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Abstract. Quantum Fourier Transformation (QFT) needs to construct the rotation gates
with extremely tiny angles. Since it is impossible to physically manipulate such tiny angles
(corresponding to extremely weak energies), those gates should be replaced by some scaled
and controllable gates. The version of QFT is called banded QFT (BQFT), and can be
mathematically specified by Kronecker product and binary fraction. But the systemic
errors of BQFT has never been heuristically estimated. In this paper, we generate the
programming code for BQFT and argue that its systemic errors are not negligible, which
means the physical implementation of QFT with a huge transform size is still a challenge.
To the best of our knowledge, it is the first time to obtain the result.
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1 Introduction

Quantum Fourier Transformation (QFT) plays a pivotal role in Shor algorithm [1], which needs to
apply the rotation gates

Rk =

[
1 0
0 exp(−2π i/2k)

]
, k = 2, 3, · · · , n

to some qubits, where n is the number of qubits used for QFT. The physical manipulation of gates
Rk, k > `, for some global parameter `, is infeasible due to the failure of controlling extremely weak
energy [2]. In 1994, Coppersmith [3] introduced a version of QFT (approximate QFT, AQFT), and
claimed that the matrix entries of AQFT differ from those of QFT by a multiplicative factor of
exp(iε), which leads to an overall error of a fraction of a degree in each phase angle.

In 2004, Fowler and Hollenberg [4, 5] suggested a new scaling technique for QFT, called banded
QFT (BQFT). Its basic idea is to replace any gate Rk, k > `, by

R`,ξ =

[
1 0
0 exp(−2π i ξ/2`)

]
, where ξ ≥ 1.

In 2013, Nam and Blümel [6–8] discussed the scaling laws for BQFT. But so far, the programming
code for BQFT has never been exhibited, which results in the failure to estimate its systemic errors.

In this paper, we generate the programming code for BQFT and investigate its error propagation
mode, which shows that some quantum states produced by BQFT are easily distinguishable from the
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counterparts by QFT. We prove that the systemic errors of BQFT are not negligible. To the best of
our knowledge, it is the first time to invent the estimation method for BQFT.

2 Preliminaries

The state of a qubit is described by a 2-dimensional vector

[
α
β

]
, where α and β are complex numbers

such that |α|2 + |β|2 = 1. The basic two quantum states corresponding to the two states of a classical

bit are defined by bit 0 ↔ |0〉 =

[
1
0

]
, bit 1 ↔ |1〉 =

[
0
1

]
. The basic single-qubit operations

include H = 1√
2

[
1 1
1 −1

]
, T =

[
1 0

0 eiπ/4

]
, S =

[
1 0
0 i

]
, where H is called Hadamard gate.

Clearly, H|0〉 = 1√
2

[
1
1

]
= 1√

2
(|0〉+ |1〉), H|1〉 = 1√

2

[
1
−1

]
= 1√

2
(|0〉 − |1〉).

Given two separate qubits, the corresponding two-qubit state is given by the Kronecker product
of vectors. For example,

[
α
β

]
⊗
[
γ
δ

]
=

 α

[
γ
δ

]
β

[
γ
δ

]
 =


αγ
αδ
βγ
βδ

 .
The basis for two-qubit states consists of

string 00↔ |00〉 =

[
1
0

]
⊗
[

1
0

]
=


1
0
0
0

 , string 01↔ |01〉 =

[
1
0

]
⊗
[

0
1

]
=


0
1
0
0

 ,

string 10↔ |10〉 =

[
0
1

]
⊗
[

1
0

]
=


0
0
1
0

 , string 11↔ |11〉 =

[
0
1

]
⊗
[

0
1

]
=


0
0
0
1

 .
Given a state |x1x2 · · ·xn〉, the below Mathematica code can convert it into a corresponding

binary vector.

Qv[x_]:= Module[{mt, QVrule},(* convert a binary list into a vector *)

QVrule={0->{1,0}, 1->{0,1}}; (* column vector by default *)

mt=ToExpression[x]; (* convert charaters 0, 1 into numbers 0, 1 *)

mt=mt/.QVrule; mt=FoldList[KroneckerProduct, mt]; Flatten[mt[[-1]]]]

x={1, 0, 1, 0, 0}; Qv[x]

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

A unitary transformation on n qubits is a matrix U of size 2n×2n. The CNOT (controlled-NOT)
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gate is a commonly used two-qubit gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Sometimes, two-qubit gates can be described by the tensor product of some single-qubit gates. Not
all two-qubit gates can be written as the tensor product of single-qubit gates. Such a gate is called
an entangling gate, for example, the CNOT gate. The gates H,T and CNOT form a universal gate
set because any general unitary transformation can be broken into a series of two qubit rotations.

