
ROLLERBLADE: Replicated Distributed
Protocol Emulation on Top of Ledgers

Dionysis Zindros
Stanford University

Apostolos Tzinas
National Technical University of Athens

David Tse
Stanford University

Abstract—We observe that most fixed-party distributed pro-
tocols can be rewritten by replacing a party with a ledger
(such as a blockchain system) and the authenticated channel
communication between parties with cross-chain relayers. This
transform is useful because blockchain systems are always
online and have battle-tested security assumptions. We pro-
vide a definitional framework that captures this analogy. We
model the transform formally, and posit and prove a generic
metatheorem that allows translating all theorems from the party
setting into theorems in the emulated setting, while preserving
analogies between party honesty and ledger security. In the
heart of our proof lies a reduction-based simulation argument.
As an example, our metatheorem can be used to construct
a consensus protocol on top of other blockchains, creating a
reliable rollup that assumes only the majority of the underlying
layer-1s are secure.

1. Introduction

A distributed ledger protocol is envisioned to play the
role of a “world computer”. This world computer, evolving
its state through State Machine Replication, ensures exe-
cution is accurate as long as its ledger remains secure (is
safe and live). This security is guaranteed as long as some
majority of validators are honest.

As multiple ledger protocols become deployed, each of
them functions as its own such “world computer”. A natural
question of recursive composability arises: Can we use these
“world computers” as validators to run further protocols on
top of them? For example, can we run an overlay ledger
protocol on top of existing underlying ledger protocols,
treating the underlying ledger protocols as computers which
take the role of a validator in the overlay protocol?

In this paper, we observe that many distributed systems
protocols, among others distributed ledger protocols e.g.,
Streamlet and HotStuff, can be run on top of other existing
long-running and battle-tested ledger underlying protocols
such as Bitcoin, Ethereum, Cardano, and Algorand. The un-
derlying protocols play the role of always-online validators
that participate in the overlay protocol’s execution. If we run
a consensus protocol on top of existing consensus protocols,
we can realize a rollup, in the form of the overlay, which
is securer than each of the constituent underlying Layer-
1s it is based on. For example, we can construct a rollup

that maintains security even if one of Bitcoin, Ethereum,
Cardano, or Algorand faces a catastrophic failure such as a
persistent 51% attack.

Our construction is quite generic. The class of overlay
protocols our system can run is not limited to consen-
sus protocols, but can be any distributed protocol, among
others Reliable Broadcast, or a data availability protocol,
as long as it satisfies a minimal set of axioms: It must
not use any internally-generated randomness, and must be
designed to work in the commonly used authenticated chan-
nels network model. The underlying ledger protocols must
also satisfy a minimal set of axioms which are satisfied
by all popular blockchain and related protocols today: It
must realize a ledger functionality (with the ability to write
transactions and read sequences of transactions in the form
of a ledger) which promises to be secure; it must ascribe
roughly accurate timestamps to each transaction on the
ledger (a temporal ledger); it must allow the recording
of arbitrary strings inside a transaction (a bulletin board,
similar to Bitcoin’s OP_RETURN); and it must support non-
interactive clients (the ledgers must be transcribable into a
string that can recover the original ledger). The minimal set
of axioms are satisfied by Bitcoin (Nakamoto), Ethereum,
Cardano (Ouroboros/Ouroboros Praos/Ouroboros Genesis),
Algorand, Monero, Sui (HotStuff/Bullshark/Narwhal/Tusk),
and all other distributed ledger protocols to our knowledge.
Notably, we don’t require that the underlying protocols
have any smart contract support (although such support
can greatly increase the efficiency of our protocol), or that
existing bridging is implemented between them (as tran-
scribability is enough to realize this functionality ourselves).
Our construction works on top of both proof-of-work and
proof-of-stake blockchains, among others.

Our contributions. The contributions of this paper are the
following:

1) We formally define the compositing problem, of emu-
lating one distributed protocol in a replicated fashion
on top of other distributed protocols.

2) We put forth rollerblade, a generic method that allows
transforming distributed systems protocols from the
party to the emulated setting.

3) We show how our protocol works on top of any proof-
of-work or proof-of-stake blockchain with minimal
axiomatic assumptions. We give the exact properties

writeToMachine(i, data)
emulate(i, r)

jΛ

jY1 jYijYℓ

jZijZ1 jZn
… …

… …

pairwise relay

em
ulated on

em
ulated on

em
ulated on

emulated Π execution

write clone

consistent ledgers

consistent executions

…

…

…
mΛ1Λ

jYi

j′Λ

j′Y1 jYij′Yℓ

j′Zij′Z1 j′Zn
… …

… …
j′Yi

Figure 1. An overview of the ROLLERBLADE construction. There are m
ROLLERBLADE clients 1Λ, . . . , jΛ, . . . ,mΛ. Each jΛ such client of them
is executing n instances jZ1, . . . , jZi, . . . , jZn of the overlay protocol
Π within it. To emulate the ith instance jZi, the respective underlying
protocol jYi is used (here, n = ℓ). These underlying protocols are
pairwise relayed to each other (shown only in jΛ for clarity). Some of the
underlying protocols may be rendered insecure (red horns); their respective
jZi instances behave dishonestly (red horns). The construction will ensure
that the executions of jZi and j′Zi are “consistent” if i is a good underlying
protocol.

required of the underlying ledger protocols and observe
that smart contract capabilities and certificates are not
necessary (but are helpful). Our protocols can run on
top of Bitcoin, Ethereum, Cardano, etc.

4) We precisely define the formulation of distributed sys-
tems protocols required so that they can undergo the
ROLLERBLADE transform.

5) We prove our generic transformation always yields
good results by using a reduction-based simulation
argument connecting the ledger setting and the party
setting. The analogies elicited through our transform
give insights about the functionality of ledger protocols
more broadly and may be of independent interest.

Practical efficiency. Our construction is about what com-
positions of ledgers are theoretically possible, so we will
not be concerned with the efficiency of our construction
beyond the theoretical desire to remain polynomial. Our
treatment is generic, and our aim is to formulate a minimal
set of axioms required of underlying and overlay protocols
to render them composable. Due to the generality of our
construction, certain optimizations will not be possible, but
efficiency can be greatly increased for concrete underlying
protocols, for example leveraging smart contract capabilities
if they are available. For a particular example on Tendermint,
see TrustBoost [1].

Construction overview and paper structure. Our goal is
to emulate the execution of a distributed protocol Π, the

overlay protocol, executing across multiple parties. Each
of these complete emulations will take place within the
confines of a single machine: a compositor client jΛ.
Each compositor client jΛ will execute multiple Π parties
jZ1, . . . , jZn, and these parties will be allowed to com-
municate with one another. For example, Π could be a
distributed consensus protocol such as IT Streamlet [2],
and each jZi could take the role of a validator within that
consensus protocol. We wish this execution to be replicated
across different Λs: The emulation of Π in the view of jΛ
should be consistent with the emulation of Π in the view
of j′Λ. We call the protocol Λ that allows this replicated
emulation the compositor protocol. A compositor protocol
is parametrized by Π and prescribes how to emulate Π
in a replicated manner. We give the detailed definitions of
compositors and the desiderata (of emulation and replication
consistency) in Section 3. In order to perform this emulation
in a replicated manner, the different compositor clients must
use some shared infrastructure Y that enables the clients to
communicate and maintain consistency in their replication.
We term these pre-existing protocols that the compositor
leverages the underlying protocols.

We give one construction of a compositor protocol,
which we term ROLLERBLADE. ROLLERBLADE works by
using existing distributed ledger protocols as its underlying
infrastructure. For example, the underlying infrastructure
could be Bitcoin, Ethereum, Cardano, etc. Each of the jΛ
clients maintains a full node to each of the underlying
ledgers. The protocol Π that can be emulated on top can be
any distributed protocol, among others a consensus protocol,
a data availability protocol, a distributed auction protocol,
reliable broadcast etc. We give the detailed ROLLERBLADE
construction in Section 4.

The construction briefly works as follows. Each of the
ROLLERBLADE clients emulates each party of the overlay
protocol locally, by using the respective underlying ledger
protocol as a “guide” to the overlay party’s execution. The
respective underlying ledger indirectly records all the user
input to the overlay protocol parties, as well as the network
messages exchanged between the overlay participants. Any
ROLLERBLADE client can attempt to write an input to any of
the overlay party emulations. This is performed by recording
this write instruction to the respective underlying ledger. In
case the ledger written to is secure, the other ROLLERBLADE
clients will also receive the instruction in question and
replicate it within their own emulations.

The state of each ledger is relayed to each other ledger
by helpful but untrusted relayers, at least one of which is
assumed to be honest (any ROLLERBLADE client that does
not trust the relayers can relay the data themselves). When
a checkpoint of a source ledger appears within a target
ledger, this corresponds to a network message exchange
from the emulated source party to the emulated target party.
Whereas no network messages are recorded on-ledger at
any time, the ROLLERBLADE client can emulate, off-ledger,
the network messages that would have been sent by the
source by looking at the checkpointed source ledger data
and performing a recursive emulation.

To prove our construction realizes the notions of emu-
lation and replication consistency, we state and prove our
main results in Theorem A.1 (replication consistency) and
Theorem A.2 (emulation consistency). The Emulation The-
orem compares the execution of the overlay protocol in the
emulated setting within the confines of one ROLLERBLADE
client, and some execution in the stand-alone party setting,
with no emulation at all. Secondly, the Cross-Party Lemma
concerns the execution of multiple compositor clients. It
states that the execution of a emulated party within one
client is the “same” as the execution of the same emulated
party within a different client, as long as the respective
underlying ledger is secure. Our main proof is a simulation-
based reduction proof in an execution-driven model. The
flavour of our proofs is reminiscent of the stand-alone
version of Canetti’s Universal Composability, albeit sim-
pler. Our central result is that each party of Π is made
to correspond to one underlying ledger, and the party’s
behavior is honest if the respective underlying ledger is
secure. This ledger security requirement consists of the
established notions of safety and liveness, as well as some
additional axiomatization which we introduce in this work
(most importantly the notion of timeliness and temporal
ledgers). These lemmas are stated in Section B and proven
in the Appendix.

2. Preliminaries

Notation. Given a sequence Y , we address it using Y [i]
to mean the ith element (starting from 0). Negative indices
address elements from the end, so Y [−i] is the ith element
from the end, and Y [−1] in particular is the last. We use
Y [i:j] to denote the subarray of Y consisting of the elements
indexed from i (inclusive) to j (exclusive). The notation
Y [i:] means the subarray of Y from i onwards, while Y [:j]
means the subsequence of Y up to (but not including) j. We
use |Y | to denote the length of Y . We say that X is a, not
necessarily strict, prefix of Y , denoted X ⪯ Y or Y ⪰ X ,
when every element of X appears in Y at the same location
(but Y may have more elements beyond |X|). We write
X[i] = ⊥ for i ≥ |X| to indicate that the sequence has been
exhausted. We use [n] to denote the set {1, . . . , n}. We write
X ∥Y to mean the sequence obtained by concatenating the
sequences X and Y . We use X

d
= Y to denote that the

two random variables X and Y are equal in distribution.
When A is a set whose natural ordering is implied (e.g., if
it is a subset of natural numbers), we use Ai to denote the
ith element (1-based) of A under the natural order. We use
supp(X) to mean the support of distribution X , or, if X is
a random variable, the support of its distribution.
Distributed Protocols. In this work, we are concerned with
the composition of distributed protocols.

A distributed protocol Π is an interactive Turing machine
(ITM). To simplify the exposition, we treat this ITM as
an object-oriented class Π and the respective party (an
Interactive Turing Machine Instance, or ITI) as an object
(class instance).

Definition 2.1 (Distributed Protocol). A distributed protocol
is an ITM which exposes the follow methods:

• constructNET(∆): This method called when the proto-
col is instantiated into a party. We denote this using
the notation new ΠNET(∆), which returns a party that
can be interacted with. It is also given oracle access
to a network functionality NET and the network delay
∆ ∈ N to expect.

