH0 problem.

In fact, the zero-knowledge property of these schemes reduces to the deci-
sional version of SIDH0: the game is to distinguish (E0, kerψ,E2, ϕ(kerψ)) from
(E0, kerψ,E2, G) where G is a random cyclic group of order N . This problem
was named Decisional Supersingular Product (DSSP) in [37]. Recently, DSSP
was proven undecidable when deg ϕ → ∞, and even statistically undecidable
as soon as d ∈ O((pN)c) for an explicit constant c depending on N , using the
theory of supersingular isogeny graphs with level structure [6].

When implementing these schemes, it is a common mistake to encode kerψ by
some particular generator Q, and kerψ′ by ϕ(Q) rather than by some arbitrary
generator of ϕ(⟨Q⟩). However, in doing so the tuple (E0, Q,E2, ϕ(Q)) becomes
an instance of SIDH1 rather than SIDH0, and may thus be solved in polynomial
time depending on the relative sizes of d and N . The fix is to multiply ϕ(Q) by a
random scalar to hide the exact image of Q. The bug is present in [37] and [34],
although the latter has been fixed in the online version [33].4

5.6 ( ∗
∗ )-SIDH a.k.a. Diagonal SIDH

Appearance: FESTA [8], CSIDH [18], SCALLOP [35], binSIDH [7].
Reduces to: ( ∗ ∗

∗ )-SIDH, when N contains a large smooth square factor.
Best attacks: generic.

The last group we consider is the diagonal group {( ∗ ∗ )}, whose associated
level structures are pairs of cyclic subgroups of order N , sometimes called split
Cartan level structures (see [26]). Corollary 13 shows that ( ∗ ∗ )-SIDH is equiv-
alent to SIDH0 when N has a large square smooth factor.

The supersingular version of this problem appears in the security analysis of
the FESTA encryption scheme [8], where it is called the Computational Isogeny
with Scaled Torsion (CIST) problem. Solving CIST breaks FESTA, however the
IND-CCA security of the scheme reduces to a “double” variant of CIST named
CIST2. The ( ∗ ∗ )-SIDH problem also appears in binSIDH [7] where it is referred
to as the Artificially Oriented Isogeny Problem.

4 We heard rumors that the same bug was at some point also present in the source
code for [6], but, looking at https://github.com/trusted-isogenies/SECUER-pok,
it appears to have been fixed.
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( ∗ ∗ )-SIDH also naturally appears in the theory of isogeny volcanoes, and
thus in all “group action” schemes such as Couveignes–Rostovtsev–Stolbunov
(CRS) [30,64], CSIDH [18] and SCALLOP [35].

When O is an imaginary-quadratic order, an O-oriented curve [27] is an
elliptic curve E together with an injection ι : O ↪→ End(E). Thus, ordinary
curves are End(E)-oriented, curves in CSIDH are Z[

√
−p]-oriented, and curves

in SCALLOP are oriented by an order of large prime conductor inside Z[
√
−1].

To an ideal a of O of norm coprime to q, we associate a subgroup

E[a] =
⋂
α∈a

{P ∈ E | ι(α)(P ) = 0}

and an isogeny ϕa : E → E/E[a]. A prime ℓ splits in O if the ideal ℓO factors
as a product of two distinct ideals ll, and in this case any O-oriented curve has
two distinguished cyclic groups of order ℓ, namely E[l] and E[l].

Now suppose that one is given a pair of O-oriented curves E and E′, with
the promise that there exists a d-isogeny ϕ : E → E′, then we can formulate the
search for ϕ as a ( ∗ ∗ )-SIDH problem as follows:

1. Let f be the conductor5 of O. For some bound B, take all the split primes
ℓi < B not dividing df . Set N =

∏
ℓi.

2. For each ℓi factor ℓiO = lili.
3. For each ℓi, compute ⟨Pi⟩= E[li], ⟨Qi⟩= E[li], ⟨P ′

i ⟩= E′[li] and ⟨Q′
i⟩= E′[li].