The only way to change qubits without measuring is to apply a unitary operation. Quantum
computations can be created by designing unitary operations in sequence, each of which is composed
of smaller operations.

3 Quantum Fourier Transformation

Let n be the number of qubits used for QFT, N = 2n, and ω = exp(−2π i/N). The QFT for n-qubits
is described by the matrix

QFTN =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

... · · ·
...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


The below Mathematica code can generate such a QFT matrix.

QFTMatrix1[n_]:= Module[{K, w, A, B, T, i, j},

(* without the multiplier 1/Sqrt[2^n] *)

K=2^n; w=Exp[-2*Pi*I/K]; B={}; T=Table[1, {i, K}];

For[j=1, j<K, j++, A=Table[w^(i*j), {i, 0, K-1}];

B=Join[B, A]]; Partition[Join[T, B], K]]

The QFT can be decomposed and represented by Kronecker product and binary fraction. Let
x1x2 · · ·xn be a binary string. Its binary fraction is expressed as

0.x1x2 · · ·xn =
x1
2

+
x2
22

+ · · ·+ xn
2n

The QFT performed on state |x1x2 · · ·xn〉 can be represented by

|x1x2 · · ·xn〉
QFT−−−−→ 1√

2n
[|0〉+ e−2π i0.xn |1〉]⊗ [|0〉+ e−2π i0.xn−1xn |1〉]

⊗ · · · ⊗ [|0〉+ e−2π i0.x1x2···xn |1〉] (1)

and further translated into the below quantum circuit (Fig.1, Ref.[9]).
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q1 H Rn Rn−1 R2

q2 H Rn−1 Rn−2

qn−1 H R2

qn H

Figure 1: The QFT circuit for n qubits

The process involving only Kronecker product and binary fraction, can be converted into the
below Mathematica code.

BinaryFraction[x_]:= Module[{mt,s,t,f},

(* the list x corresponding to a binary string *)

f[s_,t_]:=s/2+t; mt=Reverse[x]; mt=ToExpression[mt];

mt=FoldList[f, mt]; mt=Expand[1/2*mt]];

QFT[x_]:=Module[{mt,g,s},(* without the multiplier *)

g[s_]={1,s}; mt=BinaryFraction[x]; mt=Map[Exp,-2*Pi*I*mt];

mt=Map[g,mt]; mt=FoldList[KroneckerProduct, mt]; Flatten[mt[[-1]]]];

QFTMatrix2[n_]:=Module[{v,w}, v=IntegerString[Range[0,2^n-1],2];

v=StringPadLeft[v,n,"0"]; v=MapThread[StringPartition, {v, Table[1, 2^n]}];

MapThread[QFT,{v}]//MatrixForm]

4 Banded Quantum Fourier Transformation

4.1 Description of BQFT

The controlled-rotation gate Rn involves an extremely tiny angle π/2n−1. Notice that the Planck
constant is h = 6.626 × 10−34 joule second. The energy of a free particle with wave function Aeikx

is E = h2k2

8π2m
where m is the mass of this particle, x is the distance between an observer and this

particle, and k is the wave number. It’s easy to find that the physical manipulation corresponding
to the tiny number π/2n−1 cannot be practically performed if n > 120.

The BQFT aims to replace those controlled-rotation gates Rk, k > `. Naturally, it can be repre-
sented as

|x1x2 · · ·xn〉
BQFT−−−−−→ 1√

2n
[|0〉+ e−2π i0.xn |1〉]⊗ [|0〉+ e−2π i0.xn−1xn |1〉]⊗ · · ·

⊗ [|0〉+ e−2π i0.xn−`+1xn−`+2···xn |1〉]

⊗ [|0〉+ e
−2π i(0.xn−`xn−`+1···xn−1+

r1
2`

)|1〉]

⊗ [|0〉+ e
−2π i(0.xn−`−1xn−`···xn−2+

r2
2`

)|1〉]⊗ · · ·

⊗ [|0〉+ e
−2π i(0.x1x2···x`+

rn−`

2`
)|1〉] (2)
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where r1, · · · , rn−` are nonnegative integers.