• write(data): Takes user input by accepting some data
string.

• read(): Produces user output in the form of some
data string. We mandate that, upon its completion, the
execution of a read instruction does not change the
state of the interactive machine.

• execute(): Executes a single round of the protocol.
Within execute, the machine can use the netout func-
tionality of NET to send messages (as many times as it
wishes) and the netin functionality of NET to receive
messages (once per round).

The same protocol Π is instantiated into multiple in-
stances, each called a party (conceptually running on a
different computer each). We are interested in a population
of parties, some of which are as honest, while others are
designated as adversarial. All honest parties run the pre-
scribed protocol Π, whereas adversarial parties may run any
protocol of their choice (including Π). All adversarial parties
are controlled by one colluding adversary A.

Definition 2.2 (Permissioned Distributed Protocol). A dis-
tributed protocol is permissioned if its construct method
accepts, in addition to the network delay ∆, its own identity
j ∈ N and the number n ∈ N of parties it will coordinate
with.

Executions. Because Π can be randomized, we are inter-
ested in particular executions E of protocols. An execution
captures everything that happened between the honest par-
ties running the protocol and the adversary, including the
local state of each party and the network messages that were
exchanged. The execution concludes after a finite amount of
time.

Definition 2.3 (In vitro invocation). When multiple proto-
cols are executed together in a collective execution E , we can
take a snapshot of an instance of a machine within the execu-
tion after some round r. After we have taken that snapshot,
we can continue running the instance outside the execution
by, for example, invoking some of its functions, without
affecting the execution which has already concluded. We
call this process an in vitro invocation (cf. Canetti’s in vitro
and in vivo [3]) after some round r.

Time. We model time as taking place in discrete rounds
1, 2, The parties run in lockstep: During each round,
each party is allowed to run some (finite) computation.
Each party is initialized (by having its construct function
called) before round 1 commences. Subsequently, round 1
starts by having the execute function of each party called,
without any inputs provided by the environment (in the

form of “writes” or network inputs). By the end of each
round, the machine can produce some network outputs to the
environment. During every non-zero round, the environment
makes some network inputs available to the party being
executed, subject to the network constraints defined below.
Network. The parties are allowed to communicate with one
another through an underlying network. We make use of two
types of networks.

Definition 2.4 (Gossip Network). A gossip network allows
any party to diffuse a message m to the rest of the parties.
The network ensures that, if the sender is honest, then every
other honest party will receive the diffused message m.

Definition 2.5 (Authenticated Channels). An authenticated
channels network allows any party P to point-to-point send
a message to another party Q. The network faithfully reports
the sending party to the receiving party, and the adversary
cannot forge the origin of messages.

Definition 2.6 (Synchrony). A network is synchronous with
parameter ∆ ∈ N if any message m sent by an honest party
P at the end of round r is delivered by the beginning of
round r +∆.

In the gossip network model, the adversary may intro-
duce an arbitrary number of messages and forge their origin,
and may also reorder messages before they are delivered to
the honest parties. In the authenticated channels model, the
adversary is not allowed to forge the origin of messages,
but may send an arbitrary number of messages from each
of the corrupted parties she controls. In both models, the
adversary may send different messages to each honest party
at each round. The delay of each honestly sent message
is also adversarially controlled, as long as the bound ∆ is
respected. However, the adversary is not allowed to censor
honestly produced messages after the bound ∆ has elapsed.
Ledgers.

Definition 2.7 (Ledger). A distributed protocol Π, together
with a transaction validity language V is a temporal ledger
protocol if its read and write functionalities have the fol-
lowing semantics:

• write(tx): The write functionality accepts a transaction,
which is a string that belongs to V .

• L ← read(): The read functionality returns a ledger
L ∈ (N×V)∗, which is a finite sequence of transactions
in V .

It is desirable that our ledger protocols produce exe-
cutions that satisfy the following virtues. Let PLLLr denote
the ledger reported by the honest party P issuing a read
instruction to its ledger protocol at the end of round r.

Definition 2.8 (Safe). An execution E of a ledger protocol
Π is safe if for all rounds r1 ≤ r2 ∈ N and all hon-
est parties P1, P2 running instances Π1,Π2, we have that
P1LLLr1 ⪯

P2LLLr2 or P1LLLr1 ⪰
P2LLLr2 . Additionally, the ledger

is sticky: P1LLLr1 ⪯
P1LLLr2 .

The last requirement (P1LLLr1 ⪯
P1LLLr2) that an honest

ledger is locally append-only (sticky) can be easily enforced

in any safe protocol without stickiness by having the parties
report the longest ledger they have seen so far [4].

Definition 2.9 (Live). An execution E of a ledger protocol
Π is live with parameter u ∈ N if, whenever all honest
parties attempt to write the transaction tx during rounds
r, r+1, . . . , r+ u− 1, the transaction appears in all honest
ledgers at all rounds r′ ≥ r + u.

The above definition requires that all honest parties
attempt to write a transaction during rounds r, . . . , r+u−1.
However, we assume, without loss of generality, that parties
gossip any transaction they wish to write onto the underlying
ledger. All honest parties that receive a gossiped transaction
will also attempt to include it, and, so, if one honest party
attempts to introduce a transaction at round r, the transaction
will make it to everyone’s ledger by round r +∆+ u.

Definition 2.10 (Ledger Security). An execution E of a
ledger protocol Π is secure (with parameter u) if the ex-
ecution is safe and live (with parameter u).

3. Definitions

Definition 3.1 (Temporal Ledger). A distributed protocol Π,
together with a transaction validity language V is a temporal
ledger protocol if its read and write functionalities have the
following semantics:

• write(tx): The write functionality accepts a transaction,
which is a string that belongs to V .

• L ← read(): The read functionality returns a ledger
L ∈ (N × V)∗, which is a finite sequence of pairs
(r, tx) where tx ∈ V is a transaction, and r is a round
indicating the time at which the transaction in question
is recorded on the ledger.

The following definition is first introduced in this work,
as it will prove immensely useful for composability, but is
a natural property that all well-designed blockchain systems
have:

Definition 3.2 (Timely). An execution E of a temporal
ledger protocol Π is timely with parameter v ∈ N if for
all honest parties P and rounds r1 it holds that:

1) The rounds recorded in PLLLr1 are non-decreasing.
2) The round recorded at PLLLr1 [−1] is at most r1.
3) For all r2 ≥ r1, the rounds recorded in PLLLr2 [|

PLLLr1 |:]
are newer than r1 − v.

All popular blockchain protocols report timestamps to-
gether with their transactions and ensure their timeliness.
For example, Bitcoin and Ethereum produce blocks each
of which contains a timestamp. These timestamps can be
copied into the transactions therein when reading. Because
the respective protocols do not accept chains with decreasing
timestamps, or blocks with future timestamps the timeliness
points 1 and 2 are ensured. Point 3 is more subtle and asks
that very old transactions will not suddenly appear in the
ledger.

Definition 3.3 (Temporal Ledger Security). An execution E
of a temporal ledger protocol Π is secure (with parameters
(u, v)) if the execution is safe, timely (with parameter v),
and live (with parameter u).

3.1. The Setting

We are given n ∈ N ledger protocols
Y1, Y2, . . . , Yi, . . . , Yn, the so-called underlying ledger
protocols. While mathematically, these Ys are interactive
Turing machines of ledger protocols, in practice, these are
preexisting, already operational ledger protocol executions
such as Bitcoin, Ethereum, and Cardano, for which we
have access to already running full nodes and we are asked
to compose on top of.

We are also given a distributed protocol Π (not necessar-
ily a ledger protocol), the so-called overlay protocol. We will
emulate an n-party execution of Π, with each i of these n
parties corresponding to the underlying ledger protocol Yi.

The users of the protocol are m ∈ N ROLLERBLADE
clients termed 1RB, 2RB, . . . , jRB, . . . ,mRB (with, poten-
tially m ̸= n). Each jRB client runs a separate full node
jY1, . . . , jYi, . . . , jYn for each of the underlying Ys. The
RB nodes do not have direct network communication, but
only use the read/write functionalities of their respective Y
instances to communicate. For example, when party 1RB
writes a transaction tx to its 1Y1 instance, this transaction
will eventually appear in 2RB’s 2Y1 instance ledger output,
as long as Y1 is live. We will use jLLLi

r ←
jYi

r.read() to
refer to the ledger reported at round r by the full node
instance jYi running the underlying ledger protocol Yi

operated by the overlay party jRB (this ledger, like all
ledgers, is a sequence of round/transaction pairs, and its kth

round/transaction pair is jLLLi
r[k]).

We now describe the requirements of our underlying and
overlay protocols.

3.2. Rollerblade Underlying Requirements

Firstly, in order to record data on our underlying ledgers,
we require that any arbitrary string can be written to them.
This is called a bulletin.

Bulletins. A bulletin ledger protocol offers two additional
functions encode and decode: tx ← encode(s) and
s ← decode(tx). The encode function takes a string s
and encodes it into a transaction tx that can be written
into the ledger and is guaranteed to be accepted. The
decode function takes a transaction tx and, if it is a bulletin
transaction, decodes it back into s. Otherwise, decode can
return ⊥. All transactions produced by encode are bulletin
transactions, but the adversary can also introduce arbitrary
bulletin transactions of her choice indiscriminately. The
ledger may also include non-bulletin transactions among the
bulletin transactions.

Definition 3.4 (Bulletin Board). A ledger protocol
Π accompanied by a pair of computable functions

(encode,decode), of which decode is deterministic, is
called a bulletin board if it holds that, for any s ∈ {0, 1}∗,
the output of tx = encode(s) is always a valid transaction
and that decode(encode(s)) = s.

Bulletins provide ordering and data availability of arbi-
trary data without checking any semantic validity. As such,
they constitute a lazy use of a ledger [5], [6]. All popular
blockchains such as, for example, Ethereum and Bitcoin are
bulletins. Bitcoin allows the recording of arbitrary data using
OP RETURN transactions, whereas Ethereum allows such
recording by including the data in the CALLDATA of a smart
contract call, or in the parameters of an event.

Definition 3.5 (Certifiability). A ledger protocol Π ac-
companied by a computable functionality transcribe
and a computable deterministic (non-interactive) func-
tion untranscribe is called certifiable. The functionality
transcribe is called on a full node and returns a tran-
scription of its current ledger. The function untranscribe is
called with the transcription as the parameter, and is hoped
to return the original ledger. The certifiable protocol is live
if, in addition to the liveness requirements of the ledger
protocol, whenever transcribe() is called on an honest
party P with a ledger L and returns a transcription τ , then
untranscribe(τ) = L.

The certifiable protocol is safe if, in addition to the
safety requirements of the ledger protocol, whenever an
honest party P1 executes untranscribe(τ) at round r1 with
some (honestly or adversarially produced) transcription τ ,
then for all honest parties P2 at round r2, it holds that
P1LLLr1 ⪯

P2LLLr2 ∨
P2LLLr2 ⪯

P1LLLr1 .

3.3. Compositors

To aid the analysis, we assume that the ITIs contain
all the previous transcript of their execution (a history of
machine configurations).

A compositor is a protocol that runs an overlay dis-
tributed protocol Π on top of a set of n underlying dis-
tributed protocols Y1, . . . , Yi, . . . , Yn. The protocol Π is
generally designed to work in the party setting with a
network (such as an authenticated channels network) con-
necting its instances directly. The compositor Λ executes
Π in the emulated setting by utilizing the underlying Yi

protocols to help with the emulation and communication
between the overlay protocol instances. Multiple instances
1Λ, . . . , jΛ, . . . ,mΛ of the compositor are executed. Each
jth compositor instance promises to emulate the execution
of multiple instances of Π (jZ1, . . . , jZi, . . . jZn). These
emulated Z instances should behave similarly to instances
of Π running in a stand-alone setting.

Definition 3.6 (Compositor). A compositor Λ with overlay
Π and underlying Y = Y1, . . . , Yn, is a family of interactive
machines ΛΠ,Y providing the following functionalities:

1) construct (sid, (jY1 . . . jYn)).
2) writeToMachine (i,data).
3) emuSnapshot (i, r).

