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Abstract. We analyze Layered ROLLO-I, a code-based cryptosystem
published in IEEE Communications Letters and submitted to the Ko-
rean post-quantum cryptography competition. Four versions of Layered
ROLLO-I have been proposed in the competition. We show that the first
two versions do not provide the claimed security against rank decoding
attacks and give reductions to small instances of the original ROLLO-I
scheme, which was a candidate in the NIST competition and eliminated
there due to rank decoding attacks. As a second contribution, we pro-
vide two efficient message recovery attacks, affecting every security level
of the first three versions of Layered ROLLO-I and security levels 128
and 192 of the fourth version.
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1 Introduction

The advancement of research in quantum technologies poses an increasing threat
to, e.g., the daily security of communications. For example, Shor’s algorithm [18]
enables a quantum computer to solve the classically hard problems underlying
current widely adopted asymmetric cryptography. A new area of cryptographic
research, called post-quantum cryptography [5], is active in developing cryptosys-
tems that can resist such a threat. One branch of post-quantum cryptography,
called code-based cryptography, studies cryptosystems which base their security
on hard problems coming from the theory of error-correcting codes. For an up-
to-date survey of code-based cryptography, we refer the reader to [19]. The very
first proposal of such a cryptosystem has been described in 1978 by Robert J.
McEliece [15] which uses Goppa codes [7]. Despite more than 45 years of anal-
ysis the cryptosystem essentially still maintains the same security, however, the
system imposes huge public keys which are prohibitive for applications that fre-
quently send public keys. Many attempts have been made to decrease the key
size, mainly by replacing Goppa codes with families of structured linear codes,
but promptly being proved insecure shortly after.
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Another strategy to tackle the key size issue is that of considering codes
endowed with the rank metric, which allows a more compact representation of
codes. Rank metric codes were introduced to cryptography by Gabidulin, Para-
monov, and Tretjakov at Eurocrypt’91 [6] but attacked and broken 10 years later
by Overbeck in several papers, covered in [16]. In 2017, the NIST competition
on post-quantum cryptography saw a revival of rank-metric codes in rounds 1
and 2 until some new algebraic attacks [2,4] were found near the end of round
2. These attacks did not completely break the systems and larger parameters
were proposed that would resist the new attacks, but the attacks showed that
rank-metric codes were not mature enough to be used. Furthermore, the larger
parameters would have hurt the performance of the systems. Consequently, NIST
deselected all rank-metric-based designs from advancing to round 3.

In this paper, we analyze a blockwise interleaved ideal low-rank parity-check
(BII-LRPC) code-based KEM, which was proposed by Kim, Kim, and No in [12]
and submitted to the Korean post-quantum Cryptography (KpqC) competition
under the name Layered ROLLO-I [8]. Layered ROLLO-I is a modified version of
the NIST candidate ROLLO [1], and particularly of ROLLO-I. Layered ROLLO-
I adds additional structure to increase the length of the codewords that an
attacker is faced with while at the same time permitting the legitimate receiver,
using the secret key, to peel off this layer of structure and then to perform
rank decoding with parameters which are even smaller than in ROLLO-I, thus
increasing performance.

In this paper, we describe attacks on four versions of Layered ROLLO-I
that have been released subsequently to the communication of our analyses on
the KpqC bulletin. We show how to reduce every instance of the first two ver-
sions to an instance of the original ROLLO-I at the smaller parameter size that
Layered ROLLO-I uses internally. This shows that the additional structure does
not add any security. As a consequence, the parameter sets proposed for Layered
ROLLO-I offer less security than the parameter sets for the corresponding levels
in the original ROLLO-I. After these two reduction attacks, we show a message
recovery attack that works very efficiently for all parameter sets in the first three
versions and for two out of three levels for the fourth version.

We emphasize that the message recovery attack applies to all versions and
thus is the more powerful attack. We chose to present our results in this order to
build up to the more devastating attack and included both approaches because
possible fixes would need to target different aspects of the system and in part
have mitigated the attacks.

This paper is organized as follows. The next section is dedicated to the needed
notation and background along with the description of ROLLO-I and the most
relevant approaches to Rank Syndrome Decoding (RSD). For the sake of simplic-
ity, we will refrain from introducing the entire framework of (ideal and blockwise
interleaved ideal) low-rank parity check (LRPC) codes, since these notions will
not be directly used in the attacks and analysis. In Section 3.1, we give the spec-
ification of Layered ROLLO-I [8,12] and propose an attack reducing Layered
ROLLO-I to ROLLO-I and recalculate costs of RSD attacks following the im-

https://groups.google.com/g/kpqc-bulletin
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provements in [3,4,2] (covered in Section 2). In Section 3.2, we describe the first
Modified Layered ROLLO-I (MLR1) system [9]. We then show that we can adapt
the attack in Section 3.1 to reduce this system to ROLLO-I, again with smaller
parameters, and further improve on RSD attacks complexities. Section 4 intro-
duces two message recovery attacks. In Section 4.1, we describe the second
modified Layered ROLLO-I (MLR2) [10] that resists the reduction attacks pre-
sented in Section 3. We propose an efficient message recovery attack that can
be applied to all the versions of Section 3 and MLR2. Finally, in Section 4.3
we introduce the third modified Layered ROLLO-I (MLR3) [11] and a message
recovery attack. This attack recovers messages efficiently for security levels 128
and 192 of MLR3.

2 Notation and background

This section gives the necessary background on rank-metric codes for the rest of
the paper. Let {α1, . . . , αm} be a basis of Fqm over Fq. Write v ∈ Fqm uniquely as
v =

∑m
i=1 Viαi, Vi ∈ Fq for all i. So v can be represented as (V1, . . . , Vm) ∈ Fm

q .
We will call this the vector representation of v. Extend this process to v =
(v1, . . . , vn) ∈ Fn

qm defining a map Mat : Fn
qm → Fm×n

q by:

v 7→


V11 V21 . . . Vn1

V12 V22 . . . Vn2

...
...

. . .
...

V1m V2m . . . Vnm

 .

Definition 1. The rank weight of v ∈ Fn
qm is defined as wtR(v) := rkq(Mat(v))

and the rank distance between v,w ∈ Fn
qm is dR(v,w) := wtR(v −w).

Remark 2. It can be shown that the rank distance does not depend on the choice
of the basis of Fqm over Fq. In particular, the choice of the basis is irrelevant for
the results in this document.

When talking about the space spanned by v ∈ Fn
qm , denoted as ⟨v⟩, we mean

the Fq-subspace of Fm
q spanned by the columns of Mat(v).

For completeness, we introduce the Hamming weight and the Hamming dis-
tance. These notions will be used in our message recovery attacks.

The Hamming weight of a vector v ∈ Fn
qm is defined as wtH(v) := #{i ∈

{1, . . . , n} | vi ̸= 0} and the Hamming distance between vectors v,w ∈ Fn
qm is

defined as dH(v,w) := wtH(v −w).
Let D = dR or D = dH . Then an [n, k, d]-code C with respect to D over Fqm

is a k-dimensional Fqm-linear subspace of Fn
qm with minimum distance

d := min
a,b∈C, a̸=b

D(a,b)

and correction capability ⌊(d − 1)/2⌋. If D = dR (resp. D = dH) then the
code C is also called a rank-metric (resp. Hamming-metric) code. All codes in
this document are linear over the field extension Fqm .

https://10836797700226419832.googlegroups.com/attach/1fedaa7b4b23f/Layered_ROLLO_Documentation.pdf?part=0.1&view=1&vt=ANaJVrGNpL1moJsbRyAkSVyreW0cSZmmzrOrwxQInaWYgCevGYEngIlPD5JnU6ePy4lGWyAeErr6M3j2WEgEzrzJ5gOjyzLd-do0qAbQr3RQGL2M2A9jIEk
https://10836797700226419832.googlegroups.com/attach/1fedaa7b4b23f/Layered_ROLLO_Documentation.pdf?part=0.1&view=1&vt=ANaJVrGNpL1moJsbRyAkSVyreW0cSZmmzrOrwxQInaWYgCevGYEngIlPD5JnU6ePy4lGWyAeErr6M3j2WEgEzrzJ5gOjyzLd-do0qAbQr3RQGL2M2A9jIEk
https://10836797700226419832.googlegroups.com/attach/24a65e7d8fda/New_Comments_230922.pdf?part=0.1&view=1&vt=ANaJVrGBH1MgahLejK7mxE3vVph6mmK3e5t-3Ejzl4lwq2fkqGN0JqCtWGFBxacajHWYhpH38IFpfF_r8ofXherqhHRaYIygfnhbDQCZ5DYgAkYS8heudTE
https://10836797700226419832.googlegroups.com/attach/24a65e7d8fda/New_Comments_230922.pdf?part=0.1&view=1&vt=ANaJVrGBH1MgahLejK7mxE3vVph6mmK3e5t-3Ejzl4lwq2fkqGN0JqCtWGFBxacajHWYhpH38IFpfF_r8ofXherqhHRaYIygfnhbDQCZ5DYgAkYS8heudTE
https://10836797700226419832.googlegroups.com/attach/7a3160382b61/New_Comments_231020.pdf?part=0.1&view=1&vt=ANaJVrGZsW7qx4_m1uPwS75Beovd4eafVAWKDEwvkPK9pYj18wZEqLLYNLv40aS8jneSPdNVy90rbVD579leHykP0SN2ZkRjj2ILS1CjDa6VJKqb3aBPdAs
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We say that G ∈ Fk×n
qm is a generator matrix of C if its rows span C. We say

that H ∈ F(n−k)×n
qm is a parity check matrix of C if C is the right-kernel of H.