Each of the generators is defined in an extension of degree O(B) of Fq.
4. Then ϕ(⟨Pi⟩) = ⟨P ′

i ⟩ and ϕ(⟨Qi⟩) = ⟨Q′
i⟩, defining a ( ∗ ∗ )-SIDH problem of

level N .

We stress that for any O there exists an infinity of split primes and that the
asymptotic proportion of split primes is 1/2. Hence N is bounded only by the
largest extension of Fq we are willing to perform computations in.

Some instantiations of isogeny group actions, e.g. [22], do feature a known
fixed degree d for all secrets, thus the strategy above reduces their key-recovery
problem to ( ∗ ∗ )-SIDH. However in the general key-recovery problem of isogeny
group actions, the degree of ϕ is unknown: one is only given two O-oriented
curves E,E′/Fq, and the goal is to find an ideal a such that ϕa : E → E′. We now
heuristically reduce this problem, known as the Group Action Inverse Problem
(GAIP), to the ( ∗ ∗ )-SIDH problem by arguing that there exists a polynomially-
sized degree d that works for almost all pairs (E,E′).

Lemma 14. Let O be an imaginary-quadratic order of discriminant −∆ and
suppose that all but O(log log∆) prime factors of ∆ are bounded by polylog(∆).
Under heuristics on the distribution of ideal classes, one can find an integer d of
size polynomial in log(q) and log(∆), such that for any polynomial g one can find
N ≥ exp(g(log d)) for which the GAIP with respect to O reduces in polynomial
time to a (d, Γ )-SIDH problem with Γ the diagonal subgroup of SL2(Z/NZ).
5 The conductor of a quadratic order is its index in the ring of integers of its fraction

field.
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Proof. To apply the reduction discussed above, we sample a “default degree” d
from a distribution which heuristically yields a valid guess for the degree at a
1/ polylog(∆) rate. The distribution is designed to work around two major ob-
structions: First, genus theory for binary quadratic forms implies that a suitable
d must have the correct values for the genus characters of O. We may recover the
correct symbols for all characters of moduli lying in polylog(∆) using the DDH
attack of [20,17] and randomly guess the remaining O(log log∆) symbols; the
chance of being correct is thus 1/ polylog(∆). Second, a much more elementary
constraint is that if d has ω prime factors, then there are at most 2ω distinct
O-ideals of norm d; hence, any d covering all ideal classes in some genus must
necessarily have many prime factors. Absent any unforeseen further obstruc-
tions, it should therefore suffice to choose d as a product of a set of Ω̃(log∆)
random split primes of size polylog(∆), such that the chosen values for the genus
characters are satisfied.6

Now let E and E′ be two O-oriented curves and assume there exists an ideal
a ⊂ O of norm d such that ϕa : E → E′. Let g be a polynomial. To invoke the
(d, Γ )-SIDH oracle, we proceed as sketched in the discussion before the lemma:
Take enough small primes ℓi split in O such that N =

∏
ℓi ≥ exp(g(log d)),

compute the associated subgroups E[li], E[li], E
′[li], E

′[li], and define the level
structures S =

(⊕
E[li],

⊕
E[li]

)
and S′ =

(⊕
E′[li],

⊕
E′[li]

)
. Finally, pass

(E,S,E′, S′) to the (d, Γ )-SIDH oracle.
There is one more caveat: In the supersingular setting, solving the constructed

( ∗ ∗ )-SIDH problem may in fact produce a generic isogeny that fails to respect
the orientation. In that case, to complete the reduction, we make use of known
reductions between the supersingular endomorphism ring problem and the GAIP
problem due to [19,66]: We first generate any O-oriented supersingular curve E0

of known endomorphism ring and apply the reduction above to both (E0, E)
and (E0, E

′). The resulting knowledge of smooth-degree isogenies E0 → E and
E0 → E′ thus reveals the endomorphism rings of E and E′, respectively. This
puts us into a position to invoke the reduction and finally recover an O-ideal
connecting E and E′, as desired. ⊓⊔

In all existing isogeny group actions (CRS, CSIDH, SCALLOP), the dis-
criminant of the order O in play has very few prime factors, thus satisfying the
conditions of Lemma 14 on the factorization of ∆. Hence the respective GAIPs
reduce to a ( ∗ ∗ )-SIDH (and SIDH0) problem of level N of arbitrary size.