The compositor is constructed by calling construct with
parameter the session identifier sid. Note that compositors
are permissionless, as they don’t know their instance iden-
tity j ∈ N. Each compositor instance provides a write-
ToMachine functionality that allows writing data to the
ith emulated machine. It also provides an emuSnapshot
functionality that promises to emulate the execution of the
ith instance of Π up to round r, and return the instance of
this emulation at round r (and note that this contains the full
transcript of the emulation). Observe that emuSnapshot
can be invoked at a later round r′ > r. Note here the
difference between Y = Y1, . . . , Yn (denoting underlying
protocols in the form of ITMs) and (jY1, . . . , jYn) (denot-
ing underlying protocol instances in the form of ITIs). The
compositor is parametrized with the former, and the latter
are passed as parameters to the construct functionality.

Even though we will not do the analysis in the full
Universal Composability (UC) framework, and we treat
executions as stand-alone, we do adopt some of the nota-
tion of the UC framework. Let RUNES(Λ,Y,A,Z) denote
the transcript of an execution of the compositor protocol
Λ parametrized with overlay protocol Π, and underlying
protocols Y = (Y1, . . . , Yn), adversary A, and environment
Z . Following the notation of the UC framework, we define
the notion of an execution and a view.

The Emulated Setting. In particular, in the emulated setting
execution, denoted by RUNES

m,n(Λ,Y,A,Z), the environ-
ment Z is constrained by the control program to initially
spawn a number n × ℓ (where n is a parameter of the
execution, and ℓ = |Y|) underlying protocol instances

1Y1, . . . , 1Yℓ,

...,
. . . ,

...
mY1, . . . ,mYℓ ,

where jYi denotes the jth instance of the protocol Yi. The
environment facilitates the communication between the un-
derlying protocol instances jYi and j′Yi for all j, j′, whereas
protocols jYi and j′Yi′ with i ̸= i′ are not allowed to
directly communicate. Next, the environment is constrained
to spawn a number m of compositor clients 1Λ, . . . ,mΛ
(where m ∈ N is a parameter of the execution), allowing the
environment to choose the sid parameter, and passing the tu-
ple (jY1, . . . , jYℓ) of ITIs to jΛ’s construct functionality (in
UC language, each of these jYi is constrained to be used as
a subroutine solely by jΛ). All of those Λ compositor clients
are honest and will remain so throughout the execution.
Outside of those jYi instances controlled by the Λs, each of
the protocols Yi may have more instances running within
the execution, spawned by the environment and potentially
corrupted by the adversary. For example, if Y1 is the Bitcoin
protocol, then the jYi instance running within jΛ is a
Bitcoin client, whereas the execution comprises also others
Bitcoin clients and full nodes, potentially corrupted by the
adversary. The execution proceeds in rounds r = 1, . . . , R
for a polynomial number R of rounds (where the polynomial

is taken with respect to the security parameter). For every
round r, the environment is constrained to first call the
execute function of each jYi for every j, i ∈ N, as well
as the execute function of Ys living outside of the clients
Λ. Next, the environment must call the execute function of
each jΛ sequentially. Finally, the environment is constrained
to call the adversary Z (a rushing adversary). The adversary
is allowed to corrupt the Y instances living outside of Λs
(we will later impose constraints, in the form of beliefs,
which the environment ensures the adversary must respect).
At any time, the environment may choose to provide inputs
to any of the jΛ parties by invoking their writeToMachine
functionality with inputs of its choice.

The Party Setting. In the party setting execution, de-
noted by RUNPS

n (Π,A,Z, n,H,∆), the environment Z is
constrained by the control program to spawn n parties
Π1, . . . ,Πn (where n ∈ N is a parameter of the execution).
Note here that Π is a protocol (an ITM), whereas each
Πi is an instance (an ITI). The adversary A is allowed to
corrupt parties indexed by [n] \ H at the beginning of the
execution (a static corruption model). This is done by the
adversary sending a message to the environment requesting
to corrupt the desired party. The environment grants this
corruption wish as long as it respects the requirement that
the corruption falls within [n] \H . The execution proceeds
in rounds r = 1, . . . , R, where R, again, is a polynomial of
the security parameter. At every round, the environment is
constrained to first call the execute function of each Πi for
every honest party, in order. Next, the environment must call
the adversary (again, a rushing adversary). The environment
is constrained to deliver messages between honest parties in
an authenticated manner, and to deliver messages within ∆
delay.

We would like to define a notion of faithfulness of a
compositor, which captures the correspondence between the
party setting execution and the emulated setting execution
of Π. Roughly, a compositor is called faithful is these two
settings are identical in the eyes of the honest parties. This
faithfulness may be conditioned to work only on certain
classes of overlay protocols Π and underlying protocols Y,
and may require that a certain subset H of these Ys are
well-behaved.

Definition 3.7 (Compositor Faithfulness (informal)). We say
that a compositor Λ is faithful for an overlay protocol Π, a
number of overlay parties n ∈ N running over a number of
underlying protocols Y = (Y1, . . . , Yℓ) if: For all number
of compositor parties m ∈ N, for every compositor index
j ∈ [m], for every overlay index i ∈ [n] that “corresponds’
to “well-behaving” underlying Ys it holds that: The party
jZi’s emulated execution “is identical” to some party setting
execution (it cannot tell if it is emulated or not). Within
that emulated execution, the emulated instance jZi is given
the “same” inputs as write(data) by its environment as the
compositor is given by its own environment as writeToMa-
chine(i, data) for that same i.

The motivation for the above definition stems from the

fact that, if it is known that Π is secure in the party setting,
these security results can be translated to the emulated
setting. The full definition of faithfulness will state that for
all adversaries in the emulated setting, there is a simulator
in the party setting that makes the views of honest parties
identical. Since the protocol Π is secure in the party setting
under that simulator, it must also be secure in the emulated
setting under any adversary. This line of argument is not
unlike Canetti’s UC arguments.

While the fact that the view of the honest party is the
same in both the emulated and party setting is sufficient
to argue that the write instructions in both settings will be
the same in the views of the honest parties, this will not
be sufficient. The last part of the definition sketch above
whereby the writeToMachine instructions of the emulated
setting are replicated as write instructions in the party setting
is a necessary ingredient to make the definition useful.
Otherwise, trivial constructions in which writeToMachine
instructions are ignored are possible, yet we want to avoid
such pathologies.

To make the above definition precise, we must de-
velop a number of tools. Namely, we must state what
“well-behaving” underlying protocols are, and what the
“correspondence” between overlay parties and underlying
protocols means. Furthermore, we must specify what the
“identical” emulated execution means, and what the “same”
inputs are, in which definitions we will be required to allow
for some slack.

We define the following views for the two execution
settings.

Definition 3.8 (Honest View in the Party Setting). Consider
a party setting execution E ′ of duration R rounds sampled
from RUNPS

n (Π,A,Z, n,H,∆). The party setting view of
honest parties VIEWPS

H (E ′) is the |H| ×R matrix ΠH1
1 . . . ΠH1

R
...

. . .
...

Π
H|H|
1 . . . Π

H|H|
R

 ,

of the transcripts of honest parties where ΠHi
r denotes the

transcript of party ΠHi (the party with index Hi, the ith

honest party) obtained at the end of round r.

Note that, in the above definition, the transcripts con-
cerned pertain to the set H of guaranteed honest party
indices only, even though the adversary may choose to leave
some of the other parties uncorrupted, too. The transcript of
those other parties are not included in VIEWPS

H (E ′).
Note also that, in each row of the above definition, the

transcripts are taken for a particular party Hi at increasing
rounds, and therefore we will have that ΠHi

r ⪯ ΠHi
r+1 and,

so, the transcripts recorded in each row will be growing in
an append-only fashion.

Definition 3.9 (Emulation Consistency). An execution E
with duration R rounds sampled from RUNES

m (Λ,Y,A,Z)
is (j,H,∆v)-consistent, for a compositor index j ∈ [m], a
set of overlay machine indices H ⊆ [n], and reality lag ∆v,

if for all i ∈ H , for all r ≥ 0, for all r + ∆v < r′ < R,
it holds that jΛ.emuSnapshot(i, r) executed in vitro at the
end of round r′ is equal to jΛ.emuSnapshot(i, r) executed
in vitro at the end of round r′ + 1.

Note that in the above definition, we allow r = 0, even
though rounds in the execution begin at 1.

Definition 3.10 (Honest View in the Emulated Setting).
Consider an emulated setting execution E with dura-
tion R rounds sampled from RUNES

m (Λ,Y,A,Z). If E is
(j,H,∆v)-consistent, then the emulated setting view of
honest parties VIEWES

j,H,∆v
(E), parametrized by an index

j, a set of indices H , and a reality lag ∆v ∈ N, is the
|H| ×R matrix

 E(H1, 1) . . . E(H1, R−∆v − 1)
...

. . .
...

E(H|H|, 1) . . . E(H|H|, R−∆v − 1)

 ,

where E(H|H|, 1) denotes the return value of invoking,
in vitro at the end of round r + ∆v, the emuSnapshot
functionality of the jth compositor party jΛ with parameters
the index Hi of the ith overlay machine (among those
included in H) and round r.

On the other hand, if the execution E is not (j,H,∆v)-
consistent, then we let VIEWES

j,H,∆v
(E) = ⊥.

Definition 3.11 (Party Setting Externalities). Consider a
party setting view V of honest parties and size |H| × R.
The party setting externalities EXTERNPS(V) is the |H|×R
matrix WH1

1 . . . WH1

R
...

. . .
...

WH|H|
1 . . . WH|H|

R

 ,

where WHi

r denotes the sequence of messages written into
an honest party with index Hi during round r. This sequence
of messages can be extracted from the transcript ΠHi

r found
in V .

Definition 3.12 (Emulated Setting Externalities). Consider
an emulated setting execution E with duration R rounds
sampled from RUNES

m (Λ,Y,A,Z). Consider the transcript
of compositor client jΛ in E . Within that transcript,
observe the writeToMachine calls made by Z on jΛ
during some fixed round 1 ≤ r ≤ R. Among those,
consider the calls to writeToMachine that were invoked
with first argument some fixed machine index 1 ≤ i ≤ m.
These writeToMachine calls were invoked, in order, as
writeToMachine(i,data1), . . . ,writeToMachine(i,datak)
all during round r. Let Wi

r = (data1, . . . ,datak) denote the
sequence containing all the data parameter values of those
calls. The emulated setting externalities EXTERNES

j,H(E),
parametrized by an index j and a set of indices H , is the

|H| ×R matrix WH1

1 . . . WH1

R
...

. . .
...

WH|H|
1 . . . WH|H|

R

 .

Definition 3.13 (Externality Similarity). Consider the ex-
ternalities E1, E2 (in the party or emulated setting) with
dimensions n×R1 and n×R2 respectively. We say that E1 is
similar to E2 with lateness parameter ∆u ∈ N and earliness
parameter ∆v ∈ N, written E1 ⪅∆u,∆v

E2, if the following
holds: For any message m located within the writebox at
position (i, r) of E1, with r < R1 −∆u −∆v, there exists
a round r − ∆v ≤ r′ ≤ r + ∆u such that the message m
appears within the writebox at position (i, r′) of E2.

Definition 3.14 (Externality Similarity in Distribution).
Consider the externalities random variables E1, E2. We
say that E1 is similar in distribution to E2 with lateness
parameter ∆u ∈ N and earliness parameter ∆v ∈ N, written

E1

d

⪅∆u,∆v
E2, if there exists a sample space Ω and two

coupled random variables Ẽ1(ω), Ẽ2(ω) such that E′
1

d
= E1

and E′
2

d
= E2 and E1 ⪅∆u,∆v

E2.

Definition 3.15 (Belief). A belief B is any predicate over
an execution E .

For example, given an execution E , with underlying
distributed ledger protocols Y = (Y1, . . . , Yℓ), we can
define a belief B asserting that the majority of underlying
ledger protocols are secure.