In the specifications of this paper, we will follow the notation of [12] with
minor changes. Denote by Sn

w(Fqm) the set of vectors of length n and rank weight
w over Fqm :

Sn
w(Fqm) = {v ∈ Fn

qm | wtR(v) = w}.

Let w = c + e for some codeword c ∈ C and error vector e ∈ Fn
qm with

wtR(e) ≤ r and let s = wHT ∈ Fn−k
qm be the syndrome of w using a parity-check

matrix H of the code.

The Rank Support Recovery (RSR(F, s, r)) algorithm is used as a decoder in
the decapsulation procedures of ROLLO-I and the follow-up designs. It recovers
the support E of (the Fq-linear subspace of Fqm generated by) the error vector e
given the support F of the dual code3, the syndrome s, and the rank r of the
error. This corresponds to actually finding the error coordinates, by solving a
linear system of equations (see p. 13 of the ROLLO specification [1]).

Let P (x) ∈ Fqm [x] be a polynomial of degree n. We can add an algebraic
structure to the vector space Fn

qm by interpreting vectors as coefficient vectors
of the ring Fqm [x]/(P (x)), where (P (x)) is the ideal of Fqm [x] generated by
P (x). Given u = (u0, . . . , un−1) ∈ Fn

qm , denote by u(x) ∈ Fqm [x] the polynomial

u(x) =
∑n−1

i=0 uix
i. Given u,v ∈ Fn

qm , we define their product uv as the unique
vector w ∈ Fn

qm such that w(x) = u(x)v(x) mod P (x). Similarly, we define
Qu = Q(x)u(x) mod P (x) for Q(x) ∈ Fqm [x] and define u−1 for u(x) invertible
modulo P (x).

Given two polynomials R(x), P (x) ∈ Fqm [x] the matrix representing multi-
plication by R(x) mod P (x) is denoted by

MR,P =


R(x) mod P (x)
R(x)x mod P (x)

...
R(x)xdeg(P (x))−1 mod P (x)

 , (1)

where each row consists of the coefficient vector of R(x)xi mod P (x) for i =
0, . . . ,deg(P (x))− 1.

Let A be any n×m matrix, with n,m ∈ N. We denote by A[a : b, c : d], with
a < b ∈ [1, n] and c < d ∈ [1,m], the submatrix of A consisting of the rows in the
range [a, b] and columns in the range [c, d]. We omit a and b, i.e. use A[:, c : d], to
denote the submatrix consisting of all the rows and columns in [c, d]. Similarly,
for all the columns. With this notation A = A[:, :]. If S1 ⊂ [1, n] and S2 ⊂ [1,m]
we denote by A[S1, S2] the submatrix of A consisting of rows indexed by S1 and
columns indexed by S2.

3 Thus F defines the parity check for the code.
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2.1 ROLLO-I

We give a simple description of ROLLO-I [1], which is the core of Layered
ROLLO-I.

The values (q, n,m, r, d, P ) are the system parameters, where q, n,m, r, d are
integers and P (x) ∈ Fq[x] is a primitive polynomial of degree n.

– KeyGen:

• Pick random x,y ∈ Sn
d (Fqm).

• Set h(x) = x(x)−1y(x) mod P (x).
• Return pk = h and sk = (x,y).

– Encap(pk):
• Pick random (e1, e2) ∈ S2n

r (Fqm).
• Set E = ⟨e1, e2⟩, where ⟨e1, e2⟩ denotes the Fq-vector space spanned by
the columns of e1 and e2 (interpreted as vectors in Fm

q ).
• Return K = hash(E) and c(x) = e1(x) + e2(x)h(x) mod P (x).

– Decap(sk):
• Set s(x) = x(x)c(x) mod P (x), F = ⟨x,y⟩ and E = RSR(F, s, r).
• Return K = hash(E).

ROLLO-I, and consequently Layered ROLLO-I, base their security on a spe-
cial configuration of the Rank Syndrome Decoding problem.

Definition 3 (RSD problem). Given a matrix H ∈ F(n−k)×n
qm , an element

s ∈ Fn−k
qm and a positive integer w ∈ Z, the RSD(n, k, s, w) problem asks to

compute v ∈ Fn
qm such that Hv⊤ = s and wtR(v) = w.

NIST deselected ROLLO-I in the second round of its post-quantum standard-
ization effort, after the development of a new algebraic attack [2] on the RSD
problem. The attack substantially associates a system of multivariate equations
over Fqm to the RSD instance and employs Gröbner basis techniques to find the
solution. Among the proposed variants of the attack, the most relevant for this
paper has complexity

O
((

((m+ n)w)w+1

(w + 1)!

)ω)
, (2)

where ω = 2.3727 is the exponent for matrix multiplication.
Further improvements to algebraic attacks have been introduced shortly after

in [4], describing solving approaches specialized to the characteristic of the sys-
tem of equations associated with the RSD instance. One approach that turned
out to be quite effective to the RSD instances treated in this paper targets the
case that the system of equation is over-determined. Without going too much in
the detail, the complexity of such approach in solving RSD(n, k, s, w) is given
by

O

(
m

(
n+ k − 1

w

)(
n

w

)ω−1
)
. (3)
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It is worth noting that one of the approaches has been proven too optimistic
in a later paper [3], hence has not been taken in consideration in our work. Nev-
ertheless, the latter paper proposes a further approach that conjecturally fixes
the bugged strategy, backed by experimental results. The idea is that the system
associated with the RSD instance considers both polynomials over the base field
Fq as well as over the extension field Fqm . Polynomials are then homogenized
multiplying by degree-b monomials and then the system is solved by lineariza-

tion, where b is minimal such that N Fq

b ≥ MFq

b − 1, following the notation

N Fq

b = N Fqm

b −N Fq

b,syz,

N Fqm

b =

k∑
s=1

(
n− s

t

)(
k + b− 1− s

b− 1

)
−
(
n− k − 1

t

)(
k − b− 1

b

)
,

N Fq

b,syz = (m− 1)

b∑
s=1

(−1)(s+1)

(
k + b− s− 1

b− s

)(
n− k − 1

t+ s

)
, and

MFq

b =

(
k + b− 1

b

)((
n

t

)
−m

(
n− k − 1

t

))
.

The complexity of solving the system is

T (m,n, k, t) = O
(
m2N Fq

b

(
MFq

b

)ω−1
)
.

A relevant attack for our work, which is a hybrid strategy described in [3] that
combines brute force with the mentioned linearization method, has complexity

min
a≥0

(
qta · T (m,n− a, k − a, t)

)
. (4)

3 Reduction Attacks

Layered ROLLO-I introduced a structure of layers. Due to the special structure,
the designers highlighted a performance improvement by 30-70% compared to
ROLLO-I at what they considered the same security level. In this section, we give
a simple description of Layered ROLLO-I and its variants and then show that the
layer can be removed by exploiting public information. As a result, the security
of each algorithm is reduced to that of ROLLO-I for the small parameters inside
the layer, which gives far lower complexity than was suggested in [8,12].

3.1 Layered ROLLO-I

The values (q, n,m, r, d, b, P ) are the system parameters, where q, n,m, r, d, b are
integers, with n a multiple of b, and P (x) ∈ Fq[x] is a primitive polynomial of
degree n/b.
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Remark 4. Note that the choice of P (x) defined over Fq[x] instead of Fqm [x] is
essential to maintain the ideal LRPC structure of the inner ROLLO-I code, see [8,
Section 2.3]. This is not made explicit in the Layered ROLLO-I submission, but
was used in their implementation, which took the ROLLO-I implementation and
added the additional structure without touching the definition of P .