4.2 Truncated QFT

The noisy factor e
−2π i r

2` is regularly distributed over some components of BQFT|x1x2 · · ·xn〉. To
eliminate its effect and facilitate the construction of quantum circuit, it is usual to take r = 0, i.e.,

each gate Rk, k > ` is replaced by R0 =

[
1 0
0 1

]
. For convenience, we call this version truncated

QFT (TQFT). Its circuit is depicted as follows (Fig.2).

q
1 H R0 R0 R2

q
2 H R0 Rn−2

q
n−1 H R2

q
n H

Figure 2: The TQFT circuit in which Rn, Rn−1 are replaced by R0

The below Mathematica code for TQFT can be easily verified.

TruncatedBinaryFraction[x_, k_]:= Module[{mt, ht, u, n, f, s, t},

(* k is the number of truncated fraction types *)

f[s_, t_]:=s/2+t; n=Length[x]; u=1/2^(n-k+1); mt=Reverse[x]; ht=Take[mt,k];

mt=ToExpression[mt]; mt=FoldList[f,mt]; mt=Expand[1/2*mt];

ht=ToExpression[ht]; ht=FoldList[f,ht]; ht=Expand[u*ht];

ht=PadLeft[ht,n]; mt-ht];

TQFT[x_, k_]:= Module[{mt, g}, g[s_]:={1,s}; mt=TruncatedBinaryFraction[x,k];

mt=Map[Exp, -2*Pi*I*mt]; mt=Map[g, mt];

mt=FoldList[KroneckerProduct, mt]; Flatten[mt[[-1]]]]

x={a, b, c, d, h}; k=0; TQFT[x, k]

k=1; TQFT[x, k]

For example, given the 5-qubit state |abcdh〉, QFT will generate the following state (without the
multiplier 1√

25
)

{ 1,e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π, e−2i(
c
2
+ d

4
+h

8 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( c
2
+ d

4
+h

8 )π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π, e−2i(
d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( d
2
+h

4 )π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π,
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e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π, e−2i(
c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π, e−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−ihπ, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−ihπ, e−2i(
c
2
+ d

4
+h

8 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( c
2
+ d

4
+h

8 )π−ihπ, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−ihπ, e−2i(
d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( d
2
+h

4 )π−ihπ, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π−ihπ, e−2i(
c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ,

e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16
+ h

32)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ }

If the gate R5 is replaced by the unit gate R0, the TQFT will generate the below state

{ 1,e−2i(
a
2
+ b

4
+ c

8
+ d

16)π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π, e−2i(
c
2
+ d

4
+h

8 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( c
2
+ d

4
+h

8 )π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π, e−2i(
d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( d
2
+h

4 )π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π, e−2i(
c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π, e−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−ihπ, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−ihπ, e−2i(
c
2
+ d

4
+h

8 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( c
2
+ d

4
+h

8 )π−ihπ, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−ihπ, e−2i(
d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( d
2
+h

4 )π−ihπ, e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( d
2
+h

4 )π−ihπ, e−2i(
c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ,

e−2i(
b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ,

e−2i(
a
2
+ b

4
+ c

8
+ d

16)π−2i( b
2
+ c

4
+ d

8
+ h

16)π−2i( c
2
+ d

4
+h

8 )π−2i( d
2
+h

4 )π−ihπ }
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The factor e−2π i
h
32 in 16 components are eliminated.

The below Mathematica code can be used to construct TQFT matrix.

GetMatrix[n_, k_]:= Module[{v, w}, (* n is the number of qubits,

k is the number of truncated fraction types *)

v=IntegerString[Range[0,2^n-1],2]; v=StringPadLeft[v,n,"0"];

v=MapThread[StringPartition,{v,Table[1,2^n]}];

w=ToExpression[Table[k,2^n]]; MapThread[TQFT,{v,w}]//MatrixForm]

For example, GetMatrix[4, 1] outputs the below matrix (Fig.3). By induction, we have the following
result.

Figure 3: The matrix for 4-qubit TQFT with 1 truncated fraction type

Theorem 1. The TQFT matrix is unitary, symmetric, and invertible. Its inverse transformation
has the same decomposition as TQFT, using Kronecker product and binary fraction, but in which
−2π is replaced with 2π. The quantum circuit of TQFT likes that of QFT, except replacing any gate
Rk, k > ` with the unit gate R0.