Definition 3.16 (Belief System). A belief system B is a set
of beliefs.

Definition 3.17 (Honesty Correspondence). Given a belief
system B and a number n ∈ N of overlay parties, an honesty
correspondence H(B) is any function from B −→ 2[n].

Definition 3.18 (Belief-Respecting Environment). An en-
vironment Z is belief-respecting for a belief B if for all
executions E in the support of a given distribution of exe-
cutions, it holds that B(E).

Definition 3.19 (Emulation Faithfulness). A compositor Λ
is (Π, n,Y,B,H,∆u,∆v)-emulation-faithful for an overlay
protocol Π, a number of overlay parties n ∈ N, a sequence
of underlying protocols Y = (Y1, . . . , Yℓ), a belief system
B, honesty correspondence H : B −→ 2[n], lateness ∆u ∈
N, and reality lag ∆v ∈ N if:

For all beliefs B ∈ B, for all PPT adversaries A and
all B-respecting PPT environments Z , for all number of
compositor parties m ∈ N, for all compositor party indices
j ∈ [m], there is a PPT simulator S and there is a PPT
environment Z ′ such that the following holds:

1) VIEWES
j,H(B),∆v

(E) d
= VIEWPS

H(B)(E ′)

2) EXTERNES
j,H(B)(E)

d

⪅∆u,∆v
EXTERNPS(VIEWPS

H(B)(E ′))

where execution E is sampled from
RUNES

m (Λ,Y,A,Z) and execution E ′ is sampled from
RUNPS(Π,S,Z ′, n,H(B),∆), and ∆ = 2∆v +∆u.

Definition 3.20 (Replication Faithfulness). A compositor
Λ is (Π, n,Y,B,H,∆u,∆v)-replication-faithful for overlay
protocol Π, number of overlay parties n ∈ N, a sequence
of underlying protocols Y = (Y1, . . . , Yℓ), belief system B,
honesty correspondence H : B −→ 2[n], lateness ∆u ∈ N,
and reality lag ∆v ∈ N if:

For all beliefs B ∈ B, all all PPT adversaries A, for
all B-respecting PPT environments Z , for all number of
compositor parties m ∈ N, for all compositor party indices
j, j′ ∈ [m] and for all overlay party indices i ∈ H(B), for
all rounds 1 ≤ r < R −max(∆v,∆u), and all compositor
party indexes j, j′ ∈ [m] it holds that jSIMr = j′SIMr,
where jSIMr (resp. j′SIMr) indicates the result of calling
emuSnapshot of Λ[j] (resp. Λ[j′]) with inputs (i, r) in vitro
at the end of round r +∆v of E , where E is an execution
sampled from RUNES

m (Λ,Y,A,Z).

4. Construction

Before diving into the details of the pseudocode, we give
an intuitive overview of the ROLLERBLADE construction.

There are m ROLLERBLADE clients numbered 1, 2, . . . ,
j, . . . ,m and n underlying protocols Y1, Y2, . . . , Yi, . . . ,
Yn. Each jRB of the clients runs a full node for each of the
n underlying ledger protocols, jY1, jY2, . . . , jYi, . . . , jYn.
Each Yi of these underlying protocols promises (but may
not deliver on that promise) to be safe, live with liveness ui,
and timely with timeliness vi. Note the technical difference
between Yi, denoting the ith underlying protocol (an ITM),
and jYi, denoting an instance of the ith underlying protocol
running on the jth client (an ITI).

Each jRB emulates within its implementation n different
instances of the overlay protocol Π, the instances jZ1, jZ2,
. . . , jZi, . . . , jZn, one for every underlying ledger protocol,
jY1, jY2, . . . , jYi, . . . , jYn.

Our rollerblade construction works assuming that the un-
derlying and overlay protocols satisfy certain requirements
which we now specify.

Definition 4.1 (ROLLERBLADE-Suitable Underlying Pro-
tocol). A distributed protocol is called a ROLLERBLADE-
Suitable Underlying Protocol if it is a (potentially permis-
sionless) distributed temporal ledger protocol which is a
bulletin board and a certifiable protocol.

In summary, the underlying ledgers provide the follow-
ing functionalities: (1) construct: Initializes the protocol;
(2) execute: Executes one round of the protocol; (3) write:
Writes a transaction to the ledger. The transaction appears
within u rounds if the ledger protocol is live; (4) read:
Reads the temporal ledger. The ledger read is consistent
with whatever other honest parties are reading if the ledger
protocol is safe, and the transactions appear with correct
recorded rounds if the protocol is timely; (5) encode: Given

an arbitrary string, produces a valid bulletin transaction; (6)
decode: Given a bulletin transaction, produces the original
string used to encode it; (7) transcribe: Produces a tran-
scription τ of the current temporal ledger; (8) untranscribe:
Given a transcription τ , produces a ledger promised to be
safe and live as compared to the rest of the honest parties.

Our construction allows running any deterministic over-
lay permissioned distributed protocol working over authen-
ticated channels.

Definition 4.2 (ROLLERBLADE-Suitable Overlay Protocol).
A distributed protocol is called ROLLERBLADE-Suitable
Overlay Protocol if it is deterministic and permissioned.

The ROLLERBLADE client jRB allows the external user
to issue a write instruction with some data to any ith

emulated machine jZi. This is done as follows. When the
user of jRB issues a write instruction to jZi, this instruction
is not given to jZi directly. Instead, it is serialized into a
string and encoded into a transaction to be recorded on
the respective underlying ledger jYi. This is captured by
the writeToMachine function illustrated in Algorithm 1.
The encoding functionality is made available because the
underlying ledgers are assumed to be bulletin boards. When
the ‘write’ instruction becomes recorded in the ledger jLLLi

reported by jYi, then it will be passed to the emulated
machine jZi as soon as the respective round emulation takes
place. Through this recording of machine inputs on-ledger,
we intent for other rollerblade clients j′RB to replicate the
exact emulation of j′Zi for that same i (in the Analysis
section, this is made precise in Theorem A.1). Additionally,
the external user can, at any time, issue a read instruction
to the emulated machine jZi, without affecting its current
state (recall that we require Π’s read method to not alter the
machine’s internal state upon completion).

Algorithm 1 The writeToMachine function made available
to the external user by a ROLLERBLADE party.

1: function WRITETOMACHINE(i,data)
2: instr← {sid:this.sid, type:‘write’,data:data}
3: s← serialize(instr)
4: tx← this. jYi.encode(s)
5: this. jYi.write(tx)
6: end function

Each of jZi is emulated in a per-round basis by having
its execute function invoked once per round r. When it is
emulated, it expects its write function to have been called
some (0 or more) number of times prior to execute being
invoked, indicating user input for round r. When execute is
invoked, it has access to read and write into the network
through the authenticated channels interface NET. When
it reads from the network, it consumes network messages
that other machines have dispersed into the network during
previous rounds (potentially with some delay ∆).

In order to emulate this communication between ma-
chines, the system works as follows. Every rollerblade client
is tasked with checkpointing every ledger to every other

ledger during every round. Checkpointing is performed as
follows. The rollerblade client runs a full node in each
of the underlying protocols Yi and invokes the transcribe
function jYi.transcribe() to obtain a transcription τ ; this
functionality is made available because underlying ledgers
are assumed to be transcribable. This transcription is then
checkpointed into every other ledger protocol jYi′ by en-
coding it into a bulletin transaction tx = jYi′ .encode(τ)
and writing it into jYi′ . The relayer functionality of the
rollerblade is illustrated in Algorithm 2.

Algorithm 2 The ROLLERBLADE relay function, executed
on every round over the jY1, . . . , jYn underlying protocol
instances.

1: function RELAY() ▷ Executed on every round
2: for i← 1 to this.n do ▷ Source
3: τ ← this. jYi.transcribe() ▷ Checkpoint
4: for i′ ← 1 to this.n do ▷ Target
5: if i = i′ then
6: continue
7: end if
8: instr← {
9: type:‘chkpt’,

10: data:{from:i′, cert:τ}
11: }
12: enc← this. jYi.encode(serialize(instr))
13: this. jYi.write(enc)
14: end for
15: end for
16: end function

It is not necessary for each rollerblade to run this relayer
functionality. Instead, separate untrusted but helpful relayers
can be tasked with checkpointing one chain to another.
There is no trust placed upon such a relayer, but at least
one relayer must be honest for the protocol to be secure.
Therefore, a ROLLERBLADE client can run its own relayer
if it wishes, so this does not introduce any additional trust
assumptions (this is what we do in our construction above).

These “write” and “chkpt” instructions are the only
thing ever written to the ledger from the honest rollerblade
clients. In particular, no network outputs produced by any of
the jZi are ever written on the ledger. Instead, we observe
that reading the checkpoints is sufficient for each rollerblade
client to reproduce the network outputs of all emulated
machines.

Let us now explore, in more detail, how this emulation
works. Each rollerblade execution of a particular overlay
protocol Π on top of a certain number of underlying ledger
protocols Y is marked with a session id sid in order to
achieve context separation with other rollerblades running,
potentially different, protocols Π′ on top of a, potentially
different but not disjoint, set of underlying ledger protocols
Y

′
. This sid is placed into every ‘write’ instruction recorded

on-ledger. Note that ‘chkpt’ instructions do not need a
session id, as checkpoints can be shared across different
rollerblade sessions. This means that relayers can be the
same across all rollerblade sessions.

When a series of ‘write’ and ‘checkpoint’ instructions
have been recorded as bulletin transactions onto an un-
derlying ledger, a time will come for them to be re-read
in order to fuel the emulation. The responsibility of re-
reading the instructions from the ledger is bestowed upon the
function decodeUnderlying illustrated in Algorithm 3. The
function is given an underlying ledger L, which may contain
relevant and irrelevant transactions. Its task is to filter out
the irrelevant transactions and decode the relevant ones. It
returns a sequence of (r, instr) pairs, where r is the round
number with which the instruction instr is recorded. To do
this, it fills the sequence ret to be returned with the relevant
instructions. It iterates over all transactions tx in the ledger
L (Line 3). For each such transaction, it attempts to decode
it (Line 6). If the transaction is a bulletin transaction, the
decoding will succeed and return the string that was encoded
in it (otherwise, the transaction is ignored in Line 10).
Once decoded into a string, the string is deserialized into
a dictionary containing the instruction information. This in-
formation is checked for relevance in Line 12. In particular,
if the instruction is a ‘write’ instruction, we ensure that its
sid matches the sid of the rollerblade in question. As ‘chkpt’
instructions are not tied to any particular rollerblade, they
are always considered relevant.

Algorithm 3 The decodeUnderlying function ran by party
jRB at round r on an underlying ledger L = jYi.read()
sanitizes the underlying ledger by decoding and deserializ-
ing each of its transactions into a sequence of messages. It
is used by the prepEmuInputs function.

1: function DECODEUNDERLYING(i, L)
2: ret← []
3: for (r, tx) ∈ L do
4: try
5: ▷ Bulletin board decoding
6: s← this. jYi.decode(tx)
7: instr← deserialize(s)
8: catch
9: ▷ Not bulletin tx, or invalid serialization

10: continue
11: end try
12: if instr.type = ‘write’ ∧ instr.sid ̸= sid then
13: continue
14: end if
15: ret.append((r, instr))
16: end for
17: return ret
18: end function

The emulation only runs on-demand when the user of
jRB issues a read instruction to the machine jZi. The user
can indicate that the read instruction pertains to a particular
round emuRound, and the read instruction is conveyed to
the snapshot of jZi immediately after round emuRound has
been executed.

In order for the read functionality to be invoked, the
user must first invoke the emuSnapshot functionality of
jRB with parameter i. This function will return a snapshot

of the machine jZi at the requested round, and, subse-
quently, the user can invoke the read functionality on the
returned snapshot in vitro. The emuSnapshot functionality
is illustrated in Algorithm 4. The emuSnapshot function
takes the identity i of the machine to emulate and the
round for which the emulation is requested emuRound.
The emuSnapshot function emulates the execution of the
machine jZi using the data obtained by reading the ledger
jLLLi reported by jYi at the current round. Upon reading
the ledger, the emuSnapshot function invokes the emulate
function to obtain an instance of the jZi machine executed
up to round emuRound (inclusive). The emuSnapshot
function subsequently returns this instance.