For all parameter sets defined in [12] we have b = 2 and in any case b < n/b.
Layered ROLLO-I mainly works in two different polynomial rings, the small
one Fqm [x]/(P (x)) where every operation regarding the core ROLLO-I scheme
is carried out, and the large one Fqm [x]/(P (x)b) where operation concerning the
outer layer is performed. The intended communication parties face encoding and
decoding in the small ring. An attacker is instead meant to deal with elements
and operations in the larger ring which require a bigger computational effort.

Elements of the two polynomial rings are transformed using the two following
maps. The map

Ψ : Fqm [x]/(P (x)) → Fqm [x]/(P (x)b)

lifts polynomials of the first quotient to the second quotient by mapping the
input to the unique polynomial of degree < n/b that is congruent to it modulo
P (x)b. Similarly, the map

Ω : Fqm [x]/(P (x)b) → Fqm [x]/(P (x))

reduces the input modulo P (x). Since P (x)b is a multiple of P (x) these maps
are well-defined.

We are now all set to describe the Layered-ROLLO-I KEM.

– KeyGen:

• Pick random x,y ∈ S
n/b
d (Fqm).

• Pick random invertible PI(x) ∈ Fqm [x]/(P (x)) of degree (b− 1).
• Pick random PO(x), PN (x) ∈ Fqm [x]/(P (x)b) of degree n, with PO(x)
invertible (this last restriction is not stated but is required for function-
ality).

• Set z(x) = PI(x)x(x)
−1y(x) mod P (x).

• Set PP (x) = PO(x)Ψ(PI(x)) mod P (x)b and PH(x) = PO(x)Ψ(z(x)) +
PN (x)P (x) mod P (x)b.

• Return pk = (PP , PH) and sk = (x,y, PO, PI).
– Encap(pk):

• Pick random E = ⟨e1, e2⟩ with (e1, e2) ∈ S
2n/b
r (Fqm), each correspond-

ing to a polynomial of degree < n/b− b.
• Set PE1

(x) = Ψ(e1(x)) and PE2
(x) = Ψ(e2(x)).

• Compute
c(x) = PP (x)PE1(x) + PH(x)PE2(x) mod P (x)b.

• Return K = hash(E) and c.
– Decap(sk):

• Compute PC(x) = PO(x)
−1c(x) mod P (x)b.

• Compute c′(x) = PI(x)
−1Ω(PC(x)) mod P (x).
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• Decode E = RSR(⟨x,y⟩,xc′, r).
• Return K = hash(E).

We want to stress that the attacker thus faces polynomials modulo P (x)b

as public key and as ciphertexts. These correspond to vectors of length n. The
decapsulation process removes the outer layer so that the RSR step works modulo
P and thus on vectors of length n/b.

Reduction of Layered ROLLO-I to ROLLO-I. We propose a new reduction
of Layered ROLLO-I to ROLLO-I by using exclusively the public key of the
former. The goal is to remove the outer layer and expose the public key and
ciphertext of the inner ROLLO-I scheme.

Remark 5. Notice that PO must have an inverse modulo P b. This has not been
declared in the specification but the decapsulation process requires P−1

O . If not,
decapsulation fails. Also, PI is irreducible of degree (b− 1) < n/b = deg(P (x)),
so it has an inverse modulo P and thus Ψ(PI) is invertible modulo P b.

Algorithm ReduceLayeredROLLO-I
Input : A public key pk = (PP , PH) and a ciphertext c of Layered ROLLO-I.
Output : A public key pk′ and a ciphertext c′ of the inner ROLLO-I.

1. Compute PP inv(x) = PP (x)
−1 mod P (x)b;

2. Compute pk′ = Ω(PP invPH(x));
3. Compute c′ = Ω(PP invc(x));
4. Return pk′ and c′.

Proposition 6. Given a public key and a ciphertext of Layered ROLLO-I, al-
gorithm ReduceLayeredROLLO-I computes the public key and the corresponding
ciphertext of the inner ROLLO-I scheme in time O((n2m2 log2(q))

2).

Proof. From Remark 5, we can invert PP (x) modulo P (x)b. Hence Step 2 first
computes

PP (x)
−1PH(x) = (Ψ(PI(x)))

−1Ψ(z(x)) + PP (x)
−1PN (x)P (x) + k(x)P (x)b (5)

for some k(x) ∈ Fqm [x]. Since P divides P b, we can reduce the equation modulo
P , obtaining

Ω(PP (x)
−1PH(x)) = Ω((Ψ(PI(x)))

−1Ψ(z(x)))

≡ (PI(x))
−1PI(x)x(x)

−1y(x)

≡ x(x)−1y(x) mod P (x),

where the second equivalence follows from thatΩ(Ψ(z(x))) ≡ PI(x)x(x)
−1y(x) mod

P (x) and Ω((Ψ(PI(x)))
−1) ≡ PI(x)

−1 mod P (x). This shows that the public key
of (q, n,m, r, d, b)-Layered ROLLO-I can be mapped efficiently to the public key
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of (q, n/b,m, r, d)-ROLLO-I, validating step 2.
The same can be done for ciphertexts in step 3, by computing

PP (x)
−1c(x) ≡ PP (x)

−1(PP (x)PE1
(x) + PH(x)PE2

(x))

≡ e1(x) + y(x)x(x)−1e2(x) mod P (x),

which is exactly a ROLLO-I ciphertext.

The complexity of the algorithm is dominated by that of inverting and mul-
tiplying polynomials in Fqm [x] which can be performed in O((n2m2 log2(q))

2)
taking schoolbook multiplication in Fqm and Fqm [x].

⊓⊔

Therefore, it is possible to reduce an entire instance of (q, n,m, r, d, b)-Layered
ROLLO-I to an instance of (q, n/b,m, r, d)-ROLLO-I.

Estimates for the security of Layered ROLLO-I. Layered ROLLO-I [8,12]
considers an attack that removes the layer of a BII-LRPC code using exhaustive
search and applies a structural attack to an instance of (q, n/b,m, r, d)-ROLLO-
I. Their estimated cost of the attack is shown in the third column of Table 1.
However, the calculation is wrong and furthermore, the formula given in [12] has
a typo. The correct formula for the attack is given below.

S′
S =

(n
b

)3
m3q(b−1)m+d⌈m

2 ⌉−m−n
b . (6)

While the correct formula in (6) increases attack complexity when compared to
the suggested one in [12], the accurate computation yields significantly lower
complexity, which are 65, 112, and 131 bits, respectively.

As we mentioned in Section 2.1, we consider the attacks in [3,4,2], where
we discard the options in [4] that have been proved too optimistic in [3]. For
the parameters ranges selected for Layered ROLLO-I, the most efficient attacks
have complexities as in (3) and (4). For a concise overview of the latest devel-
opments in rank decoding attacks, we refer the reader to [14, Section 6]. Since
Layered ROLLO-I did not consider applying these three attacks on the original
parameters directly, we recompute the costs of rank decoding attacks, finding
out that the proposed parameters did not meet the requirements for the claimed
security levels. The complexities of the attacks are computed using the script
provided in [13], the Sage script performs puncturing of the public code to find
the optimal complexity. The costs of the most efficient among these attacks are
reported in the fourth column of Table 1. The last column reports the cost of
these attacks on the system after our reduction.
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Security (q, n,m, r, d, b) Cost [12] Cost Cost red.

128 (2, 148, 67, 3, 2, 2) 130.83 48.76 (3) 40.65 (3)

192 (2, 172, 79, 4, 3, 2) 199.19 66.21 (3) 55.16 (3)

256 (2, 212, 97, 5, 3, 2) 274.98 85.68 (3) 72.05 (3)
Table 1. Suggested parameters and values of the log2 of attack costs for Layered
ROLLO-I’s suggested parameters. Cost [12] refers to the cost stated in the paper in-
troducing the system; references after the costs refer to the complexity formula which
gives the best value on these parameters.

3.2 First Modified Layered ROLLO-I (MLR1)

This subsection extracts the description of the modified system MLR1 from [9].
The designers modified the system to overcome the reduction in Section 3.1
by replacing the two moduli P and P b by two primitive polynomials P1 and
P2 of degree n1 and n2, respectively. Because they are primitive they are in
particular irreducible and thus coprime. In this setting, one cannot simply reduce
equation (5) modulo P1 as the term k(x)P2(x) would not vanish which seems to
stop the attack.