4.3 The systemic errors of TQFT

It is easy to find the difference between QFT and TQFT for n-qubit state |x1x2 · · ·xn〉, namely, the
factors

e
−2π i xn

2`+1 ,

e
−2π ixn−1

2`+1 , e
−2π i xn

2`+2 ,

e
−2π ixn−2

2`+1 , e
−2π ixn−1

2`+2 , e
−2π i xn

2`+3 ,

...

e
−2π i

x`+1

2`+1 , · · · , e−2π i
xn−1

2n−1 , e−2π i
xn
2n
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are eliminated. Notice that the second component of QFT|x1x2 · · ·xn〉 has the angle

α2 := −2π
(x1

2
+
x2
22

+ · · ·+ x`
2`

+ · · ·+ xn
2n

)
whlie the counterpart of TQFT|x1x2 · · ·xn〉 is

β2 := −2π
(x1

2
+
x2
22

+ · · ·+ x`
2`

)
The third component of QFT|x1x2 · · ·xn〉 has the angle

α3 := −2π
(x2

2
+
x3
22

+ · · ·+ x`
2`−1

+ · · ·+ xn
2n−1

)
while its counterpart is

β3 := −2π
(x2

2
+
x3
22

+ · · ·+ x`
2`−1

)
If x1 = x2 = · · · = x`−1 = 0, x` = · · · = xn = 1 and n� `, then

α2 = −2π

(
1

2`
+ · · ·+ 1

2n

)
≈ − π

2`−2
, β2 = − π

2`−1
, α2/β2 ≈ 2

Likewise, we have α3/β3 ≈ 2, etc. The ratio is too big to neglect.

Theorem 2. Let ` be the threshold value for rotation gates Rk, ` < k ≤ n, where n is the
number of qubits for QFT. Then the systemic error distribution of TQFT is unbalanced. For some
inputs, the ratios of some rotation angles in state QFT|x1x2 · · ·xn〉 to their counterparts in state
TQFT|x1x2 · · ·xn〉 approximate 2.

5 Further discussions

As we see, the QFT is not used in isolation. Its inverse QFT−1 should be used later. For example,

binary string x1x2 · · ·xn
modulation−−−−−−−−−−→
[phase-1]

|x1x2 · · ·xn〉

QFT−−−−−−→
[phase-2]

1√
2n

2n−1∑
i=0

e−2π iωi |χi〉

QFT−1

−−−−−−−−→
[phase-3]

1√
2n

2n−1∑
i=0

e−2π iϑi |ξi〉

measurement−−−−−−−−−−−→
[phase-4]

binary string y1y2 · · · yn

Only phase-1 and phase-2 can be numerically simulated. The phase-3 cannot be simulated, because
its input is a superposition. So, the overall error of TQFT and TQFT−1 cannot be estimated
mathematically. Can the current quantum computers, including IBM Heron 133-qubit processor and
Google Sycamore quantum chip, be used to test QFT or TQFT to certify themselves?
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6 Conclusion

We generate the programming codes to test the TQFT and show its systemic errors are not negligible.
We want to stress that it is impossible to efficiently implement QFT with a big transform size using
the current quantum technology.
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Appendix: Approximate Quantum Fourier Transformation

The AQFT introduced by Coppersmith [3] is a version of QFT. The matrix entries of AQFT differ
from those of QFT by a multiplicative factor of exp(iε). For example, the AQFT matrix on 3 electrons
can be decomposed as below (see Ref.[3]), where ω = exp(−2πi/8), and the rows are numbered in
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bit-reversed order (04261537).

eπ i(2ε1+ε2)√
8



1 1 1 1 1 1 1 1
1 ω4 1 ω4 1 ω4 1 ω4

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω7 ω6 ω5 ω4 ω3 ω2 ω



=
1√
2



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1


× eπ i ε1



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 ω2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 ω2



× eπ i ε2



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 ω 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 ω


× 1√

2



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1



× eπ i ε1



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 ω2 0
0 0 0 0 0 0 0 ω2


× 1√

2



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


It is worth noting that the AQFT matrix is eventually specified by matrix decomposition and

bit-reversed order. There is at least one sparse matrix involving the least rotation angle π/2n−1,
when n qubits are used. The least angle can be scaled to πϕ := π(ε + 1

2n−1 ) > π/2` by choosing
proper ε. Some entries of value 1 or −1 in the same sparse matrix are simultaneously scaled to
π ε = πϕ− π

2n−1 > π/2`. But so far, the quantum circuit for AQFT has never been discovered.
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