Improved algorithm for isogenies between ordinary curves. The fact
that computing isogenies between oriented curves reduces to an ( ∗ ∗ )-SIDH

6 Evidence (conditional on GRH) in support of this heuristic are (1) Bach’s proof that
ideals of norm up to 6 log(∆)2 generate the class group [4]; and (2) results in a line of
work initiated by Landau and Bernays, see [10, part II, § 3] or for instance [58, § 5],
which bound the density of integers represented by all quadratic forms in a given
genus; however, those results are asymptotic and only become meaningful far beyond
the sizes (relative to ∆) that are required for our purposes.
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problem is well-known, and was already used in [36] in the context of the SEA
point-counting algorithm [65]. The goal here is to compute an isogeny ϕ : E → E′

between ordinary curves, for a moderately large d = deg ϕ.
The algorithm in [36] finds a small split prime ℓ not dividing d and assumes

that E and E′ are on the craters of the respective ℓ-volcanoes (see Examples 5
and 9 for more background). Then it computes a horizontal basis B of E[ℓe] for
ℓe > 2

√
d, i.e., a basis (P,Q) such that ⟨P ⟩ = kerϕle and ⟨Q⟩ = kerϕle . Then it

computes a horizontal basis B′ for E′[ℓe], so that ϕ(B) = γ ·B′ for some matrix
γ ∈ GL2. It finally finds γ by exhaustive search: for each choice it computes γ ·B′

and tries to compute ϕ by interpolation, halting when this succeeds. Since there
are O(ℓ2e) diagonal matrices, and each interpolation step costs Õ(d) operations,
the total complexity is in Õ(d2).

We can give a first improvement using the technique of Lemma 6: choose
B′ so that eℓe(B′) = eℓe(B)d, then it is sufficient to go through the diagonal
matrices in SL2, which only number O(ℓe), leading to an algorithm with com-
plexity Õ(d1.5). Yet another improvement has recently become possible: instead
of interpolation, we can use the algorithm of Theorem 11—whose dependency in
d is only polylog(d)—to test whether ϕ maps B to γ · B′. Hence, we can find γ
in Õ(

√
d) operations. In principle, we could stop here and use the isogeny repre-

sentation returned by Theorem 11, however the goal of [36] is to compute ϕ as a
rational fraction, which we can now do by interpolation using Õ(d) operations,
which is quasi-optimal.

When E and E′ are not on the crater, the paper reduces to this case by
walking up the volcano. However one can again improve the algorithm as follows.
Say the curves are at depth h, the ℓ-Sylows of E and E′ will typically contain
a unique cyclic subgroup of maximal order, at least ℓ2h (see [57] for details).
These two groups must be mapped one onto the other by ϕ, thus they define a
( ∗ ∗

∗ )-SIDH problem. Using Corollary 13 we reduce this to a ( ∗ ∗ )-SIDH problem
of level (at least) ℓh, call it (F, S1, F

′, S′
1).

Now we proceed like before and compute horizontal bases of F [ℓh] and F ′[ℓh],
which define a second ( ∗ ∗ )-SIDH problem, call it (F, S2, F

′, S′
2). As argued

above, S2 (and S′
2) consists of all possible bases (P,Q) such that ⟨P ⟩ = kerϕlh

and ⟨Q⟩ = kerϕ
l
h . However S1 (and S′

1) consists of all bases (P,R) such that
⟨P ⟩ = kerϕlh and ⟨R⟩ generates the kernel of the ℓh-isogeny descending back
towards E.