Remark 7. For the same reasons pointed out in Remark 4 one needs P1 to be
defined over the ring Fq[x].

In this setting, Ω first lifts to Fqm [x] choosing the unique polynomial of degree
less than n2 and then reduces modulo P1, Ψ similarly lifts to Fqm [x] choosing
the unique polynomial of degree less than n1 and then considers this polynomial
modulo P2. Given that n2 > n1 no reduction is needed.

The values (q, n1, n2, dI ,m, r, d), where dI < n1 < n2 are the system pa-
rameters. The two polynomials P1 and P2 are primitive of degrees n1 and n2

respectively. These are not stated among the system parameters but are needed
for the functioning of the system. In the following, we assume that P1 and P2

are part of the system parameters.

– KeyGen:
• Pick random x,y ∈ Sn1

d (Fqm).
• Pick random invertible PI(x) ∈ Fqm [x]/(P1(x)) of degree dI .
• Pick random PO(x) ∈ Fqm [x]/(P2(x)).
• Set z(x) = PI(x)x(x)

−1y(x) mod P1(x).
• Set PP (x) = PO(x)Ψ(PI(x)) mod P2(x) and PH(x) = PO(x)Ψ(z(x)) mod
P2(x).

• Return pk = (PP , PH) and sk = (x,y, PO, PI).

– Encap(pk):
• Pick random E = ⟨e1, e2⟩ with (e1, e2) ∈ S2n2

r (Fqm) each corresponding
to a polynomial of degree < n2 − n1 − dI .

• Set PE1
= e1(x) and PE2

= e2(x).
• Compute c(x) = PP (x)PE1

(x) + PH(x)PE2
(x) mod P2(x).
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• Return K = hash(E) and c.
– Decap(sk):

• Compute c′′(x) = PO(x)
−1c(x) mod P2(x).

• Compute c′(x) = PI(x)
−1Ω(c′′(x)) mod P1(x).

• Decode E = RSR(⟨x,y⟩,xc′, r).
• Return K = hash(E).

Note that all polynomials are invertible modulo P1(x) and modulo P2(x)
because those are irreducible.

Remark 8. Note also that the coprime moduli and choosing e1, e2 ∈ Sn2
r (Fqm)

(rather than in Sn1
r (Fqm) as required in the RSR computation) might make it

seem like decapsulation cannot recover E. The KEM works around this problem
by reducing the degrees of e1(x) and e2(x) to < n2 − n1 − dI which by Table 2
is < n1 for all chosen parameters, so that Ω(PEi

(x)) = PEi
(x). This property is

essential for decapsulation to work.

Decapsulation works because

c′′(x) = PO(x)
−1(PP (x)PE1(x) + PH(x)PE2(x))

= PO(x)
−1(PO(x)Ψ(PI(x))PE1(x) + PO(x)Ψ(z(x))PE2(x))

= Ψ(PI(x))PE1(x) + Ψ(z(x))PE2(x) mod P2(x)

and the degree of Ψ(PI(x))PE1(x) + Ψ(z(x))PE2(x) is < n2 by the choice of the
error vectors. Hence, c′′(x) = Ψ(PI(x))PE1

(x) + Ψ(z(x)PE2(x) in Fqm [x] i.e.,
without reduction, and thus the reduction modulo P1(x) preserves the factors
PI(x) which can then be divided out. Finally, by Remark 8, Ω(PEi

(x)) = PEi
(x).

Reduction of MLR1 to ROLLO-I. We will describe a reduction of MLR1.
Along the way we compute PI and PO, meaning that the system leaks parts of
the private key.

The idea of the reduction remains the same, observing that PH(x)/PP (x)
cancels the term PO. However, because of the coprimality of the moduli, we
cannot proceed directly from there to reducing modulo P1. Nevertheless, we
know that the polynomials involved have very low degrees which will provide a
set of linear equations which will allow to compute Ψ(PI) and Ψ(z(x)).

Algorithm ReduceMLR1
Input : A public key pk = (PP , PH) and a ciphertext c of MLR1.
Output : A public key pk′ and a ciphertext c′ of the inner ROLLO-I.

1. Compute R(x) = PH(x)/PP (x) mod P2(x);
2. Compute matrix MR,P2

;
3. Put MR = MR,P2 [1 : dI + 1, n1 + 1 : n2];
4. Solve vMR = 0 for nonzero v;
5. Compute P ′

O(x) = PP (x)v(x)
−1 mod P2(x);

6. Compute z′(x) = PH(x)P ′
O(x)

−1 mod P2(x);
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7. Compute pk′ = Ω(z′(x)v(x)−1 mod P2(x));
8. Compute c′ = Ω(c(x)P ′

O(x)
−1 mod P2(x))v(x)

−1 mod P1(x);
9. Return pk′ and c′.

Step 4 is computed by taking a (dI +1)×dI submatrix MR[:, J ] of MR, with
#J = dI , because the left kernel of that is typically no larger than that of MR.
If the kernel has dimension larger than 1, more columns of MR are included.

Our experiments have not encountered a case where rk(MR) < dI .

Proposition 9. Given a public key and a ciphertext of MLR1, algorithm ReduceMLR1
takes time O(dIn

2
2m

2(log(q))2) and outputs polynomials pk′ and c′ of degree < n1

satisfying c′ = e1 + e2pk
′ for some e1, e2.

If rk(MR) = dI these are the public key and the corresponding ciphertext of
the inner ROLLO-I scheme.

Proof. Since R(x) is computed modulo P2(x) we have deg(R(x)) < n2 and
R(x) = Ψ(z(x))/Ψ(PI(x)) mod P2(x) where deg(z(x)) < n1 and deg(PI(x)) =
dI are small. Note that the division might cancel common factors of PI and z,
however, given the degrees this is unlikely.

The polynomial P2 is irreducible and thus Fqm [x]/(P2(x)) defines a field.
Note that multiplication by R ̸= 0 defines a bijective map, hence the associated
n2 × n2 matrix MR,P2

has full rank n2. Also, note that any submatrix of MR,P2

consisting of a subset of the rows of MR,P2 must have full rank. In particular,
MdI+1 = MR,P2 [1 : dI + 1, :], it has rank dI + 1. Let

π : Fn2
qm → FdI+1

qm

(v1, . . . , vn) 7→ (v1, . . . , vdI+1)

be the projection of an element of Fn2
qm onto its first dI +1 coordinates. Consider

π(Ψ(PI(x)))MdI+1 = Ψ(z(x)) (7)

as a linear system of equations in the coefficients of Ψ(PI) and Ψ(z), where in this
case we view Ψ(z) as an element of Fn2

qm consisting of the unknown coefficients
of Ψ(z) and n2−n1 trailing zeroes as a result of its degree. Note that π does not
induce any loss of information due to the degree of Ψ(PI). Since deg(Ψ(PI(x)))+
n1 = dI+n1 < n2, the system has a solution corresponding to the representatives
of PI and z modulo P1 (here we remove the Ψ notation as the solutions will have
degree lower than n1).

We can actually compute PI from a subset of the equations defined by (7).
Thanks to the presence of n2−n1 trailing zeroes in Ψ(z), we know that π(Ψ(PI))
lies in the left kernel of MR = MR,P2

[1 : di + 1, n1 + 1 : n2]. Hence, that kernel
is non-trivial and the submatrix has rank at most dI .

The algorithm proceeds to compute v satisfying vMR = 0 where from (7)
we know that PI by satisfies

π(Ψ(PI(x)))MR = 0. (8)
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If rk(MR) = dI the kernel is one-dimensional and v(x) = λΨ(PI(x)) for some
constant λ ∈ Fqm . We will now show that it is not a problem that we can recover
PI only up to such a constant factor. Step 6 computes P ′

O(x) = PP (x)/v(x) =
PO(x)/λ and step 7 then computes

z′(x) = PH(x)/P ′
O(x) = λΨ(PI(x)x(x)

−1y(x)),

and finally Ω(z′(x)/v(x)) = x(x)−1y(x) which corresponds to a ROLLO-I public
key.

Similarly, for the ciphertext, we compute

c(x)/P ′
O(x) = λΨ(PI(x))PE1

(x) + λΨ(z(x))PE2
(x) mod P2(x).

Since λ is constant, the degree of the right-hand side is below n2, so we can
reduce modulo P1. Given the degrees, v(x) = λPI(x) (without Ψ) and Step 8
divides by λPI(x) to get PE1(x) + x(x)−1y(x)PE2(x), matching the ROLLO-I
ciphertexts, where we use that Ω(PEi

(x)) = PEi
(x), see Remark 8.