Algorithm 4 The emuSnapshot function made available
to the external user by a ROLLERBLADE party.

1: function EMUSNAPSHOT(i,emuRound)
2: jLLLi ← this. jYi.read()
3: Z ← this.emulate(i, jLLLi,emuRound).Z
4: return Z
5: end function

The core emulation is implemented in the function em-
ulate illustrated in Algorithm 5, which takes parameters
with the same semantics as the emuSnapshot function
parameters. The job of the emulate function is to emulate
the execution of machine jZi up to, and including, round
emuRound. This is all done within the mind of machine
jRB, with no external communication at all. Upon complet-
ing the emulation, the emulate function returns the instance
of the machine jZi, which can be used to apply read on it
by the user.

Additionally, the emulate function returns all the net-
work outputs that jZi produced during the emulation, which
we call its outboxes (Line 29). The outboxes (initialized in
Line 4) are structured as an array containing one outbox per
index, each index corresponding to a round of execution. In
particular outboxes[r] contains the outbox produced by em-
ulated party jZi during round r. This outbox outboxes[r],
produced during round r, is a list of authenticated mes-
sages netouts. Each such authenticated message netout in
netouts is a dictionary containing two entries: The to entry
is a number between 1 and n indicating the recipient of the
message; the msg entry is the string of the message to be
delivered. Since rounds begin at 1, the entry outboxes[0] is
the empty outbox (ensured in its initialization in Line 4).

To conduct the emulation, the emulate function initially
calls prepEmuInputs (Line 2), which prepares two arrays
writeboxes and inboxes to be used by the emulation of
jZi. These sequences are produced by reading the ledger
jLLLi. The whole emulation of jZi is based only on the
data recorded on its respective ledger. The array write-
boxes is structured as an array containing one writebox
per index, each index corresponding to a round of execu-
tion. In particular, writeboxes[r] contains the writebox to
be used prior to the execution of round r. The writebox
writeboxes[r] is a list of strings each of which must be

Algorithm 5 The emulate function ran by a ROLLERBLADE
party executing the overlay protocol for party i at a particular
emulation round using ledger jLLLi. The emulation returns the
outbox (messages “sent” to other parties) and the instance
jZi of the emulated machine as reported by overlay party i.

1: function EMULATE(i, jLLLi,emuRound)
2: in← this.prepEmuInputs(i, jLLLi,emuRound)
3: (writeboxes, inboxes)← in
4: outboxes← [[]]
5: inboxThisRound← []
6: outboxThisRound← []
7: function SEND(recp, msg)
8: outboxThisRound.append({to:recp,msg:msg})
9: end function

10: function RECV()
11: return inboxThisRound
12: end function
13: ▷ Oracles passed to the overlay protocol
14: NET ← (send, receive)
15: jZi ← newΠNET(this.∆, j, n)
16: for r ← 1 to emuRound do
17: roundReceives← []
18: outboxThisRound← []
19: for data ∈ writeboxes[r − 1] do
20: ▷ Submit writes recorded at r − 1
21: jZi.write(data)
22: end for
23: ▷ Prepare network msgs to be delivered at r
24: inboxThisRound← inboxes[r − 1]
25: ▷ Run a single round r of overlay machine
26: jZi.execute()
27: outboxes.append(outboxThisRound)
28: end for
29: return {outboxes:outboxes, Z: jZi}
30: end function

written using the write functionality of jZi before execute
is invoked for round r. These writes correspond to (honestly
or adversarially) recorded ‘write’ instructions on the ledger
jLLLi. The data structure inboxes is structured similarly. The
inbox inboxes[r] contains the inbox to be used during the
execution of jZi at round r. The inbox inboxes[r] is a list
of authenticated messages netins. Each such authenticated
message netin in netins is a dictionary containing two
entries: The from entry is a number between 1 and n
indicating the sender of the message; the msg entry is the
string of the message to be delivered.

The emulation begins by initializing a new machine jZi

from scratch (Line 15). The emulation proceeds in rounds
managed by the main loop in Line 16. For each iteration of
this for loop, the execute function of the emulated machine
is invoked, once per every round r. In preparation of the
execution for round r, we have to invoke the write function
of jZi for every write in the writebox pertaining to round r.
This is performed in the for loop of Line 19, which invokes
jZi’s write method for each write in the current round’s

writebox.
During initialization (Line 15), the emulated machine is

initialized by giving it access to the network oracle NET.
Whereas, normally, the protocol Π would have expected
this oracle to realize an authenticated channels functionality,
we trap the calls to the network send and network receive
functions that the instance jZi of Π may call and we replace
them with our own implementation based on the underlying
ledgers. The trapped functions are implemented in Line 7
and Line 10 respectively. The machine jZi may invoke the
network send method, during its execute invocation, zero
or more times during the round. When the network send
method is invoked by jZi, the message is not conveyed
to other machines. Instead, it is appended to the array
outboxThisRound. The variable contains the append-only
outbox produced by the emulation during round r. It is
initialized as the empty array (Line 18) at the beginning of
every round. Upon the completion of a round’s execution,
the particular outbox is appended to the list of all outboxes
(Line 27). Lastly, in preparation for the execution of round r,
the variable inboxThisRound is initialized to inboxes[r−1]
(Line 24) and is an inbox containing the network messages
to be delivered at round r (and may have been disbursed
during rounds r − ∆, . . . , r − 1). This inbox is returned
whenever the emulated machine calls the network receive
function of the oracle NET. The variable inboxThisRound
is reassigned at the beginning of every round.

Once the last iteration of the for loop of Line 16
completes, the emulated machine jZi has concluded its
execution of rounds 1, . . . ,emuRound. At the end of the
emulation, the emulate function returns the outboxes gen-
erated by jZi throughout its execution as well as the machine
instance jZi itself. The machine instance can be used for
example to call read on it.

The last piece of the puzzle is the prepEmuInputs
function which is called by emulate and illustrated in
Algorithm 6. This function receives as input the ledger jLLLi

and returns the writeboxes and inboxes to be used by
emulate to emulate the machine jZi. It will be important
for our security results that the output of prepEmuInputs
is deterministic and depends only on the ledger jLLLi and not
on any of the other ledgers jLLLi′ , i′ ̸= i.

In particular, the function prepEmuInputs receives as
parameters the underlying index i, the ledger jLLLi, and
the emulation round emuRound. The method begins by
initializing inboxes and writeboxes. For every round r =
0 . . .emuRound we set inboxes[r] and writeboxes[r] to
be empty lists initially (Line 6). The entries inboxes[0] and
writeboxes[0] will remain empty since the emulation begins
at round 1 with an empty inbox and writebox.

The rest of the indices in inboxes and writeboxes we
fill in by reading the relevant rollerblade transactions within
jLLLi. Initially, the relevant transactions are extracted from the
ledger jLLLi into a sequence of instructions L by invoking
decodeUnderlying (Line 15). The sequence L contains
pairs (r, instr) of instructions, each accompanied by the
round with which the relevant instruction was recorded on

Algorithm 6 The prepare emulation inputs function ran
by ROLLERBLADE party j to prepare the necessary inputs
for the emulation of overlay party i at round emuRound
based on the underlying ledger jLLLi. The function returns the
inputs, which consist of writes (user inputs) and inboxes
(network inputs produced as network output when recur-
sively simulating all other parties jYi′) arranged by round.

1: function PREPEMUINPUTS(i, jLLLi,emuRound)
2: if emuRound > this.now− vi then
3: return ⊥ ▷ Emu round is too far in future
4: end if
5: inboxes← [[]];writeboxes← [[]]
6: for r ← 1 to emuRound do
7: inboxes.append([])
8: writeboxes.append([])
9: end for

10: seenLen← []
11: for i′ ← 1 to n do
12: seenLen.append(0)
13: F i′ ← []
14: end for
15: L← this.decodeUnderlying(i, jLLLi)
16: for (r, instr) ∈ L do
17: if r ≥ emuRound then
18: break
19: end if
20: if instr.type = ‘write’ then
21: writeboxes[r].append(instr.data)
22: end if
23: if instr.type = ‘chkpt’ then
24: i′ ← instr.from
25: τ ← instr.data.cert
26: jLi′ ← this. jYi′ .untranscribe(τ)
27: F i′ ← F i′ ∥ (jLi′ [|F i′ |:])
28: res← this.emulate(i′, F i′ , r−ui−vi′ −1)
29: outboxes← res.outboxes
30: netins← this.outToIn(outboxes, i′, i)
31: for netin ∈ netins[seenLen[i′]:] do
32: inboxes[r].append(netin)
33: end for
34: seenLen[i′]← seenLen[i′] + |newNetins|
35: end if
36: end for
37: return (writeboxes, inboxes)
38: end function

the ledger jLLLi. This is where we will use the temporal nature
of the underlying ledger jLLLi: The round r recorded on-
ledger for the instruction instr is the round of the emulation
of jZi during which we will utilize this instruction.

The instructions in L are processed sequentially by the
for loop in Line 16. As we are only interested in the
data necessary to emulate up to round emuRound, we can
conclude this loop early if we see a transaction recorded with
round r ≥ emuRound (Line 17). The easy case is when
the instruction type is a ‘write’. In that case, we extend the

writebox writeboxes[r] for round r by appending the data
instr.data to be written to it (Line 21).

The more complicated case pertains to instruction type
‘chkpt’. This is a checkpoint from underlying ledger i′ to
underlying ledger i, i.e., concerns a certificate of ledger
i′ that was recorded onto ledger i. This certificate’s data
instr.data.cert is fully recorded within jLLLi and does not
require reading from jYi′ . The function untranscribe of
jYi′ is used to untranscribe this certificate into a ledger jLi′

(Line 26), but the return value of this untranscribe function
does not at all depend on the local state of jYi′ , but only on
the parameter instr.data.cert passed to it. This “imaginary
ledger”, jLi′ extracted from untranscribing, is the ledger
with index i′ extracted based on the data included within
jLLLi. It is possible that jLi′ ̸= jYi′ .read() (especially if
ledger i′ is unsafe).

This ledger jLi′ , obtained by untranscribing, is then
passed into a new emulate invocation for machine jZi′

(Line 28). Here, note that emulate and prepEmuInputs
are mutually recursive functions. This recursive emulation
is performed based on ledger jLi′ and not on jYi′ .read().
The emulate function is executed up to emulation round
r−ui− vi′ − 1. The reason for this arithmetic will become
apparent in the security proof, but, for now, suffice to say
that, during round r, the emulation jZi will see received
messages originating from i′ emitted during rounds up to
r−ui−vi′−1, and messages emitted during later rounds will
be received later. The outboxes returned from this emulation
of ledger i′, within the confines of emulate executed upon
ledger i, are then collected into the outboxes variable,
which contains one outbox per round. These outboxes corre-
spond to messages sent by i′ to i on the emulated network.
Every message received by i and originating from i′ is
collected into the array netins in Line 30 by invoking the
function outToIn. This netins contains all the messages sent
from i′ to i throughout the execution of i′ up to round
r − ui − vi′ − 1. Note that, if i′ is a safe ledger, then
in every two iterations of the loop of Line 16, the values
of the variable netins will be prefixes of one another. As
netins grows, some of the messages within it have already
been received by jZi during previous rounds, whereas some
messages are new and have not been processed yet. We
wish to capture those messages that have appeared anew.
Towards this purpose, we maintain a count seenLen[i′]
of incoming messages originating from i′ that have al-
ready been processed by jZi during previous rounds. The
newly arriving messages that still need to be processed are
netins[seenLen[i′]:]. All of these newly arriving messages
are placed in inboxes[r] and, as such, are scheduled to
be received by the emulation of jZi for round r + 1. The
variable seenLen[i′] is then updated (Line 34) to record the
count of messages that have already been processed by i′

in previous rounds, so that the messages are not processed
again in the future.