Combining both constraints with the one coming from the Weil pairing, all
degrees of freedom are removed and we are left with a pure SIDH problem. In the
extreme case where ℓ2h > 4d, we can directly compute ϕ without trial-and-error;
otherwise the number of trials will be divided by ℓh.

In conclusion, we have a generic algorithm with quasi-optimal complexity
in d for computing isogenies of known degree between ordinary curves, albeit
with large constants hidden inside the O(). This was previously only known in
the case where the characteristic is larger than 2d and the curve models are
normalized [12].
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This new algorithm asymptotically beats all previously known approaches to
the so called “Elkies step” of the SEA algorithm in the regime where characteristic
and extension degree both grow polynomially, and may be useful in practice for
solving some large point counting problems (likely outside cases of cryptographic
interest). Note, however, that the overall complexity of SEA is dominated by
other steps, thus we do not have an asymptotic improvement on point counting.

6 Conclusion

We introduced a new framework to study assumptions in isogeny-based cryp-
tography. We hope that it will help classify and relate seemingly distant isogeny
assumptions.

An important consequence of our main theorem is that the image of a single
point of large-enough order is in general sufficient to recover an isogeny. Un-
derstanding how far these attacks can be pushed is a fundamental question for
isogeny-based cryptography.

We also showed that CSIDH reduces to Diagonal SIDH, which is equivalent
to SIDH0, and is thus no harder than breaking SIDH-like proofs of knowledge.
While this may lend more credibility to the security of these proofs of knowledge,
we warn against using the reduction to set parameters. Indeed the best quantum
attacks against CSIDH are subexponential, whereas the best quantum attacks
against SIDH-like proofs of knowledge are exponential, thus the reduction is
void if one uses the best possible parameters. Conversely, it is an interesting
question whether or not SIDH0 and Diagonal SIDH can be solved in quantum
subexponential time.

Acknowledgments. Luca De Feo acknowledges support from the Swiss National Sci-
ence Foundation through grant no. 213766, CryptonIs. This research project was initi-
ated at the Isogeny Days 2022 workshop organized with support from the ERC grant
no. 101020788, ISOCRYPT. At the time, Lorenz Panny was a postdoc at Academia
Sinica, Taiwan, funded by Academia Sinica Investigator Award AS-IA-109-M01.

We would like to thank Wouter Castryck, Antonin Leroux, Christophe Petit, Fréderik
Vercauteren and Benjamin Wesolowski for the fruitful discussions, and the anonymous
referees for their useful suggestions.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular el-
liptic curves. In: Cid, C., Jacobson Jr:, M.J. (eds.) SAC 2018. LNCS, vol.
11349, pp. 322–343. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-10970-7_15

20

https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15


2. Agrawal, S., Lin, D. (eds.): ASIACRYPT 2022, Part II, LNCS, vol. 13792. Springer,
Heidelberg (Dec 2022)

3. Arpin, S.: Adding level structure to supersingular elliptic curve isogeny graphs
(2023). https://doi.org/10.48550/arXiv.2203.03531

4. Bach, E.: Analytic methods in the analysis and design of number-theoretic algo-
rithms. MIT press Cambridge (1985)

5. Basso, A., Chen, M., Fouotsa, T.B., Kutas, P., Laval, A., Marco, L., Tchoffo Saah,
G.: Exploring SIDH-based signature parameters. Cryptology ePrint Archive, Paper
2023/1906 (2023), https://eprint.iacr.org/2023/1906

6. Basso, A., Codogni, G., Connolly, D., De Feo, L., Fouotsa, T.B., Lido, G.M., Mor-
rison, T., Panny, L., Patranabis, S., Wesolowski, B.: Supersingular curves you can
trust. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol.
14005, pp. 405–437. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/
978-3-031-30617-4_14