If rk(MR) < dI the polynomials still satisfy the same equations but there
is no guarantee that the choice of v leads to a z that is the ratio of low-rank
vectors, so it need not be a valid public key.

The complexity of the algorithm is dominated by that of inverting and multi-
plying polynomials of degree bounded by n2 in Fqm [x], which can be performed
in O((n2m2 log2(q))

2) taking schoolbook multiplication in Fqm and Fqm [x], and
by computing the left kernel of the (dI +1)×n2 matrix MR over Fqm which can
be done in O(d2In2m

2(log(q))2) using schoolbook multiplication. From dI < n2

the complexity is in O(dIn
2
2m

2(log(q))2). ⊓⊔

Our experiments show that the time to compute v is split roughly equally
between the costs of polynomial division modulo P2 to obtain R on the one side
and the costs of computing the matrix MR and computing the left kernel of
MR[:, J ] on the other side, where the choice of J as the last dI columns of MR

typically succeeds.

Estimates for the security of MLR1. The proposed parameters forMLR1 along
with the claimed attack costs are displayed in Table 2. The complexities of the
attacks are again computed using the script provided in [13]. For each security
level, the costs of the attacks on the proposed parameters are shown in the third
column of Table 2, and those of reduced Layered ROLLO-I along are in the
fourth column of Table 2. The time in seconds to compute the public key trans-
formation is described in Algorithm ReduceMLR1 using SageMath on a Linux
Mint virtual machine, is stated in the fifth column of Table 2. It is worth high-
lighting that the third column of Table 2 shows that even without our reduction,
the security is still lower for these parameters than the targeted security levels,
even though the designers were now aware of the attacks in [4].

Note that here we use PI with deg(PI(x)) = dI as stated in [9]. The pa-
rameters file in the implementation package instead uses deg(PI(x)) = 4 for all
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security levels.

Security (q, n1, n2, dI ,m, r, d) Cost Cost red. Time (s)

128 (2, 37, 61, 11, 67, 6, 2) 103.83 (4) 96.95 (4) 1.85

192 (2, 43, 71, 15, 79, 7, 3) 185.52 (2) 156.16 (4) 2.42

256 (2, 53, 103, 20, 97, 7, 3) 187.91 (4) 151.11 (4) 4.21

Table 2. Values of the log2 of attack costs for MLR1’s suggested parameters, before
and after our reduction, and time consumed by the reduction. References after the
costs refer to the complexity formula which gives the best value on these parameters.

4 Message Recovery Attacks

We describe the two message recovery attacks that we mounted against Layered
ROLLO-I. The first one breaks all the versions described so far andMLR2 [10] (see
Section 4.1). The second one applies to security levels 128 and 192 ofMLR3 [10] (see
Section 4.3). The idea is to reduce the modular equation in the encapsulation to
a system of linear equations and exploit the knowledge of zero positions of the
error vectors to solve the system.

Both of the attacks take advantage of the low degree of the polynomials PEi

for i = 1, 2 to build an overdetermined system of linear equations, which can be
easily solved for the unknowns ei and thus recover the message.

In the following, we first describe another modification MLR2 the designers
made which changes the structure of the public key to counter the attacks de-
scribed in the previous section. This and both previous versions use the same
equation for encapsulation, albeit with different constraints on the degrees of
the PEi . The message recovery attack works solely with this equation and thus
applies to all these versions, hence we put the attack after the description of
MLR2 to demonstrate the range of applicability, but want to stress that it ap-
plies already to the journal version [12] and is not a byproduct of the designers’
patches. Finally, we describe and then attack a third modified version MLR3
which the designers posted.

4.1 Second Modified Layered ROLLO-I (MLR2)

In this subsection, we describe the system from [10]. The new version of Layered
ROLLO-I, which we denote by MLR2, uses polynomial masking techniques in
order to avoid the reduction to ROLLO-I described in Section 3.2. To this end,
the new system patch introduces an auxiliary polynomial PN of small degree
and modifies the PP -part of the public key.

The values (q, n1, n2, nI ,m, r, d), where nI < n1 < n2 are the system param-
eters. There is also a primitive polynomial P2 of degree n2 which is a system
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parameter. We will report here only the key generation procedure, as the rest is
the same as for MLR1 except for the degree of the error polynomials. The key
generation procedure of the new system works as follows.

– KeyGen:

• Pick random x,y ∈ Sn1

d (Fqm).
• Pick random primitive P1(x) ∈ Fq[x] of degree n1.
• Pick random PI(x) ∈ Fqm [x]/(P1(x)) of degree nI .
• Pick random PO(x), PN (x) ∈ Fqm [x]/(P2(x)), with deg(PN (x)) = nN .
• Set z(x) = PI(x)x(x)

−1y(x) mod P1(x).
• Set PP (x) = PO(x)(Ψ(PI(x)) + PN (x)P1(x)) mod P2(x) and
PH(x) = PO(x)Ψ(z(x)) mod P2(x).

• Return pk = (PP , PH) and sk = (x,y, PO, PI , P1).

The encapsulation mechanism with updated error weights is equivalent to
that of MLR1 except that the random vectors e1, e2 should each correspond to
a polynomial of degree nE < n2 − n1 − nI − nN .

4.2 Message recovery attack on all versions described so far

We first give the algorithm of our attack and then show its correctness.
Recall that the public key is pk = (PP , PH) and the degree of the error

polynomials PEi
is limited to nE to permit decapsulation. For all versions of

Layered ROLLO-I, encapsulation computes the ciphertext as

c(x) = PE1
(x)PP (x) + PE2

(x)PH(x) mod P2(x),

where we put P2 = P b for the first version to unify notation. It is the very small
limit nE on the degree of the error polynomials that makes this attack work.

Algorithm MsgRecovery
Input : A public key pk = (PP , PH) and a ciphertext c of Layered-ROLLO-I,

MLR1, or MLR2.
Output : The shared secret K corresponding to c.

1. Compute c̄ = c(x)PH(x)−1 mod P2(x);
2. Compute R(x) = PP (x)PH(x)−1 mod P2(x);
3. Compute matrix MR = MR,P2

[1 : nE + 1, :];
4. Pick random subset J ⊂ [nE + 2, n2] with #J = nE + 1;
5. Put MRinv = MR[:, J ];
6. If rk(MRinv) < nE + 1, go to step 4;
7. Solve ē1 = c̄[J ]M−1

Rinv for ē1;
8. Compute ē2 = c̄[1 : nE + 1]− ē1MR[:, 1 : nE + 1];
9. Put e1 = ē1||(0, 0, . . . , 0) and e2 = ē2||(0, 0, . . . , 0);

10. Compute K = hash(⟨e1, e2⟩);
11. Return K.
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Proposition 10. Given a public key pk and a ciphertext c of Layered-ROLLO-I,
MLR1, or MLR2, algorithm MsgRecovery outputs the shared secret K encapsu-
lated in c to pk.

Proof. If P2 is irreducible then PH is invertible modulo P2. In Layered-ROLLO-I
z(x) is invertible modulo the irreducible P1 and thus also modulo P2 = P b

1 , and,
as stated earlier, PO is required to be invertible modulo P2 to permit decapsu-
lation. Hence, PH is invertible in all variants.

Step 1 computes

c̄(x) = c(x)PH(x)−1 = PE1(x)R(x) + PE2(x) mod P2(x), (9)

where R(x) = PP (x)PH(x)−1 mod P2(x) by step 2.
View equation (9) in terms of Fqm vectors corresponding to the coefficient

vectors of the polynomials involved. The (nE + 1) × n2 full rank matrix MR

computed in step 3, represents the multiplication of a polynomial of degree up
to nE by R modulo P2, defined as in (1). In other words, MR generates a linear
[n2, nE + 1]-code over Fqm .

With this in mind we can rewrite (9) as

c̄ = ē1MR + e2, (10)

which corresponds to a McEliece-like encryption of the “message” ē1 ∈ FnE+1
qm

using e2 as error vector. The last n2 − nE − 1 positions of e2 are 0 so that

c̄[nE + 2, n2] = ē1MR[:, nE + 2, n2] (11)

holds exactly.
Assume that the choice of J in step 4 is such that rk(MRinv) = nE + 1,

i.e., that Mrinv is invertible. Then step 7 computes a length-nE + 1 vector ē1
satisfying (11).

Finally, step 8 computes ē2 = c̄[1 : nE + 1] − ē1MR[:, 1 : nE + 1] from the
first nE + 1 positions of (10), and step 9 extends both vectors to e1 and e2 by
appending 0s.