Lastly, let us describe the outToIn function, which trans-
lates the outboxes of party i′ to an inbox for party i. The
function is called by prepEmuInputs and is illustrated in

Algorithm 7 The outboxes-to-inbox translation algorithm
ran by party jRB. The algorithm rewrites messages placed
in an outbox of one overlay party i′ and translates them into
messages in an inbox which is to be consumed by a different
overlay party i. Only the relevant messages are reported by
filtering out the messages that have a to field that does not
match i.

1: function OUTTOIN(outboxes, i′, i)
2: inbox← []
3: for outbox ∈ outboxes do
4: for netout ∈ outbox do
5: if netout.to = i then
6: inbox.append({from: i′,
7: msg:netout.msg})
8: end if
9: end for

10: end for
11: return inbox
12: end function

Algorithm 7. The function takes an outboxes argument
containing one outbox per round, as well as the sending
party index i′ and the receiving party index i. The function
returns an inbox for party i. To do this, the function loops
through each outbox in outboxes, and iterates over each
netin within the outbox. For each such netout, the function
checks that i is the recipient of the message (Line 5)
and ignores the message if not. Otherwise, the message is
translated from a netout to a netin by setting its from field
to be the sender i′ and is appended to the inbox (Line 7).
This completes the construction. The full construction is
illustrated in Algorithm 8.

Algorithm 8 The ROLLERBLADE compositor.
1: protocol ROLLERBLADE
2: public function emuSnapshot (i,emuRound)
3: public function writeToMachine (i,data)
4: function prepEmuInputs (i, jLLLi,emuRound)
5: function emulate (i, jLLLi,emuRound)
6: function outToIn (outboxes, i′, i)
7: function relay ()
8: function decodeUnderlying (i, L)
9: function construct(jY,Π)

10: this. jY ← jY
11: this.Π← Π
12: this.n← | jY| ▷ Number of overlay parties
13: this.∆u ← max{this. jYi.u}i∈[n]

14: this.∆v ← max{this. jYi.v}i∈[n]

15: this.∆← 2∆v +∆u

16: this.now← 0 ▷ Current round number
17: end function
18: function execute()
19: this.now← this.now + 1
20: this.relay()
21: end function
22: end protocol

5. Conclusion

Summary. We have developed a generic construction that
allows running a replicated emulation of (virtually) any
distributed protocol using underlying ledgers as the com-
munication mechanism. During the process of proving our
construction secure, we developed a technical framework to
discuss the analogy between the party setting and the emu-
lated setting, and proved that the two settings are equivalent.
Our main security result took the form of a simulation-based
argument in two main theorems: The Emulation Theorem
(showing that, within the view of a single compositor,
the party setting and the emulated setting are equivalent),
and the Replication Theorem (showing that different com-
positors share the same view within the same execution).
Our construction can be used for various applications, for
example to run a consensus protocol on top of existing dis-
tributed ledgers, giving rise to a layer 2 rollup that provides
better security guarantees than any of the underlying ledger
protocols alone.

Related work. Building reliable systems out of unreliable
components is a classical problem [7], [8]. In consensus,
Lamport’s Byzantine Fault Tolerance problem [9] aims to
solve a reliability problem, where different processors dis-
agree about their outcomes. The composition of multiple
blockchain protocols was explored by Fitzi et al. [10], but
for the purpose of performance in terms of latency, not
reliability. In their paper, they also introduce the notion of
relative persistence, in which they talk of dynamic ledgers
(cf., our temporal ledgers) and transaction ranks (cf., our
recorded rounds) which is related, but not equivalent, to
our notion of timeliness. They also define the notion of a
blockchain combiner (cf., our compositors). Their protocol
is passive (cf. TrustBoost [1]), meaning the “combiner”
does not achieve full consensus ([10, Section 5]). Their
“combiner” is an instance of our compositors, which further
allow for generic distributed protocols to run in an emulated
and replicated fashion, and achieve full consensus.

The idea of borrowing security has been explored in
merged mining [11], merged staking [12], and checkpoint-
ing [13], The idea of composing ledgers to achieve a more
reliable overlay ledger was first proposed in a short Cosmos
GitHub issue called recursive Tendermint [14]. This concept
was expanded upon by TrustBoost [1] where they build
a composition using Cosmos as the underlying construc-
tion, IBC for cross-chain communication, and Information
Theoretic HotStuff as the overlay protocol. They conjecture
that their construction is secure. However, they stop short
of proving the security of their construction. Their security
theorem in the so-called “active mode” ([1, Theorem 2])
states the variable m in the theorem statement. That variable
is interpreted in the party setting in the proof, but in the emu-
lated setting in the rest of the paper. Therefore, the theorem’s
positive or negative statement for m interpreted as ledgers
(and not parties) is not proven. The correspondence between
the party setting and the emulated setting is only conjectured
in the short paragraph “Security guarantee” [1, Section 4.1].

Proving this correspondence requires significant technical
work and the framework which we develop in this paper.
In the present work, we answer the question TrustBoost left
open affirmative and calculate the correct parametrization to
instantiate their system securely (e.g., the calculation of ∆
in Theorem A.2). We note that any secure deployment of
TrustBoost must include a correct choice of the parameter
∆, whose calculation is missing from their paper.

References

[1] X. Wang, P. Sheng, S. Kannan, K. Nayak, and P. Viswanath,
“TrustBoost: Boosting Trust among Interoperable Blockchains,” arXiv
preprint arXiv:2210.11571, 2022.

[2] J. Neu and D. Zindros, “Information Theoretic Streamlet,” Jul 2023,
Unpublished manuscript.

[3] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[4] B. Y. Chan and E. Shi, “Streamlet: Textbook streamlined block-
chains,” in Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, 2020, pp. 1–11.

[5] M. Al-Bassam, “LazyLedger: A distributed data availability ledger
with client-side smart contracts,” arXiv preprint arXiv:1905.09274,
2019.

[6] E. N. Tas, D. Zindros, L. Yang, and D. Tse, “Light Clients for Lazy
Blockchains,” arXiv preprint arXiv:2203.15968, 2022.

[7] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata studies, vol. 34,
pp. 43–98, 1956.

[8] E. F. Moore and C. E. Shannon, “Reliable circuits using less reliable
relays,” Journal of the Franklin Institute, vol. 262, no. 3, pp. 191–208,
1956.

[9] R. Shostak, M. Pease, and L. Lamport, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[10] M. Fitzi, P. Gaži, A. Kiayias, and A. Russell, “Ledger combiners for
fast settlement,” in Theory of Cryptography Conference. Springer,
2020, pp. 322–352.

[11] V. Durham. (2011, Apr) Namecoin. Available at: https://namecoin.
org/. [Online]. Available: https://namecoin.org/

[12] A. Kiayias, P. Gaži, and D. Zindros, “Proof-of-stake sidechains,” in
IEEE Symposium on Security and Privacy, IEEE. IEEE, 2019.

[13] D. Karakostas and A. Kiayias, “Securing proof-of-work ledgers via
checkpointing,” in 2021 IEEE International Conference on Block-
chain and Cryptocurrency (ICBC). IEEE, 2021, pp. 1–5.

[14] mossid. (2019, Sep) Recursive Tendermint. Available at: https://
github.com/cosmos/ibc/issues/547. [Online]. Available: https://github.
com/cosmos/ibc/issues/547

[15] A. Lewis-Pye and T. Roughgarden, “Permissionless Consensus,”
arXiv preprint arXiv:2304.14701, 2023.

[16] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[17] J. Yun, C. Goes, and A. Sripal. (2019, Feb) ICS-002:
Client Semantics. Available at: https://github.com/cosmos/ibc/tree/
main/spec/core/ics-002-client-semantics. [Online]. Available: https://
github.com/cosmos/ibc/tree/main/spec/core/ics-002-client-semantics

[18] E. N. Tas, D. Tse, and Y. Wang, “A Circuit Approach to Construct-
ing Blockchains on Blockchains,” arXiv preprint arXiv:2402.00220,
2024.

Appendix

1. Discussion

Certificates VS transcriptions. Our ROLLERBLADE con-
struction was given assuming the underlying protocols pro-
vide a transcribe and untranscribe interface which guar-
antees that dishonest certificates are always untranscribed
into ledgers that are safe (i.e., the ledger resulting from the
untranscription will always be consistent, albeit not up-to-
date, with every other honest party’s ledger across the exe-
cution). This requirement is similar to Roughgarden et al.’s
notion of certifiable protocols [15]. However, we can relax
this requirement by using mere transcriptions instead of
certificates. In this case, the transcribe interface remains the
same and returns a transcription τ . However, untranscribe
now takes as input multiple transcriptions τ1, . . . , τn and
returns one ledger. The untranscribe function is guaranteed
to return a safe and live ledger as long as at least one of the
transcriptions passed into it was recently generated by an
honest party. If the untranscribe function is invoked with
only dishonest transcriptions, no guarantees are provided.
This relaxation allows us to work on top of overlay protocols
which are not certifiable, but only transcribable, such as
Nakamoto consensus (certificates are impossible as chains
never adopted by honest parties can be convincing to a
receiver who does not see the current longest chain).

To change the ROLLERBLADE construction to make
it work on top of transcribable underlying protocols is
as follows. The data written on the ledger is identical to
the certifiable ROLLERBLADE construction. When the time
comes for Λ to untranscribe, it collects all transcriptions
of the past recorded on the ledger. If a source ledger i
“sends” a message to destination ledger i′, with both of them
being good, the security proof follows through: Liveness
of the receiving ledger guarantees that, every ui′ rounds,
an honest transcription of i will be recorded, and thus the
untranscribed source ledger will be safe.

Practical optimizations. In our ROLLERBLADE construc-
tion, we allowed relayers to freely write all checkpoints
between all pairs of ledgers. This theoretically demonstrates
the breadth of theoretical applicability of our scheme, and
highlights the minimal set of axioms required to build
compositors. However, if such schemes are to be deployed
in practice, the relaying must be optimized. One easy opti-
mization is to have the relayers only send the delta between
the previous checkpoint and the current one. Additionally,
if the underlying ledgers provide smart contract capabilities,
one way to do so is to deploy an on-chain light client on
each destination chain that consumes data from the source
chain. Such on-chain light clients are already deployed, for
example, in the Cosmos ecosystem [16] and take the form of
IBC connections [17]. For more details on how to construct
this practically, see TrustBoost [1].

https://namecoin.org/
https://namecoin.org/
https://namecoin.org/
https://github.com/cosmos/ibc/issues/547
https://github.com/cosmos/ibc/issues/547
https://github.com/cosmos/ibc/issues/547
https://github.com/cosmos/ibc/issues/547
https://github.com/cosmos/ibc/tree/main/spec/core/ics-002-client-semantics
https://github.com/cosmos/ibc/tree/main/spec/core/ics-002-client-semantics
https://github.com/cosmos/ibc/tree/main/spec/core/ics-002-client-semantics
https://github.com/cosmos/ibc/tree/main/spec/core/ics-002-client-semantics

2. Analysis

The following lemma will allow us to argue that all
parties share a common view of sufficiently old transactions.

Lemma A.0.1 (Past Perfect). Consider a temporal ledger
protocol Y’s execution E with duration R rounds in which
Y is safe, live with liveness u, and timely with timeliness v.
If for some honest party P1 and some round r1 it holds that
(r∗, tx) ∈ P1LLLr1 , then for all honest parties P2 and for all
rounds r2 > r∗ + v it holds that (r∗, tx) ∈ P2LLLr2 , as long
as at least one new honest transaction tx′ appears at any
round r1 < r3 ≤ R− u.