7. Basso, A., Fouotsa, T.B.: New SIDH countermeasures for a more efficient key
exchange. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part VIII. LNCS,
vol. 14445, pp. 208–233. Springer, Heidelberg (Dec 2023). https://doi.org/10.
1007/978-981-99-8742-9_7

8. Basso, A., Maino, L., Pope, G.: FESTA: Fast encryption from supersingular tor-
sion attacks. In: Guo and Steinfeld [47], pp. 98–126. https://doi.org/10.1007/
978-981-99-8739-9_4

9. Benčina, B., Kutas, P., Merz, S.P., Petit, C., Stopar, M., Weitkämper, C.: Improved
algorithms for finding fixed-degree isogenies between supersingular elliptic curves.
Cryptology ePrint Archive, Paper 2023/1618 (2023), https://eprint.iacr.org/
2023/1618

10. Bernays, P.: Über die Darstellung von positiven, ganzen Zahlen durch die pri-
mitiven, binären quadratischen Formen einer nicht-quadratischen Diskriminante.
Ph.D. thesis, Georg-August-Universität, Göttingen (1912)

11. Biasse, J.F., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.) IN-
DOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Heidelberg (Dec 2014).
https://doi.org/10.1007/978-3-319-13039-2_25

12. Bostan, A., Morain, F., Salvy, B., Schost, E.: Fast algorithms for computing iso-
genies between elliptic curves. Mathematics of Computation 77(263), 1755–1778
(Sep 2008). https://doi.org/10.1090/s0025-5718-08-02066-8, http://dx.
doi.org/10.1090/S0025-5718-08-02066-8

13. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.X. (eds.)
EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 302–326. Springer, Heidelberg
(Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_11

14. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation 36, 587–592 (1981)

15. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay and
Stam [48], pp. 423–447. https://doi.org/10.1007/978-3-031-30589-4_15

16. Castryck, W., Houben, M., Merz, S.P., Mula, M., van Buuren, S., Vercauteren,
F.: Weak instances of class group action based cryptography via self-pairings. Lec-
ture Notes in Computer Science p. 762–792 (2023). https://doi.org/10.1007/
978-3-031-38548-3_25, http://dx.doi.org/10.1007/978-3-031-38548-3_25

17. Castryck, W., Houben, M., Vercauteren, F., Wesolowski, B.: On the decisional
Diffie–Hellman problem for class group actions on oriented elliptic curves. Re-
search in Number Theory 8(4), 99 (Nov 2022). https://doi.org/10.1007/
s40993-022-00399-6

21

https://doi.org/10.48550/arXiv.2203.03531
https://doi.org/10.48550/arXiv.2203.03531
https://eprint.iacr.org/2023/1906
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1007/978-981-99-8742-9_7
https://doi.org/10.1007/978-981-99-8742-9_7
https://doi.org/10.1007/978-981-99-8742-9_7
https://doi.org/10.1007/978-981-99-8742-9_7
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://eprint.iacr.org/2023/1618
https://eprint.iacr.org/2023/1618
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1090/s0025-5718-08-02066-8
https://doi.org/10.1090/s0025-5718-08-02066-8
http://dx.doi.org/10.1090/S0025-5718-08-02066-8
http://dx.doi.org/10.1090/S0025-5718-08-02066-8
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-38548-3_25
https://doi.org/10.1007/978-3-031-38548-3_25
https://doi.org/10.1007/978-3-031-38548-3_25
https://doi.org/10.1007/978-3-031-38548-3_25
http://dx.doi.org/10.1007/978-3-031-38548-3_25
https://doi.org/10.1007/s40993-022-00399-6
https://doi.org/10.1007/s40993-022-00399-6
https://doi.org/10.1007/s40993-022-00399-6
https://doi.org/10.1007/s40993-022-00399-6


18. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03332-3_15

19. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS,
vol. 12106, pp. 523–548. Springer, Heidelberg (May 2020). https://doi.org/10.
1007/978-3-030-45724-2_18

20. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional Diffie-Hellman
problem for class group actions using genus theory. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 92–120. Springer, Heidel-
berg (Aug 2020). https://doi.org/10.1007/978-3-030-56880-1_4

21. Castryck, W., Vercauteren, F.: A polynomial time attack on instances of M-SIDH
and FESTA. In: Guo and Steinfeld [47], pp. 127–156. https://doi.org/10.1007/
978-981-99-8739-9_5

22. Chávez-Saab, J., Chi-Domínguez, J.J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low
exponents. Journal of Cryptographic Engineering 12(3), 349–368 (Sep 2022).
https://doi.org/10.1007/s13389-021-00271-w

23. Chavez-Saab, J., Santos, M.C., De Feo, L., Eriksen, J.K., Hess, B., Kohel, D.,
Leroux, A., Longa, P., Meyer, M., Panny, L., Patranabis, S., Petit, C., Rodríguez
Henríquez, F., Schaeffler, S., Wesolowski, B.: SQIsign. Tech. rep., National Insti-
tute of Standards and Technology (2023), available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures

24. Chen, M., Imran, M., Ivanyos, G., Kutas, P., Leroux, A., Petit, C.: Hidden
stabilizers, the isogeny to endomorphism ring problem and the cryptanalysis of
pSIDH. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part III. LNCS, vol.
14440, pp. 99–130. Springer, Heidelberg (Dec 2023). https://doi.org/10.1007/
978-981-99-8727-6_4

25. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014).
https://doi.org/10.1515/jmc-2012-0016

26. Codogni, G., Lido, G.: Spectral theory of isogeny graphs (2023). https://doi.
org/10.48550/arXiv.2308.13913

27. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Journal of
Mathematical Cryptology 14(1), 414–437 (2020). https://doi.org/10.1515/
jmc-2019-0034, https://doi.org/10.1515/jmc-2019-0034

28. Costello, C.: B-SIDH: Supersingular isogeny Diffie-Hellman using twisted tor-
sion. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol.
12492, pp. 440–463. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/
978-3-030-64834-3_15

29. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of SIKE in practice. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 505–534. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45388-6_18

30. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

31. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: new dimensions in
cryptography. In: EUROCRYPT 2024. LNCS, Springer (2024), https://eprint.
iacr.org/2023/436

22

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-981-99-8739-9_5
https://doi.org/10.1007/978-981-99-8739-9_5
https://doi.org/10.1007/978-981-99-8739-9_5
https://doi.org/10.1007/978-981-99-8739-9_5
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-981-99-8727-6_4
https://doi.org/10.1007/978-981-99-8727-6_4
https://doi.org/10.1007/978-981-99-8727-6_4
https://doi.org/10.1007/978-981-99-8727-6_4
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.48550/arXiv.2308.13913
https://doi.org/10.48550/arXiv.2308.13913
https://doi.org/10.48550/arXiv.2308.13913
https://doi.org/10.48550/arXiv.2308.13913
https://doi.org/10.1515/jmc-2019-0034
https://doi.org/10.1515/jmc-2019-0034
https://doi.org/10.1515/jmc-2019-0034
https://doi.org/10.1515/jmc-2019-0034
https://doi.org/10.1515/jmc-2019-0034
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-45388-6_18
https://doi.org/10.1007/978-3-030-45388-6_18
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436


32. De Feo, L., Delpech de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A.,
Petit, C., Silva, J., Wesolowski, B.: Séta: Supersingular encryption from torsion
attacks. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS,
vol. 13093, pp. 249–278. Springer, Heidelberg (Dec 2021). https://doi.org/10.
1007/978-3-030-92068-5_9

33. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
Cryptology ePrint Archive, Report 2021/1023 (2021), https://eprint.iacr.org/
2021/1023

34. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of
knowledge. In: Agrawal and Lin [2], pp. 310–339. https://doi.org/10.1007/
978-3-031-22966-4_11