To finish the proof we consider the assumption that rk(Mrinv) = nE +1. The
matrix MRinv = MR[:, J ] for J a random subset of nE +1 of the last n2−nE −1
columns of MR is a square (nE + 1) × (nE + 1) submatrix of MR which is a
submatrix of MR,P2

. Polynomial R computed in step 2 is a ratio of invertible
polynomials modulo P2 which have no special structure and thus the matrix
MR,P2 can be considered random, apart from having rank n2 as R is invertible
modulo P2. Similarly, the matrix MR consists of the first nE + 1 rows of MR,P2

and has thus rank nE + 1, but apart from that can be considered random.
Hence, the chance that MRinv is invertible is no lower than that of a random
(nE + 1)× (nE + 1) matrix over Fqm which is

q−m(nE+1)2
nE∏
i=0

(qm(nE+1) − qim). (12)
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For all parameter sets of all variants of Layered-ROLLO-I, this probability
rounds to 1 because the field size qm is large. In the unlikely case that the first
choice of J does not succeed, step 6 catches the exception. ⊓⊔

Due to the high probability of finding an invertible matrix our implementa-
tion just takes J as the last nE + 1 columns which always succeeded.

Remark 11. At first sight one could want to employ Prange’s algorithm [17] as
a black box to simultaneously recover e1 and e2 from (10). This also would
succeed, because the bound on the degree of the polynomial PE2 implies that
the Hamming weight of e2 is bounded by nE +1 which is much smaller than n2.

However, the core of Prange’s algorithm lies in finding an invertible submatrix
of MR that consists of a subset of columns corresponding to error-free positions
in the ciphertext, taking time proportional to(

n2

nE + 1

)
/

(
n2 − nE − 1

nE + 1

)
,

while for all versions of Layered-ROLLO-I we know that the last n2 − nE − 1
positions are error-free, thus the attack avoids the most costly part of Prange’s
algorithm.

Complexity of MsgRecovery. The most time-consuming steps of our attack are
the polynomial divisions in steps 1 and 2 and computing the matrix MR and
M−1

Rinv. Using only schoolbook multiplication the complexity isO(nEn
2
2m

2 log2(q)
2).

Steps 1 – 6 and computing M−1
Rinv are independent of the ciphertext. If an

attacker breaks many ciphertexts for the same public key, this computation is
done only once requiring only O(n3

Em
2 log2(q)

2) per ciphertext.
We implemented this attack in SageMath. An average of the time required,

on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters ofMLR2 is given in Table 3. It is worth noting that in our experiments
we always used error vectors of the maximum allowed Hamming weight nE + 1
in order to simulate the worst-case scenario for our attack.

Security (q,m, nI , n1, n2, nN ) nE Time (s)

128 (2, 67, 4, 37, 61, 1) 18 2.21

192 (2, 79, 4, 43, 71, 2) 21 3.18

256 (2, 97, 4, 53, 103, 4) 41 6.65

Table 3. Parameter sets for MLR2 and average time in seconds (on 50 samples for
each security level) needed to recover a plaintext.

Remark 12. We would like to remark that this message recovery attack works
for all three versions of Layered ROLLO-I presented to so far since the degrees
of e1 and e2 are smaller than half of n2, which is relevant for the positions in
MRinv not to overlap with the positions in e2.
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4.3 Third Modified Layered ROLLO-I (MLR3)

In this subsection, we describe the system from [11]. MLR3 uses polynomial
masking in the ciphertext to overcome the message recovery attack that we
described in the previous subsection. We will only display the parts in the
specification of KeyGen and Encap that differ from that of MLR2. The val-
ues (q, n1, n2, nI , nA,m, r, d), where nI = n1 < n2 and nA = 4 are the system
parameters. The updates to the key generation procedure of the new system are
as follows.

– KeyGen:

• Pick random PN,A(x), PN,B(x) ∈ Fqm [x]/(P2(x)) of degree nA

• Set
PP (x) = PO(x)(Ψ(PI(x)) + PN,A(x)P1(x)) mod P2(x),
PH(x) = PO(x)Ψ(z(x)) mod P2(x), and
PB(x) = PO(x)PN,B(x)P1(x) mod P2(x).

• Return pk = (PP , PH , PB) and sk = (x,y, PO, PI , P1).

The updates to the encapsulation mechanism with updated error weights are as
follows.

– Encap(pk):

• Compute
c(x) = PP (x)PE1(x) + PH(x)PE2(x) + PB(x)PN,C(x) mod P2(x),

where PE1 , PE2 and PN,C have degree nE < n2 − n1 − nA. The decapsulation
procedure has not been updated. It still works because

c′′(x) = PO(x)
−1(PP (x)PE1

(x) + PH(x)PE2
(x) + PB(x)PN,C(x)) mod P2(x)

= (Ψ(PI(x)) + PN,A(x)P1(x))PE1
(x) + Ψ(z(x))PE2

(x) + PN,BP1PN,C(x)

and the degree of Ψ(PI(x))PE1(x)+Ψ(z(x))PE2(x)+PN,BP1PN,C(x) is < n2

by the choice of the error vectors. Hence, the reduction modulo P1(x) removes
the last term and preserves the factors PI(x) which can then be divided out.
Finally, for all parameter sets nE + 1 < n1 and thus Ω(PEi

(x)) = PEi
(x).

Message recovery attack on MLR3. We describe a fast message recovery
attack on the security levels 128 and 192 of MLR3, that uses only linear algebra.
Let ℓ = n2 − n1 − nA ≥ nE + 1 denote the maximum length of the non-zero
coefficients in the error vectors.

Remark 13. The following attack will set up several systems of equations. For the
parameters of any security level, Table 4 shows that we always have 3(n−ℓ) > n2

where there exist at most n2 linearly independent equations. For levels 128 and
192, we have 3ℓ < n2 ensuring a unique solution of the system, which is not the
case for security level 256.
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Compute the polynomials

A1(x) = PP (x)P
−1
B (x), B1(x) = PH(x)P−1

B (x),

A2(x) = PP (x)P
−1
H (x), C2(x) = PB(x)P

−1
H (x), and

B3(x) = PH(x)P−1
P (x), C3(x) = PB(x)P

−1
P (x),

(13)

and let MA1 ,MB1 ,MA2 ,MC2 ,MB3 and MC3 be the corresponding matrices rep-
resenting multiplications modulo P2(x), as in (1). Set

c1(x) = c(x)P−1
B (x) mod P2(x),

c2(x) = c(x)P−1
H (x) mod P2(x), and

c3(x) = c(x)P−1
P (x) mod P2(x).

(14)

From these values, we derive the following equations

c1 = e1MA1
+ e2MB1

+ p,

c2 = e1MA2
+ e2 + pMC2

, and

c3 = e1 + e2MB3
+ pMC3

,

(15)

where we denote the coefficient vector of PN,C by p.
A first key observation is that, if we restrict to the last n2 − ℓ columns of

each matrix, corresponding to the terms of degree ≥ ℓ we obtain

c1[:, ℓ : n2] = e1MA1
[:, ℓ : n2] + e2MB1

[:, ℓ : n2]

c2[:, ℓ : n2] = e1MA2
[:, ℓ : n2] + pMC2

[:, ℓ : n2]

c3[:, ℓ : n2] = e2MB3
[:, ℓ : n2] + pMC3

[:, ℓ : n2],

(16)

getting rid of one of the terms in each equation. A second key observation is that,
thanks to the size of the field Fqm we can find three sets S1, S2, S3 ⊂ [ℓ+ 1, n2]
of cardinality ℓ such that MA1 = MA1 [:, S1],MB1 = MB1 [:, S1],MA2 = MA2 [:
, S2],MC2

= MC2
[:, S2],MB3

= MB3
[:, S3],MC3

= MC3
[:, S3] are all invertible

ℓ × ℓ matrices. This happens probability ∼ 1 for security levels 128 and 192,
see (12). Denote by c1, c2 and c3 the subvectors of c1, c2 and c3 consisting of
entries indexed by S1, S2 and S3, respectively. Replacing into (16) we have that
the equalities still hold, and write

c1 = e1MA1
+ e2MB1

, (17)

c2 = e1MA2 + pMC2 , and (18)

c3 = e2MB3 + pMC3 . (19)

Moreover, from (17) we get

e1 = (c1 − e2MB1)M
−1

A1
, (20)

while from (18)

e1 = (c2 − pMC2
)M

−1

A2
. (21)
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Combining (20) and (21) we can express e2 in terms of p as

e2 = pMC2
M

−1

A2
MA1

M
−1

B1
− c2M

−1

A2
MA1

M
−1

B1
+ c1M

−1

B1
(22)

From (19) we compute

e2 = (c3 − pMC3)M
−1

B3
. (23)

Combining (22) and (23) we end up with a system of ℓ linear equations that
allows us to compute p from public data only. Formally

p(MC2M
−1

A2
MA1M

−1

B1
+MC3M

−1

B3
) = c2M

−1

A2
MA1M

−1

B1
−c1M

−1

B1
+c3M

−1

B3
. (24)

Once p has been recovered we can simply plug it into (21) and (22) to obtain
e1 and e2 recovering the entire plaintext.