Proof. Consider an execution as in the statement and sup-
pose, towards a contradiction, that (r∗, tx) = P1LLLr1 [k] for
some k ∈ N, but (r∗, tx) ̸∈ P2LLLr2 with r∗ + v < r2. From
safety, P2LLLr2 ≺

P1LLLr1 and | P2LLLr2 | ≤ k < | P1LLLr1 |. Due to
liveness, (r′, tx′) = P2LLLr3+u[k

′], for some r′, k′ ∈ N. As tx′

is new, it is not in P1LLLr1 . Due to safety, k′ ≥ | P1LLLr1 | > k.
Due to safety, P2LLLr3+u[k] = (r∗, tx). Therefore (r∗, tx) ∈
P2LLLr3+u[|

P2LLLr2 |:]. Since r∗ < r2 − v, this contradicts the
timeliness with parameter v.

Definition A.1 (Rollerblade Belief System and Honesty
Correspondence). Given a sequence of ROLLERBLADE-
underlying-respecting protocols Y = (Y1, . . . , Yℓ), define
for each i ∈ [ℓ] the predicate, on a collective execution E of
Y , goodi(E) = “ Yi is safe, live(ui), and timely(vi) in E” .

Next, for any H ⊆ [ℓ], we define goodH(E) = “∀i ∈
H : goodi(E)” .

Define H−1 on the domain 2[n] as H−1(H) = goodH .
Then the ROLLERBLADE honesty correspondence H is the
inverse of H−1 and the ROLLERBLADE belief system B is
the domain of H.

For example, if Y = (Y1, Y2, Y3), then for B = good1∧
good3, it holds that B ∈ B and H(B) = {1, 3}.

As an example of a Y1, consider the Bitcoin Backbone
protocol. Then a good1-respecting environment Z is an
environment that ensures the Bitcoin Backbone protocol
execution is safe, live, and timely. This can be done, for
example, by demanding that the corruption of Y1 parties
outside of Λs remains in the minority. In case the envi-
ronment detects an upcoming security violation (due to a
negligible event such as a Random Oracle collision), it can
conclude the execution.

Theorem A.1 (Replication). For all ROLLERBLADE-
suitable-overlay protocols Π and any sequence
of ROLLERBLADE-suitable-underlying protocols
Y = (Y1, . . . , Yℓ) for the ROLLERBLADE-belief-system
B of Y and ROLLERBLADE-honesty-correspondence
H, the compositor ROLLERBLADE of Section 4 is
(Π, n,Y,B,H,∆u,∆v)-replication-faithful, where n = ℓ,
∆u = max{ui}i∈[n], ∆v = max{vi}v∈[n] and ui, vi are
the promised liveness and timeliness of Yi.

Proof. The function emuSnapshot of party j (resp. party
j′) calls the deterministic function emulate with overlay

jΛ

jY1 jYn

jZijZ1

jYi

j′Λ

j′Y1 j′Yn

j′Zi j′Zn

j′Yi

good

jZn j′Z1
=

Figure 2. The Replication Theorem (Theorem A.1) states that the execution
of the emulated machines jZi and j′Zi across two different compositor
parties jΛ and j′Λ is consistent, as long as the underlying ledger Yi is
good.

party index i, ledger jLLLi
r+vi (resp. ledger j′LLLi

r+vi), em-
ulation round r, and current round r + vi. The function
emulate runs its main for loop (Algorithm 5 Line 16) up to
r (inclusive), which consumes data from writeboxes[r− 1]
and inboxes[r − 1] and earlier. These are produced by
the function prepEmuInputs by looking at transactions
recorded in jLLLi

r+vi (resp. j′LLLi
r+vi) with recorded round < r.

Because LLLi is good in E , it is safe, live(ui), and timely(vi).
It suffices to show that all transactions with recorded round
< r are the same in jLLLi

r+vi and j′LLLi
r+vi . This holds because

of Lemma A.0.1 invoked with parties jYi and j′Yi, rounds
r1 = r2 = r+ vi, r3 = r+ vi and r∗ < r. During round r3,
the new honest transaction is due to any honest relayer.

Lemma A.1.1 (Consistency). Consider a ROLLERBLADE
Λ execution E with duration R rounds sampled from
RUNES

m (Λ,Y,A,Z) with overlay protocols Y , adversary A
and environment Z , and let ∆v = max{vi}i∈[n], where vi
denotes the timeliness promised by ledger protocol iY. Let
H ⊆ [n] be the subset of good underlying ledger protocol
indices among Y in E . Then the execution is (j,H,∆v)-
consistent for all j ∈ [m].

Proof. Let i ∈ H , r ≥ 0, r + ∆v < r′ < R be arbitrary.
When emuSnapshot is invoked at the end of round r′ (resp.
r′ +1), the value this.now is r′ (resp. r′ +1), so the check
emuRound > this.now−vi of Algorithm 6 Line 2 is false,
and the emulation succeeds. This is the only stateful check
in this function. The result of the function prepEmuInputs
only depends on the transactions of its jLLLi argument with
recorded rounds up to emuRound. Therefore it suffices to
show that the transactions in jLLLi

r′ with recorded rounds up to
emuRound are the same as the transactions in jLLLi

r′+1 with
recorded rounds up to emuRound. All jLLLi

r′ transactions
with recorded rounds up to emuRound are included in
jLLLi

r′+1 by stickiness. Conversely, all jLLLi
r′+1 transactions

with recorded rounds up to emuRound are included in jLLLi
r′

by timeliness.

Lemma A.1.2. Consider a rollerblade execution E with
duration R+∆v in the emulated setting with arbitrary good
ledgers Yi, Yi′ , rollerblade party jΛ and round 1 ≤ r∗ ≤ R.
Consider the call jΛ.prepEmuInputs(i′, jLLLi′

r̂ , r̂−∆v − 1).
for some r̂ < R − ui′ . Within that in vitro execution,

consider any iteration (r∗, tx∗) of the for loop in Line 16 of
Algorithm 6. Let f∗ denote the value attained by the variable
F i at the end of that iteration. If r∗ < r̂ − vi′ , then the
transactions with recorded round up to r = r∗−vi−ui′−1
in f∗ and jLLLi

R are the same.

Sketch. The proof is analogous to the Lemma A.0.1 proof.

Theorem A.2 (Emulation). For all ROLLERBLADE-
suitable-overlay protocols Π and any sequence
of ROLLERBLADE-suitable-underlying protocols
Y = (Y1, . . . , Yℓ) for the ROLLERBLADE-belief-system
B of Y and ROLLERBLADE-honesty-correspondence
H, the compositor ROLLERBLADE of Section 4 is
(Π, n,Y,B,H,∆u,∆v)-emulation-faithful, where n = ℓ,
∆u = max{ui}i∈[n], ∆v = max{vi}v∈[n] and ui, vi are
the promised liveness and timeliness of Yi.

Proof. Let Π, Y , B and H be as in the statement, and ∆ =
2∆v + ∆u. Let the adversary A, the belief B ∈ B, and
the environment Z , the number of compositor parties m,
and the index of the compositor j of interest be arbitrary as
in the statement, and set H = H(B). Let E and E ′ be the
emulated and party setting executions, respectively, sampled
as in Definition 3.19. As Π is a ROLLERBLADE-suitable-
overlay protocol it is deterministic.

We will prove faithfulness by construction of the simu-
lator S and environment Z ′.

The simulator S and environment Z ′ work in tandem
as follows. Initially, S samples an execution E∗ in the
emulation setting from RUNES

m (Λ,Y,A,Z) (see Figure 3).
Let R be the duration of E∗ in rounds. The simulator looks
at compositor party j of E∗ and its jY1, . . . , jYn. The
environment Z ′ chooses the duration, in rounds, of E ′ to
be R −∆v − 1. It initializes n parties Π1, . . . ,Πi, . . . ,Πn

by invoking the constructor method with parameters ∆, i, n.
The simulator initially obtains, for every i ∈ [n], a copy

of the configuration Mi of the ITI jRB from E∗ at the end of
E∗. The simulator calls prepEmuInputs(i, jLLLi

R, R−∆v−1)
on Mi in vitro at the end of round R, to obtain the pair
(writeboxesi, inboxesi), where |writeboxesi| = R−∆v−1
and |inboxesi| = R−∆v − 1. At the beginning of round r
of E ′, the simulator calls write(data) on party i for every
data ∈ writeboxesi[r − 1]. At every round, Z ′ activates
each party, in order, by invoking Πi.execute(). If party Πi

invokes the network receive method recv(), while active,
then Z ′ provides inboxesi[r−1]. If Πi invokes the network
send method send(i′,msg), while active, then it is ignored
by Z ′.

We note that S uses the adversary A and the envi-
ronment Z in this simulation, so E and E∗ are identi-
cally distributed. For (1) it suffices to show that for all j,
VIEWES

j,H,∆v
(E∗) = VIEWPS

H (E ′) (i.e., we will show the
these two random variables are equal, not just equal by
distribution), and similarly for (2) it suffices to show that
for all j, EXTERNES

j (E∗) ⪅∆u,∆v
EXTERNPS(E ′) (i.e., we

jΛ

jY1 jYn

jZijZ1 jZn

jYi

jΛ

jY1 jYn

jZijZ1 jZn

jYi

ΠiΠ1

A

S

Z

A

Z

Z′writeToMachine(i, data) write(data)

E*

E′

E

em
ul

at
e

si
m

ul
at

e

Figure 3. A visualization of the argument that ROLLERBLADE is faithful.
In the proof of Theorem A.2, the simulator S and simulated environment
Z′ give rise to execution E ′ in the party setting (top right) by sampling an
execution E∗ in the emulated setting with adversary A and environment
Z (bottom right). The simulator uses each good ledger iYj in E∗ to feed
data into the respective honest party Πi in E ′.

< (claim 3)
Δu,Δv≈

Δu,Δv

= (QED)

d
≈< (QED) E′E

d= (sampling)
E*

EXTERN

VIEW

EXTERN

VIEW

EXTERN
VIEW

d

= (c
la

im
 1

)
Figure 4. The environments Z in E and Z′ in E ′ respectively give rise

to externalities similar in distribution (
d

⪅∆u,∆v
, middle top), whereas the

views of the honest parties in E and E ′ are distributionally equivalent
(d=, middle top). The executions E and E∗ are sampled from the same
distribution (d=, bottom left). The views of the honest parties in E∗ and E ′

are equal (not just equal in distribution) and the externalities in E∗ and E ′

similar (not just similar in distribution).

will show that the externalities of E ′ are similar to E∗, not
just distributionally similar). See Figure 4.

Since Z is B-respecting, therefore B(E∗) holds. Hence,
for all i ∈ H , Yi is safe, live (ui), and timely (vi) in E∗.

Claim 1: VIEWES
j,H,∆v

(E∗) = VIEWPS
H (E ′). Let V ∗ =

VIEWES
j,H,∆v

(E∗) and V ′ = VIEWPS
H (E ′). We know that E∗

is (j,H,∆v)-consistent from Lemma A.1.1, and so V ∗ is
well-defined. The two views have the same size. We need
to show that the views of all honest parties in the two
executions are identical. Let i be an arbitrary party in H .

Let c∗(r1, r2, r3) denote the configuration of the ma-
chine jZi after the invocation of Algorithm 5 Line 26 during
the r3-rd iteration of the for loop in Algorithm 5 Line 16 (or,
if r3 = 0, we set c∗(r1, r2, r3) to be the state of jZi before
the for loop) when emuSnapshot is invoked in vitro after

round r1 of execution E∗, where r2 +∆v ≤ r1 ≤ R +∆v

with parameter emuRound = r2, and r3 ≤ r2. This causes
an invocation of emulate with parameters emuRound = r2
and realRound = r1. Let c′(r3) denote the configuration of
the machine Πi in E ′ at the end of round r3. We set c′(0)
to be the initial configuration of Πi, after it’s constructor is
invoked.

We will prove that V ∗
i,r = V ′

i,r by induction on r. Let r
be an arbitrary round such that 1 ≤ r ≤ R−∆v − 1.

If r = 1, then

c∗(r +∆v, r − 1, r − 1) = c′(r − 1) (1)

because the state of machine jZi and Πi are identical after
the initial invocation of the constructor as Π is deterministic.

If r > 1, then by inductive hypothesis we have V ∗
i,r−1 =

V ′
i,r−1 by which Eq 1 also follows.