35. De Feo, L., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 345–375. Springer, Heidelberg (May
2023). https://doi.org/10.1007/978-3-031-31368-4_13

36. De Feo, L., Hugounenq, C., Plût, J., Schost, E.: Explicit isogenies in quadratic
time in any characteristic. LMS Journal of Computation and Mathematics 19(A),
267–282 (2016). https://doi.org/10.1112/s146115701600036x, http://dx.doi.
org/10.1112/S146115701600036X

37. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3), 209–247
(2014). https://doi.org/10.1515/jmc-2012-0015

38. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_3

39. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from su-
persingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIA-
CRYPT 2019, Part I. LNCS, vol. 11921, pp. 248–277. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-34578-5_10

40. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography 78(2), 425–440 (Feb 2016).
https://doi.org/10.1007/s10623-014-0010-1

41. Eisenträger, K., Hallgren, S., Lauter, K.E., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: Reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp.
329–368. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78372-7_11

42. Eisenträger, K., Hallgren, S., Leonardi, C., Morrison, T., Park, J.: Computing
endomorphism rings of supersingular elliptic curves and connections to path-finding
in isogeny graphs. Open Book Series 4(1), 215–232 (Dec 2020). https://doi.org/
10.2140/obs.2020.4.215, http://dx.doi.org/10.2140/obs.2020.4.215

43. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering SIDH
attacks by masking information. In: Hazay and Stam [48], pp. 282–309. https:
//doi.org/10.1007/978-3-031-30589-4_10

44. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker,
C., Kohel, D.R. (eds.) Algorithmic Number Theory Symposium. Lecture Notes
in Computer Science, vol. 2369, pp. 47–62. Springer Berlin / Heidelberg, Berlin,
Heidelberg (2002). https://doi.org/10.1007/3-540-45455-1_23

23

https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://eprint.iacr.org/2021/1023
https://eprint.iacr.org/2021/1023
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1112/s146115701600036x
https://doi.org/10.1112/s146115701600036x
http://dx.doi.org/10.1112/S146115701600036X
http://dx.doi.org/10.1112/S146115701600036X
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.2140/obs.2020.4.215
https://doi.org/10.2140/obs.2020.4.215
https://doi.org/10.2140/obs.2020.4.215
https://doi.org/10.2140/obs.2020.4.215
http://dx.doi.org/10.2140/obs.2020.4.215
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1007/3-540-45455-1_23


45. Fuselier, J., Iezzi, A., Kozek, M., Morrison, T., Namoijam, C.: Computing su-
persingular endomorphism rings using inseparable endomorphisms (2023). https:
//doi.org/10.48550/arXiv.2306.03051

46. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil descent attack. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_3

47. Guo, J., Steinfeld, R. (eds.): ASIACRYPT 2023, Part VII, LNCS, vol. 14444.
Springer, Heidelberg (Dec 2023)

48. Hazay, C., Stam, M. (eds.): EUROCRYPT 2023, Part V, LNCS, vol. 14008.
Springer, Heidelberg (Apr 2023)

49. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D., Pereira, G., Karabina, K., Hutchinson, A.: SIKE. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-4-submissions

50. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011. pp. 19–34. Springer, Heidelberg (Nov / Dec
2011). https://doi.org/10.1007/978-3-642-25405-5_2

51. Jao, D., Soukharev, V.: A subexponential algorithm for evaluating
large degree isogenies. Algorithmic Number Theory p. 219–233 (2010).
https://doi.org/10.1007/978-3-642-14518-6_19, http://dx.doi.org/10.
1007/978-3-642-14518-6_19

52. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,
University of California at Berkeley (1996), https://i2m.univ-amu.fr/perso/
david.kohel/pub/thesis.pdf

53. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal of Computing 35(1), 170–188 (2005). https:
//doi.org/10.1137/S0097539703436345