Complexity of the attack. The complexity of the attack is dominated by the com-
plexity of constructing and inverting the matrices MA1

,MB1
,MA2

,MC2
,MB3

and MC3
. As for algorithms ReduceMLR1 and MsgRecovery, a safe upper bound

is thus O((n2m log2(q))
ω). These computations are performed only once in case

an attacker decrypts many ciphertexts. We implemented this attack in Sage-
Math. An average of the time required, on a Linux Mint virtual machine, to
recover the plaintext for the proposed parameters is given in Table 4.

Security (q,m, nI , n1, n2, nA) nE Time (s)

128 (2, 67, 37, 37, 61, 4) 19 11.66

192 (2, 79, 43, 43, 71, 4) 23 16.32

256 (2, 97, 53, 53, 103, 4) 45 –

Table 4. Parameter sets for MLR3 and average time in seconds (on 50 samples for
each security level) needed to recover a plaintext.

As stated above in Remark 13 the size of ℓ relative to n2 prevents our attack
in the case of security level 256. We do not see how to get enough linearly-
independent equations.
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A Code Listings

A.1 Reduction attack

This section list the code snippets of our proof-of-concept implementations. Some
optimizations, such as computing only parts of the multiplication matrices, are
not taken into account because the computations are fast enough anyways.

A.2 Reduction attack

The first reduction consists just of one polynomial division and a reduction. For
the one attacking MLR1 from Section 3.2 we include here the SageMath code to
compute the ROLLO-I public key pk′.

reset()
from sage.doctest.util import Timer
# parameters for modified Layered-ROLLO-I
# 128 bits
q, m, degPI, n1, n2 = 2,67,11,37,61
# 192 bits
#q, m, degPI, n1, n2 = 2,79,15,43,71
# 256 bits security
#q, m, degPI, n1, n2 = 2,97,20,53,103
␣
# the following parameters describe max polynomial degrees
# this script uses vectorspaces to construct these polynomials
# so considering the constant term we need 1 entry more to get
# the correct bound on max degree.
degPI += 1
n1 += 1
n2 += 1
␣
# Choices of P1 according to modified Layered-ROLLO-I implementation
# 128 bits
P1=x^37 + x^22 + x^14 + x^2 + 1
# 192 bits
#P1=x^43 + x^27 + x^22 + x^5 + 1
# 256 bits
#P1 = x^53 + x^50 + x^41 +x^20 + 1
␣
Fqm = GF(q^m)
P.<x> = Fqm[]
F2x.<x> = GF(2)[]
␣
def shift(v,W):
␣␣newv = [0] + [v[i-1] for i in range(1,len(v))]
␣␣scalar = v[-1]
␣␣return W(newv), scalar
␣
def vecpol(pol, l):
␣␣deg = pol.degree()
␣␣assert deg < l
␣␣W = VectorSpace(Fqm, l)
␣␣return W(list(pol) + [0 for i in range(l-deg-1)])
␣
def xnmodpol(n,pol):
␣␣assert pol.is_monic()
␣␣d = pol.degree()
␣␣W = VectorSpace(Fqm, d)
␣␣if n < d:
␣␣␣␣return vecpol(x^n, d)
␣␣else:
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␣␣␣␣Q = W(list(pol)[:-1])
␣␣␣␣prev = Q
␣␣␣␣for i in range(1,n-d+1):
␣␣␣␣␣␣shifted, scalar = shift(prev, W)
␣␣␣␣␣␣toadd = scalar*Q
␣␣␣␣␣␣prev = shifted + toadd
␣␣␣␣return prev
␣
def getmultmatrix(B,pol):
␣␣Bcoeff = list(B)
␣␣nrows = degPI
␣␣ncols = 2*n2 - 1
␣␣vec = vecpol(B, ncols)
␣␣N = [vec]
␣␣for i in range(1,nrows):
␣␣␣␣vec, _ = shift(vec, VectorSpace(Fqm, ncols))
␣␣␣␣N.append(vec)
␣
␣␣N = matrix(N)
␣␣leftN = N[:,:n2]
␣␣for i in range(1,nrows):
␣␣␣␣for j in range(-i,0):
␣␣␣␣␣␣toadd = Bcoeff[j]*xnmodpol(n2+(i+j), pol)#vecpol((x^(n2+i+j)).mod(pol),n2)
␣␣␣␣␣␣leftN[i] += toadd
␣
␣␣return leftN
␣
V = VectorSpace(Fqm,n1)
u,v = V.random_element(), V.random_element()
Pu, Pv = P(list(u)), P(list(v))
␣
# Pick a random irreducible P2 over F2. Might as well be taken over F_{2^m}.
P2 = F2x.irreducible_element(n2)
P1 = P(P1)
P2 = P(P2)
␣
P2coeff = list(P2)
#PI = P(list(VectorSpace(Fqm,degPI).random_element()))
# PI is a polynomial of degree exctly degPI (-1 because I increased it at the beginning of the script)
PI = P.random_element(degPI - 1)
PO = P(list(VectorSpace(Fqm,n2).random_element()))
xy = (Pu.inverse_mod(P1)*Pv).mod(P1)
z = (PI*xy).mod(P1)
␣
PP, PH = (PO*PI).mod(P2), (PO*z).mod(P2)
␣
timer = Timer()
timer.start()
R = (PH*(PP.inverse_mod(P2))).mod(P2)
␣
Rmat = getmultmatrix(R,P2)
M = Rmat[:,n2-degPI+1:]
␣
ker = M.left_kernel()
i=1
while ker.dimension() > 1:
␣␣print(’taking an extra column..’)
␣␣M = Rmat[:,n2-degPI+1-i:]
␣␣ker = M.left_kernel()
␣␣i += 1
␣
lamPI = P(list(ker.basis()[0]))
lamPO = (PP * (lamPI.inverse_mod(P2))).mod(P2)
lamz = (PH * (lamPO.inverse_mod(P2))).mod(P2)
key = (lamz * (lamPI.inverse_mod(P1))).mod(P1)
timer.stop()
print(f’found key matches real y/x : {key == xy} in {timer.walltime}’)
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A.3 First message recovery attack