In either case, Eq 1 holds, and we wish to show that
c∗(r + ∆v, r, r) = c′(r), from which it will follow that
V ∗
i,r = V ′

i,r.
Because E∗ is consistent, we have that

c∗(r +∆v, r − 1, r − 1) = c∗(r +∆v, r − 1, r − 1) . (2)

Each iteration of the for loop of Algorithm 5 Line 16
proceeds until the round reaches emuRound, therefore
c∗(r + ∆v, r, r − 1) = c∗(r + ∆v, r − 1, r − 1). From
this and Eq 2 we conclude that c∗(r + ∆v, r, r − 1) =
c∗(r +∆v, r − 1, r − 1). From this and Eq 1 we conclude
that

c∗(r +∆v, r, r − 1) = c′(r − 1) . (3)

Let (writeboxes∗, inboxes∗) be the pair returned by the
invocation of prepEmuInputs(i, jLLLi

r+∆v
, r) in vitro after

round r + ∆v for party jΛ of E∗, and, likewise define
(writeboxes′, inboxes′) to be the pair returned by the invo-
cation of prepEmuInputs(i, jLLLi

R, R−∆v−1) in vitro after
round R of E∗ on party jΛ. Because jYi in E∗ is sticky
and timely(vi) the transactions in jLLLi

r+∆v
with recorded

round r − 1 are identical to the transactions in jLLLi
R with

recorded round r − 1 (all transactions with recorded round
r − 1 of jLLLi

r+∆v
will appear in jLLLi

R by stickiness; and all
transactions with recorded round r − 1 of jLLLi

R will have
appeared in jLLLi

r+∆v
by timeliness; in the case of r = 1, no

transactions with recorded round r− 1 will appear in either
ledger). Hence,

writeboxes∗[r − 1] = writeboxes′[r − 1] (4)
inboxes∗[r − 1] = inboxes′[r − 1] , (5)

since the loop of Algorithm 6 Line 16 will run identically in
the two invocations of prepEmuInputs up to and including
round r−1 (and for r = 1, writeboxes∗[0] = inboxes∗[0] =
writeboxes′[0] = inboxes′[0] by construction).

By the ROLLERBLADE construction, c∗(r + ∆v, r, r)
is the result of taking the machine configuration c∗(r +
∆v, r, r−1) and running the for loop of Algorithm 5 Line 16
for one more iteration, providing inputs writeboxes∗[r −
1], inboxes∗[r − 1] during the execution of jZi. To see

why writeboxes∗, inboxes∗ in particular are used in this
iteration, note that these correspond to the invocation of
prepEmuInputs in Algorithm 5 Line 2.

Similarly, by the simulator construction, the simulator
evolves the machine Πi in E ′ from round r − 1, in which
it has configuration c′(r − 1), to round r, in which it has
configuration c′(r), by feeding it the inputs writeboxes′[r−
1], inboxes′[r − 1].

As c∗(r + ∆v, r, r − 1) = c′(r − 1) (by Eq 3) and
the two configurations evolve using the same inputs (by
Eqs 4 and 5), and, since Π is deterministic, therefore
c∗(r + ∆v, r, r) = c′(r) (see Figure 5). We conclude that
V ∗
i,r = V ′

i,r, completing the induction and the proof of Claim
1.

Claim 2: Z ′ respects the network model. Namely, the
claim is that for all i, i′ ∈ H , for all rounds r of E ′:
(a) If Πi sends a message to Πi′ at round r, then this

message is delivered to Πi′ (with source i) between
round r + 1 and r +∆, and

(b) If Πi′ received a message from Πi at round r∗, then
this message was sent by Πi.

Let r be the round during which Πi sends message
msg to Πi′ . That means that Πi invoked network func-
tion send(i′,msg) at round r. In Claim 1, we showed
that the transcript of machine Πi in E ′ is identical to the
transcript of machine jZi = jΛ.emuSnapshot(i, r) in E∗
called in vitro at the end of round r + ∆v, which, by
consistency, is the same as jΛ.emulate(i, jLLLi

R−∆v−1, r).Z

called in vitro at the end of round R. Hence, jZi

also invoked network function send(i′,msg) at round
r. This means that {to : i′,msg : msg} ∈
jΛ.emulate(i, jLLLi

R−∆v−1, r).outboxes[r].
Let (r∗, tx∗) be the first bulletin ‘chkpt’ transaction from

Yi in jLLLi′

R, such that r∗ > r + vi + ui′ . Such a transaction
(r∗, tx∗) will exist because party jΛ will relay Yi at round
r+vi+vi′ , and because of the liveness of Yi′ , it will appear
on jLLLi′ for the first time no later than round r+vi+ui′+vi′
with recorded round after r + vi + ui′ but no later than
r + vi + ui′ + vi′ . Therefore r∗ ≤ r + vi + ui′ + vi′ .

Let f∗ be the value of F i in Line 28 during iteration
with parameter (r∗, tx∗). By Lemma A.1.2, the transactions
with recorded round up to r ≤ r∗− vi−ui′ − 1 in jLLLi

R+∆v

and f∗ are the same.
In order to collect the incoming messages for Πi′ ,

the simulator calls in vitro (at the end of round
R) jΛ.prepEmuInputs(i′, jLLLi′

R−∆v−1, R − ∆v − 1). In
Line 28, during iteration with parameter (r∗, tx∗), function
jΛ.emulate(i, F i, r∗−vi−ui′−1) is invoked. It holds that
{to : i′,msg : msg} ∈ jΛ.emulate(i, F i, r∗ − vi − ui′ −
1).outboxes[r]. By the minimality of (r∗, tx∗), the msg
will be included in inboxes[r∗]. The environment Z ′ will
provide msg to Πi′ if network method recv() is invoked at
round r∗.

We conclude that since msg sent at r was delivered at
r∗, and r∗ ≤ r + vi + ui′ + vi′ ≤ r + 2∆v +∆u ≤ r +∆,

deterministic
computation

deterministic
computation

= (consistency)

= (QED)= (IND HYP)
Emulated Setting

Party Setting

c∗(r + ∆v, r − 1, r − 1)

c′(r − 1)

c∗(r + ∆v + 1, r, r)

c′(r)writeboxes′[r − 1]
inboxes′[r − 1] input

ℰ′

ℰ∗

writeboxes∗[r − 1]
inboxes∗[r − 1]

c∗(r + ∆v
 + 1, r − 1, r − 1)

c∗(r + ∆v
 + 1, r, r − 1)

= (construction)

= (sticky, timely)

input

Figure 5. The inductive step in the proof of the Emulation Theorem.

the delay is respected. We observe that the delay for every
message is always greater than ui + vi′ .

This completes the proof of (a).
Let msg be the message that Πi′ received from Πi at

round r∗. To prove (b), it suffices to show that Πi invoked
network function send(i′,msg) at some round r.

The message msg is received at round r∗ if Z ′ provides
it to Πi′ after network method recv() is invoked during
round r∗. Hence, the msg must be included in inboxes[r∗]
after jΛ.prepEmuInputs(i′, jLLLi′

R, R −∆v − 1) is called in
vitro at the end of round R by the simulator. Therefore,
there is a bulletin ‘chkpt’ transaction (r∗, tx∗), such that
when the for loop in Algorithm 6 Line 16 is entered with
it as parameter, it holds that {to : i′,msg : msg} ∈
jΛ.emulate(i, F i, r∗ − vi − ui′ − 1).outboxes[r], where
r ≤ r∗ − vi − ui′ − 1.

Let f∗ be the value of F i in Line 28 during iteration
with parameter (r∗, tx∗). By Lemma A.1.2, the transac-
tions with recorded round up to r ≤ r∗ − vi − ui′ − 1
in jLLLi

R+∆v
and f∗ are the same. Therefore, it holds

that jΛ.emulate(i, f∗, r∗ − vi − ui′ − 1).outboxes[r] =
jΛ.emulate(i, jLLLi

R, r).outboxes[r]. That means that jZi

invoked network function send(i′,msg) at round r. In
Claim 1, we showed that the transcript of machine Πi

in E ′ is identical to the transcript of machine jZi =
jΛ.emuSnapshot(i, r) in E∗ called in vitro at the end
of round r + ∆v, which, by consistency, is the same as
jΛ.emulate(i, jLLLi

R, r).Z called in vitro at the end of round
R. Hence, Πi also invoked network function send(i′,msg)
at round r.

This completes the proof of claim (b).

Claim 3: EXTERNES
j,H(E∗) ⪅∆u,∆v

EXTERNPS(VIEWPS
H(B)(E ′)). Let i ∈ H and

r ≤ R − ∆u − ∆v − 1 be arbitrary, and W i
r be the

writebox at position (i, r) of EXTERNES(E∗). Let m be
an arbitrary message in W i

r . Message m was included in
a writeToMachine call to jRB with parameter i at round
r. By the rollerblade construction, the write function of
jYi will be called by jRB at round r with parameter a
bulletin transaction tx with payload (‘write’,m). Because
bulletin transactions are high entropy, this transaction is

writeToMachine(i, data)

jΛ

jZi

encodei

write read

serialize deserialize
bulletin tx

i bu
lle

tin
 tx

si

w
rite

instruction

write

w
rit

e
in

st
ru

ct
io

n

jYi
transcribe

ch
ec

kp
oi

nt

in
st

ru
ct

io
n

encodei

serialize

write

bulletin tx
i

jYi′

bu
lle

tin
 tx

si

checkpoint
instructions

deserialize

untrancribei′

simulatei′

′

ledger i′

jZi

NET.recv

outbox → inbox

outboxi′

in
bo

xi

decodei

decodei

jYi
read jΛ

Figure 6. The two types of instructions recorded on-ledger to enable
the emulation. On the left, the flow of a write instruction, indicating
user (environment) input is illustrated. Whereas the environment invokes
writeToMachine, the instruction, after becoming recorded on the ledger and
appropriately translated, eventually makes it as a write call to the emulated
machine jZi. On the right, the flow of a checkpoint instruction, initiated
by the relaying process of a rollerblade client, is illustrated. The source
ledger (i′) is transcribed onto the destination ledger (i). This transcription
is later untranscribed and used as the input to a recursive emulation call to
produce the network outputs of a machine i′, which are, upon appropriate
translation, given to the machine jZi as network input.

fresh, namely it does not appear in jLLLi
r. Because i is good,

therefore it is live in E∗ with liveness ui, therefore tx will
appear in jLLLi

r+ui
with some recorded round r∗. Note that

round r + ui ≤ R falls within the duration of E∗, and
so the ledger jLLLi

r+ui
can be obtained by the simulator.

Because i is timely in E∗ with timeliness vi, therefore
r+1−∆v ≤ r+1−vi ≤ r∗ ≤ r+ui ≤ r+∆u ≤ R−∆v−1.
When the function prepEmuInputs is invoked at
realRound = R and with emuRound = R − ∆v − 1,
the transaction will contribute to the writebox of party i,
since r∗ ≤ R −∆v − 1. Hence, m will be inputted to the
write function call of Πi in E ′ at round r∗ (and note that
1 ≤ r∗ ≤ R − ∆v − 1 falls within the duration of E ′),
completing the proof of Claim 3.

3. Acknowledgements

The authors wish to thank Joachim Neu for helping
discover the necessity of transcribability and certifiability

of ledgers to achieve different assurances in the virtualized
world, as well as the relationship between safety failures
of ledgers and rollback corruptions of simulated parties. We
also thank Ertem Nusret Tas, Kostis Karantias, and Srivatsan
Sridhar for the insightful discussions during the development
of this project.

This paper and the concurrent related work in which
blockchains were analyzed as “circuits” [18] both came out
of many fruitful discussions about blockchain composability
among Ertem Nusret Tas, David Tse, and Dionysis Zindros,
when they were all at Stanford University.

This work was partially funded by Input Output Global.

	Introduction
	Preliminaries
	Definitions
	The Setting
	Rollerblade Underlying Requirements
	Compositors

	Construction
	Conclusion
	References
	Appendix
	Discussion
	Analysis
	Acknowledgements