54. Kuperberg, G.: Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In: Severini, S., Brandao, F. (eds.) 8th Conference on
the Theory of Quantum Computation, Communication and Cryptography (TQC
2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 22, pp. 20–
34. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013).
https://doi.org/10.4230/LIPIcs.TQC.2013.20

55. Leroux, A.: A new isogeny representation and applications to cryptography. In:
Agrawal and Lin [2], pp. 3–35. https://doi.org/10.1007/978-3-031-22966-4_1

56. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay and Stam [48], pp. 448–471. https://doi.
org/10.1007/978-3-031-30589-4_16

57. Miret, J.M., Sadornil, D., Tena, J., Tomàs, R., Valls, M.: Volcanoes of
ℓ-isogenies of elliptic curves. Publicacions Matemàtiques pp. 165–180 (2007),
https://www.raco.cat/index.php/PublicacionsMatematiques/article/
download/69987/387563

58. Odoni, R.: A new equidistribution property of norms of ideals in given classes.
Acta Arithmetica 33(1), 53–63 (1977)

59. Page, A., Wesolowski, B.: The supersingular endomorphism ring and one endo-
morphism problems are equivalent. Cryptology ePrint Archive, Paper 2023/1399
(2023), https://eprint.iacr.org/2023/1399

24

https://doi.org/10.48550/arXiv.2306.03051
https://doi.org/10.48550/arXiv.2306.03051
https://doi.org/10.48550/arXiv.2306.03051
https://doi.org/10.48550/arXiv.2306.03051
https://doi.org/10.1007/3-540-46035-7_3
https://doi.org/10.1007/3-540-46035-7_3
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-14518-6_19
https://doi.org/10.1007/978-3-642-14518-6_19
http://dx.doi.org/10.1007/978-3-642-14518-6_19
http://dx.doi.org/10.1007/978-3-642-14518-6_19
https://i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://www.raco.cat/index.php/PublicacionsMatematiques/article/download/69987/387563
https://www.raco.cat/index.php/PublicacionsMatematiques/article/download/69987/387563
https://eprint.iacr.org/2023/1399


60. Petit, C.: Faster algorithms for isogeny problems using torsion point images.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 330–353. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/
978-3-319-70697-9_12

61. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup prob-
lem with polynomial space. arXiv:quant-ph/0406151 (Jun 2004), http://arxiv.
org/abs/quant-ph/0406151

62. Robert, D.: Evaluating isogenies in polylogarithmic time. Cryptology ePrint
Archive, Report 2022/1068 (2022), https://eprint.iacr.org/2022/1068

63. Robert, D.: Breaking SIDH in polynomial time. In: Hazay and Stam [48], pp. 472–
503. https://doi.org/10.1007/978-3-031-30589-4_17

64. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006), https://eprint.iacr.org/
2006/145

65. Schoof, R.: Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux 7(1), 219–254 (1995), http://www.numdam.org/item/
JTNB_1995__7_1_219_0/

66. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 345–371. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_13

67. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems
are equivalent. In: 62nd FOCS. pp. 1100–1111. IEEE Computer Society Press (Feb
2022). https://doi.org/10.1109/FOCS52979.2021.00109

25

https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
http://arxiv.org/abs/quant-ph/0406151
http://arxiv.org/abs/quant-ph/0406151
https://eprint.iacr.org/2022/1068
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
http://www.numdam.org/item/JTNB_1995__7_1_219_0/
http://www.numdam.org/item/JTNB_1995__7_1_219_0/
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1109/FOCS52979.2021.00109
https://doi.org/10.1109/FOCS52979.2021.00109

	Isogeny problems with level structure
	Introduction
	Level structures
	Modular isogeny problems
	A reduction
	Gamma-SIDH problems in the wild
	The generic isogeny problem
	The SIDH problem
	M-SIDH
	Unipotent SIDH a.k.a. SIDH1
	Borel SIDH a.k.a. SIDH0
	Diagonal SIDH

	Conclusion