reset()
from sage.doctest.util import Timer
␣
# parameters for modified Layered-ROLLO-I
# 128 bits
q, m, degPI, n1, n2, nn = 2,67,4,37,61,1
# 192 bits
#q, m, degPI, n1, n2, nn = 2,79,4,43,71,2
# 256 bits security
#q, m, degPI, n1, n2, nn = 2,97,4,53,103,4
␣
# Choices of P1 according to modified Layered-ROLLO-I implementation
# WE DO NOT CARE WHAT P1 IS. MIGHT AS WELL BE RANDOM.
# 128 bits
P1=x^37 + x^22 + x^14 + x^2 + 1
# 192 bits
#P1=x^43 + x^27 + x^22 + x^5 + 1
# 256 bits
#P1 = x^53 + x^50 + x^41 +x^20 + 1
␣
␣
lenE = n2 - n1- degPI - nn - 2
degE = lenE-1
print(degE)
␣
Fqm = GF(q^m)
P.<x> = Fqm[]
F2x.<x> = GF(2)[]
␣
def pis(G,y):
␣␣M = copy(G)
␣␣k,n = M.dimensions()
␣␣p = list(Permutations(n).random_element())
␣␣p = list(range(lenE+1,n2))
␣␣shuffle(p)
␣␣indexes = p[:k]
␣␣indexes.sort()
␣␣colsG = [M.columns()[i-1] for i in indexes]
␣␣colsy = [y.columns()[i-1] for i in indexes]
␣␣pisG = matrix(Fqm, colsG)
␣␣pisy = matrix(Fqm, colsy)
␣␣return pisG.transpose(), pisy.transpose()
␣
␣
def Prange(M, y, t):
␣␣k,n = M.dimensions()
␣␣while True:
␣␣␣␣M1,y1 = pis(M,y)
␣␣␣␣while not M1.is_invertible():
␣␣␣␣␣␣M1,y1 = pis(M,y)
␣␣␣␣U = M1.inverse()
␣␣␣␣msg = y1*U
␣␣␣␣x = msg*M
␣␣␣␣wt = len([i for i in range(n) if x[0][i] != y[0][i]])
␣␣␣␣if wt <= t:
␣␣␣␣␣␣e = y - x
␣␣␣␣␣␣return msg, e
␣
␣
␣
␣
␣
␣
def getmultmatrix(R,P2,nrows):
␣␣M = []
␣␣for i in range(n2):
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␣␣␣␣el = list((R*x^i).mod(P2))
␣␣␣␣M.append(el + [0 for j in range(n2-len(el))])
␣␣M = matrix(Fqm,M)
␣␣return M[:nrows,:]
␣
␣
V = VectorSpace(Fqm,n1)
u,v = V.random_element(), V.random_element()
Pu, Pv = P(list(u)), P(list(v))
␣
P2 = F2x.irreducible_element(n2)
P1 = P(P1)
P2 = P(P2)
PI = P.random_element(degPI)
PO = P(list(VectorSpace(Fqm,n2+1).random_element()))
PN = P.random_element(1)
xy = (Pu.inverse_mod(P1)*Pv).mod(P1)
z = (PI*xy).mod(P1)
lz = list(z) + [0 for j in range(0,n2-len(list(z)))]
#PP, PH = (PO*PI).mod(P2), (PO*z).mod(P2)
␣
time = 0
timer = Timer()
for i in range(50):
␣␣E1 = P.random_element(degE)
␣␣E2 = P.random_element(degE)
␣␣#### PUBLIC DATA
␣␣PP, PH = (PO*(PI + PN*P1)).mod(P2), (PO*z).mod(P2)
␣␣PC = (PP*E1 + PH*E2).mod(P2)
␣
␣␣timer.start()
␣␣#### BEGIN ATTACK
␣␣cipher = matrix(vector((PC*(PH.inverse_mod(P2))).mod(P2)))
␣␣R = (PP*(PH.inverse_mod(P2))).mod(P2)
␣␣Rmat = getmultmatrix(R,P2,lenE)
␣␣e1_candidate, e2_candidate = Prange(Rmat,cipher,lenE)
␣␣print(f’Message recovery E_1: {E1 == P(list(e1_candidate[0]))} E_2: {E2 == P(list(e2_candidate[0]))}’)
␣␣timer.stop()
␣␣time += timer.walltime
␣
print(f’Average recovery time : {time/50}’)
␣
#sol = Rmat.solve_left(vector(lz))
#print(P(list(sol)) == PI.mod(P2))

A.4 Second message recovery attack

reset()
from sage.doctest.util import Timer
␣
# parameters for modified Layered-ROLLO-I
# 128 bits
#q, m, degPI, n1, n2, na = 2,67,37,37,61,4
# 192 bits
#q, m, degPI, n1, n2, na = 2,79,43,43,71,4
# 256 bits security
q, m, degPI, n1, n2, na = 2,97,53,53,103,4
␣
# Choices of P1 according to modified Layered-ROLLO-I implementation
# WE DO NOT CARE WHAT P1 IS. MIGHT AS WELL BE RANDOM.
# 128 bits
#P1=x^37 + x^22 + x^14 + x^2 + 1
# 192 bits
#P1=x^43 + x^27 + x^22 + x^5 + 1
# 256 bits
P1 = x^53 + x^50 + x^41 +x^20 + 1
␣
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␣
lenE = n2 - n1 - na - 1
degE = lenE-1
print(degE)
␣
Fqm = GF(q^m)
P.<x> = Fqm[]
F2x.<x> = GF(2)[]
␣
def getmultmatrix(R,P2,nrows):
␣␣M = []
␣␣for i in range(n2):
␣␣␣␣el = list((R*x^i).mod(P2))
␣␣␣␣M.append(el + [0 for j in range(n2-len(el))])
␣␣M = matrix(Fqm,M)
␣␣return M[:nrows,:]
␣
def findcommoninv(M,N,cipher):
␣␣k,n = M.dimensions()
␣␣p = list(range(lenE+1,n))
␣␣while True:
␣␣␣␣shuffle(p)
␣␣␣␣indexes = p[:k]
␣␣␣␣indexes.sort()
␣␣␣␣colsM = [M.columns()[i] for i in indexes]
␣␣␣␣colsN = [N.columns()[i] for i in indexes]
␣␣␣␣M1 = matrix(Fqm, colsM)
␣␣␣␣N1 = matrix(Fqm, colsN)
␣␣␣␣if M1.is_invertible() and N1.is_invertible():
␣␣␣␣␣␣return M1.transpose(),N1.transpose(),vector([cipher[i] for i in indexes])
␣
V = VectorSpace(Fqm,n1)
u,v = V.random_element(), V.random_element()
Pu, Pv = P(list(u)), P(list(v))
␣
P2 = F2x.irreducible_element(n2)
P1 = P(P1)
P2 = P(P2)
PI = P.random_element(degPI)
PO = P(list(VectorSpace(Fqm,n2+1).random_element()))
PNA = P.random_element(na)
xy = (Pu.inverse_mod(P1)*Pv).mod(P1)
z = (PI*xy).mod(P1)
lz = list(z) + [0 for j in range(0,n2-len(list(z)))]
#PP, PH = (PO*PI).mod(P2), (PO*z).mod(P2)
␣
time = 0
timer = Timer()
for i in range(50):
␣␣E1 = P.random_element(degE)
␣␣E2 = P.random_element(degE)
␣␣PNC = P.random_element(degE)
␣␣PNB = P.random_element(na)
␣␣#### PUBLIC DATA
␣␣PP, PH = (PO*(PI + PNA*P1)).mod(P2), (PO*z).mod(P2)
␣␣PB = (PO*PNB*P1).mod(P2)
␣␣PC = (PP*E1 + PH*E2 + PB*PNC).mod(P2)
␣
␣␣print(’Begin ATTACK’)
␣␣timer.start()
␣␣#### BEGIN ATTACK
␣␣s1 = vector((PC*(PB.inverse_mod(P2))).mod(P2))
␣␣s2 = vector((PC*(PH.inverse_mod(P2))).mod(P2))
␣␣s3 = vector((PC*(PP.inverse_mod(P2))).mod(P2))
␣
␣␣A1 = (PP*(PB.inverse_mod(P2))).mod(P2)
␣␣B1 = (PH*(PB.inverse_mod(P2))).mod(P2)
␣␣A1mat = getmultmatrix(A1,P2,lenE)
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␣␣B1mat = getmultmatrix(B1,P2,lenE)
␣␣A1bar,B1bar,s1bar = findcommoninv(A1mat,B1mat,s1)
␣
␣␣A2 = (PP*(PH.inverse_mod(P2))).mod(P2)
␣␣C2 = (PB*(PH.inverse_mod(P2))).mod(P2)
␣␣A2mat = getmultmatrix(A2,P2,lenE)
␣␣C2mat = getmultmatrix(C2,P2,lenE)
␣␣A2bar,C2bar,s2bar = findcommoninv(A2mat,C2mat,s2)
␣
␣␣B3 = (PH*(PP.inverse_mod(P2))).mod(P2)
␣␣C3 = (PB*(PP.inverse_mod(P2))).mod(P2)
␣␣B3mat = getmultmatrix(B3,P2,lenE)
␣␣C3mat = getmultmatrix(C3,P2,lenE)
␣␣B3bar,C3bar,s3bar = findcommoninv(B3mat,C3mat,s3)
␣
␣␣Sys = C3bar*B3bar.inverse() + C2bar*A2bar.inverse()*A1bar*B1bar.inverse()
␣␣val = s2bar*A2bar.inverse()*A1bar*B1bar.inverse() - s1bar*B1bar.inverse() + s3bar*B3bar.inverse()
␣␣z1 = Sys.solve_left(val)
␣␣x1 = (s2bar - z1*C2bar)*A2bar.inverse()
␣␣y1 = (s3bar - z1*C3bar)*B3bar.inverse()
␣␣print(f’Message recovery E_1: {E1 == P(list(x1))} E_2: {E2 == P(list(y1))} PNC: {PNC == P(list(z1))}’)
␣␣timer.stop()
␣␣time += timer.walltime
␣
print(f’Average recovery time : {time/50}’)
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